1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * Fixed point code
7 * Copyright (c) 2013
8 * MIPS Technologies, Inc., California.
9 *
10 * This file is part of FFmpeg.
11 *
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
16 *
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
21 *
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 */
26
27 /**
28 * @file
29 * AAC Spectral Band Replication decoding functions
30 * @author Robert Swain ( rob opendot cl )
31 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33 */
34
35 #include "libavutil/qsort.h"
36
aacsbr_tableinit(void)37 static av_cold void aacsbr_tableinit(void)
38 {
39 int n;
40
41 for (n = 0; n < 320; n++)
42 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
43 }
44
AAC_RENAME(ff_aac_sbr_init)45 av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
46 {
47 static const struct {
48 const void *sbr_codes, *sbr_bits;
49 const unsigned int table_size, elem_size;
50 } sbr_tmp[] = {
51 SBR_VLC_ROW(t_huffman_env_1_5dB),
52 SBR_VLC_ROW(f_huffman_env_1_5dB),
53 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
54 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
55 SBR_VLC_ROW(t_huffman_env_3_0dB),
56 SBR_VLC_ROW(f_huffman_env_3_0dB),
57 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
58 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
59 SBR_VLC_ROW(t_huffman_noise_3_0dB),
60 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
61 };
62
63 // SBR VLC table initialization
64 SBR_INIT_VLC_STATIC(0, 1098);
65 SBR_INIT_VLC_STATIC(1, 1092);
66 SBR_INIT_VLC_STATIC(2, 768);
67 SBR_INIT_VLC_STATIC(3, 1026);
68 SBR_INIT_VLC_STATIC(4, 1058);
69 SBR_INIT_VLC_STATIC(5, 1052);
70 SBR_INIT_VLC_STATIC(6, 544);
71 SBR_INIT_VLC_STATIC(7, 544);
72 SBR_INIT_VLC_STATIC(8, 592);
73 SBR_INIT_VLC_STATIC(9, 512);
74
75 aacsbr_tableinit();
76
77 AAC_RENAME(ff_ps_init)();
78 }
79
80 /** Places SBR in pure upsampling mode. */
sbr_turnoff(SpectralBandReplication * sbr)81 static void sbr_turnoff(SpectralBandReplication *sbr) {
82 sbr->start = 0;
83 sbr->ready_for_dequant = 0;
84 // Init defults used in pure upsampling mode
85 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
86 sbr->m[1] = 0;
87 // Reset values for first SBR header
88 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
89 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
90 }
91
AAC_RENAME(ff_aac_sbr_ctx_init)92 av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
93 {
94 if(sbr->mdct.mdct_bits)
95 return;
96 sbr->kx[0] = sbr->kx[1];
97 sbr->id_aac = id_aac;
98 sbr_turnoff(sbr);
99 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
100 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
101 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
102 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
103 * and scale back down at synthesis. */
104 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
105 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
106 AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
107 AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
108 aacsbr_func_ptr_init(&sbr->c);
109 }
110
AAC_RENAME(ff_aac_sbr_ctx_close)111 av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
112 {
113 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
114 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
115 }
116
qsort_comparison_function_int16(const void * a,const void * b)117 static int qsort_comparison_function_int16(const void *a, const void *b)
118 {
119 return *(const int16_t *)a - *(const int16_t *)b;
120 }
121
in_table_int16(const int16_t * table,int last_el,int16_t needle)122 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
123 {
124 int i;
125 for (i = 0; i <= last_el; i++)
126 if (table[i] == needle)
127 return 1;
128 return 0;
129 }
130
131 /// Limiter Frequency Band Table (14496-3 sp04 p198)
sbr_make_f_tablelim(SpectralBandReplication * sbr)132 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
133 {
134 int k;
135 if (sbr->bs_limiter_bands > 0) {
136 static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
137 Q23(1.18509277094158210129f), //2^(0.49/2)
138 Q23(1.11987160404675912501f) }; //2^(0.49/3)
139 const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
140 int16_t patch_borders[7];
141 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
142
143 patch_borders[0] = sbr->kx[1];
144 for (k = 1; k <= sbr->num_patches; k++)
145 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
146
147 memcpy(sbr->f_tablelim, sbr->f_tablelow,
148 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
149 if (sbr->num_patches > 1)
150 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
151 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
152
153 AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
154 uint16_t,
155 qsort_comparison_function_int16);
156
157 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
158 while (out < sbr->f_tablelim + sbr->n_lim) {
159 #if USE_FIXED
160 if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
161 #else
162 if (*in >= *out * lim_bands_per_octave_warped) {
163 #endif /* USE_FIXED */
164 *++out = *in++;
165 } else if (*in == *out ||
166 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
167 in++;
168 sbr->n_lim--;
169 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
170 *out = *in++;
171 sbr->n_lim--;
172 } else {
173 *++out = *in++;
174 }
175 }
176 } else {
177 sbr->f_tablelim[0] = sbr->f_tablelow[0];
178 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
179 sbr->n_lim = 1;
180 }
181 }
182
183 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
184 {
185 unsigned int cnt = get_bits_count(gb);
186 uint8_t bs_header_extra_1;
187 uint8_t bs_header_extra_2;
188 int old_bs_limiter_bands = sbr->bs_limiter_bands;
189 SpectrumParameters old_spectrum_params;
190
191 sbr->start = 1;
192 sbr->ready_for_dequant = 0;
193
194 // Save last spectrum parameters variables to compare to new ones
195 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
196
197 sbr->bs_amp_res_header = get_bits1(gb);
198 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
199 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
