1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49 }
50
51 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52 static void zero_zones_numa_counters(void)
53 {
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
zero_global_numa_counters(void)61 static void zero_global_numa_counters(void)
62 {
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
invalid_numa_statistics(void)69 static void invalid_numa_statistics(void)
70 {
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79 {
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
sum_vm_events(unsigned long * ret)110 static void sum_vm_events(unsigned long *ret)
111 {
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123 }
124
125 /*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129 */
all_vm_events(unsigned long * ret)130 void all_vm_events(unsigned long *ret)
131 {
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
vm_events_fold_cpu(int cpu)144 void vm_events_fold_cpu(int cpu)
145 {
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
fold_vm_numa_events(void)187 void fold_vm_numa_events(void)
188 {
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
calculate_pressure_threshold(struct zone * zone)198 int calculate_pressure_threshold(struct zone *zone)
199 {
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220 }
221
calculate_normal_threshold(struct zone * zone)222 int calculate_normal_threshold(struct zone *zone)
223 {
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267 }
268
269 /*
270 * Refresh the thresholds for each zone.
271 */
refresh_zone_stat_thresholds(void)272 void refresh_zone_stat_thresholds(void)
273 {
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315 }
316
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319 {
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335 }
336
337 /*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344 {
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375 {
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408
409 /*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451 }
452
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474 }
475
__inc_zone_page_state(struct page * page,enum zone_stat_item item)476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478 __inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481
__inc_node_page_state(struct page * page,enum node_stat_item item)482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484 __inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487
__dec_zone_state(struct zone * zone,enum zone_stat_item item)488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507 }
508
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530 }
531
__dec_zone_page_state(struct page * page,enum zone_stat_item item)532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534 __dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537
__dec_node_page_state(struct page * page,enum node_stat_item item)538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540 __dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)557 static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559 {
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long o, n, t, z;
563
564 do {
565 z = 0; /* overflow to zone counters */
566
567 /*
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
573 *
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
576 */
577 t = this_cpu_read(pcp->stat_threshold);
578
579 o = this_cpu_read(*p);
580 n = delta + o;
581
582 if (abs(n) > t) {
583 int os = overstep_mode * (t >> 1) ;
584
585 /* Overflow must be added to zone counters */
586 z = n + os;
587 n = -os;
588 }
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591 if (z)
592 zone_page_state_add(z, zone, item);
593 }
594
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)595 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 long delta)
597 {
598 mod_zone_state(zone, item, delta, 0);
599 }
600 EXPORT_SYMBOL(mod_zone_page_state);
601
inc_zone_page_state(struct page * page,enum zone_stat_item item)602 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603 {
604 mod_zone_state(page_zone(page), item, 1, 1);
605 }
606 EXPORT_SYMBOL(inc_zone_page_state);
607
dec_zone_page_state(struct page * page,enum zone_stat_item item)608 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609 {
610 mod_zone_state(page_zone(page), item, -1, -1);
611 }
612 EXPORT_SYMBOL(dec_zone_page_state);
613
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)614 static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
616 {
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 long o, n, t, z;
620
621 if (vmstat_item_in_bytes(item)) {
622 /*
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
627 */
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
630 }
631
632 do {
633 z = 0; /* overflow to node counters */
634
635 /*
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
641 *
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
644 */
645 t = this_cpu_read(pcp->stat_threshold);
646
647 o = this_cpu_read(*p);
648 n = delta + o;
649
650 if (abs(n) > t) {
651 int os = overstep_mode * (t >> 1) ;
652
653 /* Overflow must be added to node counters */
654 z = n + os;
655 n = -os;
656 }
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659 if (z)
660 node_page_state_add(z, pgdat, item);
661 }
662
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)663 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 long delta)
665 {
666 mod_node_state(pgdat, item, delta, 0);
667 }
668 EXPORT_SYMBOL(mod_node_page_state);
669
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)670 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671 {
672 mod_node_state(pgdat, item, 1, 1);
673 }
674
inc_node_page_state(struct page * page,enum node_stat_item item)675 void inc_node_page_state(struct page *page, enum node_stat_item item)
676 {
677 mod_node_state(page_pgdat(page), item, 1, 1);
678 }
679 EXPORT_SYMBOL(inc_node_page_state);
680
dec_node_page_state(struct page * page,enum node_stat_item item)681 void dec_node_page_state(struct page *page, enum node_stat_item item)
682 {
683 mod_node_state(page_pgdat(page), item, -1, -1);
684 }
685 EXPORT_SYMBOL(dec_node_page_state);
686 #else
687 /*
688 * Use interrupt disable to serialize counter updates
689 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 long delta)
692 {
693 unsigned long flags;
694
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
698 }
699 EXPORT_SYMBOL(mod_zone_page_state);
700
inc_zone_page_state(struct page * page,enum zone_stat_item item)701 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702 {
703 unsigned long flags;
704 struct zone *zone;
705
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(inc_zone_page_state);
712
dec_zone_page_state(struct page * page,enum zone_stat_item item)713 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
720 }
721 EXPORT_SYMBOL(dec_zone_page_state);
722
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)723 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724 {
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
730 }
731 EXPORT_SYMBOL(inc_node_state);
732
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)733 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 long delta)
735 {
736 unsigned long flags;
737
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
741 }
742 EXPORT_SYMBOL(mod_node_page_state);
743
inc_node_page_state(struct page * page,enum node_stat_item item)744 void inc_node_page_state(struct page *page, enum node_stat_item item)
745 {
746 unsigned long flags;
747 struct pglist_data *pgdat;
748
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(inc_node_page_state);
755
dec_node_page_state(struct page * page,enum node_stat_item item)756 void dec_node_page_state(struct page *page, enum node_stat_item item)
757 {
758 unsigned long flags;
759
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
763 }
764 EXPORT_SYMBOL(dec_node_page_state);
765 #endif
766
767 /*
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
770 */
fold_diff(int * zone_diff,int * node_diff)771 static int fold_diff(int *zone_diff, int *node_diff)
772 {
773 int i;
774 int changes = 0;
775
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 if (zone_diff[i]) {
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 changes++;
780 }
781
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 if (node_diff[i]) {
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 changes++;
786 }
787 return changes;
788 }
789
790 /*
791 * Update the zone counters for the current cpu.
