• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*!
2 *  decimal.js v10.4.3
3 *  An arbitrary-precision Decimal type for JavaScript.
4 *  https://github.com/MikeMcl/decimal.js
5 *  Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
6 *  MIT Licence
7 */
8
9class BusinessError extends Error {
10  constructor(message, code) {
11    super(message);
12    this.name = 'BusinessError';
13    this.code = code;
14  }
15}
16const RANGE_ERROR_CODE = 10200001;
17const TYPE_ERROR_CODE = 401;
18const PRECISION_LIMIT_EXCEEDED_ERROR_CODE = 10200060;
19const CRYPTO_UNAVAILABLE_ERROR_CODE = 10200061;
20
21// -----------------------------------  EDITABLE DEFAULTS  ------------------------------------ //
22
23
24  // The maximum exponent magnitude.
25  // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`.
26var EXP_LIMIT = 9e15,                      // 0 to 9e15
27
28  // The limit on the value of `precision`, and on the value of the first argument to
29  // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.
30  MAX_DIGITS = 1e9,                        // 0 to 1e9
31
32  // Base conversion alphabet.
33  NUMERALS = '0123456789abcdef',
34
35  // The natural logarithm of 10 (1025 digits).
36  LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058',
37
38  // Pi (1025 digits).
39  PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789',
40
41
42  // The initial configuration properties of the Decimal constructor.
43  DEFAULTS = {
44
45    // These values must be integers within the stated ranges (inclusive).
46    // Most of these values can be changed at run-time using the `Decimal.config` method.
47
48    // The maximum number of significant digits of the result of a calculation or base conversion.
49    // E.g. `Decimal.config({ precision: 20 });`
50    precision: 20,                         // 1 to MAX_DIGITS
51
52    // The rounding mode used when rounding to `precision`.
53    //
54    // ROUND_UP         0 Away from zero.
55    // ROUND_DOWN       1 Towards zero.
56    // ROUND_CEILING       2 Towards +Infinity.
57    // ROUND_FLOOR      3 Towards -Infinity.
58    // ROUND_HALF_UP    4 Towards nearest neighbour. If equidistant, up.
59    // ROUND_HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
60    // ROUND_HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
61    // ROUND_HALF_CEILING  7 Towards nearest neighbour. If equidistant, towards +Infinity.
62    // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
63    //
64    // E.g.
65    // `Decimal.rounding = 4;`
66    // `Decimal.rounding = Decimal.ROUND_HALF_UP;`
67    rounding: 4,                           // 0 to 8
68
69    // The modulo mode used when calculating the modulus: a mod n.
70    // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
71    // The remainder (r) is calculated as: r = a - n * q.
72    //
73    // UP         0 The remainder is positive if the dividend is negative, else is negative.
74    // DOWN       1 The remainder has the same sign as the dividend (JavaScript %).
75    // FLOOR      3 The remainder has the same sign as the divisor (Python %).
76    // HALF_EVEN  6 The IEEE 754 remainder function.
77    // EUCLIDEAN     9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive.
78    //
79    // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian
80    // division (9) are commonly used for the modulus operation. The other rounding modes can also
81    // be used, but they may not give useful results.
82    modulo: 1,                             // 0 to 9
83
84    // The exponent value at and beneath which `toString` returns exponential notation.
85    // JavaScript numbers: -7
86    toExpNeg: -7,                          // 0 to -EXP_LIMIT
87
88    // The exponent value at and above which `toString` returns exponential notation.
89    // JavaScript numbers: 21
90    toExpPos:  21,                         // 0 to EXP_LIMIT
91
92    // The minimum exponent value, beneath which underflow to zero occurs.
93    // JavaScript numbers: -324  (5e-324)
94    minE: -EXP_LIMIT,                      // -1 to -EXP_LIMIT
95
96    // The maximum exponent value, above which overflow to Infinity occurs.
97    // JavaScript numbers: 308  (1.7976931348623157e+308)
98    maxE: EXP_LIMIT,                       // 1 to EXP_LIMIT
99
100    // Whether to use cryptographically-secure random number generation, if available.
101    crypto: false                          // true/false
102  },
103
104
105// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //
106
107
108  inexact, quadrant,
109  external = true,
110
111  tag = '[object Decimal]',
112
113  mathfloor = Math.floor,
114  mathpow = Math.pow,
115
116  isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i,
117  isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i,
118  isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i,
119  isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
120
121  BASE = 1e7,
122  LOG_BASE = 7,
123  MAX_SAFE_INTEGER = 9007199254740991,
124
125  LN10_PRECISION = LN10.length - 1,
126  PI_PRECISION = PI.length - 1,
127
128  // Decimal.prototype object
129  P = { toStringTag: tag };
130
131
132// Decimal prototype methods
133
134
135/*
136 *  absoluteValue             abs
137 *  ceil
138 *  clampedTo                 clamp
139 *  comparedTo                cmp
140 *  cosine                    cos
141 *  cubeRoot                  cbrt
142 *  decimalPlaces             dp
143 *  dividedBy                 div
144 *  dividedToIntegerBy        divToInt
145 *  equals                    eq
146 *  floor
147 *  greaterThan               gt
148 *  greaterThanOrEqualTo      gte
149 *  hyperbolicCosine          cosh
150 *  hyperbolicSine            sinh
151 *  hyperbolicTangent         tanh
152 *  inverseCosine             acos
153 *  inverseHyperbolicCosine   acosh
154 *  inverseHyperbolicSine     asinh
155 *  inverseHyperbolicTangent  atanh
156 *  inverseSine               asin
157 *  inverseTangent            atan
158 *  isFinite
159 *  isInteger                 isInt
160 *  isNaN
161 *  isNegative                isNeg
162 *  isPositive                isPos
163 *  isZero
164 *  lessThan                  lt
165 *  lessThanOrEqualTo         lte
166 *  logarithm                 log
167 *  [maximum]                 [max]
168 *  [minimum]                 [min]
169 *  minus                     sub
170 *  modulo                    mod
171 *  naturalExponential        exp
172 *  naturalLogarithm          ln
173 *  negate                    neg
174 *  plus                      add
175 *  precision                 sd
176 *  round
177 *  sine                      sin
178 *  squareRoot                sqrt
179 *  tangent                   tan
180 *  times                     mul
181 *  toBinary
182 *  toDecimalPlaces           toDP
183 *  toExponential
184 *  toFixed
185 *  toFraction
186 *  toHexadecimal             toHex
187 *  toNearest
188 *  toNumber
189 *  toOctal
190 *  toPower                   pow
191 *  toPrecision
192 *  toSignificantDigits       toSD
193 *  toString
194 *  truncated                 trunc
195 *  valueOf                   toJSON
196 */
197
198
199/*
200 * Return a new Decimal whose value is the absolute value of this Decimal.
201 *
202 */
203P.absoluteValue = P.abs = function () {
204  var x = new this.constructor(this);
205  if (x.s < 0) x.s = 1;
206  return finalise(x);
207};
208
209
210/*
211 * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the
212 * direction of positive Infinity.
213 *
214 */
215P.ceil = function () {
216  return finalise(new this.constructor(this), this.e + 1, 2);
217};
218
219
220/*
221 * Return a new Decimal whose value is the value of this Decimal clamped to the range
222 * delineated by `min` and `max`.
223 *
224 * min {number|string|Decimal}
225 * max {number|string|Decimal}
226 *
227 */
228P.clampedTo = P.clamp = function (min, max) {
229  var k,
230    x = this,
231    Ctor = x.constructor;
232  min = new Ctor(min);
233  max = new Ctor(max);
234  if (!min.s || !max.s) return new Ctor(NaN);
235  if (min.gt(max)) throw new BusinessError(
236    `The value of min is out of range. It must be <= ${max}. Received value is: ${min}`, RANGE_ERROR_CODE);
237  k = x.cmp(min);
238  return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x);
239};
240
241
242/*
243 * Return
244 *   1    if the value of this Decimal is greater than the value of `y`,
245 *  -1    if the value of this Decimal is less than the value of `y`,
246 *   0    if they have the same value,
247 *   NaN  if the value of either Decimal is NaN.
248 *
249 */
250P.comparedTo = P.cmp = function (y) {
251  var i, j, xdL, ydL,
252    x = this,
253    xd = x.d,
254    yd = (y = new x.constructor(y)).d,
255    xs = x.s,
256    ys = y.s;
257
258  // Either NaN or ±Infinity?
259  if (!xd || !yd) {
260    return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;
261  }
262
263  // Either zero?
264  if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0;
265
266  // Signs differ?
267  if (xs !== ys) return xs;
268
269  // Compare exponents.
270  if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1;
271
272  xdL = xd.length;
273  ydL = yd.length;
274
275  // Compare digit by digit.
276  for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {
277    if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;
278  }
279
280  // Compare lengths.
281  return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;
282};
283
284
285/*
286 * Return a new Decimal whose value is the cosine of the value in radians of this Decimal.
287 *
288 * Domain: [-Infinity, Infinity]
289 * Range: [-1, 1]
290 *
291 * cos(0)         = 1
292 * cos(-0)        = 1
293 * cos(Infinity)  = NaN
294 * cos(-Infinity) = NaN
295 * cos(NaN)       = NaN
296 *
297 */
298P.cosine = P.cos = function () {
299  var pr, rm,
300    x = this,
301    Ctor = x.constructor;
302
303  if (!x.d) return new Ctor(NaN);
304
305  // cos(0) = cos(-0) = 1
306  if (!x.d[0]) return new Ctor(1);
307
308  pr = Ctor.precision;
309  rm = Ctor.rounding;
310  Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
311  Ctor.rounding = 1;
312
313  x = cosine(Ctor, toLessThanHalfPi(Ctor, x));
314
315  Ctor.precision = pr;
316  Ctor.rounding = rm;
317
318  return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);
319};
320
321
322/*
323 *
324 * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to
325 * `precision` significant digits using rounding mode `rounding`.
326 *
327 *  cbrt(0)  =  0
328 *  cbrt(-0) = -0
329 *  cbrt(1)  =  1
330 *  cbrt(-1) = -1
331 *  cbrt(N)  =  N
332 *  cbrt(-I) = -I
333 *  cbrt(I)  =  I
334 *
335 * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3))
336 *
337 */
338P.cubeRoot = P.cbrt = function () {
339  var e, m, n, r, rep, s, sd, t, t3, t3plusx,
340    x = this,
341    Ctor = x.constructor;
342
343  if (!x.isFinite() || x.isZero()) return new Ctor(x);
344  external = false;
345
346  // Initial estimate.
347  s = x.s * mathpow(x.s * x, 1 / 3);
348
349   // Math.cbrt underflow/overflow?
350   // Pass x to Math.pow as integer, then adjust the exponent of the result.
351  if (!s || Math.abs(s) == 1 / 0) {
352    n = digitsToString(x.d);
353    e = x.e;
354
355    // Adjust n exponent so it is a multiple of 3 away from x exponent.
356    if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00');
357    s = mathpow(n, 1 / 3);
358
359    // Rarely, e may be one less than the result exponent value.
360    e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));
361
362    if (s == 1 / 0) {
363      n = '5e' + e;
364    } else {
365      n = s.toExponential();
366      n = n.slice(0, n.indexOf('e') + 1) + e;
367    }
368
369    r = new Ctor(n);
370    r.s = x.s;
371  } else {
372    r = new Ctor(s.toString());
373  }
374
375  sd = (e = Ctor.precision) + 3;
376
377  // Halley's method.
378  // TODO? Compare Newton's method.
379  for (;;) {
380    t = r;
381    t3 = t.times(t).times(t);
382    t3plusx = t3.plus(x);
383    r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);
384
385    // TODO? Replace with for-loop and checkRoundingDigits.
386    if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
387      n = n.slice(sd - 3, sd + 1);
388
389      // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999
390      // , i.e. approaching a rounding boundary, continue the iteration.
391      if (n == '9999' || !rep && n == '4999') {
392
393        // On the first iteration only, check to see if rounding up gives the exact result as the
394        // nines may infinitely repeat.
395        if (!rep) {
396          finalise(t, e + 1, 0);
397
398          if (t.times(t).times(t).eq(x)) {
399            r = t;
400            break;
401          }
402        }
403
404        sd += 4;
405        rep = 1;
406      } else {
407
408        // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
409        // If not, then there are further digits and m will be truthy.
410        if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
411
412          // Truncate to the first rounding digit.
413          finalise(r, e + 1, 1);
414          m = !r.times(r).times(r).eq(x);
415        }
416
417        break;
418      }
419    }
420  }
421
422  external = true;
423
424  return finalise(r, e, Ctor.rounding, m);
425};
426
427
428/*
429 * Return the number of decimal places of the value of this Decimal.
430 *
431 */
432P.decimalPlaces = P.dp = function () {
433  var w,
434    d = this.d,
435    n = NaN;
436
437  if (d) {
438    w = d.length - 1;
439    n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;
440
441    // Subtract the number of trailing zeros of the last word.
442    w = d[w];
443    if (w) for (; w % 10 == 0; w /= 10) n--;
444    if (n < 0) n = 0;
445  }
446
447  return n;
448};
449
450
451/*
452 *  n / 0 = I
453 *  n / N = N
454 *  n / I = 0
455 *  0 / n = 0
456 *  0 / 0 = N
457 *  0 / N = N
458 *  0 / I = 0
459 *  N / n = N
460 *  N / 0 = N
461 *  N / N = N
462 *  N / I = N
463 *  I / n = I
464 *  I / 0 = I
465 *  I / N = N
466 *  I / I = N
467 *
468 * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to
469 * `precision` significant digits using rounding mode `rounding`.
470 *
471 */
472P.dividedBy = P.div = function (y) {
473  return divide(this, new this.constructor(y));
474};
475
476
477/*
478 * Return a new Decimal whose value is the integer part of dividing the value of this Decimal
479 * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`.
480 *
481 */
482P.dividedToIntegerBy = P.divToInt = function (y) {
483  var x = this,
484    Ctor = x.constructor;
485  return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);
486};
487
488
489/*
490 * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.
491 *
492 */
493P.equals = P.eq = function (y) {
494  return this.cmp(y) === 0;
495};
496
497
498/*
499 * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the
500 * direction of negative Infinity.
501 *
502 */
503P.floor = function () {
504  return finalise(new this.constructor(this), this.e + 1, 3);
505};
506
507
508/*
509 * Return true if the value of this Decimal is greater than the value of `y`, otherwise return
510 * false.
511 *
512 */
513P.greaterThan = P.gt = function (y) {
514  return this.cmp(y) > 0;
515};
516
517
518/*
519 * Return true if the value of this Decimal is greater than or equal to the value of `y`,
520 * otherwise return false.
521 *
522 */
523P.greaterThanOrEqualTo = P.gte = function (y) {
524  var k = this.cmp(y);
525  return k == 1 || k === 0;
526};
527
528
529/*
530 * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this
531 * Decimal.
532 *
533 * Domain: [-Infinity, Infinity]
534 * Range: [1, Infinity]
535 *
536 * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...
537 *
538 * cosh(0)         = 1
539 * cosh(-0)        = 1
540 * cosh(Infinity)  = Infinity
541 * cosh(-Infinity) = Infinity
542 * cosh(NaN)       = NaN
543 *
544 *  x        time taken (ms)   result
545 * 1000      9                 9.8503555700852349694e+433
546 * 10000     25                4.4034091128314607936e+4342
547 * 100000    171               1.4033316802130615897e+43429
548 * 1000000   3817              1.5166076984010437725e+434294
549 * 10000000  abandoned after 2 minute wait
550 *
551 * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x))
552 *
553 */
554P.hyperbolicCosine = P.cosh = function () {
555  var k, n, pr, rm, len,
556    x = this,
557    Ctor = x.constructor,
558    one = new Ctor(1);
559
560  if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);
561  if (x.isZero()) return one;
562
563  pr = Ctor.precision;
564  rm = Ctor.rounding;
565  Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
566  Ctor.rounding = 1;
567  len = x.d.length;
568
569  // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1
570  // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))
571
572  // Estimate the optimum number of times to use the argument reduction.
573  // TODO? Estimation reused from cosine() and may not be optimal here.
574  if (len < 32) {
575    k = Math.ceil(len / 3);
576    n = (1 / tinyPow(4, k)).toString();
577  } else {
578    k = 16;
579    n = '2.3283064365386962890625e-10';
580  }
581
582  x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);
583
584  // Reverse argument reduction
585  var cosh2_x,
586    i = k,
587    d8 = new Ctor(8);
588  for (; i--;) {
589    cosh2_x = x.times(x);
590    x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));
591  }
592
593  return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);
594};
595
596
597/*
598 * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this
599 * Decimal.
600 *
601 * Domain: [-Infinity, Infinity]
602 * Range: [-Infinity, Infinity]
603 *
604 * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...