200 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
201 skip_bits(gb, 2); // bs_reserved
202
203 bs_header_extra_1 = get_bits1(gb);
204 bs_header_extra_2 = get_bits1(gb);
205
206 if (bs_header_extra_1) {
207 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
208 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
209 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
210 } else {
211 sbr->spectrum_params.bs_freq_scale = 2;
212 sbr->spectrum_params.bs_alter_scale = 1;
213 sbr->spectrum_params.bs_noise_bands = 2;
214 }
215
216 // Check if spectrum parameters changed
217 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
218 sbr->reset = 1;
219
220 if (bs_header_extra_2) {
221 sbr->bs_limiter_bands = get_bits(gb, 2);
222 sbr->bs_limiter_gains = get_bits(gb, 2);
223 sbr->bs_interpol_freq = get_bits1(gb);
224 sbr->bs_smoothing_mode = get_bits1(gb);
225 } else {
226 sbr->bs_limiter_bands = 2;
227 sbr->bs_limiter_gains = 2;
228 sbr->bs_interpol_freq = 1;
229 sbr->bs_smoothing_mode = 1;
230 }
231
232 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
233 sbr_make_f_tablelim(sbr);
234
235 return get_bits_count(gb) - cnt;
236 }
237
238 static int array_min_int16(const int16_t *array, int nel)
239 {
240 int i, min = array[0];
241 for (i = 1; i < nel; i++)
242 min = FFMIN(array[i], min);
243 return min;
244 }
245
246 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
247 {
248 // Requirements (14496-3 sp04 p205)
249 if (n_master <= 0) {
250 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
251 return -1;
252 }
253 if (bs_xover_band >= n_master) {
254 av_log(avctx, AV_LOG_ERROR,
255 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
256 bs_xover_band);
257 return -1;
258 }
259 return 0;
260 }
261
262 /// Master Frequency Band Table (14496-3 sp04 p194)
263 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
264 SpectrumParameters *spectrum)
265 {
266 unsigned int temp, max_qmf_subbands = 0;
267 unsigned int start_min, stop_min;
268 int k;
269 const int8_t *sbr_offset_ptr;
270 int16_t stop_dk[13];
271
272 switch (sbr->sample_rate) {
273 case 16000:
274 sbr_offset_ptr = sbr_offset[0];
275 break;
276 case 22050:
277 sbr_offset_ptr = sbr_offset[1];
278 break;
279 case 24000:
280 sbr_offset_ptr = sbr_offset[2];
281 break;
282 case 32000:
283 sbr_offset_ptr = sbr_offset[3];
284 break;
285 case 44100: case 48000: case 64000:
286 sbr_offset_ptr = sbr_offset[4];
287 break;
288 case 88200: case 96000: case 128000: case 176400: case 192000:
289 sbr_offset_ptr = sbr_offset[5];
290 break;
291 default:
292 av_log(ac->avctx, AV_LOG_ERROR,
293 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
294 return -1;
295 }
296
297 if (sbr->sample_rate < 32000) {
298 temp = 3000;
299 } else if (sbr->sample_rate < 64000) {
300 temp = 4000;
301 } else
302 temp = 5000;
303
304 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
305 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
306
307 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
308
309 if (spectrum->bs_stop_freq < 14) {
310 sbr->k[2] = stop_min;
311 make_bands(stop_dk, stop_min, 64, 13);
312 AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
313 for (k = 0; k < spectrum->bs_stop_freq; k++)
314 sbr->k[2] += stop_dk[k];
315 } else if (spectrum->bs_stop_freq == 14) {
316 sbr->k[2] = 2*sbr->k[0];
317 } else if (spectrum->bs_stop_freq == 15) {
318 sbr->k[2] = 3*sbr->k[0];
319 } else {
320 av_log(ac->avctx, AV_LOG_ERROR,
321 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
322 return -1;
323 }
324 sbr->k[2] = FFMIN(64, sbr->k[2]);
325
326 // Requirements (14496-3 sp04 p205)
327 if (sbr->sample_rate <= 32000) {
328 max_qmf_subbands = 48;
329 } else if (sbr->sample_rate == 44100) {
330 max_qmf_subbands = 35;
331 } else if (sbr->sample_rate >= 48000)
332 max_qmf_subbands = 32;
333 else
334 av_assert0(0);
335
336 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
337 av_log(ac->avctx, AV_LOG_ERROR,
338 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
339 return -1;
340 }
341
342 if (!spectrum->bs_freq_scale) {
343 int dk, k2diff;
344
345 dk = spectrum->bs_alter_scale + 1;
346 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
347 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
348 return -1;
349
350 for (k = 1; k <= sbr->n_master; k++)
351 sbr->f_master[k] = dk;
352
353 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
354 if (k2diff < 0) {
355 sbr->f_master[1]--;
356 sbr->f_master[2]-= (k2diff < -1);
357 } else if (k2diff) {
358 sbr->f_master[sbr->n_master]++;
359 }
360
361 sbr->f_master[0] = sbr->k[0];
362 for (k = 1; k <= sbr->n_master; k++)
363 sbr->f_master[k] += sbr->f_master[k - 1];
364
365 } else {
366 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
367 int two_regions, num_bands_0;
368 int vdk0_max, vdk1_min;
369 int16_t vk0[49];
370 #if USE_FIXED
371 int tmp, nz = 0;
372 #endif /* USE_FIXED */
373
374 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
375 two_regions = 1;
376 sbr->k[1] = 2 * sbr->k[0];
377 } else {
378 two_regions = 0;
379 sbr->k[1] = sbr->k[2];
380 }
381
382 #if USE_FIXED
383 tmp = (sbr->k[1] << 23) / sbr->k[0];
384 while (tmp < 0x40000000) {
385 tmp <<= 1;
386 nz++;
387 }
388 tmp = fixed_log(tmp - 0x80000000);
389 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
390 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
391 num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
392 #else
393 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
394 #endif /* USE_FIXED */
395
396 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
397 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
398 return -1;
399 }
400
401 vk0[0] = 0;
402
403 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
404
405 AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
406 vdk0_max = vk0[num_bands_0];
407
408 vk0[0] = sbr->k[0];
409 for (k = 1; k <= num_bands_0; k++) {
410 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
411 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
412 return -1;
413 }
414 vk0[k] += vk0[k-1];
415 }
416
417 if (two_regions) {
418 int16_t vk1[49];
419 #if USE_FIXED
420 int num_bands_1;
421
