1 // SPDX-License-Identifier: BSD-3-Clause
2 //
3 // Copyright(c) 2021 Intel Corporation. All rights reserved.
4 //
5 // Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
6 // Jaska Uimonen <jaska.uimonen@linux.intel.com>
7
8 #include "aconfig.h"
9 #include <stdint.h>
10 #include <errno.h>
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <alsa/input.h>
15 #include <alsa/output.h>
16 #include <alsa/conf.h>
17 #include <alsa/error.h>
18 #include "../intel-nhlt.h"
19 #include "dmic-process.h"
20 #include "dmic-internal.h"
21 #include "pdm-decim-fir.h"
22 #include "dmic-debug.h"
23
24 /* Note 1: Higher spec filter must be before lower spec filter if there are multiple filters for a
25 * decimation factor. The first filter is skipped if the length is too much vs. overrun limit. If
26 * other order the better filter would be never selected.
27 *
28 * Note 2: The introduction order of FIR decimation factors is the selection preference order.
29 * The decimation factor 5 and 10 (2*5) cause a often less compatible output sample rate for CIC so
30 * they are not used if there other suitable nearby values.
31 *
32 * The naming scheme of coefficients set is:
33 * <type>_<decim factor>_<rel passband>_<rel stopband>_<ripple>_<attenuation>
34 */
35 struct pdm_decim *fir_list[] = {
36 &pdm_decim_int32_02_4375_5100_010_095,
37 &pdm_decim_int32_02_4323_5100_010_095,
38 &pdm_decim_int32_03_4375_5100_010_095,
39 &pdm_decim_int32_04_4318_5100_010_095,
40 &pdm_decim_int32_06_4172_5100_010_095,
41 &pdm_decim_int32_05_4325_5100_010_095,
42 &pdm_decim_int32_08_4156_5301_010_090,
43 &pdm_decim_int32_12_4156_5345_010_090,
44 &pdm_decim_int32_10_4156_5345_010_090,
45 NULL, /* This marks the end of coefficients */
46 };
47
48 /* This is a divide function that returns ceil of the quotient. E.g. ceil_divide(9, 3) returns 3,
49 * ceil_divide(10, 3) returns 4.
50 */
ceil_divide(int a,int b)51 static int ceil_divide(int a, int b)
52 {
53 int c;
54
55 c = a / b;
56
57 if (!((a ^ b) & (1U << ((sizeof(int) * 8) - 1))) && c * b != a)
58 c++;
59
60 return c;
61 }
62
63 /* This function searches from vec[] (of length vec_length) integer values of n. The indices to
64 * equal values is returned in idx[]. The function returns the number of found matches.
65 * The max_results should be set to 0 (or negative) or vec_length to get all matches. The
66 * max_result can be set to 1 to receive only the first match in ascending order. It avoids need for
67 * an array for idx.
68 */
find_equal_int16(int16_t idx[],int16_t vec[],int n,int vec_length,int max_results)69 static int find_equal_int16(int16_t idx[], int16_t vec[], int n, int vec_length,
70 int max_results)
71 {
72 int nresults = 0;
73 int i;
74
75 for (i = 0; i < vec_length; i++) {
76 if (vec[i] == n) {
77 idx[nresults++] = i;
78 if (nresults == max_results)
79 break;
80 }
81 }
82
83 return nresults;
84 }
85
86 /* Return the largest absolute value found in the vector. Note that smallest negative value need to
87 * be saturated to preset as int32_t.
88 */
find_max_abs_int32(int32_t vec[],int vec_length)89 static int32_t find_max_abs_int32(int32_t vec[], int vec_length)
90 {
91 int i;
92 int64_t amax = (vec[0] > 0) ? vec[0] : -vec[0];
93
94 for (i = 1; i < vec_length; i++) {
95 amax = (vec[i] > amax) ? vec[i] : amax;
96 amax = (-vec[i] > amax) ? -vec[i] : amax;
97 }
98
99 return SATP_INT32(amax); /* Amax is always a positive value */
100 }
101
102 /* Count the left shift amount to normalize a 32 bit signed integer value without causing overflow.
103 * Input value 0 will result to 31.
104 */
norm_int32(int32_t val)105 static int norm_int32(int32_t val)
106 {
107 int c = 0;
108
109 /* count number of bits c that val can be right-shifted arithmetically
110 * until there is -1 (if val is negative) or 0 (if val is positive)
111 * norm of val will be 31-c
112 */
113 for (; val != -1 && val != 0; c++)
114 val >>= 1;
115
116 return 31 - c;
117 }
118
119 /* This function returns a raw list of potential microphone clock and decimation modes for achieving
120 * requested sample rates. The search is constrained by decimation HW capabililies and setup
121 * parameters. The parameters such as microphone clock min/max and duty cycle requirements need be
122 * checked from used microphone component datasheet.
123 */
find_modes(struct intel_dmic_params * dmic,struct dmic_calc_decim_modes * modes,uint32_t fs)124 static void find_modes(struct intel_dmic_params *dmic, struct dmic_calc_decim_modes *modes,
125 uint32_t fs)
126 {
127 int di = dmic->dmic_dai_index;
128 int clkdiv_min;
129 int clkdiv_max;
130 int clkdiv;
131 int c1;
132 int du_min;
133 int du_max;
134 int pdmclk;
135 int osr;
136 int mfir;
137 int mcic;
138 unsigned int ioclk_test;
139 int osr_min = DMIC_MIN_OSR;
140 int j;
141 int i = 0;
142
143 /* Defaults, empty result */
144 modes->num_of_modes = 0;
145
146 /* The FIFO is not requested if sample rate is set to zero. Just return in such case with
147 * num_of_modes as zero.
148 */
149 if (fs == 0) {
150 return;
151 }
152
153 /* Override DMIC_MIN_OSR for very high sample rates, use as minimum the nominal clock for
154 * the high rates.
155 */
156 if (fs >= DMIC_HIGH_RATE_MIN_FS)
157 osr_min = DMIC_HIGH_RATE_OSR_MIN;
158
159 /* Check for sane pdm clock, min 100 kHz, max ioclk/2 */
160 if (dmic->dmic_prm[di].pdmclk_max < DMIC_HW_PDM_CLK_MIN ||
161 dmic->dmic_prm[di].pdmclk_max > dmic->dmic_prm[di].io_clk / 2) {
162 fprintf(stderr, "find_modes(): pdm clock max not in range\n");
163 return;
164 }
165 if (dmic->dmic_prm[di].pdmclk_min < DMIC_HW_PDM_CLK_MIN ||
166 dmic->dmic_prm[di].pdmclk_min > dmic->dmic_prm[di].pdmclk_max) {
167 fprintf(stderr, "find_modes(): pdm clock min not in range\n");
168 return;
169 }
170
171 /* Check for sane duty cycle */
172 if (dmic->dmic_prm[di].duty_min > dmic->dmic_prm[di].duty_max) {
173 fprintf(stderr, "find_modes(): duty cycle min > max\n");
174 return;
175 }
176 if (dmic->dmic_prm[di].duty_min < DMIC_HW_DUTY_MIN ||
177 dmic->dmic_prm[di].duty_min > DMIC_HW_DUTY_MAX) {
178 fprintf(stderr, "find_modes(): pdm clock min not in range\n");
179 return;
180 }
181 if (dmic->dmic_prm[di].duty_max < DMIC_HW_DUTY_MIN ||
182 dmic->dmic_prm[di].duty_max > DMIC_HW_DUTY_MAX) {
183 fprintf(stderr, "find_modes(): pdm clock max not in range\n");
184 return;
185 }
186
187 /* Min and max clock dividers */
188 clkdiv_min = ceil_divide(dmic->dmic_prm[di].io_clk, dmic->dmic_prm[di].pdmclk_max);
189 clkdiv_min = MAX(clkdiv_min, DMIC_HW_CIC_DECIM_MIN);
190 clkdiv_max = dmic->dmic_prm[di].io_clk / dmic->dmic_prm[di].pdmclk_min;
191
192 /* Loop possible clock dividers and check based on resulting oversampling ratio that CIC and
193 * FIR decimation ratios are feasible. The ratios need to be integers. Also the mic clock
194 * duty cycle need to be within limits.