605 *
606 * sinh(0)         = 0
607 * sinh(-0)        = -0
608 * sinh(Infinity)  = Infinity
609 * sinh(-Infinity) = -Infinity
610 * sinh(NaN)       = NaN
611 *
612 * x        time taken (ms)
613 * 10       2 ms
614 * 100      5 ms
615 * 1000     14 ms
616 * 10000    82 ms
617 * 100000   886 ms            1.4033316802130615897e+43429
618 * 200000   2613 ms
619 * 300000   5407 ms
620 * 400000   8824 ms
621 * 500000   13026 ms          8.7080643612718084129e+217146
622 * 1000000  48543 ms
623 *
624 * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x))
625 *
626 */
627P.hyperbolicSine = P.sinh = function () {
628  var k, pr, rm, len,
629    x = this,
630    Ctor = x.constructor;
631
632  if (!x.isFinite() || x.isZero()) return new Ctor(x);
633
634  pr = Ctor.precision;
635  rm = Ctor.rounding;
636  Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
637  Ctor.rounding = 1;
638  len = x.d.length;
639
640  if (len < 3) {
641    x = taylorSeries(Ctor, 2, x, x, true);
642  } else {
643
644    // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))
645    // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))
646    // 3 multiplications and 1 addition
647
648    // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))
649    // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))
650    // 4 multiplications and 2 additions
651
652    // Estimate the optimum number of times to use the argument reduction.
653    k = 1.4 * Math.sqrt(len);
654    k = k > 16 ? 16 : k | 0;
655
656    x = x.times(1 / tinyPow(5, k));
657    x = taylorSeries(Ctor, 2, x, x, true);
658
659    // Reverse argument reduction
660    var sinh2_x,
661      d5 = new Ctor(5),
662      d16 = new Ctor(16),
663      d20 = new Ctor(20);
664    for (; k--;) {
665      sinh2_x = x.times(x);
666      x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));
667    }
668  }
669
670  Ctor.precision = pr;
671  Ctor.rounding = rm;
672
673  return finalise(x, pr, rm, true);
674};
675
676
677/*
678 * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this
679 * Decimal.
680 *
681 * Domain: [-Infinity, Infinity]
682 * Range: [-1, 1]
683 *
684 * tanh(x) = sinh(x) / cosh(x)
685 *
686 * tanh(0)         = 0
687 * tanh(-0)        = -0
688 * tanh(Infinity)  = 1
689 * tanh(-Infinity) = -1
690 * tanh(NaN)       = NaN
691 *
692 */
693P.hyperbolicTangent = P.tanh = function () {
694  var pr, rm,
695    x = this,
696    Ctor = x.constructor;
697
698  if (!x.isFinite()) return new Ctor(x.s);
699  if (x.isZero()) return new Ctor(x);
700
701  pr = Ctor.precision;
702  rm = Ctor.rounding;
703  Ctor.precision = pr + 7;
704  Ctor.rounding = 1;
705
706  return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);
707};
708
709
710/*
711 * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of
712 * this Decimal.
713 *
714 * Domain: [-1, 1]
715 * Range: [0, pi]
716 *
717 * acos(x) = pi/2 - asin(x)
718 *
719 * acos(0)       = pi/2
720 * acos(-0)      = pi/2
721 * acos(1)       = 0
722 * acos(-1)      = pi
723 * acos(1/2)     = pi/3
724 * acos(-1/2)    = 2*pi/3
725 * acos(|x| > 1) = NaN
726 * acos(NaN)     = NaN
727 *
728 */
729P.inverseCosine = P.acos = function () {
730  var halfPi,
731    x = this,
732    Ctor = x.constructor,
733    k = x.abs().cmp(1),
734    pr = Ctor.precision,
735    rm = Ctor.rounding;
736
737  if (k !== -1) {
738    return k === 0
739      // |x| is 1
740      ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0)
741      // |x| > 1 or x is NaN
742      : new Ctor(NaN);
743  }
744
745  if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);
746
747  // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3
748
749  Ctor.precision = pr + 6;
750  Ctor.rounding = 1;
751
752  x = (new Ctor(1)).minus(x).div(x.plus(1)).sqrt().atan();
753
754  Ctor.precision = pr;
755  Ctor.rounding = rm;
756
757  return x.times(2);
758};
759
760
761/*
762 * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the
763 * value of this Decimal.
764 *
765 * Domain: [1, Infinity]
766 * Range: [0, Infinity]
767 *
768 * acosh(x) = ln(x + sqrt(x^2 - 1))
769 *
770 * acosh(x < 1)     = NaN
771 * acosh(NaN)       = NaN
772 * acosh(Infinity)  = Infinity
773 * acosh(-Infinity) = NaN
774 * acosh(0)         = NaN
775 * acosh(-0)        = NaN
776 * acosh(1)         = 0
777 * acosh(-1)        = NaN
778 *
779 */
780P.inverseHyperbolicCosine = P.acosh = function () {
781  var pr, rm,
782    x = this,
783    Ctor = x.constructor;
784
785  if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);
786  if (!x.isFinite()) return new Ctor(x);
787
788  pr = Ctor.precision;
789  rm = Ctor.rounding;
790  Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;
791  Ctor.rounding = 1;
792  external = false;
793
794  x = x.times(x).minus(1).sqrt().plus(x);
795
796  external = true;
797  Ctor.precision = pr;
798  Ctor.rounding = rm;
799
800  return x.ln();
801};
802
803
804/*
805 * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value
806 * of this Decimal.
807 *
808 * Domain: [-Infinity, Infinity]
809 * Range: [-Infinity, Infinity]
810 *
811 * asinh(x) = ln(x + sqrt(x^2 + 1))
812 *
813 * asinh(NaN)       = NaN
814 * asinh(Infinity)  = Infinity
815 * asinh(-Infinity) = -Infinity
816 * asinh(0)         = 0
817 * asinh(-0)        = -0
818 *
819 */
820P.inverseHyperbolicSine = P.asinh = function () {
821  var pr, rm,
822    x = this,
823    Ctor = x.constructor;
824
825  if (!x.isFinite() || x.isZero()) return new Ctor(x);
826
827  pr = Ctor.precision;
828  rm = Ctor.rounding;
829  Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;
830  Ctor.rounding = 1;
831  external = false;
832
833  x = x.times(x).plus(1).sqrt().plus(x);
834
835  external = true;
836  Ctor.precision = pr;
837  Ctor.rounding = rm;
838
839  return x.ln();
840};
841
842
843/*
844 * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the
845 * value of this Decimal.
846 *
847 * Domain: [-1, 1]
848 * Range: [-Infinity, Infinity]
849 *
850 * atanh(x) = 0.5 * ln((1 + x) / (1 - x))
851 *
852 * atanh(|x| > 1)   = NaN
853 * atanh(NaN)       = NaN
854 * atanh(Infinity)  = NaN
855 * atanh(-Infinity) = NaN
856 * atanh(0)         = 0
857 * atanh(-0)        = -0
858 * atanh(1)         = Infinity
859 * atanh(-1)        = -Infinity
860 *
861 */
862P.inverseHyperbolicTangent = P.atanh = function () {
863  var pr, rm, wpr, xsd,
864    x = this,
865    Ctor = x.constructor;
866
867  if (!x.isFinite()) return new Ctor(NaN);
868  if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);
869
870  pr = Ctor.precision;
871  rm = Ctor.rounding;
872  xsd = x.sd();
873
874  if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true);
875
876  Ctor.precision = wpr = xsd - x.e;
877
878  x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);
879
880  Ctor.precision = pr + 4;
881  Ctor.rounding = 1;
882
883  x = x.ln();
884
885  Ctor.precision = pr;
886  Ctor.rounding = rm;
887
888  return x.times(0.5);
889};
890
891
892/*
893 * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this
894 * Decimal.
895 *
896 * Domain: [-Infinity, Infinity]
897 * Range: [-pi/2, pi/2]
898 *
899 * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2)))
900 *
901 * asin(0)       = 0
902 * asin(-0)      = -0
903 * asin(1/2)     = pi/6
904 * asin(-1/2)    = -pi/6
905 * asin(1)       = pi/2
906 * asin(-1)      = -pi/2
907 * asin(|x| > 1) = NaN
908 * asin(NaN)     = NaN
909 *
910 * TODO? Compare performance of Taylor series.
911 *
912 */
913P.inverseSine = P.asin = function () {
914  var halfPi, k,
915    pr, rm,
916    x = this,
917    Ctor = x.constructor;
918
919  if (x.isZero()) return new Ctor(x);
920
921  k = x.abs().cmp(1);
922  pr = Ctor.precision;
923  rm = Ctor.rounding;
924
925  if (k !== -1) {
926
927    // |x| is 1
928    if (k === 0) {
929      halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
930      halfPi.s = x.s;
931      return halfPi;
932    }
933
934    // |x| > 1 or x is NaN
935    return new Ctor(NaN);
936  }
937
938  // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6
939
940  Ctor.precision = pr + 6;
941  Ctor.rounding = 1;
942
943  x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();
944
945  Ctor.precision = pr;
946  Ctor.rounding = rm;
947
948  return x.times(2);
949};
950
951
952/*
953 * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value
954 * of this Decimal.
955 *
956 * Domain: [-Infinity, Infinity]
957 * Range: [-pi/2, pi/2]
958 *
959 * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
960 *
961 * atan(0)         = 0
962 * atan(-0)        = -0
963 * atan(1)         = pi/4
964 * atan(-1)        = -pi/4
965 * atan(Infinity)  = pi/2
966 * atan(-Infinity) = -pi/2
967 * atan(NaN)       = NaN
968 *
969 */
970P.inverseTangent = P.atan = function () {
971  var i, j, k, n, px, t, r, wpr, x2,
972    x = this,
973    Ctor = x.constructor,
974    pr = Ctor.precision,
975    rm = Ctor.rounding;
976
977  if (!x.isFinite()) {
978    if (!x.s) return new Ctor(NaN);
979    if (pr + 4 <= PI_PRECISION) {
980      r = getPi(Ctor, pr + 4, rm).times(0.5);
981      r.s = x.s;
982      return r;
983    }
984  } else if (x.isZero()) {
985    return new Ctor(x);
986  } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {
987    r = getPi(Ctor, pr + 4, rm).times(0.25);
988    r.s = x.s;
989    return r;
990  }
991
992  Ctor.precision = wpr = pr + 10;
993  Ctor.rounding = 1;
994
995  // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);
996
997  // Argument reduction
998  // Ensure |x| < 0.42
999  // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))
1000
1001  k = Math.min(28, wpr / LOG_BASE + 2 | 0);
1002
1003  for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));
1004
1005  external = false;
1006
1007  j = Math.ceil(wpr / LOG_BASE);
1008  n = 1;
1009  x2 = x.times(x);
1010  r = new Ctor(x);
1011  px = x;
1012
1013  // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
1014  for (; i !== -1;) {
1015    px = px.times(x2);
1016    t = r.minus(px.div(n += 2));
1017
1018    px = px.times(x2);
1019    r = t.plus(px.div(n += 2));
1020
1021    if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;);
1022  }
1023
1024  if (k) r = r.times(2 << (k - 1));
1025
1026  external = true;
1027
1028  return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);
1029};
1030
1031
1032/*
1033 * Return true if the value of this Decimal is a finite number, otherwise return false.
1034 *
1035 */
1036P.isFinite = function () {
1037  return !!this.d;
1038};
1039
1040
1041/*
1042 * Return true if the value of this Decimal is an integer, otherwise return false.
1043 *
1044 */
1045P.isInteger = P.isInt = function () {
1046  return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;
1047};
1048
1049
1050/*
1051 * Return true if the value of this Decimal is NaN, otherwise return false.
1052 *
1053 */
1054P.isNaN = function () {
1055  return !this.s;
1056};
1057
1058
1059/*
1060 * Return true if the value of this Decimal is negative, otherwise return false.
1061 *
1062 */
1063P.isNegative = P.isNeg = function () {
1064  return this.s < 0;
1065};
1066
1067
1068/*
1069 * Return true if the value of this Decimal is positive, otherwise return false.
1070 *
1071 */
1072P.isPositive = P.isPos = function () {
1073  return this.s > 0;
1074};
1075
1076
1077/*
1078 * Return true if the value of this Decimal is 0 or -0, otherwise return false.
1079 *
1080 */
1081P.isZero = function () {
1082  return !!this.d && this.d[0] === 0;
1083};
1084
1085
1086/*
1087 * Return true if the value of this Decimal is less than `y`, otherwise return false.
1088 *
1089 */
1090P.lessThan = P.lt = function (y) {
1091  return this.cmp(y) < 0;
1092};
1093
1094
1095/*
1096 * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.
1097 *
1098 */
1099P.lessThanOrEqualTo = P.lte = function (y) {
1100  return this.cmp(y) < 1;
1101};
1102
1103
1104/*
1105 * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision`
1106 * significant digits using rounding mode `rounding`.
1107 *
1108 * If no base is specified, return log[10](arg).
1109 *
1110 * log[base](arg) = ln(arg) / ln(base)
1111 *
1112 * The result will always be correctly rounded if the base of the log is 10, and 'almost always'
1113 * otherwise:
1114 *
1115 * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen
1116 * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error
1117 * between the result and the correctly rounded result will be one ulp (unit in the last place).
1118 *
1119 * log[-b](a)       = NaN
1120 * log[0](a)        = NaN
1121 * log[1](a)        = NaN
1122 * log[NaN](a)      = NaN
1123 * log[Infinity](a) = NaN
1124 * log[b](0)        = -Infinity
1125 * log[b](-0)       = -Infinity
1126 * log[b](-a)       = NaN
1127 * log[b](1)        = 0
1128 * log[b](Infinity) = Infinity
1129 * log[b](NaN)      = NaN
1130 *
1131 * [base] {number|string|Decimal} The base of the logarithm.
1132 *
1133 */
1134P.logarithm = P.log = function (base) {
1135  var isBase10, d, denominator, k, inf, num, sd, r,
1136    arg = this,
1137    Ctor = arg.constructor,
1138    pr = Ctor.precision,
1139    rm = Ctor.rounding,
1140    guard = 5;
1141
1142  // Default base is 10.
1143  if (base == null) {
1144    base = new Ctor(10);
1145    isBase10 = true;
1146  } else {
1147    base = new Ctor(base);
1148    d = base.d;
1149
1150    // Return NaN if base is negative, or non-finite, or is 0 or 1.
1151    if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);
1152
1153    isBase10 = base.eq(10);
1154  }
1155
1156  d = arg.d;
1157
1158  // Is arg negative, non-finite, 0 or 1?
1159  if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {
1160    return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);
1161  }
1162
1163  // The result will have a non-terminating decimal expansion if base is 10 and arg is not an
1164  // integer power of 10.
1165  if (isBase10) {
1166    if (d.length > 1) {
1167      inf = true;
1168    } else {
1169      for (k = d[0]; k % 10 === 0;) k /= 10;
1170      inf = k !== 1;
1171    }
1172  }
1173
1174  external = false;
1175  sd = pr + guard;
1176  num = naturalLogarithm(arg, sd);
1177  denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
1178
1179  // The result will have 5 rounding digits.
1180  r = divide(num, denominator, sd, 1);
1181
1182  // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,
1183  // calculate 10 further digits.
1184  //
1185  // If the result is known to have an infinite decimal expansion, repeat this until it is clear
1186  // that the result is above or below the boundary. Otherwise, if after calculating the 10
1187  // further digits, the last 14 are nines, round up and assume the result is exact.
1188  // Also assume the result is exact if the last 14 are zero.
1189  //
1190  // Example of a result that will be incorrectly rounded:
1191  // log[1048576](4503599627370502) = 2.60000000000000009610279511444746...
1192  // The above result correctly rounded using ROUND_CEILING to 1 decimal place should be 2.7, but it
1193  // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so
1194  // the exact result would be assumed to be 2.6, which rounded using ROUND_CEILING to 1 decimal
1195  // place is still 2.6.
1196  if (checkRoundingDigits(r.d, k = pr, rm)) {
1197
1198    do {
1199      sd += 10;
1200      num = naturalLogarithm(arg, sd);
1201      denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
1202      r = divide(num, denominator, sd, 1);
1203
1204      if (!inf) {
1205
1206        // Check for 14 nines from the 2nd rounding digit, as the first may be 4.
1207        if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {
1208          r = finalise(r, pr + 1, 0);
1209        }
1210
1211        break;
1212      }
1213    } while (checkRoundingDigits(r.d, k += 10, rm));
1214  }
1215
1216  external = true;
1217
1218  return finalise(r, pr, rm);
1219};
1220
1221
1222/*
1223 * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal.
1224 *
1225 * arguments {number|string|Decimal}
1226 *
1227P.max = function () {
1228  Array.prototype.push.call(arguments, this);
1229  return maxOrMin(this.constructor, arguments, 'lt');
1230};
1231 */
1232
1233
1234/*
1235 * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal.
1236 *
1237 * arguments {number|string|Decimal}
1238 *
1239P.min = function () {
1240  Array.prototype.push.call(arguments, this);
1241  return maxOrMin(this.constructor, arguments, 'gt');
1242};
1243 */
1244
1245
1246/*
1247 *  n - 0 = n
1248 *  n - N = N
1249 *  n - I = -I
1250 *  0 - n = -n
1251 *  0 - 0 = 0
1252 *  0 - N = N
1253 *  0 - I = -I
1254 *  N - n = N
1255 *  N - 0 = N
1256 *  N - N = N
1257 *  N - I = N
1258 *  I - n = I
1259 *  I - 0 = I
1260 *  I - N = N
1261 *  I - I = N
1262 *
1263 * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision`
1264 * significant digits using rounding mode `rounding`.
1265 *
1266 */
1267P.minus = P.sub = function (y) {
1268  var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd,
1269    x = this,
1270    Ctor = x.constructor;
1271
1272  y = new Ctor(y);
1273
1274  // If either is not finite...
1275  if (!x.d || !y.d) {
1276
1277    // Return NaN if either is NaN.
1278    if (!x.s || !y.s) y = new Ctor(NaN);
1279
1280    // Return y negated if x is finite and y is ±Infinity.
