• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * FFT/IFFT transforms
3  * Copyright (c) 2008 Loren Merritt
4  * Copyright (c) 2002 Fabrice Bellard
5  * Partly based on libdjbfft by D. J. Bernstein
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * FFT/IFFT transforms.
27  */
28 
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "libavutil/thread.h"
33 #include "fft.h"
34 #include "fft-internal.h"
35 
36 #if !FFT_FLOAT
37 #include "fft_table.h"
38 #else /* !FFT_FLOAT */
39 
40 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
41 #if !CONFIG_HARDCODED_TABLES
42 COSTABLE(16);
43 COSTABLE(32);
44 COSTABLE(64);
45 COSTABLE(128);
46 COSTABLE(256);
47 COSTABLE(512);
48 COSTABLE(1024);
49 COSTABLE(2048);
50 COSTABLE(4096);
51 COSTABLE(8192);
52 COSTABLE(16384);
53 COSTABLE(32768);
54 COSTABLE(65536);
55 COSTABLE(131072);
56 
init_ff_cos_tabs(int index)57 static av_cold void init_ff_cos_tabs(int index)
58 {
59     int i;
60     int m = 1<<index;
61     double freq = 2*M_PI/m;
62     FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
63     for(i=0; i<=m/4; i++)
64         tab[i] = FIX15(cos(i*freq));
65     for(i=1; i<m/4; i++)
66         tab[m/2-i] = tab[i];
67 }
68 
69 typedef struct CosTabsInitOnce {
70     void (*func)(void);
71     AVOnce control;
72 } CosTabsInitOnce;
73 
74 #define INIT_FF_COS_TABS_FUNC(index, size)          \
75 static av_cold void init_ff_cos_tabs_ ## size (void)\
76 {                                                   \
77     init_ff_cos_tabs(index);                        \
78 }
79 
80 INIT_FF_COS_TABS_FUNC(4, 16)
81 INIT_FF_COS_TABS_FUNC(5, 32)
82 INIT_FF_COS_TABS_FUNC(6, 64)
83 INIT_FF_COS_TABS_FUNC(7, 128)
84 INIT_FF_COS_TABS_FUNC(8, 256)
85 INIT_FF_COS_TABS_FUNC(9, 512)
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94 
95 static CosTabsInitOnce cos_tabs_init_once[] = {
96     { NULL },
97     { NULL },
98     { NULL },
99     { NULL },
100     { init_ff_cos_tabs_16, AV_ONCE_INIT },
101     { init_ff_cos_tabs_32, AV_ONCE_INIT },
102     { init_ff_cos_tabs_64, AV_ONCE_INIT },
103     { init_ff_cos_tabs_128, AV_ONCE_INIT },
104     { init_ff_cos_tabs_256, AV_ONCE_INIT },
105     { init_ff_cos_tabs_512, AV_ONCE_INIT },
106     { init_ff_cos_tabs_1024, AV_ONCE_INIT },
107     { init_ff_cos_tabs_2048, AV_ONCE_INIT },
108     { init_ff_cos_tabs_4096, AV_ONCE_INIT },
109     { init_ff_cos_tabs_8192, AV_ONCE_INIT },
110     { init_ff_cos_tabs_16384, AV_ONCE_INIT },
111     { init_ff_cos_tabs_32768, AV_ONCE_INIT },
112     { init_ff_cos_tabs_65536, AV_ONCE_INIT },
113     { init_ff_cos_tabs_131072, AV_ONCE_INIT },
114 };
115 
ff_init_ff_cos_tabs(int index)116 av_cold void ff_init_ff_cos_tabs(int index)
117 {
118     ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func);
119 }
120 #endif
121 COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
122     NULL, NULL, NULL, NULL,
123     FFT_NAME(ff_cos_16),
124     FFT_NAME(ff_cos_32),
125     FFT_NAME(ff_cos_64),
126     FFT_NAME(ff_cos_128),
127     FFT_NAME(ff_cos_256),
128     FFT_NAME(ff_cos_512),
129     FFT_NAME(ff_cos_1024),
130     FFT_NAME(ff_cos_2048),
131     FFT_NAME(ff_cos_4096),
132     FFT_NAME(ff_cos_8192),
133     FFT_NAME(ff_cos_16384),
134     FFT_NAME(ff_cos_32768),
135     FFT_NAME(ff_cos_65536),
136     FFT_NAME(ff_cos_131072),
137 };
138 
139 #endif /* FFT_FLOAT */
140 
141 static void fft_permute_c(FFTContext *s, FFTComplex *z);
142 static void fft_calc_c(FFTContext *s, FFTComplex *z);
143 
split_radix_permutation(int i,int n,int inverse)144 static int split_radix_permutation(int i, int n, int inverse)
145 {
146     int m;
147     if(n <= 2) return i&1;
148     m = n >> 1;
149     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