792 *
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
797 * the processor.
798 *
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
803 *
804 * The function returns the number of global counters updated.
805 */
refresh_cpu_vm_stats(bool do_pagesets)806 static int refresh_cpu_vm_stats(bool do_pagesets)
807 {
808 struct pglist_data *pgdat;
809 struct zone *zone;
810 int i;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 int changes = 0;
814
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817 #ifdef CONFIG_NUMA
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819 #endif
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832 #endif
833 }
834 }
835 #ifdef CONFIG_NUMA
836
837 if (do_pagesets) {
838 cond_resched();
839 /*
840 * Deal with draining the remote pageset of this
841 * processor
842 *
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
845 */
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
848 continue;
849
850 /*
851 * We never drain zones local to this processor.
852 */
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
855 continue;
856 }
857
858 if (__this_cpu_dec_return(pcp->expire))
859 continue;
860
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
863 changes++;
864 }
865 }
866 #endif
867 }
868
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 int v;
874
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 if (v) {
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
879 }
880 }
881 }
882
883 changes += fold_diff(global_zone_diff, global_node_diff);
884 return changes;
885 }
886
887 /*
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
891 */
cpu_vm_stats_fold(int cpu)892 void cpu_vm_stats_fold(int cpu)
893 {
894 struct pglist_data *pgdat;
895 struct zone *zone;
896 int i;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
902
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
907 int v;
908
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
913 }
914 }
915 #ifdef CONFIG_NUMA
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
918 unsigned long v;
919
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
923 }
924 }
925 #endif
926 }
927
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
930
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
935 int v;
936
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
941 }
942 }
943
944 fold_diff(global_zone_diff, global_node_diff);
945 }
946
947 /*
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
950 */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)951 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952 {
953 unsigned long v;
954 int i;
955
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
961 }
962 }
963
964 #ifdef CONFIG_NUMA
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
970 }
971 }
972 #endif
973 }
974 #endif
975
976 #ifdef CONFIG_NUMA
977 /*
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
981 */
sum_zone_node_page_state(int node,enum zone_stat_item item)982 unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
984 {
985 struct zone *zones = NODE_DATA(node)->node_zones;
986 int i;
987 unsigned long count = 0;
988
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
991
992 return count;
993 }
994
995 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)996 unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
998 {
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1001 int i;
1002
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1005
1006 return count;
1007 }
1008
1009 /*
1010 * Determine the per node value of a stat item.
1011 */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1012 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1014 {
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1016 #ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019 #endif
1020 return x;
1021 }
1022
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1023 unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1025 {
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028 return node_page_state_pages(pgdat, item);
1029 }
1030 #endif
1031
1032 #ifdef CONFIG_COMPACTION
1033
1034 struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1038 };
1039
1040 /*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1048 static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1051 {
1052 unsigned int order;
1053
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1057
1058 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1059 unsigned long blocks;
1060
1061 /*
1062 * Count number of free blocks.
1063 *
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 */
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1069
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1072
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1077 }
1078 }
1079
1080 /*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1087 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088 {
1089 unsigned long requested = 1UL << order;
1090
1091 if (WARN_ON_ONCE(order > MAX_ORDER))
1092 return 0;
1093
1094 if (!info->free_blocks_total)
1095 return 0;
1096
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1099 return -1000;
1100
1101 /*
1102 * Index is between 0 and 1 so return within 3 decimal places
1103 *
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1106 */
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108 }
1109
1110 /*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
extfrag_for_order(struct zone * zone,unsigned int order)1115 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116 {