1281    else if (x.d) y.s = -y.s;
1282
1283    // Return x if y is finite and x is ±Infinity.
1284    // Return x if both are ±Infinity with different signs.
1285    // Return NaN if both are ±Infinity with the same sign.
1286    else y = new Ctor(y.d || x.s !== y.s ? x : NaN);
1287
1288    return y;
1289  }
1290
1291  // If signs differ...
1292  if (x.s != y.s) {
1293    y.s = -y.s;
1294    return x.plus(y);
1295  }
1296
1297  xd = x.d;
1298  yd = y.d;
1299  pr = Ctor.precision;
1300  rm = Ctor.rounding;
1301
1302  // If either is zero...
1303  if (!xd[0] || !yd[0]) {
1304
1305    // Return y negated if x is zero and y is non-zero.
1306    if (yd[0]) y.s = -y.s;
1307
1308    // Return x if y is zero and x is non-zero.
1309    else if (xd[0]) y = new Ctor(x);
1310
1311    // Return zero if both are zero.
1312    // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.
1313    else return new Ctor(rm === 3 ? -0 : 0);
1314
1315    return external ? finalise(y, pr, rm) : y;
1316  }
1317
1318  // x and y are finite, non-zero numbers with the same sign.
1319
1320  // Calculate base 1e7 exponents.
1321  e = mathfloor(y.e / LOG_BASE);
1322  xe = mathfloor(x.e / LOG_BASE);
1323
1324  xd = xd.slice();
1325  k = xe - e;
1326
1327  // If base 1e7 exponents differ...
1328  if (k) {
1329    xLTy = k < 0;
1330
1331    if (xLTy) {
1332      d = xd;
1333      k = -k;
1334      len = yd.length;
1335    } else {
1336      d = yd;
1337      e = xe;
1338      len = xd.length;
1339    }
1340
1341    // Numbers with massively different exponents would result in a very high number of
1342    // zeros needing to be prepended, but this can be avoided while still ensuring correct
1343    // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.
1344    i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;
1345
1346    if (k > i) {
1347      k = i;
1348      d.length = 1;
1349    }
1350
1351    // Prepend zeros to equalise exponents.
1352    d.reverse();
1353    for (i = k; i--;) d.push(0);
1354    d.reverse();
1355
1356  // Base 1e7 exponents equal.
1357  } else {
1358
1359    // Check digits to determine which is the bigger number.
1360
1361    i = xd.length;
1362    len = yd.length;
1363    xLTy = i < len;
1364    if (xLTy) len = i;
1365
1366    for (i = 0; i < len; i++) {
1367      if (xd[i] != yd[i]) {
1368        xLTy = xd[i] < yd[i];
1369        break;
1370      }
1371    }
1372
1373    k = 0;
1374  }
1375
1376  if (xLTy) {
1377    d = xd;
1378    xd = yd;
1379    yd = d;
1380    y.s = -y.s;
1381  }
1382
1383  len = xd.length;
1384
1385  // Append zeros to `xd` if shorter.
1386  // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.
1387  for (i = yd.length - len; i > 0; --i) xd[len++] = 0;
1388
1389  // Subtract yd from xd.
1390  for (i = yd.length; i > k;) {
1391
1392    if (xd[--i] < yd[i]) {
1393      for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;
1394      --xd[j];
1395      xd[i] += BASE;
1396    }
1397
1398    xd[i] -= yd[i];
1399  }
1400
1401  // Remove trailing zeros.
1402  for (; xd[--len] === 0;) xd.pop();
1403
1404  // Remove leading zeros and adjust exponent accordingly.
1405  for (; xd[0] === 0; xd.shift()) --e;
1406
1407  // Zero?
1408  if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0);
1409
1410  y.d = xd;
1411  y.e = getBase10Exponent(xd, e);
1412
1413  return external ? finalise(y, pr, rm) : y;
1414};
1415
1416
1417/*
1418 *   n % 0 =  N
1419 *   n % N =  N
1420 *   n % I =  n
1421 *   0 % n =  0
1422 *  -0 % n = -0
1423 *   0 % 0 =  N
1424 *   0 % N =  N
1425 *   0 % I =  0
1426 *   N % n =  N
1427 *   N % 0 =  N
1428 *   N % N =  N
1429 *   N % I =  N
1430 *   I % n =  N
1431 *   I % 0 =  N
1432 *   I % N =  N
1433 *   I % I =  N
1434 *
1435 * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to
1436 * `precision` significant digits using rounding mode `rounding`.
1437 *
1438 * The result depends on the modulo mode.
1439 *
1440 */
1441P.modulo = P.mod = function (y) {
1442  var q,
1443    x = this,
1444    Ctor = x.constructor;
1445
1446  y = new Ctor(y);
1447
1448  // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.
1449  if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN);
1450
1451  // Return x if y is ±Infinity or x is ±0.
1452  if (!y.d || x.d && !x.d[0]) {
1453    return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);
1454  }
1455
1456  // Prevent rounding of intermediate calculations.
1457  external = false;
1458
1459  if (Ctor.modulo == 9) {
1460
1461    // Euclidian division: q = sign(y) * floor(x / abs(y))
1462    // result = x - q * y    where  0 <= result < abs(y)
1463    q = divide(x, y.abs(), 0, 3, 1);
1464    q.s *= y.s;
1465  } else {
1466    q = divide(x, y, 0, Ctor.modulo, 1);
1467  }
1468
1469  q = q.times(y);
1470
1471  external = true;
1472
1473  return x.minus(q);
1474};
1475
1476
1477/*
1478 * Return a new Decimal whose value is the natural exponential of the value of this Decimal,
1479 * i.e. the base e raised to the power the value of this Decimal, rounded to `precision`
1480 * significant digits using rounding mode `rounding`.
1481 *
1482 */
1483P.naturalExponential = P.exp = function () {
1484  return naturalExponential(this);
1485};
1486
1487
1488/*
1489 * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,
1490 * rounded to `precision` significant digits using rounding mode `rounding`.
1491 *
1492 */
1493P.naturalLogarithm = P.ln = function () {
1494  return naturalLogarithm(this);
1495};
1496
1497
1498/*
1499 * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by
1500 * -1.
1501 *
1502 */
1503P.negate = P.neg = function () {
1504  var x = new this.constructor(this);
1505  x.s = -x.s;
1506  return finalise(x);
1507};
1508
1509
1510/*
1511 *  n + 0 = n
1512 *  n + N = N
1513 *  n + I = I
1514 *  0 + n = n
1515 *  0 + 0 = 0
1516 *  0 + N = N
1517 *  0 + I = I
1518 *  N + n = N
1519 *  N + 0 = N
1520 *  N + N = N
1521 *  N + I = N
1522 *  I + n = I
1523 *  I + 0 = I
1524 *  I + N = N
1525 *  I + I = I
1526 *
1527 * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision`
1528 * significant digits using rounding mode `rounding`.
1529 *
1530 */
1531P.plus = P.add = function (y) {
1532  var carry, d, e, i, k, len, pr, rm, xd, yd,
1533    x = this,
1534    Ctor = x.constructor;
1535
1536  y = new Ctor(y);
1537
1538  // If either is not finite...
1539  if (!x.d || !y.d) {
1540
1541    // Return NaN if either is NaN.
1542    if (!x.s || !y.s) y = new Ctor(NaN);
1543
1544    // Return x if y is finite and x is ±Infinity.
1545    // Return x if both are ±Infinity with the same sign.
1546    // Return NaN if both are ±Infinity with different signs.
1547    // Return y if x is finite and y is ±Infinity.
1548    else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN);
1549
1550    return y;
1551  }
1552
1553   // If signs differ...
1554  if (x.s != y.s) {
1555    y.s = -y.s;
1556    return x.minus(y);
1557  }
1558
1559  xd = x.d;
1560  yd = y.d;
1561  pr = Ctor.precision;
1562  rm = Ctor.rounding;
1563
1564  // If either is zero...
1565  if (!xd[0] || !yd[0]) {
1566
1567    // Return x if y is zero.
1568    // Return y if y is non-zero.
1569    if (!yd[0]) y = new Ctor(x);
1570
1571    return external ? finalise(y, pr, rm) : y;
1572  }
1573
1574  // x and y are finite, non-zero numbers with the same sign.
1575
1576  // Calculate base 1e7 exponents.
1577  k = mathfloor(x.e / LOG_BASE);
1578  e = mathfloor(y.e / LOG_BASE);
1579
1580  xd = xd.slice();
1581  i = k - e;
1582
1583  // If base 1e7 exponents differ...
1584  if (i) {
1585
1586    if (i < 0) {
1587      d = xd;
1588      i = -i;
1589      len = yd.length;
1590    } else {
1591      d = yd;
1592      e = k;
1593      len = xd.length;
1594    }
1595
1596    // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.
1597    k = Math.ceil(pr / LOG_BASE);
1598    len = k > len ? k + 1 : len + 1;
1599
1600    if (i > len) {
1601      i = len;
1602      d.length = 1;
1603    }
1604
1605    // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
1606    d.reverse();
1607    for (; i--;) d.push(0);
1608    d.reverse();
1609  }
1610
1611  len = xd.length;
1612  i = yd.length;
1613
1614  // If yd is longer than xd, swap xd and yd so xd points to the longer array.
1615  if (len - i < 0) {
1616    i = len;
1617    d = yd;
1618    yd = xd;
1619    xd = d;
1620  }
1621
1622  // Only start adding at yd.length - 1 as the further digits of xd can be left as they are.
1623  for (carry = 0; i;) {
1624    carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;
1625    xd[i] %= BASE;
1626  }
1627
1628  if (carry) {
1629    xd.unshift(carry);
1630    ++e;
1631  }
1632
1633  // Remove trailing zeros.
1634  // No need to check for zero, as +x + +y != 0 && -x + -y != 0
1635  for (len = xd.length; xd[--len] == 0;) xd.pop();
1636
1637  y.d = xd;
1638  y.e = getBase10Exponent(xd, e);
1639
1640  return external ? finalise(y, pr, rm) : y;
1641};
1642
1643
1644/*
1645 * Return the number of significant digits of the value of this Decimal.
1646 *
1647 * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
1648 *
1649 */
1650P.precision = P.sd = function (z) {
1651  var k,
1652    x = this;
1653
1654  if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw new BusinessError(
1655    `The value of includeZeros is out of range. It must be 0 or 1. Received value is: ${z}`, RANGE_ERROR_CODE);
1656
1657  if (x.d) {
1658    k = getPrecision(x.d);
1659    if (z && x.e + 1 > k) k = x.e + 1;
1660  } else {
1661    k = NaN;
1662  }
1663
1664  return k;
1665};
1666
1667
1668/*
1669 * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using
1670 * rounding mode `rounding`.
1671 *
1672 */
1673P.round = function () {
1674  var x = this,
1675    Ctor = x.constructor;
1676
1677  return finalise(new Ctor(x), x.e + 1, Ctor.rounding);
1678};
1679
1680
1681/*
1682 * Return a new Decimal whose value is the sine of the value in radians of this Decimal.
1683 *
1684 * Domain: [-Infinity, Infinity]
1685 * Range: [-1, 1]
1686 *
1687 * sin(x) = x - x^3/3! + x^5/5! - ...
1688 *
1689 * sin(0)         = 0
1690 * sin(-0)        = -0
1691 * sin(Infinity)  = NaN
1692 * sin(-Infinity) = NaN
1693 * sin(NaN)       = NaN
1694 *
1695 */
1696P.sine = P.sin = function () {
1697  var pr, rm,
1698    x = this,
1699    Ctor = x.constructor;
1700
1701  if (!x.isFinite()) return new Ctor(NaN);
1702  if (x.isZero()) return new Ctor(x);
1703
1704  pr = Ctor.precision;
1705  rm = Ctor.rounding;
1706  Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
1707  Ctor.rounding = 1;
1708
1709  x = sine(Ctor, toLessThanHalfPi(Ctor, x));
1710
1711  Ctor.precision = pr;
1712  Ctor.rounding = rm;
1713
1714  return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true);
1715};
1716
1717
1718/*
1719 * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision`
1720 * significant digits using rounding mode `rounding`.
1721 *
1722 *  sqrt(-n) =  N
1723 *  sqrt(N)  =  N
1724 *  sqrt(-I) =  N
1725 *  sqrt(I)  =  I
1726 *  sqrt(0)  =  0
1727 *  sqrt(-0) = -0
1728 *
1729 */
1730P.squareRoot = P.sqrt = function () {
1731  var m, n, sd, r, rep, t,
1732    x = this,
1733    d = x.d,
1734    e = x.e,
1735    s = x.s,
1736    Ctor = x.constructor;
1737
1738  // Negative/NaN/Infinity/zero?
1739  if (s !== 1 || !d || !d[0]) {
1740    return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0);
1741  }
1742
1743  external = false;
1744
1745  // Initial estimate.
1746  s = Math.sqrt(+x);
1747
1748  // Math.sqrt underflow/overflow?
1749  // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
1750  if (s == 0 || s == 1 / 0) {
1751    n = digitsToString(d);
1752
1753    if ((n.length + e) % 2 == 0) n += '0';
1754    s = Math.sqrt(n);
1755    e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);
1756
1757    if (s == 1 / 0) {
1758      n = '5e' + e;
1759    } else {
1760      n = s.toExponential();
1761      n = n.slice(0, n.indexOf('e') + 1) + e;
1762    }
1763
1764    r = new Ctor(n);
1765  } else {
1766    r = new Ctor(s.toString());
1767  }
1768
1769  sd = (e = Ctor.precision) + 3;
1770
1771  // Newton-Raphson iteration.
1772  for (;;) {
1773    t = r;
1774    r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);
1775
1776    // TODO? Replace with for-loop and checkRoundingDigits.
1777    if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
1778      n = n.slice(sd - 3, sd + 1);
1779
1780      // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or
1781      // 4999, i.e. approaching a rounding boundary, continue the iteration.
1782      if (n == '9999' || !rep && n == '4999') {
1783
1784        // On the first iteration only, check to see if rounding up gives the exact result as the
1785        // nines may infinitely repeat.
1786        if (!rep) {
1787          finalise(t, e + 1, 0);
1788
1789          if (t.times(t).eq(x)) {
1790            r = t;
1791            break;
1792          }
1793        }
1794
1795        sd += 4;
1796        rep = 1;
1797      } else {
1798
1799        // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
1800        // If not, then there are further digits and m will be truthy.
1801        if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
1802
1803          // Truncate to the first rounding digit.
1804          finalise(r, e + 1, 1);
1805          m = !r.times(r).eq(x);
1806        }
1807
1808        break;
1809      }
1810    }
1811  }
1812
1813  external = true;
1814
1815  return finalise(r, e, Ctor.rounding, m);
1816};
1817
1818
1819/*
1820 * Return a new Decimal whose value is the tangent of the value in radians of this Decimal.
1821 *
1822 * Domain: [-Infinity, Infinity]
1823 * Range: [-Infinity, Infinity]
1824 *
1825 * tan(0)         = 0
1826 * tan(-0)        = -0
1827 * tan(Infinity)  = NaN
1828 * tan(-Infinity) = NaN
1829 * tan(NaN)       = NaN
1830 *
1831 */
1832P.tangent = P.tan = function () {
1833  var pr, rm,
1834    x = this,
1835    Ctor = x.constructor;
1836
1837  if (!x.isFinite()) return new Ctor(NaN);
1838  if (x.isZero()) return new Ctor(x);
1839
1840  pr = Ctor.precision;
1841  rm = Ctor.rounding;
1842  Ctor.precision = pr + 10;
1843  Ctor.rounding = 1;
1844
1845  x = x.sin();
1846  x.s = 1;
1847  x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);
1848
1849  Ctor.precision = pr;
1850  Ctor.rounding = rm;
1851
1852  return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true);
1853};
1854
1855
1856/*
1857 *  n * 0 = 0
1858 *  n * N = N
1859 *  n * I = I
1860 *  0 * n = 0
1861 *  0 * 0 = 0
1862 *  0 * N = N
1863 *  0 * I = N
1864 *  N * n = N
1865 *  N * 0 = N
1866 *  N * N = N
1867 *  N * I = N
1868 *  I * n = I
1869 *  I * 0 = N
1870 *  I * N = N
1871 *  I * I = I
1872 *
1873 * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant
1874 * digits using rounding mode `rounding`.
1875 *
1876 */
1877P.times = P.mul = function (y) {
1878  var carry, e, i, k, r, rL, t, xdL, ydL,
1879    x = this,
1880    Ctor = x.constructor,
1881    xd = x.d,
1882    yd = (y = new Ctor(y)).d;
1883
1884  y.s *= x.s;
1885
1886   // If either is NaN, ±Infinity or ±0...
1887  if (!xd || !xd[0] || !yd || !yd[0]) {
1888
1889    return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd
1890
1891      // Return NaN if either is NaN.
1892      // Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.
1893      ? NaN
1894
1895      // Return ±Infinity if either is ±Infinity.
1896      // Return ±0 if either is ±0.
1897      : !xd || !yd ? y.s / 0 : y.s * 0);
1898  }
1899
1900  e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE);
1901  xdL = xd.length;
1902  ydL = yd.length;
1903
1904  // Ensure xd points to the longer array.
1905  if (xdL < ydL) {
1906    r = xd;
1907    xd = yd;
1908    yd = r;
1909    rL = xdL;
1910    xdL = ydL;
1911    ydL = rL;
1912  }
1913
1914  // Initialise the result array with zeros.