195 */
196 for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) {
197 /* Calculate duty cycle for this clock divider. Note that odd dividers cause non-50%
198 * duty cycle.
199 */
200 c1 = clkdiv >> 1;
201 du_min = 100 * c1 / clkdiv;
202 du_max = 100 - du_min;
203
204 /* Calculate PDM clock rate and oversampling ratio. */
205 pdmclk = dmic->dmic_prm[di].io_clk / clkdiv;
206 osr = pdmclk / fs;
207
208 /* Check that OSR constraints is met and clock duty cycle does not exceed microphone
209 * specification. If exceed proceed to next clkdiv.
210 */
211 if (osr < osr_min || du_min < dmic->dmic_prm[di].duty_min ||
212 du_max > dmic->dmic_prm[di].duty_max)
213 continue;
214
215 /* Loop FIR decimation factors candidates. If the integer divided decimation factors
216 * and clock dividers as multiplied with sample rate match the IO clock rate the
217 * division was exact and such decimation mode is possible. Then check that CIC
218 * decimation constraints are met. The passed decimation modes are added to array.
219 */
220 for (j = 0; fir_list[j]; j++) {
221 mfir = fir_list[j]->decim_factor;
222
223 /* Skip if previous decimation factor was the same */
224 if (j > 1 && fir_list[j - 1]->decim_factor == mfir)
225 continue;
226
227 mcic = osr / mfir;
228 ioclk_test = fs * mfir * mcic * clkdiv;
229
230 if (ioclk_test == dmic->dmic_prm[di].io_clk &&
231 mcic >= DMIC_HW_CIC_DECIM_MIN &&
232 mcic <= DMIC_HW_CIC_DECIM_MAX &&
233 i < DMIC_MAX_MODES) {
234 modes->clkdiv[i] = clkdiv;
235 modes->mcic[i] = mcic;
236 modes->mfir[i] = mfir;
237 i++;
238 }
239 }
240 }
241
242 modes->num_of_modes = i;
243 }
244
245 /* The previous raw modes list contains sane configuration possibilities. When there is request for
246 * both FIFOs A and B operation this function returns list of compatible settings.
247 */
match_modes(struct dmic_calc_matched_modes * c,struct dmic_calc_decim_modes * a,struct dmic_calc_decim_modes * b)248 static void match_modes(struct dmic_calc_matched_modes *c, struct dmic_calc_decim_modes *a,
249 struct dmic_calc_decim_modes *b)
250 {
251 int16_t idx[DMIC_MAX_MODES];
252 int idx_length;
253 int i;
254 int n;
255 int m;
256
257 /* Check if previous search got results. */
258 c->num_of_modes = 0;
259 if (a->num_of_modes == 0 && b->num_of_modes == 0) {
260 /* Nothing to do */
261 return;
262 }
263
264 /* Ensure that num_of_modes is sane. */
265 if (a->num_of_modes > DMIC_MAX_MODES ||
266 b->num_of_modes > DMIC_MAX_MODES)
267 return;
268
269 /* Check for request only for FIFO A or B. In such case pass list for A or B as such. */
270 if (b->num_of_modes == 0) {
271 c->num_of_modes = a->num_of_modes;
272 for (i = 0; i < a->num_of_modes; i++) {
273 c->clkdiv[i] = a->clkdiv[i];
274 c->mcic[i] = a->mcic[i];
275 c->mfir_a[i] = a->mfir[i];
276 c->mfir_b[i] = 0; /* Mark FIR B as non-used */
277 }
278 return;
279 }
280
281 if (a->num_of_modes == 0) {
282 c->num_of_modes = b->num_of_modes;
283 for (i = 0; i < b->num_of_modes; i++) {
284 c->clkdiv[i] = b->clkdiv[i];
285 c->mcic[i] = b->mcic[i];
286 c->mfir_b[i] = b->mfir[i];
287 c->mfir_a[i] = 0; /* Mark FIR A as non-used */
288 }
289 return;
290 }
291
292 /* Merge a list of compatible modes */
293 i = 0;
294 for (n = 0; n < a->num_of_modes; n++) {
295 /* Find all indices of values a->clkdiv[n] in b->clkdiv[] */
296 idx_length = find_equal_int16(idx, b->clkdiv, a->clkdiv[n],
297 b->num_of_modes, 0);
298 for (m = 0; m < idx_length; m++) {
299 if (b->mcic[idx[m]] == a->mcic[n]) {
300 c->clkdiv[i] = a->clkdiv[n];
301 c->mcic[i] = a->mcic[n];
302 c->mfir_a[i] = a->mfir[n];
303 c->mfir_b[i] = b->mfir[idx[m]];
304 i++;
305 }
306 }
307 c->num_of_modes = i;
308 }
309 }
310
311 /* Finds a suitable FIR decimation filter from the included set */
get_fir(struct intel_dmic_params * dmic,struct dmic_calc_configuration * cfg,int mfir)312 static struct pdm_decim *get_fir(struct intel_dmic_params *dmic,
313 struct dmic_calc_configuration *cfg, int mfir)
314 {
315 int i = 0;
316 int fs;
317 int cic_fs;
318 int fir_max_length;
319 struct pdm_decim *fir = NULL;
320 int di = dmic->dmic_dai_index;
321
322 if (mfir <= 0)
323 return fir;
324
325 cic_fs = dmic->dmic_prm[di].io_clk / cfg->clkdiv / cfg->mcic;
326 fs = cic_fs / mfir;
327 /* FIR max. length depends on available cycles and coef RAM length. Exceeding this length
328 * sets HW overrun status and overwrite of other register.
329 */
330 fir_max_length = MIN(DMIC_HW_FIR_LENGTH_MAX,
331 (int)dmic->dmic_prm[di].io_clk / fs / 2 -
332 DMIC_FIR_PIPELINE_OVERHEAD);
333
334 /* Loop until NULL */
335 while (fir_list[i]) {
336 if (fir_list[i]->decim_factor == mfir) {
337 if (fir_list[i]->length <= fir_max_length) {
338 /* Store pointer, break from loop to avoid a possible other mode
339 * with lower FIR length.
340 */
341 fir = fir_list[i];
342 break;
343 }
344 }
345 i++;
346 }
347
348 return fir;
349 }
350
351 /* Calculate scale and shift to use for FIR coefficients. Scale is applied before write to HW coef
352 * RAM. Shift will be programmed to HW register.