1117 struct contig_page_info info;
1118
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1121 return 0;
1122
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1125 info.free_pages);
1126 }
1127
1128 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1129 int fragmentation_index(struct zone *zone, unsigned int order)
1130 {
1131 struct contig_page_info info;
1132
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1135 }
1136 #endif
1137
1138 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140 #ifdef CONFIG_ZONE_DMA
1141 #define TEXT_FOR_DMA(xx) xx "_dma",
1142 #else
1143 #define TEXT_FOR_DMA(xx)
1144 #endif
1145
1146 #ifdef CONFIG_ZONE_DMA32
1147 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1148 #else
1149 #define TEXT_FOR_DMA32(xx)
1150 #endif
1151
1152 #ifdef CONFIG_HIGHMEM
1153 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154 #else
1155 #define TEXT_FOR_HIGHMEM(xx)
1156 #endif
1157
1158 #ifdef CONFIG_ZONE_DEVICE
1159 #define TEXT_FOR_DEVICE(xx) xx "_device",
1160 #else
1161 #define TEXT_FOR_DEVICE(xx)
1162 #endif
1163
1164 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 TEXT_FOR_DEVICE(xx)
1167
1168 const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 #ifdef CONFIG_MEM_PURGEABLE
1176 "nr_zone_inactive_purgeable",
1177 "nr_zone_active_purgeable",
1178 #endif
1179 "nr_zone_unevictable",
1180 "nr_zone_write_pending",
1181 "nr_mlock",
1182 "nr_bounce",
1183 #if IS_ENABLED(CONFIG_ZSMALLOC)
1184 "nr_zspages",
1185 #endif
1186 "nr_free_cma",
1187 #ifdef CONFIG_UNACCEPTED_MEMORY
1188 "nr_unaccepted",
1189 #endif
1190
1191 /* enum numa_stat_item counters */
1192 #ifdef CONFIG_NUMA
1193 "numa_hit",
1194 "numa_miss",
1195 "numa_foreign",
1196 "numa_interleave",
1197 "numa_local",
1198 "numa_other",
1199 #endif
1200
1201 /* enum node_stat_item counters */
1202 "nr_inactive_anon",
1203 "nr_active_anon",
1204 "nr_inactive_file",
1205 "nr_active_file",
1206 #ifdef CONFIG_MEM_PURGEABLE
1207 "nr_inactive_purgeable",
1208 "nr_active_purgeable",
1209 #endif
1210 "nr_unevictable",
1211 "nr_slab_reclaimable",
1212 "nr_slab_unreclaimable",
1213 "nr_isolated_anon",
1214 "nr_isolated_file",
1215 "workingset_nodes",
1216 "workingset_refault_anon",
1217 "workingset_refault_file",
1218 "workingset_activate_anon",
1219 "workingset_activate_file",
1220 "workingset_restore_anon",
1221 "workingset_restore_file",
1222 "workingset_nodereclaim",
1223 "nr_anon_pages",
1224 "nr_mapped",
1225 "nr_file_pages",
1226 "nr_dirty",
1227 "nr_writeback",
1228 "nr_writeback_temp",
1229 "nr_shmem",
1230 "nr_shmem_hugepages",
1231 "nr_shmem_pmdmapped",
1232 "nr_file_hugepages",
1233 "nr_file_pmdmapped",
1234 "nr_anon_transparent_hugepages",
1235 "nr_vmscan_write",
1236 "nr_vmscan_immediate_reclaim",
1237 "nr_dirtied",
1238 "nr_written",
1239 "nr_throttled_written",
1240 "nr_kernel_misc_reclaimable",
1241 "nr_foll_pin_acquired",
1242 "nr_foll_pin_released",
1243 "nr_kernel_stack",
1244 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1245 "nr_shadow_call_stack",
1246 #endif
1247 "nr_page_table_pages",
1248 "nr_sec_page_table_pages",
1249 #ifdef CONFIG_SWAP
1250 "nr_swapcached",
1251 #endif
1252 #ifdef CONFIG_NUMA_BALANCING
1253 "pgpromote_success",
1254 "pgpromote_candidate",
1255 #endif
1256
1257 /* enum writeback_stat_item counters */
1258 "nr_dirty_threshold",
1259 "nr_dirty_background_threshold",
1260
1261 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1262 /* enum vm_event_item counters */
1263 "pgpgin",
1264 "pgpgout",
1265 "pswpin",
1266 "pswpout",
1267
1268 TEXTS_FOR_ZONES("pgalloc")
1269 TEXTS_FOR_ZONES("allocstall")
1270 TEXTS_FOR_ZONES("pgskip")
1271
1272 "pgfree",
1273 "pgactivate",
1274 "pgdeactivate",
1275 "pglazyfree",
1276
1277 "pgfault",
1278 "pgmajfault",
1279 "pglazyfreed",
1280
1281 "pgrefill",
1282 "pgreuse",
1283 "pgsteal_kswapd",
1284 "pgsteal_direct",
1285 "pgsteal_khugepaged",
1286 "pgdemote_kswapd",
1287 "pgdemote_direct",
1288 "pgdemote_khugepaged",
1289 "pgscan_kswapd",
1290 "pgscan_direct",
1291 "pgscan_khugepaged",
1292 "pgscan_direct_throttle",
1293 "pgscan_anon",
1294 "pgscan_file",
1295 "pgsteal_anon",
1296 "pgsteal_file",
1297
1298 #ifdef CONFIG_NUMA
1299 "zone_reclaim_failed",
1300 #endif
1301 "pginodesteal",
1302 "slabs_scanned",
1303 "kswapd_inodesteal",
1304 "kswapd_low_wmark_hit_quickly",
1305 "kswapd_high_wmark_hit_quickly",
1306 "pageoutrun",
1307
1308 "pgrotated",
1309
1310 "drop_pagecache",
1311 "drop_slab",
1312 "oom_kill",
1313
1314 #ifdef CONFIG_NUMA_BALANCING
1315 "numa_pte_updates",
1316 "numa_huge_pte_updates",
1317 "numa_hint_faults",
1318 "numa_hint_faults_local",
1319 "numa_pages_migrated",
1320 #endif
1321 #ifdef CONFIG_MIGRATION
1322 "pgmigrate_success",
1323 "pgmigrate_fail",
1324 "thp_migration_success",
1325 "thp_migration_fail",
1326 "thp_migration_split",
1327 #endif
1328 #ifdef CONFIG_COMPACTION
1329 "compact_migrate_scanned",
1330 "compact_free_scanned",
1331 "compact_isolated",
1332 "compact_stall",
1333 "compact_fail",
1334 "compact_success",
1335 "compact_daemon_wake",
1336 "compact_daemon_migrate_scanned",
1337 "compact_daemon_free_scanned",
1338 #endif
1339
1340 #ifdef CONFIG_HUGETLB_PAGE
1341 "htlb_buddy_alloc_success",
1342 "htlb_buddy_alloc_fail",
1343 #endif
1344 #ifdef CONFIG_CMA
1345 "cma_alloc_success",
1346 "cma_alloc_fail",
1347 #endif
1348 "unevictable_pgs_culled",
1349 "unevictable_pgs_scanned",
1350 "unevictable_pgs_rescued",
1351 "unevictable_pgs_mlocked",
1352 "unevictable_pgs_munlocked",
1353 "unevictable_pgs_cleared",
1354 "unevictable_pgs_stranded",
1355