1915  r = [];
1916  rL = xdL + ydL;
1917  for (i = rL; i--;) r.push(0);
1918
1919  // Multiply!
1920  for (i = ydL; --i >= 0;) {
1921    carry = 0;
1922    for (k = xdL + i; k > i;) {
1923      t = r[k] + yd[i] * xd[k - i - 1] + carry;
1924      r[k--] = t % BASE | 0;
1925      carry = t / BASE | 0;
1926    }
1927
1928    r[k] = (r[k] + carry) % BASE | 0;
1929  }
1930
1931  // Remove trailing zeros.
1932  for (; !r[--rL];) r.pop();
1933
1934  if (carry) ++e;
1935  else r.shift();
1936
1937  y.d = r;
1938  y.e = getBase10Exponent(r, e);
1939
1940  return external ? finalise(y, Ctor.precision, Ctor.rounding) : y;
1941};
1942
1943
1944/*
1945 * Return a string representing the value of this Decimal in base 2, round to `sd` significant
1946 * digits using rounding mode `rm`.
1947 *
1948 * If the optional `sd` argument is present then return binary exponential notation.
1949 *
1950 * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
1951 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1952 *
1953 */
1954P.toBinary = function (sd, rm) {
1955  return toStringBinary(this, 2, sd, rm);
1956};
1957
1958
1959/*
1960 * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`
1961 * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.
1962 *
1963 * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.
1964 *
1965 * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
1966 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1967 *
1968 */
1969P.toDecimalPlaces = P.toDP = function (dp, rm) {
1970  var x = this,
1971    Ctor = x.constructor;
1972
1973  x = new Ctor(x);
1974  if (dp === void 0) return x;
1975
1976  checkInt32(dp, 0, MAX_DIGITS);
1977
1978  if (rm === void 0) rm = Ctor.rounding;
1979  else checkInt32(rm, 0, 8);
1980
1981  return finalise(x, dp + x.e + 1, rm);
1982};
1983
1984
1985/*
1986 * Return a string representing the value of this Decimal in exponential notation rounded to
1987 * `dp` fixed decimal places using rounding mode `rounding`.
1988 *
1989 * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
1990 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1991 *
1992 */
1993P.toExponential = function (dp, rm) {
1994  var str,
1995    x = this,
1996    Ctor = x.constructor;
1997
1998  if (dp === void 0) {
1999    str = finiteToString(x, true);
2000  } else {
2001    checkInt32(dp, 0, MAX_DIGITS);
2002
2003    if (rm === void 0) rm = Ctor.rounding;
2004    else checkInt32(rm, 0, 8);
2005
2006    x = finalise(new Ctor(x), dp + 1, rm);
2007    str = finiteToString(x, true, dp + 1);
2008  }
2009
2010  return x.isNeg() && !x.isZero() ? '-' + str : str;
2011};
2012
2013
2014/*
2015 * Return a string representing the value of this Decimal in normal (fixed-point) notation to
2016 * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is
2017 * omitted.
2018 *
2019 * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.
2020 *
2021 * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
2022 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2023 *
2024 * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
2025 * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
2026 * (-0).toFixed(3) is '0.000'.
2027 * (-0.5).toFixed(0) is '-0'.
2028 *
2029 */
2030P.toFixed = function (dp, rm) {
2031  var str, y,
2032    x = this,
2033    Ctor = x.constructor;
2034
2035  if (dp === void 0) {
2036    str = finiteToString(x);
2037  } else {
2038    checkInt32(dp, 0, MAX_DIGITS);
2039
2040    if (rm === void 0) rm = Ctor.rounding;
2041    else checkInt32(rm, 0, 8);
2042
2043    y = finalise(new Ctor(x), dp + x.e + 1, rm);
2044    str = finiteToString(y, false, dp + y.e + 1);
2045  }
2046
2047  // To determine whether to add the minus sign look at the value before it was rounded,
2048  // i.e. look at `x` rather than `y`.
2049  return x.isNeg() && !x.isZero() ? '-' + str : str;
2050};
2051
2052
2053/*
2054 * Return an array representing the value of this Decimal as a simple fraction with an integer
2055 * numerator and an integer denominator.
2056 *
2057 * The denominator will be a positive non-zero value less than or equal to the specified maximum
2058 * denominator. If a maximum denominator is not specified, the denominator will be the lowest
2059 * value necessary to represent the number exactly.
2060 *
2061 * [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity.
2062 *
2063 */
2064P.toFraction = function (maxD) {
2065  var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r,
2066    x = this,
2067    xd = x.d,
2068    Ctor = x.constructor;
2069
2070  if (!xd) return new Ctor(x);
2071
2072  n1 = d0 = new Ctor(1);
2073  d1 = n0 = new Ctor(0);
2074
2075  d = new Ctor(d1);
2076  e = d.e = getPrecision(xd) - x.e - 1;
2077  k = e % LOG_BASE;
2078  d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k);
2079
2080  if (maxD == null) {
2081
2082    // d is 10**e, the minimum max-denominator needed.
2083    maxD = e > 0 ? d : n1;
2084  } else {
2085    n = new Ctor(maxD);
2086    if (!n.isInt() || n.lt(n1)) throw new BusinessError(
2087      `The type of "Ctor(maxD)" must be Integer. Received value is: ${n}`, TYPE_ERROR_CODE);
2088    maxD = n.gt(d) ? (e > 0 ? d : n1) : n;
2089  }
2090
2091  external = false;
2092  n = new Ctor(digitsToString(xd));
2093  pr = Ctor.precision;
2094  Ctor.precision = e = xd.length * LOG_BASE * 2;
2095
2096  for (;;)  {
2097    q = divide(n, d, 0, 1, 1);
2098    d2 = d0.plus(q.times(d1));
2099    if (d2.cmp(maxD) == 1) break;
2100    d0 = d1;
2101    d1 = d2;
2102    d2 = n1;
2103    n1 = n0.plus(q.times(d2));
2104    n0 = d2;
2105    d2 = d;
2106    d = n.minus(q.times(d2));
2107    n = d2;
2108  }
2109
2110  d2 = divide(maxD.minus(d0), d1, 0, 1, 1);
2111  n0 = n0.plus(d2.times(n1));
2112  d0 = d0.plus(d2.times(d1));
2113  n0.s = n1.s = x.s;
2114
2115  // Determine which fraction is closer to x, n0/d0 or n1/d1?
2116  r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1
2117      ? [n1, d1] : [n0, d0];
2118
2119  Ctor.precision = pr;
2120  external = true;
2121
2122  return r;
2123};
2124
2125
2126/*
2127 * Return a string representing the value of this Decimal in base 16, round to `sd` significant
2128 * digits using rounding mode `rm`.
2129 *
2130 * If the optional `sd` argument is present then return binary exponential notation.
2131 *
2132 * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
2133 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2134 *
2135 */
2136P.toHexadecimal = P.toHex = function (sd, rm) {
2137  return toStringBinary(this, 16, sd, rm);
2138};
2139
2140
2141/*
2142 * Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding
2143 * mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal.
2144 *
2145 * The return value will always have the same sign as this Decimal, unless either this Decimal
2146 * or `y` is NaN, in which case the return value will be also be NaN.
2147 *
2148 * The return value is not affected by the value of `precision`.
2149 *
2150 * y {number|string|Decimal} The magnitude to round to a multiple of.
2151 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2152 *
2153 * 'toNearest() rounding mode not an integer: {rm}'
2154 * 'toNearest() rounding mode out of range: {rm}'
2155 *
2156 */
2157P.toNearest = function (y, rm) {
2158  var x = this,
2159    Ctor = x.constructor;
2160
2161  x = new Ctor(x);
2162
2163  if (y == null) {
2164
2165    // If x is not finite, return x.
2166    if (!x.d) return x;
2167
2168    y = new Ctor(1);
2169    rm = Ctor.rounding;
2170  } else {
2171    y = new Ctor(y);
2172    if (rm === void 0) {
2173      rm = Ctor.rounding;
2174    } else {
2175      checkInt32(rm, 0, 8);
2176    }
2177
2178    // If x is not finite, return x if y is not NaN, else NaN.
2179    if (!x.d) return y.s ? x : y;
2180
2181    // If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.
2182    if (!y.d) {
2183      if (y.s) y.s = x.s;
2184      return y;
2185    }
2186  }
2187
2188  // If y is not zero, calculate the nearest multiple of y to x.
2189  if (y.d[0]) {
2190    external = false;
2191    x = divide(x, y, 0, rm, 1).times(y);
2192    external = true;
2193    finalise(x);
2194
2195  // If y is zero, return zero with the sign of x.
2196  } else {
2197    y.s = x.s;
2198    x = y;
2199  }
2200
2201  return x;
2202};
2203
2204
2205/*
2206 * Return the value of this Decimal converted to a number primitive.
2207 * Zero keeps its sign.
2208 *
2209 */
2210P.toNumber = function () {
2211  return +this;
2212};
2213
2214
2215/*
2216 * Return a string representing the value of this Decimal in base 8, round to `sd` significant
2217 * digits using rounding mode `rm`.
2218 *
2219 * If the optional `sd` argument is present then return binary exponential notation.
2220 *
2221 * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
2222 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2223 *
2224 */
2225P.toOctal = function (sd, rm) {
2226  return toStringBinary(this, 8, sd, rm);
2227};
2228
2229
2230/*
2231 * Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded
2232 * to `precision` significant digits using rounding mode `rounding`.
2233 *
2234 * ECMAScript compliant.
2235 *
2236 *   pow(x, NaN)                           = NaN
2237 *   pow(x, ±0)                            = 1
2238
2239 *   pow(NaN, non-zero)                    = NaN
2240 *   pow(abs(x) > 1, +Infinity)            = +Infinity
2241 *   pow(abs(x) > 1, -Infinity)            = +0
2242 *   pow(abs(x) == 1, ±Infinity)           = NaN
2243 *   pow(abs(x) < 1, +Infinity)            = +0
2244 *   pow(abs(x) < 1, -Infinity)            = +Infinity
2245 *   pow(+Infinity, y > 0)                 = +Infinity
2246 *   pow(+Infinity, y < 0)                 = +0
2247 *   pow(-Infinity, odd integer > 0)       = -Infinity
2248 *   pow(-Infinity, even integer > 0)      = +Infinity
2249 *   pow(-Infinity, odd integer < 0)       = -0
2250 *   pow(-Infinity, even integer < 0)      = +0
2251 *   pow(+0, y > 0)                        = +0
2252 *   pow(+0, y < 0)                        = +Infinity
2253 *   pow(-0, odd integer > 0)              = -0
2254 *   pow(-0, even integer > 0)             = +0
2255 *   pow(-0, odd integer < 0)              = -Infinity
2256 *   pow(-0, even integer < 0)             = +Infinity
2257 *   pow(finite x < 0, finite non-integer) = NaN
2258 *
2259 * For non-integer or very large exponents pow(x, y) is calculated using
2260 *
2261 *   x^y = exp(y*ln(x))
2262 *
2263 * Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the
2264 * probability of an incorrectly rounded result
2265 * P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14
2266 * i.e. 1 in 250,000,000,000,000
2267 *
2268 * If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place).
2269 *
2270 * y {number|string|Decimal} The power to which to raise this Decimal.
2271 *
2272 */
2273P.toPower = P.pow = function (y) {
2274  var e, k, pr, r, rm, s,
2275    x = this,
2276    Ctor = x.constructor,
2277    yn = +(y = new Ctor(y));
2278
2279  // Either ±Infinity, NaN or ±0?
2280  if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn));
2281
2282  x = new Ctor(x);
2283
2284  if (x.eq(1)) return x;
2285
2286  pr = Ctor.precision;
2287  rm = Ctor.rounding;
2288
2289  if (y.eq(1)) return finalise(x, pr, rm);
2290
2291  // y exponent
2292  e = mathfloor(y.e / LOG_BASE);
2293
2294  // If y is a small integer use the 'exponentiation by squaring' algorithm.
2295  if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {
2296    r = intPow(Ctor, x, k, pr);
2297    return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);
2298  }
2299
2300  s = x.s;
2301
2302  // if x is negative
2303  if (s < 0) {
2304
2305    // if y is not an integer
2306    if (e < y.d.length - 1) return new Ctor(NaN);
2307
2308    // Result is positive if x is negative and the last digit of integer y is even.
2309    if ((y.d[e] & 1) == 0) s = 1;
2310
2311    // if x.eq(-1)
2312    if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) {
2313      x.s = s;
2314      return x;
2315    }
2316  }
2317
2318  // Estimate result exponent.
2319  // x^y = 10^e,  where e = y * log10(x)
2320  // log10(x) = log10(x_significand) + x_exponent
2321  // log10(x_significand) = ln(x_significand) / ln(10)
2322  k = mathpow(+x, yn);
2323  e = k == 0 || !isFinite(k)
2324    ? mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1))
2325    : new Ctor(k + '').e;
2326
2327  // Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.
2328
2329  // Overflow/underflow?
2330  if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0);
2331
2332  external = false;
2333  Ctor.rounding = x.s = 1;
2334
2335  // Estimate the extra guard digits needed to ensure five correct rounding digits from
2336  // naturalLogarithm(x). Example of failure without these extra digits (precision: 10):
2337  // new Decimal(2.32456).pow('2087987436534566.46411')
2338  // should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815
2339  k = Math.min(12, (e + '').length);
2340
2341  // r = x^y = exp(y*ln(x))
2342  r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr);
2343
2344  // r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)
2345  if (r.d) {
2346
2347    // Truncate to the required precision plus five rounding digits.
2348    r = finalise(r, pr + 5, 1);
2349
2350    // If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate
2351    // the result.
2352    if (checkRoundingDigits(r.d, pr, rm)) {
2353      e = pr + 10;
2354
2355      // Truncate to the increased precision plus five rounding digits.
2356      r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1);
2357
2358      // Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).
2359      if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) {
2360        r = finalise(r, pr + 1, 0);
2361      }
2362    }
2363  }
2364
2365  r.s = s;
2366  external = true;
2367  Ctor.rounding = rm;
2368
2369  return finalise(r, pr, rm);
2370};
2371
2372
2373/*
2374 * Return a string representing the value of this Decimal rounded to `sd` significant digits
2375 * using rounding mode `rounding`.
2376 *
2377 * Return exponential notation if `sd` is less than the number of digits necessary to represent
2378 * the integer part of the value in normal notation.
2379 *
2380 * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
2381 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2382 *
2383 */
2384P.toPrecision = function (sd, rm) {
2385  var str,
2386    x = this,
2387    Ctor = x.constructor;
2388
2389  if (sd === void 0) {
2390    str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
2391  } else {
2392    checkInt32(sd, 1, MAX_DIGITS);
2393
2394    if (rm === void 0) rm = Ctor.rounding;
2395    else checkInt32(rm, 0, 8);
2396
2397    x = finalise(new Ctor(x), sd, rm);
2398    str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd);
2399  }
2400
2401  return x.isNeg() && !x.isZero() ? '-' + str : str;
2402};
2403
2404
2405/*
2406 * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`
2407 * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if
2408 * omitted.
2409 *
2410 * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
2411 * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2412 *
2413 * 'toSD() digits out of range: {sd}'
2414 * 'toSD() digits not an integer: {sd}'
2415 * 'toSD() rounding mode not an integer: {rm}'
2416 * 'toSD() rounding mode out of range: {rm}'
2417 *
2418 */
2419P.toSignificantDigits = P.toSD = function (sd, rm) {
2420  var x = this,
2421    Ctor = x.constructor;
2422
2423  if (sd === void 0) {
2424    sd = Ctor.precision;
2425    rm = Ctor.rounding;
2426  } else {
2427    checkInt32(sd, 1, MAX_DIGITS);
2428
2429    if (rm === void 0) rm = Ctor.rounding;
2430    else checkInt32(rm, 0, 8);
2431  }
2432
2433  return finalise(new Ctor(x), sd, rm);
2434};
2435
2436
2437/*
2438 * Return a string representing the value of this Decimal.
2439 *
2440 * Return exponential notation if this Decimal has a positive exponent equal to or greater than
2441 * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.
2442 *
2443 */
2444P.toString = function () {
2445  var x = this,
2446    Ctor = x.constructor,
2447    str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
2448
2449  return x.isNeg() && !x.isZero() ? '-' + str : str;
2450};
2451
2452
2453/*
2454 * Return a new Decimal whose value is the value of this Decimal truncated to a whole number.
2455 *
2456 */
2457P.truncated = P.trunc = function () {
2458  return finalise(new this.constructor(this), this.e + 1, 1);
2459};
2460
2461
2462/*
2463 * Return a string representing the value of this Decimal.
2464 * Unlike `toString`, negative zero will include the minus sign.
2465 *
2466 */
2467P.valueOf = P.toJSON = function () {
2468  var x = this,
2469    Ctor = x.constructor,
2470    str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
2471
2472  return x.isNeg() ? '-' + str : str;
2473};
2474
2475
2476// Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.