353 */
fir_coef_scale(int32_t * fir_scale,int * fir_shift,int add_shift,const int32_t coef[],int coef_length,int32_t gain)354 static int fir_coef_scale(int32_t *fir_scale, int *fir_shift, int add_shift,
355 const int32_t coef[], int coef_length, int32_t gain)
356 {
357 int32_t amax;
358 int32_t new_amax;
359 int32_t fir_gain;
360 int shift;
361
362 /* Multiply gain passed from CIC with output full scale. */
363 fir_gain = Q_MULTSR_32X32((int64_t)gain, DMIC_HW_SENS_Q28,
364 DMIC_FIR_SCALE_Q, 28, DMIC_FIR_SCALE_Q);
365
366 /* Find the largest FIR coefficient value. */
367 amax = find_max_abs_int32((int32_t *)coef, coef_length);
368
369 /* Scale max. tap value with FIR gain. */
370 new_amax = Q_MULTSR_32X32((int64_t)amax, fir_gain, 31,
371 DMIC_FIR_SCALE_Q, DMIC_FIR_SCALE_Q);
372 if (new_amax <= 0)
373 return -EINVAL;
374
375 /* Get left shifts count to normalize the fractional value as 32 bit. We need right shifts
376 * count for scaling so need to invert. The difference of Q31 vs. used Q format is added to
377 * get the correct normalization right shift value.
378 */
379 shift = 31 - DMIC_FIR_SCALE_Q - norm_int32(new_amax);
380
381 /* Add to shift for coef raw Q31 format shift and store to configuration. Ensure range (fail
382 * should not happen with OK coefficient set).
383 */
384 *fir_shift = -shift + add_shift;
385 if (*fir_shift < DMIC_HW_FIR_SHIFT_MIN ||
386 *fir_shift > DMIC_HW_FIR_SHIFT_MAX)
387 return -EINVAL;
388
389 /* Compensate shift into FIR coef scaler and store as Q4.20. */
390 if (shift < 0)
391 *fir_scale = fir_gain << -shift;
392 else
393 *fir_scale = fir_gain >> shift;
394
395 return 0;
396 }
397
398 /* This function selects with a simple criteria one mode to set up the decimator. For the settings
399 * chosen for FIFOs A and B output a lookup is done for FIR coefficients from the included
400 * coefficients tables. For some decimation factors there may be several length coefficient sets. It
401 * is due to possible restruction of decimation engine cycles per given sample rate. If the
402 * coefficients length is exceeded the lookup continues. Therefore the list of coefficient set must
403 * present the filters for a decimation factor in decreasing length order.
404 *
405 * Note: If there is no filter available an error is returned. The parameters should be reviewed for
406 * such case. If still a filter is missing it should be added into the included set. FIR decimation
407 * with a high factor usually needs compromizes into specifications and is not desirable.
408 */
select_mode(struct intel_dmic_params * dmic,struct dmic_calc_configuration * cfg,struct dmic_calc_matched_modes * modes)409 static int select_mode(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg,
410 struct dmic_calc_matched_modes *modes)
411 {
412 int32_t g_cic;
413 int32_t fir_in_max;
414 int32_t cic_out_max;
415 int32_t gain_to_fir;
416 int16_t idx[DMIC_MAX_MODES];
417 int16_t *mfir;
418 int mcic;
419 int bits_cic;
420 int ret;
421 int n;
422 int found = 0;
423
424 /* If there are more than one possibilities select a mode with a preferred FIR decimation
425 * factor. If there are several select mode with highest ioclk divider to minimize
426 * microphone power consumption. The highest clock divisors are in the end of list so select
427 * the last of list. The minimum OSR criteria used in previous ensures that quality in the
428 * candidates should be sufficient.
429 */
430 if (modes->num_of_modes == 0) {
431 fprintf(stderr, "select_mode(): no modes available\n");
432 return -EINVAL;
433 }
434
435 /* Valid modes presence is indicated with non-zero decimation factor in 1st element. If FIR
436 * A is not used get decimation factors from FIR B instead.
437 */
438 if (modes->mfir_a[0] > 0)
439 mfir = modes->mfir_a;
440 else
441 mfir = modes->mfir_b;
442
443 /* Search fir_list[] decimation factors from start towards end. The found last configuration
444 * entry with searched decimation factor will be used.
445 */
446 for (n = 0; fir_list[n]; n++) {
447 found = find_equal_int16(idx, mfir, fir_list[n]->decim_factor,
448 modes->num_of_modes, 0);
449 if (found)
450 break;
451 }
452
453 if (!found) {
454 fprintf(stderr, "select_mode(): No filter for decimation found\n");
455 return -EINVAL;
456 }
457 n = idx[found - 1]; /* Option with highest clock divisor and lowest mic clock rate */
458
459 /* Get microphone clock and decimation parameters for used mode from the list. */
460 cfg->clkdiv = modes->clkdiv[n];
461 cfg->mfir_a = modes->mfir_a[n];
462 cfg->mfir_b = modes->mfir_b[n];
463 cfg->mcic = modes->mcic[n];
464 cfg->fir_a = NULL;
465 cfg->fir_b = NULL;
466
467 /* Find raw FIR coefficients to match the decimation factors of FIR A and B. */
468 if (cfg->mfir_a > 0) {
469 cfg->fir_a = get_fir(dmic, cfg, cfg->mfir_a);
470 if (!cfg->fir_a) {
471 fprintf(stderr, "select_mode(): can't find FIR coefficients, mfir_a = %d\n",
472 cfg->mfir_a);
473 return -EINVAL;
474 }
475 }
476
477 if (cfg->mfir_b > 0) {
478 cfg->fir_b = get_fir(dmic, cfg, cfg->mfir_b);
479 if (!cfg->fir_b) {
480 fprintf(stderr, "select_mode(): can't find FIR coefficients, mfir_b = %d\n",
481 cfg->mfir_b);
482 return -EINVAL;
483 }
484 }
485
486 /* Calculate CIC shift from the decimation factor specific gain. The gain of HW decimator
487 * equals decimation factor to power of 5.
488 */
489 mcic = cfg->mcic;
490 g_cic = mcic * mcic * mcic * mcic * mcic;
491 if (g_cic < 0) {
492 /* Erroneous decimation factor and CIC gain */
493 fprintf(stderr, "select_mode(): erroneous decimation factor and CIC gain\n");
494 return -EINVAL;
495 }
496
497 bits_cic = 32 - norm_int32(g_cic);
498 cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT;
499
500 /* Calculate remaining gain to FIR in Q format used for gain values. */
501 fir_in_max = INT_MAX(DMIC_HW_BITS_FIR_INPUT);
502 if (cfg->cic_shift >= 0)
503 cic_out_max = g_cic >> cfg->cic_shift;
504 else
505 cic_out_max = g_cic << -cfg->cic_shift;
506
507 gain_to_fir = (int32_t)((((int64_t)fir_in_max) << DMIC_FIR_SCALE_Q) /
508 cic_out_max);
509
510 /* Calculate FIR scale and shift */
511 if (cfg->mfir_a > 0) {
512 cfg->fir_a_length = cfg->fir_a->length;
513 ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift,
514 cfg->fir_a->shift, cfg->fir_a->coef,
515 cfg->fir_a->length, gain_to_fir);
516 if (ret < 0) {
517 /* Invalid coefficient set found, should not happen. */
518 fprintf(stderr, "select_mode(): invalid coefficient set found\n");
519 return -EINVAL;
520 }
521 } else {
522 cfg->fir_a_scale = 0;
523 cfg->fir_a_shift = 0;
524 cfg->fir_a_length = 0;
525 }
526
527 if (cfg->mfir_b > 0) {
528 cfg->fir_b_length = cfg->fir_b->length;
529 ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift,
530 cfg->fir_b->shift, cfg->fir_b->coef,
531 cfg->fir_b->length, gain_to_fir);
532 if (ret < 0) {
533 /* Invalid coefficient set found, should not happen. */
534 fprintf(stderr, "select_mode(): invalid coefficient set found\n");
535 return -EINVAL;
536 }
537 } else {
538 cfg->fir_b_scale = 0;
539 cfg->fir_b_shift = 0;
540 cfg->fir_b_length = 0;
541 }
542
543 return 0;
544 }
545
546 /* The FIFO input packer mode (IPM) settings are somewhat different in HW versions. This helper
547 * function returns a suitable IPM bit field value to use.