150     m >>= 1;
151     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
152     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
153 }
154 
155 
156 static const int avx_tab[] = {
157     0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
158 };
159 
is_second_half_of_fft32(int i,int n)160 static int is_second_half_of_fft32(int i, int n)
161 {
162     if (n <= 32)
163         return i >= 16;
164     else if (i < n/2)
165         return is_second_half_of_fft32(i, n/2);
166     else if (i < 3*n/4)
167         return is_second_half_of_fft32(i - n/2, n/4);
168     else
169         return is_second_half_of_fft32(i - 3*n/4, n/4);
170 }
171 
fft_perm_avx(FFTContext * s)172 static av_cold void fft_perm_avx(FFTContext *s)
173 {
174     int i;
175     int n = 1 << s->nbits;
176 
177     for (i = 0; i < n; i += 16) {
178         int k;
179         if (is_second_half_of_fft32(i, n)) {
180             for (k = 0; k < 16; k++)
181                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
182                     i + avx_tab[k];
183 
184         } else {
185             for (k = 0; k < 16; k++) {
186                 int j = i + k;
187                 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
188                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
189             }
190         }
191     }
192 }
193 
ff_fft_init(FFTContext * s,int nbits,int inverse)194 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
195 {
196     int i, j, n;
197 
198     s->revtab = NULL;
199     s->revtab32 = NULL;
200 
201     if (nbits < 2 || nbits > 17)
202         goto fail;
203     s->nbits = nbits;
204     n = 1 << nbits;
205 
206     if (nbits <= 16) {
207         s->revtab = av_malloc(n * sizeof(uint16_t));
208         if (!s->revtab)
209             goto fail;
210     } else {
211         s->revtab32 = av_malloc(n * sizeof(uint32_t));
212         if (!s->revtab32)
213             goto fail;
214     }
215     s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
216     if (!s->tmp_buf)
217         goto fail;
218     s->inverse = inverse;
219     s->fft_permutation = FF_FFT_PERM_DEFAULT;
220 
221     s->fft_permute = fft_permute_c;
222     s->fft_calc    = fft_calc_c;
223 #if CONFIG_MDCT
224     s->imdct_calc  = ff_imdct_calc_c;
225     s->imdct_half  = ff_imdct_half_c;
226     s->mdct_calc   = ff_mdct_calc_c;
227 #endif
228 
229 #if FFT_FLOAT
230 #if ARCH_AARCH64
231     ff_fft_init_aarch64(s);
232 #elif ARCH_ARM
233     ff_fft_init_arm(s);
234 #elif ARCH_PPC
235     ff_fft_init_ppc(s);
236 #elif ARCH_X86
237     ff_fft_init_x86(s);
238 #endif
239 #if HAVE_MIPSFPU
240     ff_fft_init_mips(s);
241 #endif
242     for(j=4; j<=nbits; j++) {
243         ff_init_ff_cos_tabs(j);
244     }
245 #else /* FFT_FLOAT */
246     ff_fft_lut_init();
247 #endif
248 
249 
250     if (ARCH_X86 && FFT_FLOAT && s->fft_permutation == FF_FFT_PERM_AVX) {
251         fft_perm_avx(s);
252     } else {
253 #define PROCESS_FFT_PERM_SWAP_LSBS(num) do {\
254     for(i = 0; i < n; i++) {\
255         int k;\
256         j = i;\
257         j = (j & ~3) | ((j >> 1) & 1) | ((j << 1) & 2);\
258         k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
259         s->revtab##num[k] = j;\
260     } \
261 } while(0);
262 
263 #define PROCESS_FFT_PERM_DEFAULT(num) do {\
264     for(i = 0; i < n; i++) {\
265         int k;\
266         j = i;\
267         k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
268         s->revtab##num[k] = j;\
269     } \
270 } while(0);
271 
272 #define SPLIT_RADIX_PERMUTATION(num) do { \
273     if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) {\
274         PROCESS_FFT_PERM_SWAP_LSBS(num) \
275     } else {\