422 tmp = (sbr->k[2] << 23) / sbr->k[1];
423 nz = 0;
424 while (tmp < 0x40000000) {
425 tmp <<= 1;
426 nz++;
427 }
428 tmp = fixed_log(tmp - 0x80000000);
429 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
430 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
431 if (spectrum->bs_alter_scale)
432 tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
433 num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
434 #else
435 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
436 : 1.0f; // bs_alter_scale = {0,1}
437 int num_bands_1 = lrintf(half_bands * invwarp *
438 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
439 #endif /* USE_FIXED */
440 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
441
442 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
443
444 if (vdk1_min < vdk0_max) {
445 int change;
446 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
447 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
448 vk1[1] += change;
449 vk1[num_bands_1] -= change;
450 }
451
452 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
453
454 vk1[0] = sbr->k[1];
455 for (k = 1; k <= num_bands_1; k++) {
456 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
457 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
458 return -1;
459 }
460 vk1[k] += vk1[k-1];
461 }
462
463 sbr->n_master = num_bands_0 + num_bands_1;
464 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
465 return -1;
466 memcpy(&sbr->f_master[0], vk0,
467 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
469 num_bands_1 * sizeof(sbr->f_master[0]));
470
471 } else {
472 sbr->n_master = num_bands_0;
473 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
474 return -1;
475 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
476 }
477 }
478
479 return 0;
480 }
481
482 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
483 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
484 {
485 int i, k, last_k = -1, last_msb = -1, sb = 0;
486 int msb = sbr->k[0];
487 int usb = sbr->kx[1];
488 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
489
490 sbr->num_patches = 0;
491
492 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
493 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
494 } else
495 k = sbr->n_master;
496
497 do {
498 int odd = 0;
499 if (k == last_k && msb == last_msb) {
500 av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
501 return AVERROR_INVALIDDATA;
502 }
503 last_k = k;
504 last_msb = msb;
505 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
506 sb = sbr->f_master[i];
507 odd = (sb + sbr->k[0]) & 1;
508 }
509
510 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
511 // After this check the final number of patches can still be six which is
512 // illegal however the Coding Technologies decoder check stream has a final
513 // count of 6 patches
514 if (sbr->num_patches > 5) {
515 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
516 return -1;
517 }
518
519 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
520 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
521
522 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
523 usb = sb;
524 msb = sb;
525 sbr->num_patches++;
526 } else
527 msb = sbr->kx[1];
528
529 if (sbr->f_master[k] - sb < 3)
530 k = sbr->n_master;
531 } while (sb != sbr->kx[1] + sbr->m[1]);
532
533 if (sbr->num_patches > 1 &&
534 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
535 sbr->num_patches--;
536
537 return 0;
538 }
539
540 /// Derived Frequency Band Tables (14496-3 sp04 p197)
541 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
542 {
543 int k, temp;
544 #if USE_FIXED
545 int nz = 0;
546 #endif /* USE_FIXED */
547
548 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
549 sbr->n[0] = (sbr->n[1] + 1) >> 1;
550
551 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
552 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
553 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
554 sbr->kx[1] = sbr->f_tablehigh[0];
555
556 // Requirements (14496-3 sp04 p205)
557 if (sbr->kx[1] + sbr->m[1] > 64) {
558 av_log(ac->avctx, AV_LOG_ERROR,
559 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
560 return -1;
561 }
562 if (sbr->kx[1] > 32) {
563 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
564 return -1;
565 }
566
567 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
568 temp = sbr->n[1] & 1;
569 for (k = 1; k <= sbr->n[0]; k++)
570 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
571 #if USE_FIXED
572 temp = (sbr->k[2] << 23) / sbr->kx[1];
573 while (temp < 0x40000000) {
574 temp <<= 1;
575 nz++;
576 }
577 temp = fixed_log(temp - 0x80000000);
578 temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
579 temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
580
581 sbr->n_q = (temp + 0x400000) >> 23;
582 if (sbr->n_q < 1)
583 sbr->n_q = 1;
584 #else
585 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
586 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
587 #endif /* USE_FIXED */
588
589 if (sbr->n_q > 5) {
590 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
591 sbr->n_q = 1;
592 return -1;
593 }
594
595 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
596 temp = 0;
597 for (k = 1; k <= sbr->n_q; k++) {
598 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
599 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
600 }
601
602 if (sbr_hf_calc_npatches(ac, sbr) < 0)
603 return -1;
604
605 sbr_make_f_tablelim(sbr);
606
607 sbr->data[0].f_indexnoise = 0;
608 sbr->data[1].f_indexnoise = 0;
609
610 return 0;
611 }
612
613 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
614 int elements)
615 {
616 int i;
617 for (i = 0; i < elements; i++) {
618 vec[i] = get_bits1(gb);
619 }
620 }
621
622 /** ceil(log2(index+1)) */
623 static const int8_t ceil_log2[] = {
624 0, 1, 2, 2, 3, 3,
625 };
626
627 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
628 GetBitContext *gb, SBRData *ch_data)
629 {
630 int i;
631 int bs_pointer = 0;
632 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
633 int abs_bord_trail = 16;
634 int num_rel_lead, num_rel_trail;
635 unsigned bs_num_env_old = ch_data->bs_num_env;
636 int bs_frame_class, bs_num_env;