1356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1357 "thp_fault_alloc",
1358 "thp_fault_fallback",
1359 "thp_fault_fallback_charge",
1360 "thp_collapse_alloc",
1361 "thp_collapse_alloc_failed",
1362 "thp_file_alloc",
1363 "thp_file_fallback",
1364 "thp_file_fallback_charge",
1365 "thp_file_mapped",
1366 "thp_split_page",
1367 "thp_split_page_failed",
1368 "thp_deferred_split_page",
1369 "thp_split_pmd",
1370 "thp_scan_exceed_none_pte",
1371 "thp_scan_exceed_swap_pte",
1372 "thp_scan_exceed_share_pte",
1373 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1374 "thp_split_pud",
1375 #endif
1376 "thp_zero_page_alloc",
1377 "thp_zero_page_alloc_failed",
1378 "thp_swpout",
1379 "thp_swpout_fallback",
1380 #endif
1381 #ifdef CONFIG_MEMORY_BALLOON
1382 "balloon_inflate",
1383 "balloon_deflate",
1384 #ifdef CONFIG_BALLOON_COMPACTION
1385 "balloon_migrate",
1386 #endif
1387 #endif /* CONFIG_MEMORY_BALLOON */
1388 #ifdef CONFIG_DEBUG_TLBFLUSH
1389 "nr_tlb_remote_flush",
1390 "nr_tlb_remote_flush_received",
1391 "nr_tlb_local_flush_all",
1392 "nr_tlb_local_flush_one",
1393 #endif /* CONFIG_DEBUG_TLBFLUSH */
1394
1395 #ifdef CONFIG_SWAP
1396 "swap_ra",
1397 "swap_ra_hit",
1398 #ifdef CONFIG_KSM
1399 "ksm_swpin_copy",
1400 #endif
1401 #endif
1402 #ifdef CONFIG_KSM
1403 "cow_ksm",
1404 #endif
1405 #ifdef CONFIG_ZSWAP
1406 "zswpin",
1407 "zswpout",
1408 #endif
1409 #ifdef CONFIG_X86
1410 "direct_map_level2_splits",
1411 "direct_map_level3_splits",
1412 #endif
1413 #ifdef CONFIG_PER_VMA_LOCK_STATS
1414 "vma_lock_success",
1415 "vma_lock_abort",
1416 "vma_lock_retry",
1417 "vma_lock_miss",
1418 #endif
1419 #ifdef CONFIG_HYPERHOLD_ZSWAPD
1420 "zswapd_running",
1421 "zswapd_hit_refaults",
1422 "zswapd_medium_press",
1423 "zswapd_critical_press",
1424 "zswapd_memcg_ratio_skip",
1425 "zswapd_memcg_refault_skip",
1426 "zswapd_swapout",
1427 "zswapd_empty_round",
1428 "zswapd_empty_round_skip_times",
1429 "zswapd_snapshot_times",
1430 "zswapd_reclaimed",
1431 "zswapd_scanned",
1432 #endif
1433 #ifdef CONFIG_HYPERHOLD_MEMCG
1434 "freeze_reclaimed",
1435 "freeze_reclaim_count",
1436 #endif
1437 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1438 };
1439 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1440
1441 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1442 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1443 static void *frag_start(struct seq_file *m, loff_t *pos)
1444 {
1445 pg_data_t *pgdat;
1446 loff_t node = *pos;
1447
1448 for (pgdat = first_online_pgdat();
1449 pgdat && node;
1450 pgdat = next_online_pgdat(pgdat))
1451 --node;
1452
1453 return pgdat;
1454 }
1455
frag_next(struct seq_file * m,void * arg,loff_t * pos)1456 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1457 {
1458 pg_data_t *pgdat = (pg_data_t *)arg;
1459
1460 (*pos)++;
1461 return next_online_pgdat(pgdat);
1462 }
1463
frag_stop(struct seq_file * m,void * arg)1464 static void frag_stop(struct seq_file *m, void *arg)
1465 {
1466 }
1467
1468 /*
1469 * Walk zones in a node and print using a callback.
1470 * If @assert_populated is true, only use callback for zones that are populated.
1471 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1472 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1473 bool assert_populated, bool nolock,
1474 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1475 {
1476 struct zone *zone;
1477 struct zone *node_zones = pgdat->node_zones;
1478 unsigned long flags;
1479
1480 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1481 if (assert_populated && !populated_zone(zone))
1482 continue;
1483
1484 if (!nolock)
1485 spin_lock_irqsave(&zone->lock, flags);
1486 print(m, pgdat, zone);
1487 if (!nolock)
1488 spin_unlock_irqrestore(&zone->lock, flags);
1489 }
1490 }
1491 #endif
1492
1493 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1494 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1495 struct zone *zone)
1496 {
1497 int order;
1498
1499 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1500 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1501 /*
1502 * Access to nr_free is lockless as nr_free is used only for
1503 * printing purposes. Use data_race to avoid KCSAN warning.
1504 */
1505 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1506 seq_putc(m, '\n');
1507 }
1508
1509 /*
1510 * This walks the free areas for each zone.
1511 */
frag_show(struct seq_file * m,void * arg)1512 static int frag_show(struct seq_file *m, void *arg)
1513 {
1514 pg_data_t *pgdat = (pg_data_t *)arg;
1515 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1516 return 0;
1517 }
1518
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1519 static void pagetypeinfo_showfree_print(struct seq_file *m,
1520 pg_data_t *pgdat, struct zone *zone)
1521 {
1522 int order, mtype;
1523
1524 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1525 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1526 pgdat->node_id,
1527 zone->name,
1528 migratetype_names[mtype]);
1529 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1530 unsigned long freecount = 0;
1531 struct free_area *area;
1532 struct list_head *curr;
1533 bool overflow = false;
1534
1535 area = &(zone->free_area[order]);
1536
1537 list_for_each(curr, &area->free_list[mtype]) {
1538 /*
1539 * Cap the free_list iteration because it might
1540 * be really large and we are under a spinlock
1541 * so a long time spent here could trigger a
1542 * hard lockup detector. Anyway this is a
1543 * debugging tool so knowing there is a handful
1544 * of pages of this order should be more than
1545 * sufficient.