548 */
ipm_helper1(struct intel_dmic_params * dmic,int * ipm)549 static void ipm_helper1(struct intel_dmic_params *dmic, int *ipm)
550 {
551 int di = dmic->dmic_dai_index;
552 int pdm[DMIC_HW_CONTROLLERS];
553 int i;
554
555 /* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
556 * controller is marked as active for this DAI.
557 */
558 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
559 if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
560 dmic->dmic_prm[di].pdm[i].enable_mic_b)
561 pdm[i] = 1;
562 else
563 pdm[i] = 0;
564 }
565
566 /* Set IPM to match active pdm controllers. */
567 *ipm = 0;
568
569 if (pdm[0] == 0 && pdm[1] > 0)
570 *ipm = 1;
571
572 if (pdm[0] > 0 && pdm[1] > 0)
573 *ipm = 2;
574 }
575
ipm_helper2(struct intel_dmic_params * dmic,int source[],int * ipm)576 static void ipm_helper2(struct intel_dmic_params *dmic, int source[], int *ipm)
577 {
578 int di = dmic->dmic_dai_index;
579 int pdm[DMIC_HW_CONTROLLERS];
580 int i;
581 int n = 0;
582
583 for (i = 0; i < OUTCONTROLX_IPM_NUMSOURCES; i++)
584 source[i] = 0;
585
586 /* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
587 * controller is marked as active. The function returns in array source[] the indice of
588 * enabled pdm controllers to be used for IPM configuration.
589 */
590 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
591 if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
592 dmic->dmic_prm[di].pdm[i].enable_mic_b) {
593 pdm[i] = 1;
594 source[n] = i;
595 n++;
596 } else {
597 pdm[i] = 0;
598 }
599 }
600
601 /* IPM bit field is set to count of active pdm controllers. */
602 *ipm = pdm[0];
603 for (i = 1; i < DMIC_HW_CONTROLLERS; i++)
604 *ipm += pdm[i];
605 }
606
607 /* Loop number of PDM controllers in the configuration. The function checks if the controller should
608 * operate as stereo or mono left (A) or mono right (B) mode. Mono right mode is setup as channel
609 * swapped mono left.
610 */
stereo_helper(struct intel_dmic_params * dmic,int stereo[],int swap[])611 static int stereo_helper(struct intel_dmic_params *dmic, int stereo[], int swap[])
612 {
613 int cnt;
614 int i;
615 int swap_check;
616 int ret = 0;
617
618 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
619 cnt = 0;
620 if (dmic->dmic_prm[0].pdm[i].enable_mic_a ||
621 dmic->dmic_prm[1].pdm[i].enable_mic_a)
622 cnt++;
623
624 if (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
625 dmic->dmic_prm[1].pdm[i].enable_mic_b)
626 cnt++;
627
628 /* Set stereo mode if both mic A anc B are enabled. */
629 cnt >>= 1;
630 stereo[i] = cnt;
631
632 /* Swap channels if only mic B is used for mono processing. */
633 swap[i] = (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
634 dmic->dmic_prm[1].pdm[i].enable_mic_b) && !cnt;
635
636 /* Check that swap does not conflict with other DAI request */
637 swap_check = (dmic->dmic_prm[1].pdm[i].enable_mic_a ||
638 dmic->dmic_prm[0].pdm[i].enable_mic_a);
639
640 if (swap_check && swap[i]) {
641 ret = -EINVAL;
642 break;
643 }
644 }
645 return ret;
646 }
647
configure_registers(struct intel_dmic_params * dmic,struct dmic_calc_configuration * cfg)648 static int configure_registers(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg)
649 {
650 int stereo[DMIC_HW_CONTROLLERS];
651 int swap[DMIC_HW_CONTROLLERS];
652 uint32_t val = 0;
653 int32_t ci;
654 uint32_t cu;
655 int ipm;
656 int of0;
657 int of1;
658 int fir_decim;
659 int fir_length;
660 int length;
661 int edge;
662 int soft_reset;
663 int cic_mute;
664 int fir_mute;
665 unsigned int i;
666 int j;
667 int ret;
668 int mic;
669 int chmap_bits;
670 int di = dmic->dmic_dai_index;
671 int dccomp = 1;
672 int array_a = 0;
673 int array_b = 0;
674 int bfth = 3; /* Should be 3 for 8 entries, 1 is 2 entries */
675 int th = 3; /* Used with TIE=1 */
676 int source[OUTCONTROLX_IPM_NUMSOURCES];
677
678 /*
679 * ts_group value describes which audio channels in the hw fifo are enabled. A 32 bit
680 * value is divided into 8 x 4 bit nibbles corresponding to 8 audio channels. Hex value 0xF
681 * means "not in use", any other value means the channel is enabled. For example 0xFFFFFFFF
682 * means no channels are enabled, 0xFFFFFF10 means channels 1 and 2 are enabled.
683 *
684 * ts_group array index corresponds to dmic hw fifos, that gather audio samples from pdm
685 * controllers. 1 pdm controller can host 2 mono dmics and usually pdm controllers are
686 * connected to 2 hw fifos -> we can for example run the dmics simultaneously with different
687 * sampling rates.
688 *
689 * Currently there is no evidence we would ever have more than 2 hw fifos, so ts_group[2]
690 * and ts_group[3] are not used for anything. Also the nibbles could be used for channel
691 * mapping the pdm channels arbitrarely into hw fifos, however currently it is used as
692 * binary not_enabled/enabled setting.
693 *
694 * if we have 2 dmics (stereo) it means we are using 1 pdm controller with possibly 2 hw
695 * fifos:
696 * mic1 fifo0(2ch)
697 * \ /
698 * pdm0
699 * / \
700 * mic2 fifo1(2ch)
701 *
702 * So in this case it makes only sense to control ts_group indexes 0 and 1 and their last 2
703 * nibbles (as we have only 2 channels).
704 *
705 * if we have 4 dmics, it means we are using 2 pdm controller with possibly 2 x 4 channel hw
706 * fifos:
707 *
708 * mic1 fifo0(4ch)
709 * \ / /
710 * pdm0 /
711 * / \ /
712 * mic2 \/
713 * mic3 /\
714 * \ / \
715 * pdm1 \
716 * / \ \
717 * mic4 fifo1(4ch)
718 *
719 * So it makes sense to control ts_group indexes 0 and 1 and their last 4 nibbles.
720 *
721 * channel_pdm_mask defines which existing pdm controllers will be taken into use. So if
722 * either of mic a or b is enabled -> that particular pdm controller is in use. For example
723 * pdm0 in use/not_in_use is defined by setting bit 0 in channel_pdm_mask to 1/0.
724 *
725 * channel_ctrl_mask defines what mic channels are available in hw for a pdm controller. in
726 * theory pdm controller could have only 1 channel enabled, in practice there's always 2
727 * channels which are both enabled -> set bits 0 and 1.