637
638 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
639 ch_data->bs_amp_res = sbr->bs_amp_res_header;
640 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
641
642 switch (bs_frame_class = get_bits(gb, 2)) {
643 case FIXFIX:
644 bs_num_env = 1 << get_bits(gb, 2);
645 if (bs_num_env > 4) {
646 av_log(ac->avctx, AV_LOG_ERROR,
647 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
648 bs_num_env);
649 return -1;
650 }
651 ch_data->bs_num_env = bs_num_env;
652 num_rel_lead = ch_data->bs_num_env - 1;
653 if (ch_data->bs_num_env == 1)
654 ch_data->bs_amp_res = 0;
655
656
657 ch_data->t_env[0] = 0;
658 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
659
660 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
661 ch_data->bs_num_env;
662 for (i = 0; i < num_rel_lead; i++)
663 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
664
665 ch_data->bs_freq_res[1] = get_bits1(gb);
666 for (i = 1; i < ch_data->bs_num_env; i++)
667 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
668 break;
669 case FIXVAR:
670 abs_bord_trail += get_bits(gb, 2);
671 num_rel_trail = get_bits(gb, 2);
672 ch_data->bs_num_env = num_rel_trail + 1;
673 ch_data->t_env[0] = 0;
674 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
675
676 for (i = 0; i < num_rel_trail; i++)
677 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
678 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
679
680 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
681
682 for (i = 0; i < ch_data->bs_num_env; i++)
683 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
684 break;
685 case VARFIX:
686 ch_data->t_env[0] = get_bits(gb, 2);
687 num_rel_lead = get_bits(gb, 2);
688 ch_data->bs_num_env = num_rel_lead + 1;
689 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
690
691 for (i = 0; i < num_rel_lead; i++)
692 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
693
694 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
695
696 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
697 break;
698 case VARVAR:
699 ch_data->t_env[0] = get_bits(gb, 2);
700 abs_bord_trail += get_bits(gb, 2);
701 num_rel_lead = get_bits(gb, 2);
702 num_rel_trail = get_bits(gb, 2);
703 bs_num_env = num_rel_lead + num_rel_trail + 1;
704
705 if (bs_num_env > 5) {
706 av_log(ac->avctx, AV_LOG_ERROR,
707 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
708 bs_num_env);
709 return -1;
710 }
711 ch_data->bs_num_env = bs_num_env;
712
713 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
714
715 for (i = 0; i < num_rel_lead; i++)
716 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
717 for (i = 0; i < num_rel_trail; i++)
718 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
719 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
720
721 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
722
723 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
724 break;
725 }
726 ch_data->bs_frame_class = bs_frame_class;
727
728 av_assert0(bs_pointer >= 0);
729 if (bs_pointer > ch_data->bs_num_env + 1) {
730 av_log(ac->avctx, AV_LOG_ERROR,
731 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
732 bs_pointer);
733 return -1;
734 }
735
736 for (i = 1; i <= ch_data->bs_num_env; i++) {
737 if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
738 av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
739 return -1;
740 }
741 }
742
743 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
744
745 ch_data->t_q[0] = ch_data->t_env[0];
746 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
747 if (ch_data->bs_num_noise > 1) {
748 int idx;
749 if (ch_data->bs_frame_class == FIXFIX) {
750 idx = ch_data->bs_num_env >> 1;
751 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
752 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
753 } else { // VARFIX
754 if (!bs_pointer)
755 idx = 1;
756 else if (bs_pointer == 1)
757 idx = ch_data->bs_num_env - 1;
758 else // bs_pointer > 1
759 idx = bs_pointer - 1;
760 }
761 ch_data->t_q[1] = ch_data->t_env[idx];
762 }
763
764 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
765 ch_data->e_a[1] = -1;
766 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
767 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
768 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
769 ch_data->e_a[1] = bs_pointer - 1;
770
771 return 0;
772 }
773
774 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
775 //These variables are saved from the previous frame rather than copied
776 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
777 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
778 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
779
780 //These variables are read from the bitstream and therefore copied
781 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
782 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
783 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
784 dst->bs_num_env = src->bs_num_env;
785 dst->bs_amp_res = src->bs_amp_res;
786 dst->bs_num_noise = src->bs_num_noise;
787 dst->bs_frame_class = src->bs_frame_class;
788 dst->e_a[1] = src->e_a[1];
789 }
790
791 /// Read how the envelope and noise floor data is delta coded
792 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
793 SBRData *ch_data)
794 {
795 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
796 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
797 }
798
799 /// Read inverse filtering data
800 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
801 SBRData *ch_data)
802 {
803 int i;
804
805 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
806 for (i = 0; i < sbr->n_q; i++)
807 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
808 }
809
810 static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
811 SBRData *ch_data, int ch)
812 {
813 int bits;
814 int i, j, k;
815 const VLCElem *t_huff, *f_huff;
816 int t_lav, f_lav;
817 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
818 const int odd = sbr->n[1] & 1;
819
820 if (sbr->bs_coupling && ch) {
821 if (ch_data->bs_amp_res) {
822 bits = 5;
823 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
824 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
