• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AC-3 DSP functions
3  * Copyright (c) 2011 Justin Ruggles
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <math.h>
23 #include <stdlib.h>
24 #include <string.h>
25 
26 #include "config.h"
27 #include "libavutil/attributes.h"
28 #include "libavutil/common.h"
29 #include "libavutil/intmath.h"
30 #include "libavutil/mem_internal.h"
31 
32 #include "ac3defs.h"
33 #include "ac3dsp.h"
34 #include "ac3tab.h"
35 #include "mathops.h"
36 
ac3_exponent_min_c(uint8_t * exp,int num_reuse_blocks,int nb_coefs)37 static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
38 {
39     int blk, i;
40 
41     if (!num_reuse_blocks)
42         return;
43 
44     for (i = 0; i < nb_coefs; i++) {
45         uint8_t min_exp = *exp;
46         uint8_t *exp1 = exp + 256;
47         for (blk = 0; blk < num_reuse_blocks; blk++) {
48             uint8_t next_exp = *exp1;
49             if (next_exp < min_exp)
50                 min_exp = next_exp;
51             exp1 += 256;
52         }
53         *exp++ = min_exp;
54     }
55 }
56 
float_to_fixed24_c(int32_t * dst,const float * src,unsigned int len)57 static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
58 {
59     const float scale = 1 << 24;
60     do {
61         *dst++ = lrintf(*src++ * scale);
62         *dst++ = lrintf(*src++ * scale);
63         *dst++ = lrintf(*src++ * scale);
64         *dst++ = lrintf(*src++ * scale);
65         *dst++ = lrintf(*src++ * scale);
66         *dst++ = lrintf(*src++ * scale);
67         *dst++ = lrintf(*src++ * scale);
68         *dst++ = lrintf(*src++ * scale);
69         len -= 8;
70     } while (len > 0);
71 }
72 
ac3_bit_alloc_calc_bap_c(int16_t * mask,int16_t * psd,int start,int end,int snr_offset,int floor,const uint8_t * bap_tab,uint8_t * bap)73 static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
74                                      int start, int end,
75                                      int snr_offset, int floor,
76                                      const uint8_t *bap_tab, uint8_t *bap)
77 {
78     int bin, band, band_end;
79 
80     /* special case, if snr offset is -960, set all bap's to zero */
81     if (snr_offset == -960) {
82         memset(bap, 0, AC3_MAX_COEFS);
83         return;
84     }
85 
86     bin  = start;
87     band = ff_ac3_bin_to_band_tab[start];
88     do {
89         int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
90         band_end = ff_ac3_band_start_tab[++band];
91         band_end = FFMIN(band_end, end);
92 
93         for (; bin < band_end; bin++) {
94             int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
95             bap[bin] = bap_tab[address];
96         }
97     } while (end > band_end);
98 }
99 
ac3_update_bap_counts_c(uint16_t mant_cnt[16],uint8_t * bap,int len)100 static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
101                                     int len)
102 {
103     while (len-- > 0)
104         mant_cnt[bap[len]]++;
105 }
106 
107 DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
108     0,  0,  0,  3,  0,  4,  5,  6,  7,  8,  9, 10, 11, 12, 14, 16
109 };
110 
ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])111 static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
112 {
113     int blk, bap;
114     int bits = 0;
115 
116     for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
117         // bap=1 : 3 mantissas in 5 bits
118         bits += (mant_cnt[blk][1] / 3) * 5;
119         // bap=2 : 3 mantissas in 7 bits
120         // bap=4 : 2 mantissas in 7 bits
121         bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
122         // bap=3 : 1 mantissa in 3 bits
123         bits += mant_cnt[blk][3] * 3;
124         // bap=5 to 15 : get bits per mantissa from table
125         for (bap = 5; bap < 16; bap++)
126             bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
127     }
128     return bits;
129 }
130 
ac3_extract_exponents_c(uint8_t * exp,int32_t * coef,int nb_coefs)131 static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
132 {
133     int i;
134 
135     for (i = 0; i < nb_coefs; i++) {
136         int v = abs(coef[i]);
137         exp[i] = v ? 23 - av_log2(v) : 24;
138     }
139 }
140 
ac3_sum_square_butterfly_int32_c(int64_t sum[4],const int32_t * coef0,const int32_t * coef1,int len)141 static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
142                                              const int32_t *coef0,
143                                              const int32_t *coef1,
144                                              int len)
145 {
146     int i;
147 
148     sum[0] = sum[1] = sum[2] = sum[3] = 0;
149 
150     for (i = 0; i < len; i++) {
151         int lt = coef0[i];