1546 */
1547 if (++freecount >= 100000) {
1548 overflow = true;
1549 break;
1550 }
1551 }
1552 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1553 spin_unlock_irq(&zone->lock);
1554 cond_resched();
1555 spin_lock_irq(&zone->lock);
1556 }
1557 seq_putc(m, '\n');
1558 }
1559 }
1560
1561 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1562 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1563 {
1564 int order;
1565 pg_data_t *pgdat = (pg_data_t *)arg;
1566
1567 /* Print header */
1568 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1569 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1570 seq_printf(m, "%6d ", order);
1571 seq_putc(m, '\n');
1572
1573 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1574 }
1575
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1576 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1577 pg_data_t *pgdat, struct zone *zone)
1578 {
1579 int mtype;
1580 unsigned long pfn;
1581 unsigned long start_pfn = zone->zone_start_pfn;
1582 unsigned long end_pfn = zone_end_pfn(zone);
1583 unsigned long count[MIGRATE_TYPES] = { 0, };
1584
1585 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1586 struct page *page;
1587
1588 page = pfn_to_online_page(pfn);
1589 if (!page)
1590 continue;
1591
1592 if (page_zone(page) != zone)
1593 continue;
1594
1595 mtype = get_pageblock_migratetype(page);
1596
1597 if (mtype < MIGRATE_TYPES)
1598 count[mtype]++;
1599 }
1600
1601 /* Print counts */
1602 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1603 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1604 seq_printf(m, "%12lu ", count[mtype]);
1605 seq_putc(m, '\n');
1606 }
1607
1608 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1609 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1610 {
1611 int mtype;
1612 pg_data_t *pgdat = (pg_data_t *)arg;
1613
1614 seq_printf(m, "\n%-23s", "Number of blocks type ");
1615 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1616 seq_printf(m, "%12s ", migratetype_names[mtype]);
1617 seq_putc(m, '\n');
1618 walk_zones_in_node(m, pgdat, true, false,
1619 pagetypeinfo_showblockcount_print);
1620 }
1621
1622 /*
1623 * Print out the number of pageblocks for each migratetype that contain pages
1624 * of other types. This gives an indication of how well fallbacks are being
1625 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1626 * to determine what is going on
1627 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1628 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1629 {
1630 #ifdef CONFIG_PAGE_OWNER
1631 int mtype;
1632
1633 if (!static_branch_unlikely(&page_owner_inited))
1634 return;
1635
1636 drain_all_pages(NULL);
1637
1638 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1639 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1640 seq_printf(m, "%12s ", migratetype_names[mtype]);
1641 seq_putc(m, '\n');
1642
1643 walk_zones_in_node(m, pgdat, true, true,
1644 pagetypeinfo_showmixedcount_print);
1645 #endif /* CONFIG_PAGE_OWNER */
1646 }
1647
1648 /*
1649 * This prints out statistics in relation to grouping pages by mobility.
1650 * It is expensive to collect so do not constantly read the file.
1651 */
pagetypeinfo_show(struct seq_file * m,void * arg)1652 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1653 {
1654 pg_data_t *pgdat = (pg_data_t *)arg;
1655
1656 /* check memoryless node */
1657 if (!node_state(pgdat->node_id, N_MEMORY))
1658 return 0;
1659
1660 seq_printf(m, "Page block order: %d\n", pageblock_order);
1661 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1662 seq_putc(m, '\n');
1663 pagetypeinfo_showfree(m, pgdat);
1664 pagetypeinfo_showblockcount(m, pgdat);
1665 pagetypeinfo_showmixedcount(m, pgdat);
1666
1667 return 0;
1668 }
1669
1670 static const struct seq_operations fragmentation_op = {
1671 .start = frag_start,
1672 .next = frag_next,
1673 .stop = frag_stop,
1674 .show = frag_show,
1675 };
1676
1677 static const struct seq_operations pagetypeinfo_op = {
1678 .start = frag_start,
1679 .next = frag_next,
1680 .stop = frag_stop,
1681 .show = pagetypeinfo_show,
1682 };
1683
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1684 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1685 {
1686 int zid;
1687
1688 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1689 struct zone *compare = &pgdat->node_zones[zid];
1690
1691 if (populated_zone(compare))
1692 return zone == compare;
1693 }
1694
1695 return false;
1696 }
1697
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1698 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1699 struct zone *zone)
1700 {
1701 int i;
1702 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1703 if (is_zone_first_populated(pgdat, zone)) {
1704 seq_printf(m, "\n per-node stats");
1705 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1706 unsigned long pages = node_page_state_pages(pgdat, i);
1707
1708 if (vmstat_item_print_in_thp(i))
1709 pages /= HPAGE_PMD_NR;
1710 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1711 pages);
1712 }
1713 }
1714 seq_printf(m,
1715 "\n pages free %lu"
1716 "\n boost %lu"
1717 "\n min %lu"
1718 "\n low %lu"
1719 "\n high %lu"
1720 "\n spanned %lu"
1721 "\n present %lu"
1722 "\n managed %lu"
1723 "\n cma %lu",
1724 zone_page_state(zone, NR_FREE_PAGES),
1725 zone->watermark_boost,
1726 min_wmark_pages(zone),
1727 low_wmark_pages(zone),
1728 high_wmark_pages(zone),
1729 zone->spanned_pages,
1730 zone->present_pages,
1731 zone_managed_pages(zone),
1732 zone_cma_pages(zone));
1733
1734 seq_printf(m,
1735 "\n protection: (%ld",
1736 zone->lowmem_reserve[0]);