825 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
826 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
827 } else {
828 bits = 6;
829 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
830 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
831 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
832 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
833 }
834 } else {
835 if (ch_data->bs_amp_res) {
836 bits = 6;
837 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
838 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
839 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
840 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
841 } else {
842 bits = 7;
843 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
844 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
845 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
846 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
847 }
848 }
849
850 for (i = 0; i < ch_data->bs_num_env; i++) {
851 if (ch_data->bs_df_env[i]) {
852 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
853 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
854 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
855 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
856 if (ch_data->env_facs_q[i + 1][j] > 127U) {
857 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
858 return AVERROR_INVALIDDATA;
859 }
860 }
861 } else if (ch_data->bs_freq_res[i + 1]) {
862 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
863 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
864 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
865 if (ch_data->env_facs_q[i + 1][j] > 127U) {
866 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
867 return AVERROR_INVALIDDATA;
868 }
869 }
870 } else {
871 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
872 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
873 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
874 if (ch_data->env_facs_q[i + 1][j] > 127U) {
875 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
876 return AVERROR_INVALIDDATA;
877 }
878 }
879 }
880 } else {
881 ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
882 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
883 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
884 if (ch_data->env_facs_q[i + 1][j] > 127U) {
885 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
886 return AVERROR_INVALIDDATA;
887 }
888 }
889 }
890 }
891
892 //assign 0th elements of env_facs_q from last elements
893 memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
894 sizeof(ch_data->env_facs_q[0]));
895
896 return 0;
897 }
898
899 static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
900 SBRData *ch_data, int ch)
901 {
902 int i, j;
903 const VLCElem *t_huff, *f_huff;
904 int t_lav, f_lav;
905 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
906
907 if (sbr->bs_coupling && ch) {
908 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
909 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
910 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
911 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
912 } else {
913 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
914 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
915 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
916 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
917 }
918
919 for (i = 0; i < ch_data->bs_num_noise; i++) {
920 if (ch_data->bs_df_noise[i]) {
921 for (j = 0; j < sbr->n_q; j++) {
922 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
923 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
924 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
925 return AVERROR_INVALIDDATA;
926 }
927 }
928 } else {
929 ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
930 for (j = 1; j < sbr->n_q; j++) {
931 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
932 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
933 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
934 return AVERROR_INVALIDDATA;
935 }
936 }
937 }
938 }
939
940 //assign 0th elements of noise_facs_q from last elements
941 memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
942 sizeof(ch_data->noise_facs_q[0]));
943 return 0;
944 }
945
946 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
947 GetBitContext *gb,
948 int bs_extension_id, int *num_bits_left)
949 {
950 switch (bs_extension_id) {
951 case EXTENSION_ID_PS:
952 if (!ac->oc[1].m4ac.ps) {
953 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
954 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
955 *num_bits_left = 0;
956 } else {
957 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps.common, *num_bits_left);
958 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
959 }
960 break;
961 default:
962 // some files contain 0-padding
963 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
964 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
965 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
966 *num_bits_left = 0;
967 break;
968 }
969 }
970
971 static int read_sbr_single_channel_element(AACContext *ac,
972 SpectralBandReplication *sbr,
973 GetBitContext *gb)
974 {
975 int ret;
976
977 if (get_bits1(gb)) // bs_data_extra
978 skip_bits(gb, 4); // bs_reserved
979
980 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
981 return -1;
982 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
983 read_sbr_invf(sbr, gb, &sbr->data[0]);
984 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
985 return ret;
986 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
987 return ret;
988
989 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
990 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
991
992 return 0;
993 }
994
995 static int read_sbr_channel_pair_element(AACContext *ac,
996 SpectralBandReplication *sbr,
997 GetBitContext *gb)
998 {
999 int ret;
1000
1001 if (get_bits1(gb)) // bs_data_extra
1002 skip_bits(gb, 8); // bs_reserved
1003
1004 if ((sbr->bs_coupling = get_bits1(gb))) {
1005 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1006 return -1;