728 */
729
730 for (i = 0, mic = 0, chmap_bits = 4; i < DMIC_HW_CONTROLLERS; i++) {
731 /* enable fifo channels (ts_group) based on mic_enable in dai definition */
732 if (dmic->dmic_prm[di].pdm[i].enable_mic_a) {
733 dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
734 dmic->dmic_blob.ts_group[di] |= 0x0 << (chmap_bits * mic);
735 }
736 mic++;
737 if (dmic->dmic_prm[di].pdm[i].enable_mic_b) {
738 dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
739 dmic->dmic_blob.ts_group[di] |= 0x1 << (chmap_bits * mic);
740 }
741 mic++;
742 }
743
744 /* set channel_pdm_mask to describe what pdm controllers are in use */
745 for (i = 0; i < dmic->dmic_prm[di].num_pdm_active; i++)
746 dmic->dmic_blob.channel_pdm_mask |= 1 << i;
747
748 /* set always both mic channels enabled */
749 dmic->dmic_blob.channel_ctrl_mask = 0x3;
750
751 /* Normal start sequence */
752 soft_reset = 0;
753 cic_mute = 0;
754 fir_mute = 0;
755
756 /* OUTCONTROL0 and OUTCONTROL1 */
757 of0 = (dmic->dmic_prm[0].fifo_bits == 32) ? 2 : 0;
758 of1 = (dmic->dmic_prm[1].fifo_bits == 32) ? 2 : 0;
759
760 if (dmic->dmic_prm[di].driver_version == 1) {
761 if (di == 0) {
762 ipm_helper1(dmic, &ipm);
763 val = OUTCONTROL0_TIE(0) |
764 OUTCONTROL0_SIP(0) |
765 OUTCONTROL0_FINIT(0) |
766 OUTCONTROL0_FCI(0) |
767 OUTCONTROL0_BFTH(bfth) |
768 OUTCONTROL0_OF(of0) |
769 OUTCONTROL0_IPM_VER1(ipm) |
770 OUTCONTROL0_TH(th);
771 } else {
772 ipm_helper1(dmic, &ipm);
773 val = OUTCONTROL1_TIE(0) |
774 OUTCONTROL1_SIP(0) |
775 OUTCONTROL1_FINIT(0) |
776 OUTCONTROL1_FCI(0) |
777 OUTCONTROL1_BFTH(bfth) |
778 OUTCONTROL1_OF(of1) |
779 OUTCONTROL1_IPM_VER1(ipm) |
780 OUTCONTROL1_TH(th);
781 }
782 }
783
784 if (dmic->dmic_prm[di].driver_version == 2 || dmic->dmic_prm[di].driver_version == 3) {
785 if (di == 0) {
786 ipm_helper2(dmic, source, &ipm);
787 val = OUTCONTROL0_TIE(0) |
788 OUTCONTROL0_SIP(0) |
789 OUTCONTROL0_FINIT(0) |
790 OUTCONTROL0_FCI(0) |
791 OUTCONTROL0_BFTH(bfth) |
792 OUTCONTROL0_OF(of0) |
793 OUTCONTROL0_IPM_VER2(ipm) |
794 OUTCONTROL0_IPM_SOURCE_1(source[0]) |
795 OUTCONTROL0_IPM_SOURCE_2(source[1]) |
796 OUTCONTROL0_IPM_SOURCE_3(source[2]) |
797 OUTCONTROL0_IPM_SOURCE_4(source[3]) |
798 OUTCONTROL0_IPM_SOURCE_MODE(1) |
799 OUTCONTROL0_TH(th);
800 } else {
801 ipm_helper2(dmic, source, &ipm);
802 val = OUTCONTROL1_TIE(0) |
803 OUTCONTROL1_SIP(0) |
804 OUTCONTROL1_FINIT(0) |
805 OUTCONTROL1_FCI(0) |
806 OUTCONTROL1_BFTH(bfth) |
807 OUTCONTROL1_OF(of1) |
808 OUTCONTROL1_IPM_VER2(ipm) |
809 OUTCONTROL1_IPM_SOURCE_1(source[0]) |
810 OUTCONTROL1_IPM_SOURCE_2(source[1]) |
811 OUTCONTROL1_IPM_SOURCE_3(source[2]) |
812 OUTCONTROL1_IPM_SOURCE_4(source[3]) |
813 OUTCONTROL1_IPM_SOURCE_MODE(1) |
814 OUTCONTROL1_TH(th);
815 }
816 }
817
818 dmic->dmic_blob.chan_ctrl_cfg[di] = val;
819
820 ret = stereo_helper(dmic, stereo, swap);
821 if (ret < 0) {
822 fprintf(stderr, "configure_registers(): enable conflict\n");
823 return ret;
824 }
825
826 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
827 /* CIC */
828 val = CIC_CONTROL_SOFT_RESET(soft_reset) |
829 CIC_CONTROL_CIC_START_B(1) |
830 CIC_CONTROL_CIC_START_A(1) |
831 CIC_CONTROL_MIC_B_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_b) |
832 CIC_CONTROL_MIC_A_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_a) |
833 CIC_CONTROL_MIC_MUTE(cic_mute);
834
835 if (dmic->dmic_prm[di].driver_version == 1)
836 val |= CIC_CONTROL_STEREO_MODE(stereo[i]);
837
838 dmic->dmic_blob_pdm[i].cic_control = val;
839
840 val = CIC_CONFIG_CIC_SHIFT(cfg->cic_shift + 8) |
841 CIC_CONFIG_COMB_COUNT(cfg->mcic - 1);
842 dmic->dmic_blob_pdm[i].cic_config = val;
843
844 /* Mono right channel mic usage requires swap of PDM channels
845 * since the mono decimation is done with only left channel
846 * processing active.
847 */
848 edge = dmic->dmic_prm[di].pdm[i].clk_edge;
849 if (swap[i])
850 edge = !edge;
851
852 val = MIC_CONTROL_PDM_CLKDIV(cfg->clkdiv - 2) |
853 MIC_CONTROL_PDM_SKEW(dmic->dmic_prm[di].pdm[i].skew) |
854 MIC_CONTROL_CLK_EDGE(edge) |
855 MIC_CONTROL_PDM_EN_B(1) |
856 MIC_CONTROL_PDM_EN_A(1);
857 dmic->dmic_blob_pdm[i].mic_control = val;
858
859 /*
860 * Here we have to check the both FIRs if they are
861 * configured as the later configured DAI may have changed
862 * the configuration of the DAI configured earlier.