2477
2478
2479/*
2480 *  digitsToString           P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower,
2481 *                           finiteToString, naturalExponential, naturalLogarithm
2482 *  checkInt32               P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest,
2483 *                           P.toPrecision, P.toSignificantDigits, toStringBinary, random
2484 *  checkRoundingDigits      P.logarithm, P.toPower, naturalExponential, naturalLogarithm
2485 *  convertBase              toStringBinary, parseOther
2486 *  cos                      P.cos
2487 *  divide                   P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy,
2488 *                           P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction,
2489 *                           P.toNearest, toStringBinary, naturalExponential, naturalLogarithm,
2490 *                           taylorSeries, atan2, parseOther
2491 *  finalise                 P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh,
2492 *                           P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus,
2493 *                           P.modulo, P.negate, P.plus, P.round, P.sin, P.sinh, P.squareRoot,
2494 *                           P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed,
2495 *                           P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits,
2496 *                           P.truncated, divide, getLn10, getPi, naturalExponential,
2497 *                           naturalLogarithm, ceil, floor, round, trunc
2498 *  finiteToString           P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf,
2499 *                           toStringBinary
2500 *  getBase10Exponent        P.minus, P.plus, P.times, parseOther
2501 *  getLn10                  P.logarithm, naturalLogarithm
2502 *  getPi                    P.acos, P.asin, P.atan, toLessThanHalfPi, atan2
2503 *  getPrecision             P.precision, P.toFraction
2504 *  getZeroString            digitsToString, finiteToString
2505 *  intPow                   P.toPower, parseOther
2506 *  isOdd                    toLessThanHalfPi
2507 *  maxOrMin                 max, min
2508 *  naturalExponential       P.naturalExponential, P.toPower
2509 *  naturalLogarithm         P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm,
2510 *                           P.toPower, naturalExponential
2511 *  nonFiniteToString        finiteToString, toStringBinary
2512 *  parseDecimal             Decimal
2513 *  parseOther               Decimal
2514 *  sin                      P.sin
2515 *  taylorSeries             P.cosh, P.sinh, cos, sin
2516 *  toLessThanHalfPi         P.cos, P.sin
2517 *  toStringBinary           P.toBinary, P.toHexadecimal, P.toOctal
2518 *  truncate                 intPow
2519 *
2520 *  Throws:                  P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi,
2521 *                           naturalLogarithm, config, parseOther, random, Decimal
2522 */
2523
2524
2525function digitsToString(d) {
2526  var i, k, ws,
2527    indexOfLastWord = d.length - 1,
2528    str = '',
2529    w = d[0];
2530
2531  if (indexOfLastWord > 0) {
2532    str += w;
2533    for (i = 1; i < indexOfLastWord; i++) {
2534      ws = d[i] + '';
2535      k = LOG_BASE - ws.length;
2536      if (k) str += getZeroString(k);
2537      str += ws;
2538    }
2539
2540    w = d[i];
2541    ws = w + '';
2542    k = LOG_BASE - ws.length;
2543    if (k) str += getZeroString(k);
2544  } else if (w === 0) {
2545    return '0';
2546  }
2547
2548  // Remove trailing zeros of last w.
2549  for (; w % 10 === 0;) w /= 10;
2550
2551  return str + w;
2552}
2553
2554
2555function checkInt32(i, min, max) {
2556  if (i !== ~~i || i < min || i > max) {
2557    throw new BusinessError(
2558      `The value of "${i}" is out of range. It must be >= ${min} && <= ${max} . Received value is: ${i}`, RANGE_ERROR_CODE);
2559  }
2560}
2561
2562
2563/*
2564 * Check 5 rounding digits if `repeating` is null, 4 otherwise.
2565 * `repeating == null` if caller is `log` or `pow`,
2566 * `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`.
2567 */
2568function checkRoundingDigits(d, i, rm, repeating) {
2569  var di, k, r, rd;
2570
2571  // Get the length of the first word of the array d.
2572  for (k = d[0]; k >= 10; k /= 10) --i;
2573
2574  // Is the rounding digit in the first word of d?
2575  if (--i < 0) {
2576    i += LOG_BASE;
2577    di = 0;
2578  } else {
2579    di = Math.ceil((i + 1) / LOG_BASE);
2580    i %= LOG_BASE;
2581  }
2582
2583  // i is the index (0 - 6) of the rounding digit.
2584  // E.g. if within the word 3487563 the first rounding digit is 5,
2585  // then i = 4, k = 1000, rd = 3487563 % 1000 = 563
2586  k = mathpow(10, LOG_BASE - i);
2587  rd = d[di] % k | 0;
2588
2589  if (repeating == null) {
2590    if (i < 3) {
2591      if (i == 0) rd = rd / 100 | 0;
2592      else if (i == 1) rd = rd / 10 | 0;
2593      r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0;
2594    } else {
2595      r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) &&
2596        (d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 ||
2597          (rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0;
2598    }
2599  } else {
2600    if (i < 4) {
2601      if (i == 0) rd = rd / 1000 | 0;
2602      else if (i == 1) rd = rd / 100 | 0;
2603      else if (i == 2) rd = rd / 10 | 0;
2604      r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999;
2605    } else {
2606      r = ((repeating || rm < 4) && rd + 1 == k ||
2607      (!repeating && rm > 3) && rd + 1 == k / 2) &&
2608        (d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1;
2609    }
2610  }
2611
2612  return r;
2613}
2614
2615
2616// Convert string of `baseIn` to an array of numbers of `baseOut`.
2617// Eg. convertBase('255', 10, 16) returns [15, 15].
2618// Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
2619function convertBase(str, baseIn, baseOut) {
2620  var j,
2621    arr = [0],
2622    arrL,
2623    i = 0,
2624    strL = str.length;
2625
2626  for (; i < strL;) {
2627    for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn;
2628    arr[0] += NUMERALS.indexOf(str.charAt(i++));
2629    for (j = 0; j < arr.length; j++) {
2630      if (arr[j] > baseOut - 1) {
2631        if (arr[j + 1] === void 0) arr[j + 1] = 0;
2632        arr[j + 1] += arr[j] / baseOut | 0;
2633        arr[j] %= baseOut;
2634      }
2635    }
2636  }
2637
2638  return arr.reverse();
2639}
2640
2641
2642/*
2643 * cos(x) = 1 - x^2/2! + x^4/4! - ...
2644 * |x| < pi/2
2645 *
2646 */
2647function cosine(Ctor, x) {
2648  var k, len, y;
2649
2650  if (x.isZero()) return x;
2651
2652  // Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1
2653  // i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1
2654
2655  // Estimate the optimum number of times to use the argument reduction.
2656  len = x.d.length;
2657  if (len < 32) {
2658    k = Math.ceil(len / 3);
2659    y = (1 / tinyPow(4, k)).toString();
2660  } else {
2661    k = 16;
2662    y = '2.3283064365386962890625e-10';
2663  }
2664
2665  Ctor.precision += k;
2666
2667  x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));
2668
2669  // Reverse argument reduction
2670  for (var i = k; i--;) {
2671    var cos2x = x.times(x);
2672    x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);
2673  }
2674
2675  Ctor.precision -= k;
2676
2677  return x;
2678}
2679
2680
2681/*
2682 * Perform division in the specified base.
2683 */
2684var divide = (function () {
2685
2686  // Assumes non-zero x and k, and hence non-zero result.
2687  function multiplyInteger(x, k, base) {
2688    var temp,
2689      carry = 0,
2690      i = x.length;
2691
2692    for (x = x.slice(); i--;) {
2693      temp = x[i] * k + carry;
2694      x[i] = temp % base | 0;
2695      carry = temp / base | 0;
2696    }
2697
2698    if (carry) x.unshift(carry);
2699
2700    return x;
2701  }
2702
2703  function compare(a, b, aL, bL) {
2704    var i, r;
2705
2706    if (aL != bL) {
2707      r = aL > bL ? 1 : -1;
2708    } else {
2709      for (i = r = 0; i < aL; i++) {
2710        if (a[i] != b[i]) {
2711          r = a[i] > b[i] ? 1 : -1;
2712          break;
2713        }
2714      }
2715    }
2716
2717    return r;
2718  }
2719
2720  function subtract(a, b, aL, base) {
2721    var i = 0;
2722
2723    // Subtract b from a.
2724    for (; aL--;) {
2725      a[aL] -= i;
2726      i = a[aL] < b[aL] ? 1 : 0;
2727      a[aL] = i * base + a[aL] - b[aL];
2728    }
2729
2730    // Remove leading zeros.
2731    for (; !a[0] && a.length > 1;) a.shift();
2732  }
2733
2734  return function (x, y, pr, rm, dp, base) {
2735    var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0,
2736      yL, yz,
2737      Ctor = x.constructor,
2738      sign = x.s == y.s ? 1 : -1,
2739      xd = x.d,
2740      yd = y.d;
2741
2742    // Either NaN, Infinity or 0?
2743    if (!xd || !xd[0] || !yd || !yd[0]) {
2744
2745      return new Ctor(// Return NaN if either NaN, or both Infinity or 0.
2746        !x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN :
2747
2748        // Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0.
2749        xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0);
2750    }
2751
2752    if (base) {
2753      logBase = 1;
2754      e = x.e - y.e;
2755    } else {
2756      base = BASE;
2757      logBase = LOG_BASE;
2758      e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase);
2759    }
2760
2761    yL = yd.length;
2762    xL = xd.length;
2763    q = new Ctor(sign);
2764    qd = q.d = [];
2765
2766    // Result exponent may be one less than e.
2767    // The digit array of a Decimal from toStringBinary may have trailing zeros.
2768    for (i = 0; yd[i] == (xd[i] || 0); i++);
2769
2770    if (yd[i] > (xd[i] || 0)) e--;
2771
2772    if (pr == null) {
2773      sd = pr = Ctor.precision;
2774      rm = Ctor.rounding;
2775    } else if (dp) {
2776      sd = pr + (x.e - y.e) + 1;
2777    } else {
2778      sd = pr;
2779    }
2780
2781    if (sd < 0) {
2782      qd.push(1);
2783      more = true;
2784    } else {
2785
2786      // Convert precision in number of base 10 digits to base 1e7 digits.
2787      sd = sd / logBase + 2 | 0;
2788      i = 0;
2789
2790      // divisor < 1e7
2791      if (yL == 1) {
2792        k = 0;
2793        yd = yd[0];
2794        sd++;
2795
2796        // k is the carry.
2797        for (; (i < xL || k) && sd--; i++) {
2798          t = k * base + (xd[i] || 0);
2799          qd[i] = t / yd | 0;
2800          k = t % yd | 0;
2801        }
2802
2803        more = k || i < xL;
2804
2805      // divisor >= 1e7
2806      } else {
2807
2808        // Normalise xd and yd so highest order digit of yd is >= base/2
2809        k = base / (yd[0] + 1) | 0;
2810
2811        if (k > 1) {
2812          yd = multiplyInteger(yd, k, base);
2813          xd = multiplyInteger(xd, k, base);
2814          yL = yd.length;
2815          xL = xd.length;
2816        }
2817
2818        xi = yL;
2819        rem = xd.slice(0, yL);
2820        remL = rem.length;
2821
2822        // Add zeros to make remainder as long as divisor.
2823        for (; remL < yL;) rem[remL++] = 0;
2824
2825        yz = yd.slice();
2826        yz.unshift(0);
2827        yd0 = yd[0];
2828
2829        if (yd[1] >= base / 2) ++yd0;
2830
2831        do {
2832          k = 0;
2833
2834          // Compare divisor and remainder.
2835          cmp = compare(yd, rem, yL, remL);
2836
2837          // If divisor < remainder.
2838          if (cmp < 0) {
2839
2840            // Calculate trial digit, k.
2841            rem0 = rem[0];
2842            if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
2843
2844            // k will be how many times the divisor goes into the current remainder.
2845            k = rem0 / yd0 | 0;
2846
2847            //  Algorithm:
2848            //  1. product = divisor * trial digit (k)
2849            //  2. if product > remainder: product -= divisor, k--
2850            //  3. remainder -= product
2851            //  4. if product was < remainder at 2:
2852            //    5. compare new remainder and divisor
2853            //    6. If remainder > divisor: remainder -= divisor, k++
2854
2855            if (k > 1) {
2856              if (k >= base) k = base - 1;
2857
2858              // product = divisor * trial digit.
2859              prod = multiplyInteger(yd, k, base);
2860              prodL = prod.length;
2861              remL = rem.length;
2862
2863              // Compare product and remainder.
2864              cmp = compare(prod, rem, prodL, remL);
2865
2866              // product > remainder.
2867              if (cmp == 1) {
2868                k--;
2869
2870                // Subtract divisor from product.
2871                subtract(prod, yL < prodL ? yz : yd, prodL, base);
2872              }
2873            } else {
2874
2875              // cmp is -1.
2876              // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1
2877              // to avoid it. If k is 1 there is a need to compare yd and rem again below.
2878              if (k == 0) cmp = k = 1;
2879              prod = yd.slice();
2880            }
2881
2882            prodL = prod.length;
2883            if (prodL < remL) prod.unshift(0);
2884
2885            // Subtract product from remainder.
2886            subtract(rem, prod, remL, base);
2887
2888            // If product was < previous remainder.
2889            if (cmp == -1) {
2890              remL = rem.length;
2891
2892              // Compare divisor and new remainder.
2893              cmp = compare(yd, rem, yL, remL);
2894
2895              // If divisor < new remainder, subtract divisor from remainder.
2896              if (cmp < 1) {
2897                k++;
2898
2899                // Subtract divisor from remainder.
2900                subtract(rem, yL < remL ? yz : yd, remL, base);
2901              }
2902            }
2903
2904            remL = rem.length;
2905          } else if (cmp === 0) {
2906            k++;
2907            rem = [0];
2908          }    // if cmp === 1, k will be 0
2909
2910          // Add the next digit, k, to the result array.
2911          qd[i++] = k;
2912
2913          // Update the remainder.
2914          if (cmp && rem[0]) {
2915            rem[remL++] = xd[xi] || 0;
2916          } else {
2917            rem = [xd[xi]];
2918            remL = 1;
2919          }
2920
2921        } while ((xi++ < xL || rem[0] !== void 0) && sd--);
2922
2923        more = rem[0] !== void 0;
2924      }
2925
2926      // Leading zero?
2927      if (!qd[0]) qd.shift();
2928    }
2929
2930    // logBase is 1 when divide is being used for base conversion.
2931    if (logBase == 1) {
2932      q.e = e;
2933      inexact = more;
2934    } else {
2935
2936      // To calculate q.e, first get the number of digits of qd[0].
2937      for (i = 1, k = qd[0]; k >= 10; k /= 10) i++;
2938      q.e = i + e * logBase - 1;
2939
2940      finalise(q, dp ? pr + q.e + 1 : pr, rm, more);
2941    }
2942
2943    return q;
2944  };
2945})();
2946
2947
2948/*
2949 * Round `x` to `sd` significant digits using rounding mode `rm`.
2950 * Check for over/under-flow.
2951 */
2952 function finalise(x, sd, rm, isTruncated) {
2953  var digits, i, j, k, rd, roundUp, w, xd, xdi,
2954    Ctor = x.constructor;
2955
2956  // Don't round if sd is null or undefined.
2957  out: if (sd != null) {
2958    xd = x.d;
2959
2960    // Infinity/NaN.
2961    if (!xd) return x;
2962
2963    // rd: the rounding digit, i.e. the digit after the digit that may be rounded up.
2964    // w: the word of xd containing rd, a base 1e7 number.
2965    // xdi: the index of w within xd.
2966    // digits: the number of digits of w.
2967    // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if
2968    // they had leading zeros)
2969    // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).
2970
2971    // Get the length of the first word of the digits array xd.
2972    for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++;
2973    i = sd - digits;
2974
2975    // Is the rounding digit in the first word of xd?
2976    if (i < 0) {
2977      i += LOG_BASE;
2978      j = sd;
2979      w = xd[xdi = 0];
2980
2981      // Get the rounding digit at index j of w.
2982      rd = w / mathpow(10, digits - j - 1) % 10 | 0;
2983    } else {
2984      xdi = Math.ceil((i + 1) / LOG_BASE);
2985      k = xd.length;
2986      if (xdi >= k) {
2987        if (isTruncated) {
2988
2989          // Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.
2990          for (; k++ <= xdi;) xd.push(0);
2991          w = rd = 0;
2992          digits = 1;
2993          i %= LOG_BASE;
2994          j = i - LOG_BASE + 1;
2995        } else {
2996          break out;
2997        }
2998      } else {
2999        w = k = xd[xdi];
3000
3001        // Get the number of digits of w.
3002        for (digits = 1; k >= 10; k /= 10) digits++;
3003
3004        // Get the index of rd within w.
3005        i %= LOG_BASE;
3006
3007        // Get the index of rd within w, adjusted for leading zeros.
3008        // The number of leading zeros of w is given by LOG_BASE - digits.
3009        j = i - LOG_BASE + digits;
3010
3011        // Get the rounding digit at index j of w.
3012        rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0;
3013      }
3014    }
3015
3016    // Are there any non-zero digits after the rounding digit?
3017    isTruncated = isTruncated || sd < 0 ||
3018      xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1));
3019
3020    // The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right
3021    // of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression
3022    // will give 714.
3023
3024    roundUp = rm < 4
3025      ? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
3026      : rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 &&
3027
3028        // Check whether the digit to the left of the rounding digit is odd.
3029        ((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 ||
3030          rm == (x.s < 0 ? 8 : 7));
3031
3032    if (sd < 1 || !xd[0]) {
3033      xd.length = 0;
3034      if (roundUp) {
3035
3036        // Convert sd to decimal places.
3037        sd -= x.e + 1;
3038
3039        // 1, 0.1, 0.01, 0.001, 0.0001 etc.