1007 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1008 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1009 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1010 read_sbr_invf(sbr, gb, &sbr->data[0]);
1011 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1012 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1013 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1014 return ret;
1015 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1016 return ret;
1017 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1018 return ret;
1019 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1020 return ret;
1021 } else {
1022 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1023 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1024 return -1;
1025 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1026 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1027 read_sbr_invf(sbr, gb, &sbr->data[0]);
1028 read_sbr_invf(sbr, gb, &sbr->data[1]);
1029 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1030 return ret;
1031 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1032 return ret;
1033 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1034 return ret;
1035 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1036 return ret;
1037 }
1038
1039 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1040 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1041 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1042 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1043
1044 return 0;
1045 }
1046
1047 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1048 GetBitContext *gb, int id_aac)
1049 {
1050 unsigned int cnt = get_bits_count(gb);
1051
1052 sbr->id_aac = id_aac;
1053 sbr->ready_for_dequant = 1;
1054
1055 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1056 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1057 sbr_turnoff(sbr);
1058 return get_bits_count(gb) - cnt;
1059 }
1060 } else if (id_aac == TYPE_CPE) {
1061 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1062 sbr_turnoff(sbr);
1063 return get_bits_count(gb) - cnt;
1064 }
1065 } else {
1066 av_log(ac->avctx, AV_LOG_ERROR,
1067 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1068 sbr_turnoff(sbr);
1069 return get_bits_count(gb) - cnt;
1070 }
1071 if (get_bits1(gb)) { // bs_extended_data
1072 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1073 if (num_bits_left == 15)
1074 num_bits_left += get_bits(gb, 8); // bs_esc_count
1075
1076 num_bits_left <<= 3;
1077 while (num_bits_left > 7) {
1078 num_bits_left -= 2;
1079 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1080 }
1081 if (num_bits_left < 0) {
1082 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1083 }
1084 if (num_bits_left > 0)
1085 skip_bits(gb, num_bits_left);
1086 }
1087
1088 return get_bits_count(gb) - cnt;
1089 }
1090
1091 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1092 {
1093 int err;
1094 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1095 if (err >= 0)
1096 err = sbr_make_f_derived(ac, sbr);
1097 if (err < 0) {
1098 av_log(ac->avctx, AV_LOG_ERROR,
1099 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1100 sbr_turnoff(sbr);
1101 }
1102 }
1103
1104 /**
1105 * Decode Spectral Band Replication extension data; reference: table 4.55.
1106 *
1107 * @param crc flag indicating the presence of CRC checksum
1108 * @param cnt length of TYPE_FIL syntactic element in bytes
1109 *
1110 * @return Returns number of bytes consumed from the TYPE_FIL element.
1111 */
1112 int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1113 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1114 {
1115 unsigned int num_sbr_bits = 0, num_align_bits;
1116 unsigned bytes_read;
1117 GetBitContext gbc = *gb_host, *gb = &gbc;
1118 skip_bits_long(gb_host, cnt*8 - 4);
1119
1120 sbr->reset = 0;
1121
1122 if (!sbr->sample_rate)
1123 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1124 if (!ac->oc[1].m4ac.ext_sample_rate)
1125 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1126
1127 if (crc) {
1128 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1129 num_sbr_bits += 10;
1130 }
1131
1132 //Save some state from the previous frame.
1133 sbr->kx[0] = sbr->kx[1];
1134 sbr->m[0] = sbr->m[1];
1135 sbr->kx_and_m_pushed = 1;
1136
1137 num_sbr_bits++;
1138 if (get_bits1(gb)) // bs_header_flag
1139 num_sbr_bits += read_sbr_header(sbr, gb);
1140
1141 if (sbr->reset)
1142 sbr_reset(ac, sbr);
1143
1144 if (sbr->start)
1145 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1146
1147 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1148 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1149
1150 if (bytes_read > cnt) {
1151 av_log(ac->avctx, AV_LOG_ERROR,
1152 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1153 sbr_turnoff(sbr);
1154 }
1155 return cnt;
1156 }
1157
1158 /**
1159 * Analysis QMF Bank (14496-3 sp04 p206)
1160 *
1161 * @param x pointer to the beginning of the first sample window
1162 * @param W array of complex-valued samples split into subbands
1163 */
1164 #ifndef sbr_qmf_analysis
1165 #if USE_FIXED
1166 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1167 #else
1168 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1169 #endif /* USE_FIXED */
1170 SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1171 INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1172 {
1173 int i;
1174 #if USE_FIXED
1175 int j;
1176 #endif
1177 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1178 memcpy(x+288, in, 1024*sizeof(x[0]));
1179 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1180 // are not supported
1181 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1182 sbrdsp->sum64x5(z);
1183 sbrdsp->qmf_pre_shuffle(z);
1184 #if USE_FIXED
1185 for (j = 64; j < 128; j++) {
1186 if (z[j] > 1<<24) {
1187 av_log(NULL, AV_LOG_WARNING,
1188 "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1189 z[j], 1<<24);
1190 z[j] = 1<<24;
1191 } else if (z[j] < -(1<<24)) {
1192 av_log(NULL, AV_LOG_WARNING,
1193 "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1194 z[j], -(1<<24));
1195 z[j] = -(1<<24);
1196 }
1197 }
1198 #endif
1199 mdct->imdct_half(mdct, z, z+64);