863 */
864 if (cfg->mfir_a) {
865 /* FIR A */
866 fir_decim = MAX(cfg->mfir_a - 1, 0);
867 fir_length = MAX(cfg->fir_a_length - 1, 0);
868 val = FIR_CONTROL_A_START(1) |
869 FIR_CONTROL_A_ARRAY_START_EN(array_a) |
870 FIR_CONTROL_A_DCCOMP(dccomp) |
871 FIR_CONTROL_A_MUTE(fir_mute) |
872 FIR_CONTROL_A_STEREO(stereo[i]);
873 dmic->dmic_blob_fir[i][0].fir_control = val;
874
875 val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) |
876 FIR_CONFIG_A_FIR_SHIFT(cfg->fir_a_shift) |
877 FIR_CONFIG_A_FIR_LENGTH(fir_length);
878 dmic->dmic_blob_fir[i][0].fir_config = val;
879
880 val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0);
881 dmic->dmic_blob_fir[i][0].dc_offset_left = val;
882
883 val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0);
884 dmic->dmic_blob_fir[i][0].dc_offset_right = val;
885
886 val = OUT_GAIN_LEFT_A_GAIN(0);
887 dmic->dmic_blob_fir[i][0].out_gain_left = val;
888
889 val = OUT_GAIN_RIGHT_A_GAIN(0);
890 dmic->dmic_blob_fir[i][0].out_gain_right = val;
891
892 /* Write coef RAM A with scaled coefficient in reverse order */
893 length = cfg->fir_a_length;
894 for (j = 0; j < length; j++) {
895 ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_a->coef[j],
896 cfg->fir_a_scale, 31,
897 DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
898 cu = FIR_COEF_A(ci);
899 /* blob_pdm[i].fir_coeffs[0][j] = cu; */
900 dmic->dmic_fir_array.fir_coeffs[i][0][j] = cu;
901 }
902 dmic->dmic_fir_array.fir_len[0] = length;
903 } else {
904 dmic->dmic_fir_array.fir_len[0] = 0;
905 }
906
907 if (cfg->mfir_b) {
908 /* FIR B */
909 fir_decim = MAX(cfg->mfir_b - 1, 0);
910 fir_length = MAX(cfg->fir_b_length - 1, 0);
911 val = FIR_CONTROL_B_START(1) |
912 FIR_CONTROL_B_ARRAY_START_EN(array_b) |
913 FIR_CONTROL_B_DCCOMP(dccomp) |
914 FIR_CONTROL_B_MUTE(fir_mute) |
915 FIR_CONTROL_B_STEREO(stereo[i]);
916 dmic->dmic_blob_fir[i][1].fir_control = val;
917
918 val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) |
919 FIR_CONFIG_B_FIR_SHIFT(cfg->fir_b_shift) |
920 FIR_CONFIG_B_FIR_LENGTH(fir_length);
921 dmic->dmic_blob_fir[i][1].fir_config = val;
922 val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0);
923 dmic->dmic_blob_fir[i][1].dc_offset_left = val;
924
925 val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0);
926 dmic->dmic_blob_fir[i][1].dc_offset_right = val;
927
928 val = OUT_GAIN_LEFT_B_GAIN(0);
929 dmic->dmic_blob_fir[i][1].out_gain_left = val;
930
931 val = OUT_GAIN_RIGHT_B_GAIN(0);
932 dmic->dmic_blob_fir[i][1].out_gain_right = val;
933
934 /* Write coef RAM B with scaled coefficient in reverse order */
935 length = cfg->fir_b_length;
936 for (j = 0; j < length; j++) {
937 ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_b->coef[j],
938 cfg->fir_b_scale, 31,
939 DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
940 cu = FIR_COEF_B(ci);
941 /* blob_pdm[i].fir_coeffs[1][j] = cu; */
942 dmic->dmic_fir_array.fir_coeffs[i][1][j] = cu;
943 }
944 dmic->dmic_fir_array.fir_len[1] = length;
945 } else {
946 dmic->dmic_fir_array.fir_len[1] = 0;
947 }
948 }
949
950 return 0;
951 }
952
953 /* The decimation for PDM (pulse density modulation) stream is done in a programmable HW filter
954 * engine. The input to configuration algorithm is needed sample rate, channels/enabled microphones,
955 * microphone clock range, microphone clock duty cycle range, and system clock rate.
956 *
957 * The PDM bus clock divider, CIC and FIR decimation ratios are searched and configuration for
958 * optimal power consumption, filtering requirements, and HW constraints is chosen. The FIR filter
959 * for the chosen decimation is looked up from table and scaled to match the other decimation path
960 * sensitivity.
961 */
dmic_calculate(struct intel_nhlt_params * nhlt)962 int dmic_calculate(struct intel_nhlt_params *nhlt)
963 {
964 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
965 struct dmic_calc_matched_modes modes_ab;
966 struct dmic_calc_decim_modes modes_a;
967 struct dmic_calc_decim_modes modes_b;
968 struct dmic_calc_configuration cfg;
969 int ret = 0;
970 int di;
971
972 if (!dmic)
973 return -EINVAL;
974
975 di = dmic->dmic_dai_index;
976
977 if (di >= DMIC_HW_FIFOS) {
978 fprintf(stderr, "dmic_set_config(): dai->index exceeds number of FIFOs\n");
979 ret = -EINVAL;
980 goto out;
981 }
982
983 if (dmic->dmic_prm[di].num_pdm_active > DMIC_HW_CONTROLLERS) {
984 fprintf(stderr, "dmic_set_config():controller count exceeds platform capability\n");
985 ret = -EINVAL;
986 goto out;
987 }
988
989 /* fifo bits 0 means fifo disabled */
990 switch (dmic->dmic_prm[di].fifo_bits) {
991 case 0:
992 case 16:
993 case 32:
994 break;
995 default:
996 fprintf(stderr, "dmic_set_config(): fifo_bits EINVAL\n");
997 ret = -EINVAL;
998 goto out;
999 }
1000
1001 /* Match and select optimal decimators configuration for FIFOs A and B paths. This setup
1002 * phase is still abstract. Successful completion points struct cfg to FIR coefficients and
1003 * contains the scale value to use for FIR coefficient RAM write as well as the CIC and FIR
1004 * shift values.
1005 */
1006 find_modes(dmic, &modes_a, dmic->dmic_prm[0].fifo_fs);
1007 if (modes_a.num_of_modes == 0 && dmic->dmic_prm[0].fifo_fs > 0) {
1008 fprintf(stderr, "dmic_set_config(): No modes found for FIFO A\n");
1009 ret = -EINVAL;
1010 goto out;
1011 }
1012
1013 find_modes(dmic, &modes_b, dmic->dmic_prm[1].fifo_fs);
1014 if (modes_b.num_of_modes == 0 && dmic->dmic_prm[1].fifo_fs > 0) {
1015 fprintf(stderr, "dmic_set_config(): No modes found for FIFO B\n");
1016 ret = -EINVAL;
1017 goto out;
1018 }
1019
1020 match_modes(&modes_ab, &modes_a, &modes_b);
1021 ret = select_mode(dmic, &cfg, &modes_ab);
1022 if (ret < 0) {
1023 fprintf(stderr, "dmic_set_config(): select_mode() failed\n");
1024 ret = -EINVAL;
1025 goto out;
1026 }
1027
1028 /* Struct reg contains a mirror of actual HW registers. Determine register bits
1029 * configuration from decimator configuration and the requested parameters.