152         int rt = coef1[i];
153         int md = lt + rt;
154         int sd = lt - rt;
155         MAC64(sum[0], lt, lt);
156         MAC64(sum[1], rt, rt);
157         MAC64(sum[2], md, md);
158         MAC64(sum[3], sd, sd);
159     }
160 }
161 
ac3_sum_square_butterfly_float_c(float sum[4],const float * coef0,const float * coef1,int len)162 static void ac3_sum_square_butterfly_float_c(float sum[4],
163                                              const float *coef0,
164                                              const float *coef1,
165                                              int len)
166 {
167     int i;
168 
169     sum[0] = sum[1] = sum[2] = sum[3] = 0;
170 
171     for (i = 0; i < len; i++) {
172         float lt = coef0[i];
173         float rt = coef1[i];
174         float md = lt + rt;
175         float sd = lt - rt;
176         sum[0] += lt * lt;
177         sum[1] += rt * rt;
178         sum[2] += md * md;
179         sum[3] += sd * sd;
180     }
181 }
182 
ac3_downmix_5_to_2_symmetric_c(float ** samples,float ** matrix,int len)183 static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix,
184                                            int len)
185 {
186     int i;
187     float v0, v1;
188     float front_mix    = matrix[0][0];
189     float center_mix   = matrix[0][1];
190     float surround_mix = matrix[0][3];
191 
192     for (i = 0; i < len; i++) {
193         v0 = samples[0][i] * front_mix  +
194              samples[1][i] * center_mix +
195              samples[3][i] * surround_mix;
196 
197         v1 = samples[1][i] * center_mix +
198              samples[2][i] * front_mix  +
199              samples[4][i] * surround_mix;
200 
201         samples[0][i] = v0;
202         samples[1][i] = v1;
203     }
204 }
205 
ac3_downmix_5_to_1_symmetric_c(float ** samples,float ** matrix,int len)206 static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix,
207                                            int len)
208 {
209     int i;
210     float front_mix    = matrix[0][0];
211     float center_mix   = matrix[0][1];
212     float surround_mix = matrix[0][3];
213 
214     for (i = 0; i < len; i++) {
215         samples[0][i] = samples[0][i] * front_mix    +
216                         samples[1][i] * center_mix   +
217                         samples[2][i] * front_mix    +
218                         samples[3][i] * surround_mix +
219                         samples[4][i] * surround_mix;
220     }
221 }
222 
ac3_downmix_c(float ** samples,float ** matrix,int out_ch,int in_ch,int len)223 static void ac3_downmix_c(float **samples, float **matrix,
224                           int out_ch, int in_ch, int len)
225 {
226     int i, j;
227     float v0, v1;
228 
229     if (out_ch == 2) {
230         for (i = 0; i < len; i++) {
231             v0 = v1 = 0.0f;
232             for (j = 0; j < in_ch; j++) {
233                 v0 += samples[j][i] * matrix[0][j];
234                 v1 += samples[j][i] * matrix[1][j];
235             }
236             samples[0][i] = v0;
237             samples[1][i] = v1;
238         }
239     } else if (out_ch == 1) {
240         for (i = 0; i < len; i++) {
241             v0 = 0.0f;
242             for (j = 0; j < in_ch; j++)
243                 v0 += samples[j][i] * matrix[0][j];
244             samples[0][i] = v0;
245         }
246     }
247 }
248 
ac3_downmix_5_to_2_symmetric_c_fixed(int32_t ** samples,int16_t ** matrix,int len)249 static void ac3_downmix_5_to_2_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
250                                            int len)
251 {
252     int i;
253     int64_t v0, v1;
254     int16_t front_mix    = matrix[0][0];
255     int16_t center_mix   = matrix[0][1];
256     int16_t surround_mix = matrix[0][3];
257 
258     for (i = 0; i < len; i++) {
259         v0 = (int64_t)samples[0][i] * front_mix  +
260              (int64_t)samples[1][i] * center_mix +
261              (int64_t)samples[3][i] * surround_mix;
262 
263         v1 = (int64_t)samples[1][i] * center_mix +
264              (int64_t)samples[2][i] * front_mix  +
265              (int64_t)samples[4][i] * surround_mix;
266 
267         samples[0][i] = (v0+2048)>>12;
268         samples[1][i] = (v1+2048)>>12;
269     }
270 }
271 
ac3_downmix_5_to_1_symmetric_c_fixed(int32_t ** samples,int16_t ** matrix,int len)272 static void ac3_downmix_5_to_1_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
273                                                  int len)
274 {
275     int i;
276     int64_t v0;
277     int16_t front_mix    = matrix[0][0];
278     int16_t center_mix   = matrix[0][1];
279     int16_t surround_mix = matrix[0][3];
280 
281     for (i = 0; i < len; i++) {