1200 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1201 x += 32;
1202 }
1203 }
1204 #endif
1205
1206 /**
1207 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1208 * (14496-3 sp04 p206)
1209 */
1210 #ifndef sbr_qmf_synthesis
1211 static void sbr_qmf_synthesis(FFTContext *mdct,
1212 #if USE_FIXED
1213 SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1214 #else
1215 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1216 #endif /* USE_FIXED */
1217 INTFLOAT *out, INTFLOAT X[2][38][64],
1218 INTFLOAT mdct_buf[2][64],
1219 INTFLOAT *v0, int *v_off, const unsigned int div)
1220 {
1221 int i, n;
1222 const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1223 const int step = 128 >> div;
1224 INTFLOAT *v;
1225 for (i = 0; i < 32; i++) {
1226 if (*v_off < step) {
1227 int saved_samples = (1280 - 128) >> div;
1228 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1229 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1230 } else {
1231 *v_off -= step;
1232 }
1233 v = v0 + *v_off;
1234 if (div) {
1235 for (n = 0; n < 32; n++) {
1236 X[0][i][ n] = -X[0][i][n];
1237 X[0][i][32+n] = X[1][i][31-n];
1238 }
1239 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1240 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1241 } else {
1242 sbrdsp->neg_odd_64(X[1][i]);
1243 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1244 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1245 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1246 }
1247 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1248 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1249 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1250 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1251 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1252 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1253 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1254 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1255 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1256 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1257 out += 64 >> div;
1258 }
1259 }
1260 #endif
1261
1262 /// Generate the subband filtered lowband
1263 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1264 INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1265 int buf_idx)
1266 {
1267 int i, k;
1268 const int t_HFGen = 8;
1269 const int i_f = 32;
1270 memset(X_low, 0, 32*sizeof(*X_low));
1271 for (k = 0; k < sbr->kx[1]; k++) {
1272 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1273 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1274 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1275 }
1276 }
1277 buf_idx = 1-buf_idx;
1278 for (k = 0; k < sbr->kx[0]; k++) {
1279 for (i = 0; i < t_HFGen; i++) {
1280 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1281 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1282 }
1283 }
1284 return 0;
1285 }
1286
1287 /// High Frequency Generator (14496-3 sp04 p215)
1288 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1289 INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1290 const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1291 const INTFLOAT bw_array[5], const uint8_t *t_env,
1292 int bs_num_env)
1293 {
1294 int j, x;
1295 int g = 0;
1296 int k = sbr->kx[1];
1297 for (j = 0; j < sbr->num_patches; j++) {
1298 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1299 const int p = sbr->patch_start_subband[j] + x;
1300 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1301 g++;
1302 g--;
1303
1304 if (g < 0) {
1305 av_log(ac->avctx, AV_LOG_ERROR,
1306 "ERROR : no subband found for frequency %d\n", k);
1307 return -1;
1308 }
1309
1310 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1311 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1312 alpha0[p], alpha1[p], bw_array[g],
1313 2 * t_env[0], 2 * t_env[bs_num_env]);
1314 }
1315 }
1316 if (k < sbr->m[1] + sbr->kx[1])
1317 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1318
1319 return 0;
1320 }
1321
1322 /// Generate the subband filtered lowband
1323 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1324 const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1325 const INTFLOAT X_low[32][40][2], int ch)
1326 {
1327 int k, i;
1328 const int i_f = 32;
1329 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1330 memset(X, 0, 2*sizeof(*X));
1331 for (k = 0; k < sbr->kx[0]; k++) {
1332 for (i = 0; i < i_Temp; i++) {
1333 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1334 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1335 }
1336 }
1337 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1338 for (i = 0; i < i_Temp; i++) {
1339 X[0][i][k] = Y0[i + i_f][k][0];
1340 X[1][i][k] = Y0[i + i_f][k][1];
1341 }
1342 }
1343
1344 for (k = 0; k < sbr->kx[1]; k++) {
1345 for (i = i_Temp; i < 38; i++) {
1346 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1347 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1348 }
1349 }
1350 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1351 for (i = i_Temp; i < i_f; i++) {
1352 X[0][i][k] = Y1[i][k][0];
1353 X[1][i][k] = Y1[i][k][1];
1354 }
1355 }
1356 return 0;
1357 }
1358
1359 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1360 * (14496-3 sp04 p217)
1361 */
1362 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1363 SBRData *ch_data, int e_a[2])
1364 {
1365 int e, i, m;
1366
1367 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1368 for (e = 0; e < ch_data->bs_num_env; e++) {
1369 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1370 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1371 int k;
1372
1373 if (sbr->kx[1] != table[0]) {
1374 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1375 "Derived frequency tables were not regenerated.\n");
1376 sbr_turnoff(sbr);
1377 return AVERROR_BUG;
1378 }
1379 for (i = 0; i < ilim; i++)
1380 for (m = table[i]; m < table[i + 1]; m++)
1381 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1382
1383 // ch_data->bs_num_noise > 1 => 2 noise floors
1384 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1385 for (i = 0; i < sbr->n_q; i++)
