• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ATRAC1 compatible decoder
3  * Copyright (c) 2009 Maxim Poliakovski
4  * Copyright (c) 2009 Benjamin Larsson
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * ATRAC1 compatible decoder.
26  * This decoder handles raw ATRAC1 data and probably SDDS data.
27  */
28 
29 /* Many thanks to Tim Craig for all the help! */
30 
31 #include <math.h>
32 #include <stddef.h>
33 #include <stdio.h>
34 
35 #include "libavutil/float_dsp.h"
36 #include "libavutil/mem_internal.h"
37 
38 #include "avcodec.h"
39 #include "codec_internal.h"
40 #include "get_bits.h"
41 #include "fft.h"
42 #include "internal.h"
43 #include "sinewin.h"
44 
45 #include "atrac.h"
46 #include "atrac1data.h"
47 
48 #define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
49 #define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
50 #define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
51 #define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
52 #define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
53 #define AT1_MAX_CHANNELS 2
54 
55 #define AT1_QMF_BANDS    3
56 #define IDX_LOW_BAND     0
57 #define IDX_MID_BAND     1
58 #define IDX_HIGH_BAND    2
59 
60 /**
61  * Sound unit struct, one unit is used per channel
62  */
63 typedef struct AT1SUCtx {
64     int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
65     int                 num_bfus;                           ///< number of Block Floating Units
66     float*              spectrum[2];
67     DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
68     DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
69     DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
70     DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
71     DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39];    ///< delay line for the last stacked QMF filter
72 } AT1SUCtx;
73 
74 /**
75  * The atrac1 context, holds all needed parameters for decoding
76  */
77 typedef struct AT1Ctx {
78     AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
79     DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
80 
81     DECLARE_ALIGNED(32, float,  low)[256];
82     DECLARE_ALIGNED(32, float,  mid)[256];
83     DECLARE_ALIGNED(32, float, high)[512];
84     float*              bands[3];
85     FFTContext          mdct_ctx[3];
86     void (*vector_fmul_window)(float *dst, const float *src0,
87                                const float *src1, const float *win, int len);
88 } AT1Ctx;
89 
90 /** size of the transform in samples in the long mode for each QMF band */
91 static const uint16_t samples_per_band[3] = {128, 128, 256};
92 static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
93 
94 
at1_imdct(AT1Ctx * q,float * spec,float * out,int nbits,int rev_spec)95 static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
96                       int rev_spec)
97 {
98     FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
99     int transf_size = 1 << nbits;
100 
101     if (rev_spec) {
102         int i;
103         for (i = 0; i < transf_size / 2; i++)
104             FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
105     }
106     mdct_context->imdct_half(mdct_context, out, spec);
107 }
108 
109 
at1_imdct_block(AT1SUCtx * su,AT1Ctx * q)110 static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
111 {
112     int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
113     unsigned int start_pos, ref_pos = 0, pos = 0;
114 
115     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
116         float *prev_buf;
117         int j;
118 
119         band_samples = samples_per_band[band_num];
120         log2_block_count = su->log2_block_count[band_num];
121 
122         /* number of mdct blocks in the current QMF band: 1 - for long mode */
123         /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
124         num_blocks = 1 << log2_block_count;
125 
126         if (num_blocks == 1) {
127             /* mdct block size in samples: 128 (long mode, low & mid bands), */
128             /* 256 (long mode, high band) and 32 (short mode, all bands) */
129             block_size = band_samples >> log2_block_count;
130 
131             /* calc transform size in bits according to the block_size_mode */
132             nbits = mdct_long_nbits[band_num] - log2_block_count;
133 
134             if (nbits != 5 && nbits != 7 && nbits != 8)
135                 return AVERROR_INVALIDDATA;
136         } else {
137             block_size = 32;
138             nbits = 5;
139         }
140 
141         start_pos = 0;
142         prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