1737 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1738 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1739 seq_putc(m, ')');
1740
1741 /* If unpopulated, no other information is useful */
1742 if (!populated_zone(zone)) {
1743 seq_putc(m, '\n');
1744 return;
1745 }
1746
1747 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1748 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1749 zone_page_state(zone, i));
1750
1751 #ifdef CONFIG_NUMA
1752 fold_vm_zone_numa_events(zone);
1753 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1754 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1755 zone_numa_event_state(zone, i));
1756 #endif
1757
1758 seq_printf(m, "\n pagesets");
1759 for_each_online_cpu(i) {
1760 struct per_cpu_pages *pcp;
1761 struct per_cpu_zonestat __maybe_unused *pzstats;
1762
1763 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1764 seq_printf(m,
1765 "\n cpu: %i"
1766 "\n count: %i"
1767 "\n high: %i"
1768 "\n batch: %i",
1769 i,
1770 pcp->count,
1771 pcp->high,
1772 pcp->batch);
1773 #ifdef CONFIG_SMP
1774 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1775 seq_printf(m, "\n vm stats threshold: %d",
1776 pzstats->stat_threshold);
1777 #endif
1778 }
1779 seq_printf(m,
1780 "\n node_unreclaimable: %u"
1781 "\n start_pfn: %lu",
1782 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1783 zone->zone_start_pfn);
1784 seq_putc(m, '\n');
1785 }
1786
1787 /*
1788 * Output information about zones in @pgdat. All zones are printed regardless
1789 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1790 * set of all zones and userspace would not be aware of such zones if they are
1791 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1792 */
zoneinfo_show(struct seq_file * m,void * arg)1793 static int zoneinfo_show(struct seq_file *m, void *arg)
1794 {
1795 pg_data_t *pgdat = (pg_data_t *)arg;
1796 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1797 return 0;
1798 }
1799
1800 static const struct seq_operations zoneinfo_op = {
1801 .start = frag_start, /* iterate over all zones. The same as in
1802 * fragmentation. */
1803 .next = frag_next,
1804 .stop = frag_stop,
1805 .show = zoneinfo_show,
1806 };
1807
1808 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1809 NR_VM_NUMA_EVENT_ITEMS + \
1810 NR_VM_NODE_STAT_ITEMS + \
1811 NR_VM_WRITEBACK_STAT_ITEMS + \
1812 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1813 NR_VM_EVENT_ITEMS : 0))
1814
vmstat_start(struct seq_file * m,loff_t * pos)1815 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1816 {
1817 unsigned long *v;
1818 int i;
1819
1820 if (*pos >= NR_VMSTAT_ITEMS)
1821 return NULL;
1822
1823 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1824 fold_vm_numa_events();
1825 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1826 m->private = v;
1827 if (!v)
1828 return ERR_PTR(-ENOMEM);
1829 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1830 v[i] = global_zone_page_state(i);
1831 v += NR_VM_ZONE_STAT_ITEMS;
1832
1833 #ifdef CONFIG_NUMA
1834 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1835 v[i] = global_numa_event_state(i);
1836 v += NR_VM_NUMA_EVENT_ITEMS;
1837 #endif
1838
1839 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1840 v[i] = global_node_page_state_pages(i);
1841 if (vmstat_item_print_in_thp(i))
1842 v[i] /= HPAGE_PMD_NR;
1843 }
1844 v += NR_VM_NODE_STAT_ITEMS;
1845
1846 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1847 v + NR_DIRTY_THRESHOLD);
1848 v += NR_VM_WRITEBACK_STAT_ITEMS;
1849
1850 #ifdef CONFIG_VM_EVENT_COUNTERS
1851 all_vm_events(v);
1852 v[PGPGIN] /= 2; /* sectors -> kbytes */
1853 v[PGPGOUT] /= 2;
1854 #endif
1855 return (unsigned long *)m->private + *pos;
1856 }
1857
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1858 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1859 {
1860 (*pos)++;
1861 if (*pos >= NR_VMSTAT_ITEMS)
1862 return NULL;
1863 return (unsigned long *)m->private + *pos;
1864 }
1865
vmstat_show(struct seq_file * m,void * arg)1866 static int vmstat_show(struct seq_file *m, void *arg)
1867 {
1868 unsigned long *l = arg;
1869 unsigned long off = l - (unsigned long *)m->private;
1870
1871 seq_puts(m, vmstat_text[off]);
1872 seq_put_decimal_ull(m, " ", *l);
1873 seq_putc(m, '\n');
1874
1875 if (off == NR_VMSTAT_ITEMS - 1) {
1876 /*
1877 * We've come to the end - add any deprecated counters to avoid
1878 * breaking userspace which might depend on them being present.
1879 */
1880 seq_puts(m, "nr_unstable 0\n");
1881 }
1882 return 0;
1883 }
1884
vmstat_stop(struct seq_file * m,void * arg)1885 static void vmstat_stop(struct seq_file *m, void *arg)
1886 {
1887 kfree(m->private);
1888 m->private = NULL;
1889 }
1890
1891 static const struct seq_operations vmstat_op = {
1892 .start = vmstat_start,
1893 .next = vmstat_next,
1894 .stop = vmstat_stop,
1895 .show = vmstat_show,
1896 };
1897 #endif /* CONFIG_PROC_FS */
1898
1899 #ifdef CONFIG_SMP
1900 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1901 int sysctl_stat_interval __read_mostly = HZ;
1902
1903 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1904 static void refresh_vm_stats(struct work_struct *work)
1905 {
1906 refresh_cpu_vm_stats(true);
1907 }
1908
vmstat_refresh(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1909 int vmstat_refresh(struct ctl_table *table, int write,
1910 void *buffer, size_t *lenp, loff_t *ppos)
1911 {
1912 long val;
1913 int err;
1914 int i;
1915
1916 /*
1917 * The regular update, every sysctl_stat_interval, may come later
1918 * than expected: leaving a significant amount in per_cpu buckets.