3040        xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);
3041        x.e = -sd || 0;
3042      } else {
3043
3044        // Zero.
3045        xd[0] = x.e = 0;
3046      }
3047
3048      return x;
3049    }
3050
3051    // Remove excess digits.
3052    if (i == 0) {
3053      xd.length = xdi;
3054      k = 1;
3055      xdi--;
3056    } else {
3057      xd.length = xdi + 1;
3058      k = mathpow(10, LOG_BASE - i);
3059
3060      // E.g. 56700 becomes 56000 if 7 is the rounding digit.
3061      // j > 0 means i > number of leading zeros of w.
3062      xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0;
3063    }
3064
3065    if (roundUp) {
3066      for (;;) {
3067
3068        // Is the digit to be rounded up in the first word of xd?
3069        if (xdi == 0) {
3070
3071          // i will be the length of xd[0] before k is added.
3072          for (i = 1, j = xd[0]; j >= 10; j /= 10) i++;
3073          j = xd[0] += k;
3074          for (k = 1; j >= 10; j /= 10) k++;
3075
3076          // if i != k the length has increased.
3077          if (i != k) {
3078            x.e++;
3079            if (xd[0] == BASE) xd[0] = 1;
3080          }
3081
3082          break;
3083        } else {
3084          xd[xdi] += k;
3085          if (xd[xdi] != BASE) break;
3086          xd[xdi--] = 0;
3087          k = 1;
3088        }
3089      }
3090    }
3091
3092    // Remove trailing zeros.
3093    for (i = xd.length; xd[--i] === 0;) xd.pop();
3094  }
3095
3096  if (external) {
3097
3098    // Overflow?
3099    if (x.e > Ctor.maxE) {
3100
3101      // Infinity.
3102      x.d = null;
3103      x.e = NaN;
3104
3105    // Underflow?
3106    } else if (x.e < Ctor.minE) {
3107
3108      // Zero.
3109      x.e = 0;
3110      x.d = [0];
3111      // Ctor.underflow = true;
3112    } // else Ctor.underflow = false;
3113  }
3114
3115  return x;
3116}
3117
3118
3119function finiteToString(x, isExp, sd) {
3120  if (!x.isFinite()) return nonFiniteToString(x);
3121  var k,
3122    e = x.e,
3123    str = digitsToString(x.d),
3124    len = str.length;
3125
3126  if (isExp) {
3127    if (sd && (k = sd - len) > 0) {
3128      str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);
3129    } else if (len > 1) {
3130      str = str.charAt(0) + '.' + str.slice(1);
3131    }
3132
3133    str = str + (x.e < 0 ? 'e' : 'e+') + x.e;
3134  } else if (e < 0) {
3135    str = '0.' + getZeroString(-e - 1) + str;
3136    if (sd && (k = sd - len) > 0) str += getZeroString(k);
3137  } else if (e >= len) {
3138    str += getZeroString(e + 1 - len);
3139    if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);
3140  } else {
3141    if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);
3142    if (sd && (k = sd - len) > 0) {
3143      if (e + 1 === len) str += '.';
3144      str += getZeroString(k);
3145    }
3146  }
3147
3148  return str;
3149}
3150
3151
3152// Calculate the base 10 exponent from the base 1e7 exponent.
3153function getBase10Exponent(digits, e) {
3154  var w = digits[0];
3155
3156  // Add the number of digits of the first word of the digits array.
3157  for ( e *= LOG_BASE; w >= 10; w /= 10) e++;
3158  return e;
3159}
3160
3161
3162function getLn10(Ctor, sd, pr) {
3163  if (sd > LN10_PRECISION) {
3164
3165    // Reset global state in case the exception is caught.
3166    external = true;
3167    if (pr) Ctor.precision = pr;
3168    throw new BusinessError(
3169      `Precision limit exceeded, "sd" must be <= LN10_PRECISION`, PRECISION_LIMIT_EXCEEDED_ERROR_CODE);
3170  }
3171  return finalise(new Ctor(LN10), sd, 1, true);
3172}
3173
3174
3175function getPi(Ctor, sd, rm) {
3176  if (sd > PI_PRECISION) throw new BusinessError(
3177    `Precision limit exceeded, "sd" must be <= PI_PRECISION`, PRECISION_LIMIT_EXCEEDED_ERROR_CODE);
3178  return finalise(new Ctor(PI), sd, rm, true);
3179}
3180
3181
3182function getPrecision(digits) {
3183  var w = digits.length - 1,
3184    len = w * LOG_BASE + 1;
3185
3186  w = digits[w];
3187
3188  // If non-zero...
3189  if (w) {
3190
3191    // Subtract the number of trailing zeros of the last word.
3192    for (; w % 10 == 0; w /= 10) len--;
3193
3194    // Add the number of digits of the first word.
3195    for (w = digits[0]; w >= 10; w /= 10) len++;
3196  }
3197
3198  return len;
3199}
3200
3201
3202function getZeroString(k) {
3203  var zs = '';
3204  for (; k--;) zs += '0';
3205  return zs;
3206}
3207
3208
3209/*
3210 * Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an
3211 * integer of type number.
3212 *
3213 * Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`.
3214 *
3215 */
3216function intPow(Ctor, x, n, pr) {
3217  var isTruncated,
3218    r = new Ctor(1),
3219
3220    // Max n of 9007199254740991 takes 53 loop iterations.
3221    // Maximum digits array length; leaves [28, 34] guard digits.
3222    k = Math.ceil(pr / LOG_BASE + 4);
3223
3224  external = false;
3225
3226  for (;;) {
3227    if (n % 2) {
3228      r = r.times(x);
3229      if (truncate(r.d, k)) isTruncated = true;
3230    }
3231
3232    n = mathfloor(n / 2);
3233    if (n === 0) {
3234
3235      // To ensure correct rounding when r.d is truncated, increment the last word if it is zero.
3236      n = r.d.length - 1;
3237      if (isTruncated && r.d[n] === 0) ++r.d[n];
3238      break;
3239    }
3240
3241    x = x.times(x);
3242    truncate(x.d, k);
3243  }
3244
3245  external = true;
3246
3247  return r;
3248}
3249
3250
3251function isOdd(n) {
3252  return n.d[n.d.length - 1] & 1;
3253}
3254
3255
3256/*
3257 * Handle `max` and `min`. `ltgt` is 'lt' or 'gt'.
3258 */
3259function maxOrMin(Ctor, args, ltgt) {
3260  var y,
3261    x = new Ctor(args[0]),
3262    i = 0;
3263
3264  for (; ++i < args.length;) {
3265    y = new Ctor(args[i]);
3266    if (!y.s) {
3267      x = y;
3268      break;
3269    } else if (x[ltgt](y)) {
3270      x = y;
3271    }
3272  }
3273
3274  return x;
3275}
3276
3277
3278/*
3279 * Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant
3280 * digits.
3281 *
3282 * Taylor/Maclaurin series.
3283 *
3284 * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...
3285 *
3286 * Argument reduction:
3287 *   Repeat x = x / 32, k += 5, until |x| < 0.1
3288 *   exp(x) = exp(x / 2^k)^(2^k)
3289 *
3290 * Previously, the argument was initially reduced by
3291 * exp(x) = exp(r) * 10^k  where r = x - k * ln10, k = floor(x / ln10)
3292 * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was
3293 * found to be slower than just dividing repeatedly by 32 as above.
3294 *
3295 * Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000
3296 * Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000
3297 * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)
3298 *
3299 *  exp(Infinity)  = Infinity
3300 *  exp(-Infinity) = 0
3301 *  exp(NaN)       = NaN
3302 *  exp(±0)        = 1
3303 *
3304 *  exp(x) is non-terminating for any finite, non-zero x.
3305 *
3306 *  The result will always be correctly rounded.
3307 *
3308 */
3309function naturalExponential(x, sd) {
3310  var denominator, guard, j, pow, sum, t, wpr,
3311    rep = 0,
3312    i = 0,
3313    k = 0,
3314    Ctor = x.constructor,
3315    rm = Ctor.rounding,
3316    pr = Ctor.precision;
3317
3318  // 0/NaN/Infinity?
3319  if (!x.d || !x.d[0] || x.e > 17) {
3320
3321    return new Ctor(x.d
3322      ? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0
3323      : x.s ? x.s < 0 ? 0 : x : 0 / 0);
3324  }
3325
3326  if (sd == null) {
3327    external = false;
3328    wpr = pr;
3329  } else {
3330    wpr = sd;
3331  }
3332
3333  t = new Ctor(0.03125);
3334
3335  // while abs(x) >= 0.1
3336  while (x.e > -2) {
3337
3338    // x = x / 2^5
3339    x = x.times(t);
3340    k += 5;
3341  }
3342
3343  // Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision
3344  // necessary to ensure the first 4 rounding digits are correct.
3345  guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;
3346  wpr += guard;
3347  denominator = pow = sum = new Ctor(1);
3348  Ctor.precision = wpr;
3349
3350  for (;;) {
3351    pow = finalise(pow.times(x), wpr, 1);
3352    denominator = denominator.times(++i);
3353    t = sum.plus(divide(pow, denominator, wpr, 1));
3354
3355    if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
3356      j = k;
3357      while (j--) sum = finalise(sum.times(sum), wpr, 1);
3358
3359      // Check to see if the first 4 rounding digits are [49]999.
3360      // If so, repeat the summation with a higher precision, otherwise
3361      // e.g. with precision: 18, rounding: 1
3362      // exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)
3363      // `wpr - guard` is the index of first rounding digit.
3364      if (sd == null) {
3365
3366        if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
3367          Ctor.precision = wpr += 10;
3368          denominator = pow = t = new Ctor(1);
3369          i = 0;
3370          rep++;
3371        } else {
3372          return finalise(sum, Ctor.precision = pr, rm, external = true);
3373        }
3374      } else {
3375        Ctor.precision = pr;
3376        return sum;
3377      }
3378    }
3379
3380    sum = t;
3381  }
3382}
3383
3384
3385/*
3386 * Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant
3387 * digits.
3388 *
3389 *  ln(-n)        = NaN
3390 *  ln(0)         = -Infinity
3391 *  ln(-0)        = -Infinity
3392 *  ln(1)         = 0
3393 *  ln(Infinity)  = Infinity
3394 *  ln(-Infinity) = NaN
3395 *  ln(NaN)       = NaN
3396 *
3397 *  ln(n) (n != 1) is non-terminating.
3398 *
3399 */
3400function naturalLogarithm(y, sd) {
3401  var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2,
3402    n = 1,
3403    guard = 10,
3404    x = y,
3405    xd = x.d,
3406    Ctor = x.constructor,
3407    rm = Ctor.rounding,
3408    pr = Ctor.precision;
3409
3410  // Is x negative or Infinity, NaN, 0 or 1?
3411  if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) {
3412    return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x);
3413  }
3414
3415  if (sd == null) {
3416    external = false;
3417    wpr = pr;
3418  } else {
3419    wpr = sd;
3420  }
3421
3422  Ctor.precision = wpr += guard;
3423  c = digitsToString(xd);
3424  c0 = c.charAt(0);
3425
3426  if (Math.abs(e = x.e) < 1.5e15) {
3427
3428    // Argument reduction.
3429    // The series converges faster the closer the argument is to 1, so using
3430    // ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b
3431    // multiply the argument by itself until the leading digits of the significand are 7, 8, 9,
3432    // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can
3433    // later be divided by this number, then separate out the power of 10 using
3434    // ln(a*10^b) = ln(a) + b*ln(10).
3435
3436    // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).
3437    //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {
3438    // max n is 6 (gives 0.7 - 1.3)
3439    while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {
3440      x = x.times(y);
3441      c = digitsToString(x.d);
3442      c0 = c.charAt(0);
3443      n++;
3444    }
3445
3446    e = x.e;
3447
3448    if (c0 > 1) {
3449      x = new Ctor('0.' + c);
3450      e++;
3451    } else {
3452      x = new Ctor(c0 + '.' + c.slice(1));
3453    }
3454  } else {
3455
3456    // The argument reduction method above may result in overflow if the argument y is a massive
3457    // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this
3458    // function using ln(x*10^e) = ln(x) + e*ln(10).
3459    t = getLn10(Ctor, wpr + 2, pr).times(e + '');
3460    x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);
3461    Ctor.precision = pr;
3462
3463    return sd == null ? finalise(x, pr, rm, external = true) : x;
3464  }
3465
3466  // x1 is x reduced to a value near 1.
3467  x1 = x;
3468
3469  // Taylor series.
3470  // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
3471  // where x = (y - 1)/(y + 1)    (|x| < 1)
3472  sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);
3473  x2 = finalise(x.times(x), wpr, 1);
3474  denominator = 3;
3475
3476  for (;;) {
3477    numerator = finalise(numerator.times(x2), wpr, 1);
3478    t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1));
3479
3480    if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
3481      sum = sum.times(2);
3482
3483      // Reverse the argument reduction. Check that e is not 0 because, besides preventing an
3484      // unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.
3485      if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));
3486      sum = divide(sum, new Ctor(n), wpr, 1);
3487
3488      // Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has
3489      // been repeated previously) and the first 4 rounding digits 9999?
3490      // If so, restart the summation with a higher precision, otherwise
3491      // e.g. with precision: 12, rounding: 1
3492      // ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.
3493      // `wpr - guard` is the index of first rounding digit.
3494      if (sd == null) {
3495        if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
3496          Ctor.precision = wpr += guard;
3497          t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);
3498          x2 = finalise(x.times(x), wpr, 1);
3499          denominator = rep = 1;
3500        } else {
3501          return finalise(sum, Ctor.precision = pr, rm, external = true);
3502        }
3503      } else {
3504        Ctor.precision = pr;
3505        return sum;
3506      }
3507    }
3508
3509    sum = t;
3510    denominator += 2;
3511  }
3512}
3513
3514
3515// ±Infinity, NaN.
3516function nonFiniteToString(x) {
3517  // Unsigned.
3518  return String(x.s * x.s / 0);
3519}
3520
3521
3522/*
3523 * Parse the value of a new Decimal `x` from string `str`.
3524 */
3525function parseDecimal(x, str) {
3526  var e, i, len;
3527
3528  // Decimal point?
3529  if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
3530
3531  // Exponential form?
3532  if ((i = str.search(/e/i)) > 0) {
3533
3534    // Determine exponent.
3535    if (e < 0) e = i;
3536    e += +str.slice(i + 1);
3537    str = str.substring(0, i);
3538  } else if (e < 0) {
3539
3540    // Integer.
3541    e = str.length;
3542  }
3543
3544  // Determine leading zeros.
3545  for (i = 0; str.charCodeAt(i) === 48; i++);
3546
3547  // Determine trailing zeros.
3548  for (len = str.length; str.charCodeAt(len - 1) === 48; --len);
3549  str = str.slice(i, len);
3550
3551  if (str) {
3552    len -= i;
3553    x.e = e = e - i - 1;
3554    x.d = [];
3555
3556    // Transform base
3557
3558    // e is the base 10 exponent.
3559    // i is where to slice str to get the first word of the digits array.
3560    i = (e + 1) % LOG_BASE;
3561    if (e < 0) i += LOG_BASE;
3562
3563    if (i < len) {
3564      if (i) x.d.push(+str.slice(0, i));
3565      for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));
3566      str = str.slice(i);
3567      i = LOG_BASE - str.length;
3568    } else {
3569      i -= len;
3570    }
3571
3572    for (; i--;) str += '0';
3573    x.d.push(+str);
3574
3575    if (external) {
3576
3577      // Overflow?
3578      if (x.e > x.constructor.maxE) {
3579
3580        // Infinity.
3581        x.d = null;
3582        x.e = NaN;
3583
3584      // Underflow?
3585      } else if (x.e < x.constructor.minE) {
3586
3587        // Zero.
3588        x.e = 0;
3589        x.d = [0];
3590        // x.constructor.underflow = true;
3591      } // else x.constructor.underflow = false;
3592    }
3593  } else {
3594
3595    // Zero.
3596    x.e = 0;
3597    x.d = [0];
3598  }
3599
3600  return x;
3601}
3602
3603
3604/*
3605 * Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value.
3606 */
3607function parseOther(x, str) {
3608  var base, Ctor, divisor, i, isFloat, len, p, xd, xe;
3609
3610  if (str.indexOf('_') > -1) {
3611    str = str.replace(/(\d)_(?=\d)/g, '$1');
3612    if (isDecimal.test(str)) return parseDecimal(x, str);
3613  } else if (str === 'Infinity' || str === 'NaN') {
3614    if (!+str) x.s = NaN;
3615    x.e = NaN;
3616    x.d = null;
3617    return x;
3618  }
3619
3620  if (isHex.test(str))  {
3621    base = 16;
3622    str = str.toLowerCase();
3623  } else if (isBinary.test(str))  {
3624    base = 2;
3625  } else if (isOctal.test(str))  {
3626    base = 8;
3627  } else {
3628    throw new BusinessError(
3629      `The type of "test(str)" must be Hex/Binary/Octal. Received value is: ${str}`, TYPE_ERROR_CODE);
3630  }
3631
3632  // Is there a binary exponent part?
3633  i = str.search(/p/i);
3634
3635  if (i > 0) {
3636    p = +str.slice(i + 1);
3637    str = str.substring(2, i);
3638  } else {
3639    str = str.slice(2);
3640  }
3641
3642  // Convert `str` as an integer then divide the result by `base` raised to a power such that the
3643  // fraction part will be restored.