282         v0 = (int64_t)samples[0][i] * front_mix    +
283              (int64_t)samples[1][i] * center_mix   +
284              (int64_t)samples[2][i] * front_mix    +
285              (int64_t)samples[3][i] * surround_mix +
286              (int64_t)samples[4][i] * surround_mix;
287 
288         samples[0][i] = (v0+2048)>>12;
289     }
290 }
291 
ac3_downmix_c_fixed(int32_t ** samples,int16_t ** matrix,int out_ch,int in_ch,int len)292 static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix,
293                                 int out_ch, int in_ch, int len)
294 {
295     int i, j;
296     int64_t v0, v1;
297     if (out_ch == 2) {
298         for (i = 0; i < len; i++) {
299             v0 = v1 = 0;
300             for (j = 0; j < in_ch; j++) {
301                 v0 += (int64_t)samples[j][i] * matrix[0][j];
302                 v1 += (int64_t)samples[j][i] * matrix[1][j];
303             }
304             samples[0][i] = (v0+2048)>>12;
305             samples[1][i] = (v1+2048)>>12;
306         }
307     } else if (out_ch == 1) {
308         for (i = 0; i < len; i++) {
309             v0 = 0;
310             for (j = 0; j < in_ch; j++)
311                 v0 += (int64_t)samples[j][i] * matrix[0][j];
312             samples[0][i] = (v0+2048)>>12;
313         }
314     }
315 }
316 
ff_ac3dsp_downmix_fixed(AC3DSPContext * c,int32_t ** samples,int16_t ** matrix,int out_ch,int in_ch,int len)317 void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
318                              int out_ch, int in_ch, int len)
319 {
320     if (c->in_channels != in_ch || c->out_channels != out_ch) {
321         c->in_channels  = in_ch;
322         c->out_channels = out_ch;
323         c->downmix_fixed = NULL;
324 
325         if (in_ch == 5 && out_ch == 2 &&
326             !(matrix[1][0] | matrix[0][2]  |
327               matrix[1][3] | matrix[0][4]  |
328              (matrix[0][1] ^ matrix[1][1]) |
329              (matrix[0][0] ^ matrix[1][2]))) {
330             c->downmix_fixed = ac3_downmix_5_to_2_symmetric_c_fixed;
331         } else if (in_ch == 5 && out_ch == 1 &&
332                    matrix[0][0] == matrix[0][2] &&
333                    matrix[0][3] == matrix[0][4]) {
334             c->downmix_fixed = ac3_downmix_5_to_1_symmetric_c_fixed;
335         }
336     }
337 
338     if (c->downmix_fixed)
339         c->downmix_fixed(samples, matrix, len);
340     else
341         ac3_downmix_c_fixed(samples, matrix, out_ch, in_ch, len);
342 }
343 
ff_ac3dsp_downmix(AC3DSPContext * c,float ** samples,float ** matrix,int out_ch,int in_ch,int len)344 void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
345                        int out_ch, int in_ch, int len)
346 {
347     if (c->in_channels != in_ch || c->out_channels != out_ch) {
348         int **matrix_cmp = (int **)matrix;
349 
350         c->in_channels  = in_ch;
351         c->out_channels = out_ch;
352         c->downmix      = NULL;
353 
354         if (in_ch == 5 && out_ch == 2 &&
355             !(matrix_cmp[1][0] | matrix_cmp[0][2]   |
356               matrix_cmp[1][3] | matrix_cmp[0][4]   |
357              (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
358              (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
359             c->downmix = ac3_downmix_5_to_2_symmetric_c;
360         } else if (in_ch == 5 && out_ch == 1 &&
361                    matrix_cmp[0][0] == matrix_cmp[0][2] &&
362                    matrix_cmp[0][3] == matrix_cmp[0][4]) {
363             c->downmix = ac3_downmix_5_to_1_symmetric_c;
364         }
365 
366 #if ARCH_X86
367         ff_ac3dsp_set_downmix_x86(c);
368 #endif
369     }
370 
371     if (c->downmix)
372         c->downmix(samples, matrix, len);
373     else
374         ac3_downmix_c(samples, matrix, out_ch, in_ch, len);
375 }
376 
ff_ac3dsp_init(AC3DSPContext * c,int bit_exact)377 av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
378 {
379     c->ac3_exponent_min = ac3_exponent_min_c;
380     c->float_to_fixed24 = float_to_fixed24_c;
381     c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
382     c->update_bap_counts = ac3_update_bap_counts_c;
383     c->compute_mantissa_size = ac3_compute_mantissa_size_c;
384     c->extract_exponents = ac3_extract_exponents_c;
385     c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
386     c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
387     c->in_channels           = 0;
388     c->out_channels          = 0;
389     c->downmix               = NULL;
390     c->downmix_fixed         = NULL;
391 
392 #if ARCH_ARM
393     ff_ac3dsp_init_arm(c, bit_exact);
394 #elif ARCH_X86
395     ff_ac3dsp_init_x86(c, bit_exact);
396 #elif ARCH_MIPS
397     ff_ac3dsp_init_mips(c, bit_exact);
398 #endif
399 }
400