1919 * This is particularly misleading when checking a quantity of HUGE
1920 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1921 * which can equally be echo'ed to or cat'ted from (by root),
1922 * can be used to update the stats just before reading them.
1923 *
1924 * Oh, and since global_zone_page_state() etc. are so careful to hide
1925 * transiently negative values, report an error here if any of
1926 * the stats is negative, so we know to go looking for imbalance.
1927 */
1928 err = schedule_on_each_cpu(refresh_vm_stats);
1929 if (err)
1930 return err;
1931 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1932 /*
1933 * Skip checking stats known to go negative occasionally.
1934 */
1935 switch (i) {
1936 case NR_ZONE_WRITE_PENDING:
1937 case NR_FREE_CMA_PAGES:
1938 continue;
1939 }
1940 val = atomic_long_read(&vm_zone_stat[i]);
1941 if (val < 0) {
1942 pr_warn("%s: %s %ld\n",
1943 __func__, zone_stat_name(i), val);
1944 }
1945 }
1946 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1947 /*
1948 * Skip checking stats known to go negative occasionally.
1949 */
1950 switch (i) {
1951 case NR_WRITEBACK:
1952 continue;
1953 }
1954 val = atomic_long_read(&vm_node_stat[i]);
1955 if (val < 0) {
1956 pr_warn("%s: %s %ld\n",
1957 __func__, node_stat_name(i), val);
1958 }
1959 }
1960 if (write)
1961 *ppos += *lenp;
1962 else
1963 *lenp = 0;
1964 return 0;
1965 }
1966 #endif /* CONFIG_PROC_FS */
1967
vmstat_update(struct work_struct * w)1968 static void vmstat_update(struct work_struct *w)
1969 {
1970 if (refresh_cpu_vm_stats(true) && !cpu_isolated(smp_processor_id())) {
1971 /*
1972 * Counters were updated so we expect more updates
1973 * to occur in the future. Keep on running the
1974 * update worker thread.
1975 */
1976 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1977 this_cpu_ptr(&vmstat_work),
1978 round_jiffies_relative(sysctl_stat_interval));
1979 }
1980 }
1981
1982 /*
1983 * Check if the diffs for a certain cpu indicate that
1984 * an update is needed.
1985 */
need_update(int cpu)1986 static bool need_update(int cpu)
1987 {
1988 pg_data_t *last_pgdat = NULL;
1989 struct zone *zone;
1990
1991 for_each_populated_zone(zone) {
1992 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1993 struct per_cpu_nodestat *n;
1994
1995 /*
1996 * The fast way of checking if there are any vmstat diffs.
1997 */
1998 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1999 return true;
2000
2001 if (last_pgdat == zone->zone_pgdat)
2002 continue;
2003 last_pgdat = zone->zone_pgdat;
2004 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2005 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2006 return true;
2007 }
2008 return false;
2009 }
2010
2011 /*
2012 * Switch off vmstat processing and then fold all the remaining differentials
2013 * until the diffs stay at zero. The function is used by NOHZ and can only be
2014 * invoked when tick processing is not active.
2015 */
quiet_vmstat(void)2016 void quiet_vmstat(void)
2017 {
2018 if (system_state != SYSTEM_RUNNING)
2019 return;
2020
2021 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2022 return;
2023
2024 if (!need_update(smp_processor_id()))
2025 return;
2026
2027 /*
2028 * Just refresh counters and do not care about the pending delayed
2029 * vmstat_update. It doesn't fire that often to matter and canceling
2030 * it would be too expensive from this path.
2031 * vmstat_shepherd will take care about that for us.
2032 */
2033 refresh_cpu_vm_stats(false);
2034 }
2035
2036 /*
2037 * Shepherd worker thread that checks the
2038 * differentials of processors that have their worker
2039 * threads for vm statistics updates disabled because of
2040 * inactivity.
2041 */
2042 static void vmstat_shepherd(struct work_struct *w);
2043
2044 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2045
vmstat_shepherd(struct work_struct * w)2046 static void vmstat_shepherd(struct work_struct *w)
2047 {
2048 int cpu;
2049
2050 cpus_read_lock();
2051 /* Check processors whose vmstat worker threads have been disabled */
2052 for_each_online_cpu(cpu) {
2053 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2054
2055 /*
2056 * In kernel users of vmstat counters either require the precise value and
2057 * they are using zone_page_state_snapshot interface or they can live with
2058 * an imprecision as the regular flushing can happen at arbitrary time and
2059 * cumulative error can grow (see calculate_normal_threshold).
2060 *
2061 * From that POV the regular flushing can be postponed for CPUs that have
2062 * been isolated from the kernel interference without critical
2063 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2064 * for all isolated CPUs to avoid interference with the isolated workload.