3644  i = str.indexOf('.');
3645  isFloat = i >= 0;
3646  Ctor = x.constructor;
3647
3648  if (isFloat) {
3649    str = str.replace('.', '');
3650    len = str.length;
3651    i = len - i;
3652
3653    // log[10](16) = 1.2041... , log[10](88) = 1.9444....
3654    divisor = intPow(Ctor, new Ctor(base), i, i * 2);
3655  }
3656
3657  xd = convertBase(str, base, BASE);
3658  xe = xd.length - 1;
3659
3660  // Remove trailing zeros.
3661  for (i = xe; xd[i] === 0; --i) xd.pop();
3662  if (i < 0) return new Ctor(x.s * 0);
3663  x.e = getBase10Exponent(xd, xe);
3664  x.d = xd;
3665  external = false;
3666
3667  // At what precision to perform the division to ensure exact conversion?
3668  // maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)
3669  // log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412
3670  // E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.
3671  // maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount
3672  // Therefore using 4 * the number of digits of str will always be enough.
3673  if (isFloat) x = divide(x, divisor, len * 4);
3674
3675  // Multiply by the binary exponent part if present.
3676  if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p));
3677  external = true;
3678
3679  return x;
3680}
3681
3682
3683/*
3684 * sin(x) = x - x^3/3! + x^5/5! - ...
3685 * |x| < pi/2
3686 *
3687 */
3688function sine(Ctor, x) {
3689  var k,
3690    len = x.d.length;
3691
3692  if (len < 3) {
3693    return x.isZero() ? x : taylorSeries(Ctor, 2, x, x);
3694  }
3695
3696  // Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)
3697  // i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)
3698  // and  sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))
3699
3700  // Estimate the optimum number of times to use the argument reduction.
3701  k = 1.4 * Math.sqrt(len);
3702  k = k > 16 ? 16 : k | 0;
3703
3704  x = x.times(1 / tinyPow(5, k));
3705  x = taylorSeries(Ctor, 2, x, x);
3706
3707  // Reverse argument reduction
3708  var sin2_x,
3709    d5 = new Ctor(5),
3710    d16 = new Ctor(16),
3711    d20 = new Ctor(20);
3712  for (; k--;) {
3713    sin2_x = x.times(x);
3714    x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20))));
3715  }
3716
3717  return x;
3718}
3719
3720
3721// Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`.
3722function taylorSeries(Ctor, n, x, y, isHyperbolic) {
3723  var j, t, u, x2,
3724    i = 1,
3725    pr = Ctor.precision,
3726    k = Math.ceil(pr / LOG_BASE);
3727
3728  external = false;
3729  x2 = x.times(x);
3730  u = new Ctor(y);
3731
3732  for (;;) {
3733    t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1);
3734    u = isHyperbolic ? y.plus(t) : y.minus(t);
3735    y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1);
3736    t = u.plus(y);
3737
3738    if (t.d[k] !== void 0) {
3739      for (j = k; t.d[j] === u.d[j] && j--;);
3740      if (j == -1) break;
3741    }
3742
3743    j = u;
3744    u = y;
3745    y = t;
3746    t = j;
3747    i++;
3748  }
3749
3750  external = true;
3751  t.d.length = k + 1;
3752
3753  return t;
3754}
3755
3756
3757// Exponent e must be positive and non-zero.
3758function tinyPow(b, e) {
3759  var n = b;
3760  while (--e) n *= b;
3761  return n;
3762}
3763
3764
3765// Return the absolute value of `x` reduced to less than or equal to half pi.
3766function toLessThanHalfPi(Ctor, x) {
3767  var t,
3768    isNeg = x.s < 0,
3769    pi = getPi(Ctor, Ctor.precision, 1),
3770    halfPi = pi.times(0.5);
3771
3772  x = x.abs();
3773
3774  if (x.lte(halfPi)) {
3775    quadrant = isNeg ? 4 : 1;
3776    return x;
3777  }
3778
3779  t = x.divToInt(pi);
3780
3781  if (t.isZero()) {
3782    quadrant = isNeg ? 3 : 2;
3783  } else {
3784    x = x.minus(t.times(pi));
3785
3786    // 0 <= x < pi
3787    if (x.lte(halfPi)) {
3788      quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1);
3789      return x;
3790    }
3791
3792    quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2);
3793  }
3794
3795  return x.minus(pi).abs();
3796}
3797
3798
3799/*
3800 * Return the value of Decimal `x` as a string in base `baseOut`.
3801 *
3802 * If the optional `sd` argument is present include a binary exponent suffix.
3803 */
3804function toStringBinary(x, baseOut, sd, rm) {
3805  var base, e, i, k, len, roundUp, str, xd, y,
3806    Ctor = x.constructor,
3807    isExp = sd !== void 0;
3808
3809  if (isExp) {
3810    checkInt32(sd, 1, MAX_DIGITS);
3811    if (rm === void 0) rm = Ctor.rounding;
3812    else checkInt32(rm, 0, 8);
3813  } else {
3814    sd = Ctor.precision;
3815    rm = Ctor.rounding;
3816  }
3817
3818  if (!x.isFinite()) {
3819    str = nonFiniteToString(x);
3820  } else {
3821    str = finiteToString(x);
3822    i = str.indexOf('.');
3823
3824    // Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:
3825    // maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))
3826    // minBinaryExponent = floor(decimalExponent * log[2](10))
3827    // log[2](10) = 3.321928094887362347870319429489390175864
3828
3829    if (isExp) {
3830      base = 2;
3831      if (baseOut == 16) {
3832        sd = sd * 4 - 3;
3833      } else if (baseOut == 8) {
3834        sd = sd * 3 - 2;
3835      }
3836    } else {
3837      base = baseOut;
3838    }
3839
3840    // Convert the number as an integer then divide the result by its base raised to a power such
3841    // that the fraction part will be restored.
3842
3843    // Non-integer.
3844    if (i >= 0) {
3845      str = str.replace('.', '');
3846      y = new Ctor(1);
3847      y.e = str.length - i;
3848      y.d = convertBase(finiteToString(y), 10, base);
3849      y.e = y.d.length;
3850    }
3851
3852    xd = convertBase(str, 10, base);
3853    e = len = xd.length;
3854
3855    // Remove trailing zeros.
3856    for (; xd[--len] == 0;) xd.pop();
3857
3858    if (!xd[0]) {
3859      str = isExp ? '0p+0' : '0';
3860    } else {
3861      if (i < 0) {
3862        e--;
3863      } else {
3864        x = new Ctor(x);
3865        x.d = xd;
3866        x.e = e;
3867        x = divide(x, y, sd, rm, 0, base);
3868        xd = x.d;
3869        e = x.e;
3870        roundUp = inexact;
3871      }
3872
3873      // The rounding digit, i.e. the digit after the digit that may be rounded up.
3874      i = xd[sd];
3875      k = base / 2;
3876      roundUp = roundUp || xd[sd + 1] !== void 0;
3877
3878      roundUp = rm < 4
3879        ? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2))
3880        : i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||
3881          rm === (x.s < 0 ? 8 : 7));
3882
3883      xd.length = sd;
3884
3885      if (roundUp) {
3886
3887        // Rounding up may mean the previous digit has to be rounded up and so on.
3888        for (; ++xd[--sd] > base - 1;) {
3889          xd[sd] = 0;
3890          if (!sd) {
3891            ++e;
3892            xd.unshift(1);
3893          }
3894        }
3895      }
3896
3897      // Determine trailing zeros.
3898      for (len = xd.length; !xd[len - 1]; --len);
3899
3900      // E.g. [4, 11, 15] becomes 4bf.
3901      for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]);
3902
3903      // Add binary exponent suffix?
3904      if (isExp) {
3905        if (len > 1) {
3906          if (baseOut == 16 || baseOut == 8) {
3907            i = baseOut == 16 ? 4 : 3;
3908            for (--len; len % i; len++) str += '0';
3909            xd = convertBase(str, base, baseOut);
3910            for (len = xd.length; !xd[len - 1]; --len);
3911
3912            // xd[0] will always be be 1
3913            for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]);
3914          } else {
3915            str = str.charAt(0) + '.' + str.slice(1);
3916          }
3917        }
3918
3919        str =  str + (e < 0 ? 'p' : 'p+') + e;
3920      } else if (e < 0) {
3921        for (; ++e;) str = '0' + str;
3922        str = '0.' + str;
3923      } else {
3924        if (++e > len) for (e -= len; e-- ;) str += '0';
3925        else if (e < len) str = str.slice(0, e) + '.' + str.slice(e);
3926      }
3927    }
3928
3929    str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str;
3930  }
3931
3932  return x.s < 0 ? '-' + str : str;
3933}
3934
3935
3936// Does not strip trailing zeros.
3937function truncate(arr, len) {
3938  if (arr.length > len) {
3939    arr.length = len;
3940    return true;
3941  }
3942}
3943
3944
3945// Decimal methods
3946
3947
3948/*
3949 *  abs
3950 *  acos
3951 *  acosh
3952 *  add
3953 *  asin
3954 *  asinh
3955 *  atan
3956 *  atanh
3957 *  atan2
3958 *  cbrt
3959 *  ceil
3960 *  clamp
3961 *  clone
3962 *  config
3963 *  cos
3964 *  cosh
3965 *  div
3966 *  exp
3967 *  floor
3968 *  hypot
3969 *  ln
3970 *  log
3971 *  log2
3972 *  log10
3973 *  max
3974 *  min
3975 *  mod
3976 *  mul
3977 *  pow
3978 *  random
3979 *  round
3980 *  set
3981 *  sign
3982 *  sin
3983 *  sinh
3984 *  sqrt
3985 *  sub
3986 *  sum
3987 *  tan
3988 *  tanh
3989 *  trunc
3990 */
3991
3992
3993/*
3994 * Return a new Decimal whose value is the absolute value of `x`.
3995 *
3996 * x {number|string|Decimal}
3997 *
3998 */
3999function abs(x) {
4000  return new this(x).abs();
4001}
4002
4003
4004/*
4005 * Return a new Decimal whose value is the arccosine in radians of `x`.
4006 *
4007 * x {number|string|Decimal}
4008 *
4009 */
4010function acos(x) {
4011  return new this(x).acos();
4012}
4013
4014
4015/*
4016 * Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to
4017 * `precision` significant digits using rounding mode `rounding`.
4018 *
4019 * x {number|string|Decimal} A value in radians.
4020 *
4021 */
4022function acosh(x) {
4023  return new this(x).acosh();
4024}
4025
4026
4027/*
4028 * Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant
4029 * digits using rounding mode `rounding`.
4030 *
4031 * x {number|string|Decimal}
4032 * y {number|string|Decimal}
4033 *
4034 */
4035function add(x, y) {
4036  return new this(x).plus(y);
4037}
4038
4039
4040/*
4041 * Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision`
4042 * significant digits using rounding mode `rounding`.
4043 *
4044 * x {number|string|Decimal}
4045 *
4046 */
4047function asin(x) {
4048  return new this(x).asin();
4049}
4050
4051
4052/*
4053 * Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to
4054 * `precision` significant digits using rounding mode `rounding`.
4055 *
4056 * x {number|string|Decimal} A value in radians.
4057 *
4058 */
4059function asinh(x) {
4060  return new this(x).asinh();
4061}
4062
4063
4064/*
4065 * Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision`
4066 * significant digits using rounding mode `rounding`.
4067 *
4068 * x {number|string|Decimal}
4069 *
4070 */
4071function atan(x) {
4072  return new this(x).atan();
4073}
4074
4075
4076/*
4077 * Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to
4078 * `precision` significant digits using rounding mode `rounding`.
4079 *
4080 * x {number|string|Decimal} A value in radians.
4081 *
4082 */
4083function atanh(x) {
4084  return new this(x).atanh();
4085}
4086
4087
4088/*
4089 * Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi
4090 * (inclusive), rounded to `precision` significant digits using rounding mode `rounding`.
4091 *
4092 * Domain: [-Infinity, Infinity]
4093 * Range: [-pi, pi]
4094 *
4095 * y {number|string|Decimal} The y-coordinate.
4096 * x {number|string|Decimal} The x-coordinate.
4097 *
4098 * atan2(±0, -0)               = ±pi
4099 * atan2(±0, +0)               = ±0
4100 * atan2(±0, -x)               = ±pi for x > 0
4101 * atan2(±0, x)                = ±0 for x > 0
4102 * atan2(-y, ±0)               = -pi/2 for y > 0
4103 * atan2(y, ±0)                = pi/2 for y > 0
4104 * atan2(±y, -Infinity)        = ±pi for finite y > 0
4105 * atan2(±y, +Infinity)        = ±0 for finite y > 0
4106 * atan2(±Infinity, x)         = ±pi/2 for finite x
4107 * atan2(±Infinity, -Infinity) = ±3*pi/4
4108 * atan2(±Infinity, +Infinity) = ±pi/4
4109 * atan2(NaN, x) = NaN
4110 * atan2(y, NaN) = NaN
4111 *
4112 */
4113function atan2(y, x) {
4114  y = new this(y);
4115  x = new this(x);
4116  var r,
4117    pr = this.precision,
4118    rm = this.rounding,
4119    wpr = pr + 4;
4120
4121  // Either NaN
4122  if (!y.s || !x.s) {
4123    r = new this(NaN);
4124
4125  // Both ±Infinity
4126  } else if (!y.d && !x.d) {
4127    r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75);
4128    r.s = y.s;
4129
4130  // x is ±Infinity or y is ±0
4131  } else if (!x.d || y.isZero()) {
4132    r = x.s < 0 ? getPi(this, pr, rm) : new this(0);
4133    r.s = y.s;
4134
4135  // y is ±Infinity or x is ±0
4136  } else if (!y.d || x.isZero()) {
4137    r = getPi(this, wpr, 1).times(0.5);
4138    r.s = y.s;
4139
4140  // Both non-zero and finite
4141  } else if (x.s < 0) {
4142    this.precision = wpr;
4143    this.rounding = 1;
4144    r = this.atan(divide(y, x, wpr, 1));
4145    x = getPi(this, wpr, 1);
4146    this.precision = pr;
4147    this.rounding = rm;
4148    r = y.s < 0 ? r.minus(x) : r.plus(x);
4149  } else {
4150    r = this.atan(divide(y, x, wpr, 1));
4151  }
4152
4153  return r;
4154}
4155
4156
4157/*
4158 * Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant
4159 * digits using rounding mode `rounding`.
4160 *
4161 * x {number|string|Decimal}
4162 *
4163 */
4164function cbrt(x) {
4165  return new this(x).cbrt();
4166}
4167
4168
4169/*
4170 * Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEILING`.
4171 *
4172 * x {number|string|Decimal}
4173 *
4174 */
4175function ceil(x) {
4176  return finalise(x = new this(x), x.e + 1, 2);
4177}
4178
4179
4180/*
4181 * Return a new Decimal whose value is `x` clamped to the range delineated by `min` and `max`.
4182 *
4183 * x {number|string|Decimal}
4184 * min {number|string|Decimal}
4185 * max {number|string|Decimal}
4186 *
4187 */
4188function clamp(x, min, max) {
4189  return new this(x).clamp(min, max);
4190}
4191
4192
4193/*
4194 * Configure global settings for a Decimal constructor.
4195 *
4196 * `obj` is an object with one or more of the following properties,
4197 *
4198 *   precision  {number}
4199 *   rounding   {number}
4200 *   toExpNeg   {number}
4201 *   toExpPos   {number}
4202 *   maxE       {number}
4203 *   minE       {number}
4204 *   modulo     {number}
4205 *   crypto     {boolean|number}
4206 *   defaults   {true}
4207 *
4208 * E.g. Decimal.config({ precision: 20, rounding: 4 })
4209 *
4210 */
4211function config(obj) {
4212  if (!obj || typeof obj !== 'object') throw new BusinessError(
4213    `The type of "obj" must be object. Received value is: ${str}`, TYPE_ERROR_CODE);
4214  var i, p, v,
4215    useDefaults = obj.defaults === true,
4216    ps = [
4217      'precision', 1, MAX_DIGITS,
4218      'rounding', 0, 8,
4219      'toExpNeg', -EXP_LIMIT, 0,
4220      'toExpPos', 0, EXP_LIMIT,
4221      'maxE', 0, EXP_LIMIT,
4222      'minE', -EXP_LIMIT, 0,
4223      'modulo', 0, 9
4224    ];
4225
4226  for (i = 0; i < ps.length; i += 3) {
4227    if (p = ps[i], useDefaults) this[p] = DEFAULTS[p];
4228    if ((v = obj[p]) !== void 0) {
4229      if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;
4230      else throw new BusinessError(
4231        `The value of "${ps[i]}" is out of range. It must be >= ${ps[i + 1]} && <= ${ps[i + 2]} . Received value is: ${v}`, RANGE_ERROR_CODE);
4232    }
4233  }
4234
4235  if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p];
4236  if ((v = obj[p]) !== void 0) {
4237    if (v === true || v === false || v === 0 || v === 1) {
4238      if (v) {
4239        if (typeof crypto != 'undefined' && crypto &&
4240          (crypto.getRandomValues || crypto.randomBytes)) {
4241          this[p] = true;
4242        } else {
4243          throw new BusinessError(`Crypto unavailable`, CRYPTO_UNAVAILABLE_ERROR_CODE);
4244        }
4245      } else {
4246        this[p] = false;
4247      }
4248    } else {
4249      throw new BusinessError(`The type of "crypto" must be Boolean. Received value is: ${v}`, TYPE_ERROR_CODE);
4250    }
4251  }
4252
4253  return this;
4254}
4255
4256
4257/*
4258 * Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant
4259 * digits using rounding mode `rounding`.