1030 */
1031 ret = configure_registers(dmic, &cfg);
1032 if (ret < 0) {
1033 fprintf(stderr, "dmic_set_config(): cannot configure registers\n");
1034 ret = -EINVAL;
1035 goto out;
1036 }
1037
1038 dmic_print_internal(dmic);
1039
1040 dmic->dmic_count++;
1041
1042 out:
1043 return ret;
1044 }
1045
dmic_get_params(struct intel_nhlt_params * nhlt,int index,uint32_t * sample_rate,uint16_t * channel_count,uint32_t * bits_per_sample,uint8_t * array_type,uint8_t * num_mics,uint8_t * extension,uint32_t * snr,uint32_t * sensitivity)1046 int dmic_get_params(struct intel_nhlt_params *nhlt, int index, uint32_t *sample_rate,
1047 uint16_t *channel_count, uint32_t *bits_per_sample, uint8_t *array_type,
1048 uint8_t *num_mics, uint8_t *extension, uint32_t *snr, uint32_t *sensitivity)
1049 {
1050 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1051 uint32_t channels = 0;
1052
1053 if (!dmic)
1054 return -EINVAL;
1055
1056 /* check all pdm's for enabled mics */
1057 *channel_count = 0;
1058 if (dmic->dmic_prm[index].pdm[0].enable_mic_a)
1059 channels++;
1060
1061 if (dmic->dmic_prm[index].pdm[0].enable_mic_b)
1062 channels++;
1063
1064 if (dmic->dmic_prm[index].pdm[1].enable_mic_a)
1065 channels++;
1066
1067 if (dmic->dmic_prm[index].pdm[1].enable_mic_b)
1068 channels++;
1069
1070 *sample_rate = dmic->dmic_prm[index].fifo_fs;
1071 *channel_count = channels;
1072 *bits_per_sample = dmic->dmic_prm[index].fifo_bits;
1073 *num_mics = dmic->dmic_mic_config.num_mics;
1074 *extension = dmic->dmic_mic_config.extension;
1075 *array_type = dmic->dmic_mic_config.array_type;
1076 *snr = dmic->dmic_mic_config.snr;
1077 *sensitivity = dmic->dmic_mic_config.sensitivity;
1078
1079 return 0;
1080 }
1081
dmic_get_mic_params(struct intel_nhlt_params * nhlt,int index,uint8_t * type,uint8_t * panel,uint32_t * speaker_position_distance,uint32_t * horizontal_offset,uint32_t * vertical_offset,uint8_t * frequency_low_band,uint8_t * frequency_high_band,uint16_t * direction_angle,uint16_t * elevation_angle,uint16_t * vertical_angle_begin,uint16_t * vertical_angle_end,uint16_t * horizontal_angle_begin,uint16_t * horizontal_angle_end)1082 int dmic_get_mic_params(struct intel_nhlt_params *nhlt, int index,
1083 uint8_t *type, uint8_t *panel, uint32_t *speaker_position_distance,
1084 uint32_t *horizontal_offset, uint32_t *vertical_offset,
1085 uint8_t *frequency_low_band, uint8_t *frequency_high_band,
1086 uint16_t *direction_angle, uint16_t *elevation_angle,
1087 uint16_t *vertical_angle_begin, uint16_t *vertical_angle_end,
1088 uint16_t *horizontal_angle_begin, uint16_t *horizontal_angle_end)
1089 {
1090 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1091
1092 if (!dmic)
1093 return -EINVAL;
1094
1095 *type = dmic->dmic_mic_config.vendor[index].type;
1096 *panel = dmic->dmic_mic_config.vendor[index].panel;
1097 *speaker_position_distance = dmic->dmic_mic_config.vendor[index].speaker_position_distance;
1098 *horizontal_offset = dmic->dmic_mic_config.vendor[index].horizontal_offset;
1099 *vertical_offset = dmic->dmic_mic_config.vendor[index].vertical_offset;
1100 *frequency_low_band = dmic->dmic_mic_config.vendor[index].frequency_low_band;
1101 *frequency_high_band = dmic->dmic_mic_config.vendor[index].frequency_high_band;
1102 *direction_angle = dmic->dmic_mic_config.vendor[index].direction_angle;
1103 *elevation_angle = dmic->dmic_mic_config.vendor[index].elevation_angle;
1104 *vertical_angle_begin = dmic->dmic_mic_config.vendor[index].vertical_angle_begin;
1105 *vertical_angle_end = dmic->dmic_mic_config.vendor[index].vertical_angle_end;
1106 *horizontal_angle_begin = dmic->dmic_mic_config.vendor[index].horizontal_angle_begin;
1107 *horizontal_angle_end = dmic->dmic_mic_config.vendor[index].horizontal_angle_end;
1108
1109 return 0;
1110 }
1111
dmic_get_vendor_blob_size(struct intel_nhlt_params * nhlt,size_t * size)1112 int dmic_get_vendor_blob_size(struct intel_nhlt_params *nhlt, size_t *size)
1113 {
1114 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1115 int i, fir_index_0, fir_index_1;
1116
1117 if (!dmic || !dmic->dmic_count)
1118 return -EINVAL;
1119
1120 *size = sizeof(struct dmic_intel_config_data);
1121
1122 /* if either of the fir is 0 length, copy the existing fir twice */
1123 fir_index_0 = 0;
1124 fir_index_1 = 1;
1125 if (dmic->dmic_fir_array.fir_len[0] == 0) {
1126 fir_index_0 = 1;
1127 fir_index_1 = 1;
1128 }
1129 if (dmic->dmic_fir_array.fir_len[1] == 0) {
1130 fir_index_0 = 0;
1131 fir_index_1 = 0;
1132 }
1133
1134 /* variable amount of pdm's */
1135 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
1136 /* only copy the pdm data if it is enabled */
1137 if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
1138 continue;
1139
1140 *size += sizeof(struct dmic_intel_pdm_ctrl_cfg);
1141 *size += sizeof(struct dmic_intel_fir_config) * DMIC_HW_FIFOS;
1142
1143 *size += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
1144 *size += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
1145 }
1146
1147 return 0;
1148 }
1149
dmic_get_vendor_blob_count(struct intel_nhlt_params * nhlt)1150 int dmic_get_vendor_blob_count(struct intel_nhlt_params *nhlt)
1151 {
1152 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1153
1154 if (!dmic || !dmic->dmic_count)
1155 return 0;
1156
1157 return dmic->dmic_count;
1158 }
1159
dmic_get_vendor_blob(struct intel_nhlt_params * nhlt,uint8_t * vendor_blob)1160 int dmic_get_vendor_blob(struct intel_nhlt_params *nhlt, uint8_t *vendor_blob)
1161 {
1162 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1163 int i, fir_index_0, fir_index_1;
1164 uint8_t *orig_blob = vendor_blob;
1165 size_t blob_size;
1166
1167 if (!dmic || !dmic->dmic_count)
1168 return -EINVAL;
1169
1170 /* top level struct */
1171 memcpy(vendor_blob, &dmic->dmic_blob, sizeof(struct dmic_intel_config_data));
1172 vendor_blob += sizeof(struct dmic_intel_config_data);
1173
1174 /* if either of the fir is 0 length, copy the existing fir twice */
1175 fir_index_0 = 0;
1176 fir_index_1 = 1;
1177 if (dmic->dmic_fir_array.fir_len[0] == 0) {
1178 fir_index_0 = 1;
1179 fir_index_1 = 1;
1180 }
1181 if (dmic->dmic_fir_array.fir_len[1] == 0) {
1182 fir_index_0 = 0;
1183 fir_index_1 = 0;
1184 }
1185
1186 /* variable amount of pdm's */
1187 for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
1188 /* only copy the pdm data if it is enabled */
1189 if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
1190 continue;
1191
1192 /* top level struct first pdm data */
1193 memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_pdm[i],
1194 sizeof(struct dmic_intel_pdm_ctrl_cfg));
1195 vendor_blob += sizeof(struct dmic_intel_pdm_ctrl_cfg);
1196
1197 /* top level struct first pdm data first fir */
1198 memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_0],
1199 sizeof(struct dmic_intel_fir_config));