143         for (j=0; j < num_blocks; j++) {
144             at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
145 
146             /* overlap and window */
147             q->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
148                                   &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
149 
150             prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
151             start_pos += block_size;
152             pos += block_size;
153         }
154 
155         if (num_blocks == 1)
156             memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
157 
158         ref_pos += band_samples;
159     }
160 
161     /* Swap buffers so the mdct overlap works */
162     FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
163 
164     return 0;
165 }
166 
167 /**
168  * Parse the block size mode byte
169  */
170 
at1_parse_bsm(GetBitContext * gb,int log2_block_cnt[AT1_QMF_BANDS])171 static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
172 {
173     int log2_block_count_tmp, i;
174 
175     for (i = 0; i < 2; i++) {
176         /* low and mid band */
177         log2_block_count_tmp = get_bits(gb, 2);
178         if (log2_block_count_tmp & 1)
179             return AVERROR_INVALIDDATA;
180         log2_block_cnt[i] = 2 - log2_block_count_tmp;
181     }
182 
183     /* high band */
184     log2_block_count_tmp = get_bits(gb, 2);
185     if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
186         return AVERROR_INVALIDDATA;
187     log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
188 
189     skip_bits(gb, 2);
190     return 0;
191 }
192 
193 
at1_unpack_dequant(GetBitContext * gb,AT1SUCtx * su,float spec[AT1_SU_SAMPLES])194 static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
195                               float spec[AT1_SU_SAMPLES])
196 {
197     int bits_used, band_num, bfu_num, i;
198     uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
199     uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
200 
201     /* parse the info byte (2nd byte) telling how much BFUs were coded */
202     su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
203 
204     /* calc number of consumed bits:
205         num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
206         + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
207     bits_used = su->num_bfus * 10 + 32 +
208                 bfu_amount_tab2[get_bits(gb, 2)] +
209                 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
210 
211     /* get word length index (idwl) for each BFU */
212     for (i = 0; i < su->num_bfus; i++)
213         idwls[i] = get_bits(gb, 4);
214 
215     /* get scalefactor index (idsf) for each BFU */
216     for (i = 0; i < su->num_bfus; i++)
217         idsfs[i] = get_bits(gb, 6);
218 
219     /* zero idwl/idsf for empty BFUs */
220     for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
221         idwls[i] = idsfs[i] = 0;
222 
223     /* read in the spectral data and reconstruct MDCT spectrum of this channel */
224     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
225         for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
226             int pos;
227 
228             int num_specs = specs_per_bfu[bfu_num];
229             int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
230             float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
231             bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
232 
233             /* check for bitstream overflow */
234             if (bits_used > AT1_SU_MAX_BITS)
235                 return AVERROR_INVALIDDATA;
236 
237             /* get the position of the 1st spec according to the block size mode */
238             pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
239 
240             if (word_len) {
241                 float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
242 
243                 for (i = 0; i < num_specs; i++) {
244                     /* read in a quantized spec and convert it to
245                      * signed int and then inverse quantization
246                      */
247                     spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
248                 }
249             } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
250                 memset(&spec[pos], 0, num_specs * sizeof(float));
251             }
252         }
253     }
254 
255     return 0;
256 }
257 
258 
at1_subband_synthesis(AT1Ctx * q,AT1SUCtx * su,float * pOut)259 static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
260 {
261     float temp[256];
262     float iqmf_temp[512 + 46];