2065 */
2066 if (cpu_is_isolated(cpu))
2067 continue;
2068
2069 if (!delayed_work_pending(dw) && need_update(cpu) &&
2070 !cpu_isolated(cpu))
2071 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2072
2073 cond_resched();
2074 }
2075 cpus_read_unlock();
2076
2077 schedule_delayed_work(&shepherd,
2078 round_jiffies_relative(sysctl_stat_interval));
2079 }
2080
start_shepherd_timer(void)2081 static void __init start_shepherd_timer(void)
2082 {
2083 int cpu;
2084
2085 for_each_possible_cpu(cpu)
2086 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2087 vmstat_update);
2088
2089 schedule_delayed_work(&shepherd,
2090 round_jiffies_relative(sysctl_stat_interval));
2091 }
2092
init_cpu_node_state(void)2093 static void __init init_cpu_node_state(void)
2094 {
2095 int node;
2096
2097 for_each_online_node(node) {
2098 if (!cpumask_empty(cpumask_of_node(node)))
2099 node_set_state(node, N_CPU);
2100 }
2101 }
2102
vmstat_cpu_online(unsigned int cpu)2103 static int vmstat_cpu_online(unsigned int cpu)
2104 {
2105 refresh_zone_stat_thresholds();
2106
2107 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2108 node_set_state(cpu_to_node(cpu), N_CPU);
2109 }
2110
2111 return 0;
2112 }
2113
vmstat_cpu_down_prep(unsigned int cpu)2114 static int vmstat_cpu_down_prep(unsigned int cpu)
2115 {
2116 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2117 return 0;
2118 }
2119
vmstat_cpu_dead(unsigned int cpu)2120 static int vmstat_cpu_dead(unsigned int cpu)
2121 {
2122 const struct cpumask *node_cpus;
2123 int node;
2124
2125 node = cpu_to_node(cpu);
2126
2127 refresh_zone_stat_thresholds();
2128 node_cpus = cpumask_of_node(node);
2129 if (!cpumask_empty(node_cpus))
2130 return 0;
2131
2132 node_clear_state(node, N_CPU);
2133
2134 return 0;
2135 }
2136
2137 #endif
2138
2139 struct workqueue_struct *mm_percpu_wq;
2140
init_mm_internals(void)2141 void __init init_mm_internals(void)
2142 {
2143 int ret __maybe_unused;
2144
2145 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2146
2147 #ifdef CONFIG_SMP
2148 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2149 NULL, vmstat_cpu_dead);
2150 if (ret < 0)
2151 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2152
2153 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2154 vmstat_cpu_online,
2155 vmstat_cpu_down_prep);
2156 if (ret < 0)
2157 pr_err("vmstat: failed to register 'online' hotplug state\n");
2158
2159 cpus_read_lock();
2160 init_cpu_node_state();
2161 cpus_read_unlock();
2162
2163 start_shepherd_timer();
2164 #endif
2165 #ifdef CONFIG_PROC_FS
2166 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2167 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2168 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2169 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2170 #endif
2171 }
2172
2173 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2174
2175 /*
2176 * Return an index indicating how much of the available free memory is
2177 * unusable for an allocation of the requested size.
2178 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2179 static int unusable_free_index(unsigned int order,
2180 struct contig_page_info *info)
2181 {
2182 /* No free memory is interpreted as all free memory is unusable */
2183 if (info->free_pages == 0)
2184 return 1000;
2185
2186 /*
2187 * Index should be a value between 0 and 1. Return a value to 3
2188 * decimal places.
2189 *
2190 * 0 => no fragmentation
2191 * 1 => high fragmentation
2192 */
2193 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2194
2195 }
2196
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2197 static void unusable_show_print(struct seq_file *m,
2198 pg_data_t *pgdat, struct zone *zone)
2199 {
2200 unsigned int order;
2201 int index;
2202 struct contig_page_info info;
2203
2204 seq_printf(m, "Node %d, zone %8s ",
2205 pgdat->node_id,
2206 zone->name);
2207 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2208 fill_contig_page_info(zone, order, &info);
2209 index = unusable_free_index(order, &info);
2210 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2211 }
2212
2213 seq_putc(m, '\n');
2214 }
2215
2216 /*
2217 * Display unusable free space index
2218 *
2219 * The unusable free space index measures how much of the available free
2220 * memory cannot be used to satisfy an allocation of a given size and is a
2221 * value between 0 and 1. The higher the value, the more of free memory is
2222 * unusable and by implication, the worse the external fragmentation is. This
2223 * can be expressed as a percentage by multiplying by 100.
2224 */
unusable_show(struct seq_file * m,void * arg)2225 static int unusable_show(struct seq_file *m, void *arg)
2226 {
2227 pg_data_t *pgdat = (pg_data_t *)arg;
2228
2229 /* check memoryless node */
2230 if (!node_state(pgdat->node_id, N_MEMORY))
2231 return 0;
2232
2233 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2234
2235 return 0;
2236 }
2237
2238 static const struct seq_operations unusable_sops = {
2239 .start = frag_start,
2240 .next = frag_next,
2241 .stop = frag_stop,
2242 .show = unusable_show,
2243 };
2244
2245 DEFINE_SEQ_ATTRIBUTE(unusable);
2246
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2247 static void extfrag_show_print(struct seq_file *m,
2248 pg_data_t *pgdat, struct zone *zone)
2249 {
2250 unsigned int order;
2251 int index;
2252
2253 /* Alloc on stack as interrupts are disabled for zone walk */
2254 struct contig_page_info info;
2255
2256 seq_printf(m, "Node %d, zone %8s ",
2257 pgdat->node_id,
2258 zone->name);
2259 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2260 fill_contig_page_info(zone, order, &info);
2261 index = __fragmentation_index(order, &info);
2262 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2263 }
2264
2265 seq_putc(m, '\n');
2266 }
2267
2268 /*
2269 * Display fragmentation index for orders that allocations would fail for
2270 */
extfrag_show(struct seq_file * m,void * arg)2271 static int extfrag_show(struct seq_file *m, void *arg)
2272 {
2273 pg_data_t *pgdat = (pg_data_t *)arg;
2274
2275 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2276
2277 return 0;
2278 }
2279
2280 static const struct seq_operations extfrag_sops = {
2281 .start = frag_start,
2282 .next = frag_next,
2283 .stop = frag_stop,
2284 .show = extfrag_show,
2285 };
2286
2287 DEFINE_SEQ_ATTRIBUTE(extfrag);
2288
extfrag_debug_init(void)2289 static int __init extfrag_debug_init(void)
2290 {
2291 struct dentry *extfrag_debug_root;
2292
2293 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2294
2295 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2296 &unusable_fops);
2297
2298 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2299 &extfrag_fops);
2300
2301 return 0;
2302 }
2303
2304 module_init(extfrag_debug_init);
2305 #endif
2306