4260 *
4261 * x {number|string|Decimal} A value in radians.
4262 *
4263 */
4264function cos(x) {
4265  return new this(x).cos();
4266}
4267
4268
4269/*
4270 * Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision
4271 * significant digits using rounding mode `rounding`.
4272 *
4273 * x {number|string|Decimal} A value in radians.
4274 *
4275 */
4276function cosh(x) {
4277  return new this(x).cosh();
4278}
4279
4280
4281/*
4282 * Create and return a Decimal constructor with the same configuration properties as this Decimal
4283 * constructor.
4284 *
4285 */
4286function clone(obj) {
4287  var i, p, ps;
4288
4289  /*
4290   * The Decimal constructor and exported function.
4291   * Return a new Decimal instance.
4292   *
4293   * v {number|string|Decimal} A numeric value.
4294   *
4295   */
4296  function Decimal(v) {
4297    var e, i, t,
4298      x = this;
4299
4300    // Decimal called without new.
4301    if (!(x instanceof Decimal)) return new Decimal(v);
4302
4303    // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor
4304    // which points to Object.
4305    x.constructor = Decimal;
4306
4307    // Duplicate.
4308    if (isDecimalInstance(v)) {
4309      x.s = v.s;
4310
4311      if (external) {
4312        if (!v.d || v.e > Decimal.maxE) {
4313
4314          // Infinity.
4315          x.e = NaN;
4316          x.d = null;
4317        } else if (v.e < Decimal.minE) {
4318
4319          // Zero.
4320          x.e = 0;
4321          x.d = [0];
4322        } else {
4323          x.e = v.e;
4324          x.d = v.d.slice();
4325        }
4326      } else {
4327        x.e = v.e;
4328        x.d = v.d ? v.d.slice() : v.d;
4329      }
4330
4331      return;
4332    }
4333
4334    t = typeof v;
4335
4336    if (t === 'number') {
4337      if (v === 0) {
4338        x.s = 1 / v < 0 ? -1 : 1;
4339        x.e = 0;
4340        x.d = [0];
4341        return;
4342      }
4343
4344      if (v < 0) {
4345        v = -v;
4346        x.s = -1;
4347      } else {
4348        x.s = 1;
4349      }
4350
4351      // Fast path for small integers.
4352      if (v === ~~v && v < 1e7) {
4353        for (e = 0, i = v; i >= 10; i /= 10) e++;
4354
4355        if (external) {
4356          if (e > Decimal.maxE) {
4357            x.e = NaN;
4358            x.d = null;
4359          } else if (e < Decimal.minE) {
4360            x.e = 0;
4361            x.d = [0];
4362          } else {
4363            x.e = e;
4364            x.d = [v];
4365          }
4366        } else {
4367          x.e = e;
4368          x.d = [v];
4369        }
4370
4371        return;
4372
4373      // Infinity, NaN.
4374      } else if (v * 0 !== 0) {
4375        if (!v) x.s = NaN;
4376        x.e = NaN;
4377        x.d = null;
4378        return;
4379      }
4380
4381      return parseDecimal(x, v.toString());
4382
4383    } else if (t !== 'string') {
4384      throw new BusinessError(`The type of "index" must be String. Received value is: ${v}`, TYPE_ERROR_CODE);
4385    }
4386
4387    // Minus sign?
4388    if ((i = v.charCodeAt(0)) === 45) {
4389      v = v.slice(1);
4390      x.s = -1;
4391    } else {
4392      // Plus sign?
4393      if (i === 43) v = v.slice(1);
4394      x.s = 1;
4395    }
4396
4397    return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v);
4398  }
4399
4400  Decimal.prototype = P;
4401
4402  Decimal.ROUND_UP = 0;
4403  Decimal.ROUND_DOWN = 1;
4404  Decimal.ROUND_CEILING = 2;
4405  Decimal.ROUND_FLOOR = 3;
4406  Decimal.ROUND_HALF_UP = 4;
4407  Decimal.ROUND_HALF_DOWN = 5;
4408  Decimal.ROUND_HALF_EVEN = 6;
4409  Decimal.ROUND_HALF_CEILING = 7;
4410  Decimal.ROUND_HALF_FLOOR = 8;
4411  Decimal.EUCLIDEAN = 9;
4412
4413  Decimal.config = Decimal.set = config;
4414  Decimal.clone = clone;
4415  Decimal.isDecimal = isDecimalInstance;
4416
4417  Decimal.abs = abs;
4418  Decimal.acos = acos;
4419  Decimal.acosh = acosh;        // ES6
4420  Decimal.add = add;
4421  Decimal.asin = asin;
4422  Decimal.asinh = asinh;        // ES6
4423  Decimal.atan = atan;
4424  Decimal.atanh = atanh;        // ES6
4425  Decimal.atan2 = atan2;
4426  Decimal.cbrt = cbrt;          // ES6
4427  Decimal.ceil = ceil;
4428  Decimal.clamp = clamp;
4429  Decimal.cos = cos;
4430  Decimal.cosh = cosh;          // ES6
4431  Decimal.div = div;
4432  Decimal.exp = exp;
4433  Decimal.floor = floor;
4434  Decimal.hypot = hypot;        // ES6
4435  Decimal.ln = ln;
4436  Decimal.log = log;
4437  Decimal.log10 = log10;        // ES6
4438  Decimal.log2 = log2;          // ES6
4439  Decimal.max = max;
4440  Decimal.min = min;
4441  Decimal.mod = mod;
4442  Decimal.mul = mul;
4443  Decimal.pow = pow;
4444  Decimal.random = random;
4445  Decimal.round = round;
4446  Decimal.sign = sign;          // ES6
4447  Decimal.sin = sin;
4448  Decimal.sinh = sinh;          // ES6
4449  Decimal.sqrt = sqrt;
4450  Decimal.sub = sub;
4451  Decimal.sum = sum;
4452  Decimal.tan = tan;
4453  Decimal.tanh = tanh;          // ES6
4454  Decimal.trunc = trunc;        // ES6
4455
4456  if (obj === void 0) obj = {};
4457  if (obj) {
4458    if (obj.defaults !== true) {
4459      ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto'];
4460      for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];
4461    }
4462  }
4463
4464  Decimal.config(obj);
4465
4466  return Decimal;
4467}
4468
4469
4470/*
4471 * Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant
4472 * digits using rounding mode `rounding`.
4473 *
4474 * x {number|string|Decimal}
4475 * y {number|string|Decimal}
4476 *
4477 */
4478function div(x, y) {
4479  return new this(x).div(y);
4480}
4481
4482
4483/*
4484 * Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision`
4485 * significant digits using rounding mode `rounding`.
4486 *
4487 * x {number|string|Decimal} The power to which to raise the base of the natural log.
4488 *
4489 */
4490function exp(x) {
4491  return new this(x).exp();
4492}
4493
4494
4495/*
4496 * Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`.
4497 *
4498 * x {number|string|Decimal}
4499 *
4500 */
4501function floor(x) {
4502  return finalise(x = new this(x), x.e + 1, 3);
4503}
4504
4505
4506/*
4507 * Return a new Decimal whose value is the square root of the sum of the squares of the arguments,
4508 * rounded to `precision` significant digits using rounding mode `rounding`.
4509 *
4510 * hypot(a, b, ...) = sqrt(a^2 + b^2 + ...)
4511 *
4512 * arguments {number|string|Decimal}
4513 *
4514 */
4515function hypot() {
4516  var i, n,
4517    t = new this(0);
4518
4519  external = false;
4520
4521  for (i = 0; i < arguments.length;) {
4522    n = new this(arguments[i++]);
4523    if (!n.d) {
4524      if (n.s) {
4525        external = true;
4526        return new this(1 / 0);
4527      }
4528      t = n;
4529    } else if (t.d) {
4530      t = t.plus(n.times(n));
4531    }
4532  }
4533
4534  external = true;
4535
4536  return t.sqrt();
4537}
4538
4539
4540/*
4541 * Return true if object is a Decimal instance (where Decimal is any Decimal constructor),
4542 * otherwise return false.
4543 *
4544 */
4545function isDecimalInstance(obj) {
4546  return obj instanceof Decimal || obj && obj.toStringTag === tag || false;
4547}
4548
4549
4550/*
4551 * Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision`
4552 * significant digits using rounding mode `rounding`.
4553 *
4554 * x {number|string|Decimal}
4555 *
4556 */
4557function ln(x) {
4558  return new this(x).ln();
4559}
4560
4561
4562/*
4563 * Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base
4564 * is specified, rounded to `precision` significant digits using rounding mode `rounding`.
4565 *
4566 * log[y](x)
4567 *
4568 * x {number|string|Decimal} The argument of the logarithm.
4569 * y {number|string|Decimal} The base of the logarithm.
4570 *
4571 */
4572function log(x, y) {
4573  return new this(x).log(y);
4574}
4575
4576
4577/*
4578 * Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision`
4579 * significant digits using rounding mode `rounding`.
4580 *
4581 * x {number|string|Decimal}
4582 *
4583 */
4584function log2(x) {
4585  return new this(x).log(2);
4586}
4587
4588
4589/*
4590 * Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision`
4591 * significant digits using rounding mode `rounding`.
4592 *
4593 * x {number|string|Decimal}
4594 *
4595 */
4596function log10(x) {
4597  return new this(x).log(10);
4598}
4599
4600
4601/*
4602 * Return a new Decimal whose value is the maximum of the arguments.
4603 *
4604 * arguments {number|string|Decimal}
4605 *
4606 */
4607function max() {
4608  return maxOrMin(this, arguments, 'lt');
4609}
4610
4611
4612/*
4613 * Return a new Decimal whose value is the minimum of the arguments.
4614 *
4615 * arguments {number|string|Decimal}
4616 *
4617 */
4618function min() {
4619  return maxOrMin(this, arguments, 'gt');
4620}
4621
4622
4623/*
4624 * Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits
4625 * using rounding mode `rounding`.
4626 *
4627 * x {number|string|Decimal}
4628 * y {number|string|Decimal}
4629 *
4630 */
4631function mod(x, y) {
4632  return new this(x).mod(y);
4633}
4634
4635
4636/*
4637 * Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant
4638 * digits using rounding mode `rounding`.
4639 *
4640 * x {number|string|Decimal}
4641 * y {number|string|Decimal}
4642 *
4643 */
4644function mul(x, y) {
4645  return new this(x).mul(y);
4646}
4647
4648
4649/*
4650 * Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision
4651 * significant digits using rounding mode `rounding`.
4652 *
4653 * x {number|string|Decimal} The base.
4654 * y {number|string|Decimal} The exponent.
4655 *
4656 */
4657function pow(x, y) {
4658  return new this(x).pow(y);
4659}
4660
4661
4662/*
4663 * Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with
4664 * `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros
4665 * are produced).
4666 *
4667 * [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive.
4668 *
4669 */
4670function random(sd) {
4671  var d, e, k, n,
4672    i = 0,
4673    r = new this(1),
4674    rd = [];
4675
4676  if (sd === void 0) sd = this.precision;
4677  else checkInt32(sd, 1, MAX_DIGITS);
4678
4679  k = Math.ceil(sd / LOG_BASE);
4680
4681  if (!this.crypto) {
4682    for (; i < k;) rd[i++] = Math.random() * 1e7 | 0;
4683
4684  // Browsers supporting crypto.getRandomValues.
4685  } else if (crypto.getRandomValues) {
4686    d = crypto.getRandomValues(new Uint32Array(k));
4687
4688    for (; i < k;) {
4689      n = d[i];
4690
4691      // 0 <= n < 4294967296
4692      // Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865).
4693      if (n >= 4.29e9) {
4694        d[i] = crypto.getRandomValues(new Uint32Array(1))[0];
4695      } else {
4696
4697        // 0 <= n <= 4289999999
4698        // 0 <= (n % 1e7) <= 9999999
4699        rd[i++] = n % 1e7;
4700      }
4701    }
4702
4703  // Node.js supporting crypto.randomBytes.
4704  } else if (crypto.randomBytes) {
4705
4706    // buffer
4707    d = crypto.randomBytes(k *= 4);
4708
4709    for (; i < k;) {
4710
4711      // 0 <= n < 2147483648
4712      n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24);
4713
4714      // Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286).
4715      if (n >= 2.14e9) {
4716        crypto.randomBytes(4).copy(d, i);
4717      } else {
4718
4719        // 0 <= n <= 2139999999
4720        // 0 <= (n % 1e7) <= 9999999
4721        rd.push(n % 1e7);
4722        i += 4;
4723      }
4724    }
4725
4726    i = k / 4;
4727  } else {
4728    throw new BusinessError(`Crypto unavailable`, CRYPTO_UNAVAILABLE_ERROR_CODE);;
4729  }
4730
4731  k = rd[--i];
4732  sd %= LOG_BASE;
4733
4734  // Convert trailing digits to zeros according to sd.
4735  if (k && sd) {
4736    n = mathpow(10, LOG_BASE - sd);
4737    rd[i] = (k / n | 0) * n;
4738  }
4739
4740  // Remove trailing words which are zero.
4741  for (; rd[i] === 0; i--) rd.pop();
4742
4743  // Zero?
4744  if (i < 0) {
4745    e = 0;
4746    rd = [0];
4747  } else {
4748    e = -1;
4749
4750    // Remove leading words which are zero and adjust exponent accordingly.
4751    for (; rd[0] === 0; e -= LOG_BASE) rd.shift();
4752
4753    // Count the digits of the first word of rd to determine leading zeros.
4754    for (k = 1, n = rd[0]; n >= 10; n /= 10) k++;
4755
4756    // Adjust the exponent for leading zeros of the first word of rd.
4757    if (k < LOG_BASE) e -= LOG_BASE - k;
4758  }
4759
4760  r.e = e;
4761  r.d = rd;
4762
4763  return r;
4764}
4765
4766
4767/*
4768 * Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`.
4769 *
4770 * To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEILING).
4771 *
4772 * x {number|string|Decimal}
4773 *
4774 */
4775function round(x) {
4776  return finalise(x = new this(x), x.e + 1, this.rounding);
4777}
4778
4779
4780/*
4781 * Return
4782 *   1    if x > 0,
4783 *  -1    if x < 0,
4784 *   0    if x is 0,
4785 *  -0    if x is -0,
4786 *   NaN  otherwise
4787 *
4788 * x {number|string|Decimal}
4789 *
4790 */
4791function sign(x) {
4792  x = new this(x);
4793  return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN;
4794}
4795
4796
4797/*
4798 * Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits
4799 * using rounding mode `rounding`.
4800 *
4801 * x {number|string|Decimal} A value in radians.
4802 *
4803 */
4804function sin(x) {
4805  return new this(x).sin();
4806}
4807
4808
4809/*
4810 * Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision`
4811 * significant digits using rounding mode `rounding`.
4812 *
4813 * x {number|string|Decimal} A value in radians.
4814 *
4815 */
4816function sinh(x) {
4817  return new this(x).sinh();
4818}
4819
4820
4821/*
4822 * Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant
4823 * digits using rounding mode `rounding`.
4824 *
4825 * x {number|string|Decimal}
4826 *
4827 */
4828function sqrt(x) {
4829  return new this(x).sqrt();
4830}
4831
4832
4833/*
4834 * Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits
4835 * using rounding mode `rounding`.
4836 *
4837 * x {number|string|Decimal}
4838 * y {number|string|Decimal}
4839 *
4840 */
4841function sub(x, y) {
4842  return new this(x).sub(y);
4843}
4844
4845
4846/*
4847 * Return a new Decimal whose value is the sum of the arguments, rounded to `precision`
4848 * significant digits using rounding mode `rounding`.
4849 *
4850 * Only the result is rounded, not the intermediate calculations.
4851 *
4852 * arguments {number|string|Decimal}
4853 *
4854 */
4855function sum() {
4856  var i = 0,
4857    args = arguments,
4858    x = new this(args[i]);
4859
4860  external = false;
4861  for (; x.s && ++i < args.length;) x = x.plus(args[i]);
4862  external = true;
4863
4864  return finalise(x, this.precision, this.rounding);
4865}
4866
4867
4868/*
4869 * Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant
4870 * digits using rounding mode `rounding`.
4871 *
4872 * x {number|string|Decimal} A value in radians.
4873 *
4874 */
4875function tan(x) {
4876  return new this(x).tan();
4877}
4878
4879
4880/*
4881 * Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision`
4882 * significant digits using rounding mode `rounding`.
4883 *
4884 * x {number|string|Decimal} A value in radians.
4885 *
4886 */
4887function tanh(x) {
4888  return new this(x).tanh();
4889}
4890
4891
4892/*
4893 * Return a new Decimal whose value is `x` truncated to an integer.
4894 *
4895 * x {number|string|Decimal}
4896 *
4897 */
4898function trunc(x) {
4899  return finalise(x = new this(x), x.e + 1, 1);
4900}
4901
4902
4903P[Symbol.for('nodejs.util.inspect.custom')] = P.toString;
4904P[Symbol.toStringTag] = 'Decimal';
4905
4906// Create and configure initial Decimal constructor.
4907export var Decimal = P.constructor = clone(DEFAULTS);
4908
4909// Create the internal constants from their string values.
4910LN10 = new Decimal(LN10);
4911PI = new Decimal(PI);
4912
4913export default Decimal;
4914