263 
264     /* combine low and middle bands */
265     ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
266 
267     /* delay the signal of the high band by 39 samples */
268     memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  39);
269     memcpy(&su->last_qmf_delay[39], q->bands[2],             sizeof(float) * 256);
270 
271     /* combine (low + middle) and high bands */
272     ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
273 }
274 
275 
atrac1_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)276 static int atrac1_decode_frame(AVCodecContext *avctx, AVFrame *frame,
277                                int *got_frame_ptr, AVPacket *avpkt)
278 {
279     const uint8_t *buf = avpkt->data;
280     int buf_size       = avpkt->size;
281     AT1Ctx *q          = avctx->priv_data;
282     int channels       = avctx->ch_layout.nb_channels;
283     int ch, ret;
284     GetBitContext gb;
285 
286 
287     if (buf_size < 212 * channels) {
288         av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
289         return AVERROR_INVALIDDATA;
290     }
291 
292     /* get output buffer */
293     frame->nb_samples = AT1_SU_SAMPLES;
294     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
295         return ret;
296 
297     for (ch = 0; ch < channels; ch++) {
298         AT1SUCtx* su = &q->SUs[ch];
299 
300         init_get_bits(&gb, &buf[212 * ch], 212 * 8);
301 
302         /* parse block_size_mode, 1st byte */
303         ret = at1_parse_bsm(&gb, su->log2_block_count);
304         if (ret < 0)
305             return ret;
306 
307         ret = at1_unpack_dequant(&gb, su, q->spec);
308         if (ret < 0)
309             return ret;
310 
311         ret = at1_imdct_block(su, q);
312         if (ret < 0)
313             return ret;
314         at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
315     }
316 
317     *got_frame_ptr = 1;
318 
319     return avctx->block_align;
320 }
321 
322 
atrac1_decode_end(AVCodecContext * avctx)323 static av_cold int atrac1_decode_end(AVCodecContext * avctx)
324 {
325     AT1Ctx *q = avctx->priv_data;
326 
327     ff_mdct_end(&q->mdct_ctx[0]);
328     ff_mdct_end(&q->mdct_ctx[1]);
329     ff_mdct_end(&q->mdct_ctx[2]);
330 
331     return 0;
332 }
333 
334 
atrac1_decode_init(AVCodecContext * avctx)335 static av_cold int atrac1_decode_init(AVCodecContext *avctx)
336 {
337     AT1Ctx *q = avctx->priv_data;
338     AVFloatDSPContext *fdsp;
339     int channels = avctx->ch_layout.nb_channels;
340     int ret;
341 
342     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
343 
344     if (channels < 1 || channels > AT1_MAX_CHANNELS) {
345         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
346                channels);
347         return AVERROR(EINVAL);
348     }
349 
350     if (avctx->block_align <= 0) {
351         av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
352         return AVERROR_PATCHWELCOME;
353     }
354 
355     /* Init the mdct transforms */
356     if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
357         (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
358         (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
359         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
360         return ret;
361     }
362 
363     ff_init_ff_sine_windows(5);
364 
365     ff_atrac_generate_tables();
366 
367     fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
368     if (!fdsp)
369         return AVERROR(ENOMEM);
370     q->vector_fmul_window = fdsp->vector_fmul_window;
371     av_free(fdsp);
372 
373     q->bands[0] = q->low;
374     q->bands[1] = q->mid;
375     q->bands[2] = q->high;
376 
377     /* Prepare the mdct overlap buffers */
378     q->SUs[0].spectrum[0] = q->SUs[0].spec1;
379     q->SUs[0].spectrum[1] = q->SUs[0].spec2;
380     q->SUs[1].spectrum[0] = q->SUs[1].spec1;
381     q->SUs[1].spectrum[1] = q->SUs[1].spec2;
382 
383     return 0;
384 }
385 
386 
387 const FFCodec ff_atrac1_decoder = {
388     .p.name         = "atrac1",
389     .p.long_name    = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
390     .p.type         = AVMEDIA_TYPE_AUDIO,
391     .p.id           = AV_CODEC_ID_ATRAC1,
392     .priv_data_size = sizeof(AT1Ctx),
393     .init           = atrac1_decode_init,
394     .close          = atrac1_decode_end,
395     FF_CODEC_DECODE_CB(atrac1_decode_frame),
396     .p.capabilities = AV_CODEC_CAP_DR1,
397     .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
398                                                       AV_SAMPLE_FMT_NONE },
399     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
400 };
401