1386 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1387 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1388
1389 for (i = 0; i < sbr->n[1]; i++) {
1390 if (ch_data->bs_add_harmonic_flag) {
1391 const unsigned int m_midpoint =
1392 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1393
1394 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1395 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1396 }
1397 }
1398
1399 for (i = 0; i < ilim; i++) {
1400 int additional_sinusoid_present = 0;
1401 for (m = table[i]; m < table[i + 1]; m++) {
1402 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1403 additional_sinusoid_present = 1;
1404 break;
1405 }
1406 }
1407 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1408 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1409 }
1410 }
1411
1412 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1413 return 0;
1414 }
1415
1416 /// Estimation of current envelope (14496-3 sp04 p218)
1417 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1418 SpectralBandReplication *sbr, SBRData *ch_data)
1419 {
1420 int e, m;
1421 int kx1 = sbr->kx[1];
1422
1423 if (sbr->bs_interpol_freq) {
1424 for (e = 0; e < ch_data->bs_num_env; e++) {
1425 #if USE_FIXED
1426 const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1427 #else
1428 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1429 #endif /* USE_FIXED */
1430 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1431 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1432
1433 for (m = 0; m < sbr->m[1]; m++) {
1434 AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1435 #if USE_FIXED
1436 e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1437 #else
1438 e_curr[e][m] = sum * recip_env_size;
1439 #endif /* USE_FIXED */
1440 }
1441 }
1442 } else {
1443 int k, p;
1444
1445 for (e = 0; e < ch_data->bs_num_env; e++) {
1446 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1447 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1448 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1449 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1450
1451 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1452 #if USE_FIXED
1453 SoftFloat sum = FLOAT_0;
1454 const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1455 for (k = table[p]; k < table[p + 1]; k++) {
1456 sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1457 }
1458 sum = av_mul_sf(sum, den);
1459 #else
1460 float sum = 0.0f;
1461 const int den = env_size * (table[p + 1] - table[p]);
1462
1463 for (k = table[p]; k < table[p + 1]; k++) {
1464 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1465 }
1466 sum /= den;
1467 #endif /* USE_FIXED */
1468 for (k = table[p]; k < table[p + 1]; k++) {
1469 e_curr[e][k - kx1] = sum;
1470 }
1471 }
1472 }
1473 }
1474 }
1475
1476 void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1477 INTFLOAT* L, INTFLOAT* R)
1478 {
1479 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1480 int ch;
1481 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1482 int err;
1483
1484 if (id_aac != sbr->id_aac) {
1485 av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1486 "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1487 sbr_turnoff(sbr);
1488 }
1489
1490 if (sbr->start && !sbr->ready_for_dequant) {
1491 av_log(ac->avctx, AV_LOG_ERROR,
1492 "No quantized data read for sbr_dequant.\n");
1493 sbr_turnoff(sbr);
1494 }
1495
1496 if (!sbr->kx_and_m_pushed) {
1497 sbr->kx[0] = sbr->kx[1];
1498 sbr->m[0] = sbr->m[1];
1499 } else {
1500 sbr->kx_and_m_pushed = 0;
1501 }
1502
1503 if (sbr->start) {
1504 sbr_dequant(sbr, id_aac);
1505 sbr->ready_for_dequant = 0;
1506 }
1507 for (ch = 0; ch < nch; ch++) {
1508 /* decode channel */
1509 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1510 (INTFLOAT*)sbr->qmf_filter_scratch,
1511 sbr->data[ch].W, sbr->data[ch].Ypos);
1512 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1513 (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1514 sbr->data[ch].Ypos);
1515 sbr->data[ch].Ypos ^= 1;
1516 if (sbr->start) {
1517 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1518 (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1519 sbr_chirp(sbr, &sbr->data[ch]);
1520 av_assert0(sbr->data[ch].bs_num_env > 0);
1521 sbr_hf_gen(ac, sbr, sbr->X_high,
1522 (const INTFLOAT (*)[40][2]) sbr->X_low,
1523 (const INTFLOAT (*)[2]) sbr->alpha0,
1524 (const INTFLOAT (*)[2]) sbr->alpha1,
1525 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1526 sbr->data[ch].bs_num_env);
1527
1528 // hf_adj
1529 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1530 if (!err) {
1531 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1532 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1533 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1534 (const INTFLOAT (*)[40][2]) sbr->X_high,
1535 sbr, &sbr->data[ch],
1536 sbr->data[ch].e_a);
1537 }
1538 }
1539
1540 /* synthesis */
1541 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1542 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1543 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1544 (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1545 }
1546
1547 if (ac->oc[1].m4ac.ps == 1) {
1548 if (sbr->ps.common.start) {
1549 AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1550 } else {
1551 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1552 }
1553 nch = 2;
1554 }
1555
1556 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1557 L, sbr->X[0], sbr->qmf_filter_scratch,
1558 sbr->data[0].synthesis_filterbank_samples,
1559 &sbr->data[0].synthesis_filterbank_samples_offset,
1560 downsampled);
1561 if (nch == 2)
1562 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1563 R, sbr->X[1], sbr->qmf_filter_scratch,
1564 sbr->data[1].synthesis_filterbank_samples,
1565 &sbr->data[1].synthesis_filterbank_samples_offset,
1566 downsampled);
1567 }
1568
1569 static void aacsbr_func_ptr_init(AACSBRContext *c)
1570 {
1571 c->sbr_lf_gen = sbr_lf_gen;
1572 c->sbr_hf_assemble = sbr_hf_assemble;
1573 c->sbr_x_gen = sbr_x_gen;
1574 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1575
1576 #if !USE_FIXED
1577 #if ARCH_MIPS
1578 ff_aacsbr_func_ptr_init_mips(c);
1579 #endif
1580 #endif
1581 }
1582