1200 vendor_blob += sizeof(struct dmic_intel_fir_config);
1201
1202 /* top level struct first pdm data second fir */
1203 memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_1],
1204 sizeof(struct dmic_intel_fir_config));
1205 vendor_blob += sizeof(struct dmic_intel_fir_config);
1206
1207 /* fir coeffs a */
1208 memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_0][0],
1209 dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t));
1210 vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
1211
1212 /* fir coeffs b */
1213 memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_1][0],
1214 dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t));
1215 vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
1216 }
1217
1218 dmic_get_vendor_blob_size(nhlt, &blob_size);
1219 dmic_print_bytes_as_hex((uint8_t *)orig_blob, blob_size);
1220 dmic_print_integers_as_hex((uint32_t *)orig_blob, blob_size / 4);
1221
1222 return 0;
1223 }
1224
dmic_set_params(struct intel_nhlt_params * nhlt,int dai_index,int driver_version,int io_clk,int num_pdm_active,int fifo_word_length,int clk_min,int clk_max,int duty_min,int duty_max,int sample_rate,int unmute_ramp_time)1225 int dmic_set_params(struct intel_nhlt_params *nhlt, int dai_index, int driver_version,
1226 int io_clk, int num_pdm_active, int fifo_word_length, int clk_min, int clk_max,
1227 int duty_min, int duty_max, int sample_rate, int unmute_ramp_time)
1228 {
1229 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1230
1231 if (!dmic)
1232 return -EINVAL;
1233
1234 if (dai_index >= DMIC_HW_FIFOS) {
1235 fprintf(stderr, "set_dmic_data illegal dai index\n");
1236 return -EINVAL;
1237 }
1238
1239 dmic->dmic_dai_index = dai_index;
1240 dmic->dmic_prm[dai_index].driver_version = driver_version;
1241 dmic->dmic_prm[dai_index].io_clk = io_clk;
1242 dmic->dmic_prm[dai_index].num_pdm_active = num_pdm_active;
1243 dmic->dmic_prm[dai_index].fifo_bits = fifo_word_length;
1244 dmic->dmic_prm[dai_index].pdmclk_min = clk_min;
1245 dmic->dmic_prm[dai_index].pdmclk_max = clk_max;
1246 dmic->dmic_prm[dai_index].duty_min = duty_min;
1247 dmic->dmic_prm[dai_index].duty_max = duty_max;
1248 dmic->dmic_prm[dai_index].fifo_fs = sample_rate;
1249 dmic->dmic_prm[dai_index].unmute_ramp_time = unmute_ramp_time;
1250
1251 return 0;
1252 }
1253
dmic_set_pdm_params(struct intel_nhlt_params * nhlt,int pdm_index,int enable_a,int enable_b,int polarity_a,int polarity_b,int clk_edge,int skew)1254 int dmic_set_pdm_params(struct intel_nhlt_params *nhlt, int pdm_index, int enable_a,
1255 int enable_b, int polarity_a, int polarity_b, int clk_edge, int skew)
1256 {
1257 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1258 int di;
1259
1260 if (!dmic)
1261 return -EINVAL;
1262
1263 if (pdm_index >= DMIC_HW_CONTROLLERS) {
1264 fprintf(stderr, "set_pdm_data illegal pdm_index\n");
1265 return -EINVAL;
1266 }
1267
1268 di = dmic->dmic_dai_index;
1269
1270 dmic->dmic_prm[di].pdm[pdm_index].enable_mic_a = enable_a;
1271 dmic->dmic_prm[di].pdm[pdm_index].enable_mic_b = enable_b;
1272 dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_a = polarity_a;
1273 dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_b = polarity_b;
1274 dmic->dmic_prm[di].pdm[pdm_index].clk_edge = clk_edge;
1275 dmic->dmic_prm[di].pdm[pdm_index].skew = skew;
1276
1277 return 0;
1278 }
1279
dmic_set_ext_params(struct intel_nhlt_params * nhlt,uint32_t snr,uint32_t sensitivity)1280 int dmic_set_ext_params(struct intel_nhlt_params *nhlt, uint32_t snr, uint32_t sensitivity)
1281 {
1282 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1283
1284 if (!dmic)
1285 return -EINVAL;
1286
1287 dmic->dmic_mic_config.extension = 1;
1288 dmic->dmic_mic_config.snr = snr;
1289 dmic->dmic_mic_config.sensitivity = sensitivity;
1290
1291 return 0;
1292 }
1293
dmic_set_mic_params(struct intel_nhlt_params * nhlt,int index,uint8_t type,uint8_t panel,uint32_t speaker_position_distance,uint32_t horizontal_offset,uint32_t vertical_offset,uint8_t frequency_low_band,uint8_t frequency_high_band,uint16_t direction_angle,uint16_t elevation_angle,uint16_t vertical_angle_begin,uint16_t vertical_angle_end,uint16_t horizontal_angle_begin,uint16_t horizontal_angle_end)1294 int dmic_set_mic_params(struct intel_nhlt_params *nhlt, int index,
1295 uint8_t type, uint8_t panel, uint32_t speaker_position_distance,
1296 uint32_t horizontal_offset, uint32_t vertical_offset,
1297 uint8_t frequency_low_band, uint8_t frequency_high_band,
1298 uint16_t direction_angle, uint16_t elevation_angle,
1299 uint16_t vertical_angle_begin, uint16_t vertical_angle_end,
1300 uint16_t horizontal_angle_begin, uint16_t horizontal_angle_end)
1301 {
1302 struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1303
1304 if (!dmic)
1305 return -EINVAL;
1306
1307 dmic->dmic_mic_config.vendor[index].type = type;
1308 dmic->dmic_mic_config.vendor[index].panel = panel;
1309 dmic->dmic_mic_config.vendor[index].speaker_position_distance = speaker_position_distance;
1310 dmic->dmic_mic_config.vendor[index].horizontal_offset = horizontal_offset;
1311 dmic->dmic_mic_config.vendor[index].vertical_offset = vertical_offset;
1312 dmic->dmic_mic_config.vendor[index].frequency_low_band = frequency_low_band;
1313 dmic->dmic_mic_config.vendor[index].frequency_high_band = frequency_high_band;
1314 dmic->dmic_mic_config.vendor[index].direction_angle = direction_angle;
1315 dmic->dmic_mic_config.vendor[index].elevation_angle = elevation_angle;
1316 dmic->dmic_mic_config.vendor[index].vertical_angle_begin = vertical_angle_begin;
1317 dmic->dmic_mic_config.vendor[index].vertical_angle_end = vertical_angle_end;
1318 dmic->dmic_mic_config.vendor[index].horizontal_angle_begin = horizontal_angle_begin;
1319 dmic->dmic_mic_config.vendor[index].horizontal_angle_end = horizontal_angle_end;
1320
1321 dmic->dmic_mic_config.num_mics++;
1322
1323 return 0;
1324 }
1325
1326 /* init dmic parameters, should be called before parsing dais */
dmic_init_params(struct intel_nhlt_params * nhlt)1327 int dmic_init_params(struct intel_nhlt_params *nhlt)
1328 {
1329 struct intel_dmic_params *dmic;
1330 int i;
1331
1332 dmic = calloc(1, sizeof(struct intel_dmic_params));
1333 if (!dmic)
1334 return -ENOMEM;
1335
1336 nhlt->dmic_params = dmic;
1337 /* set always to 1, some fw variants use this for choosing memory type */
1338 dmic->dmic_blob.gateway_attributes = 1;
1339 /* delay in ms to unmute mics after clock is started */
1340 dmic->dmic_blob.clock_on_delay = 16;
1341
1342 for (i = 0; i < DMIC_TS_GROUP_SIZE; i++)
1343 dmic->dmic_blob.ts_group[i] = 0xFFFFFFFF; /* not enabled */
1344
1345 dmic->dmic_count = 0;
1346
1347 dmic->dmic_mic_config.num_mics = 0;
1348 dmic->dmic_mic_config.extension = 0;
1349 dmic->dmic_mic_config.array_type = 0;
1350 dmic->dmic_mic_config.snr = 0;
1351 dmic->dmic_mic_config.sensitivity = 0;
1352
1353 return 0;
1354 }
1355