276         PROCESS_FFT_PERM_DEFAULT(num) \
277     }\
278 } while(0);
279 
280     if (s->revtab)
281         SPLIT_RADIX_PERMUTATION()
282     if (s->revtab32)
283         SPLIT_RADIX_PERMUTATION(32)
284 
285 #undef PROCESS_FFT_PERM_DEFAULT
286 #undef PROCESS_FFT_PERM_SWAP_LSBS
287 #undef SPLIT_RADIX_PERMUTATION
288     }
289 
290     return 0;
291  fail:
292     av_freep(&s->revtab);
293     av_freep(&s->revtab32);
294     av_freep(&s->tmp_buf);
295     return -1;
296 }
297 
fft_permute_c(FFTContext * s,FFTComplex * z)298 static void fft_permute_c(FFTContext *s, FFTComplex *z)
299 {
300     int j, np;
301     const uint16_t *revtab = s->revtab;
302     const uint32_t *revtab32 = s->revtab32;
303     np = 1 << s->nbits;
304     /* TODO: handle split-radix permute in a more optimal way, probably in-place */
305     if (revtab) {
306         for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
307     } else
308         for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
309 
310     memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
311 }
312 
ff_fft_end(FFTContext * s)313 av_cold void ff_fft_end(FFTContext *s)
314 {
315     av_freep(&s->revtab);
316     av_freep(&s->revtab32);
317     av_freep(&s->tmp_buf);
318 }
319 
320 #if !FFT_FLOAT
321 
fft_calc_c(FFTContext * s,FFTComplex * z)322 static void fft_calc_c(FFTContext *s, FFTComplex *z) {
323 
324     int nbits, i, n, num_transforms, offset, step;
325     int n4, n2, n34;
326     unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
327     FFTComplex *tmpz;
328     const int fft_size = (1 << s->nbits);
329     int64_t accu;
330 
331     num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
332 
333     for (n=0; n<num_transforms; n++){
334         offset = ff_fft_offsets_lut[n] << 2;
335         tmpz = z + offset;
336 
337         tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
338         tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
339         tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
340         tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
341         tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
342         tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
343         tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
344         tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
345 
346         tmpz[0].re = tmp1 + tmp5;
347         tmpz[2].re = tmp1 - tmp5;
348         tmpz[0].im = tmp2 + tmp6;
349         tmpz[2].im = tmp2 - tmp6;
350         tmpz[1].re = tmp3 + tmp8;
351         tmpz[3].re = tmp3 - tmp8;
352         tmpz[1].im = tmp4 - tmp7;
353         tmpz[3].im = tmp4 + tmp7;
354     }
355 
356     if (fft_size < 8)
357         return;
358 
359     num_transforms = (num_transforms >> 1) | 1;
360 
361     for (n=0; n<num_transforms; n++){
362         offset = ff_fft_offsets_lut[n] << 3;
363         tmpz = z + offset;
364 
365         tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
366         tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
367         tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
368         tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
369         tmp5 = tmp1 + tmp3;
370         tmp7 = tmp1 - tmp3;
371         tmp6 = tmp2 + tmp4;
372         tmp8 = tmp2 - tmp4;
373 
374         tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
375         tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
376         tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
377         tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
378 
379         tmpz[4].re = tmpz[0].re - tmp5;
380         tmpz[0].re = tmpz[0].re + tmp5;
381         tmpz[4].im = tmpz[0].im - tmp6;
382         tmpz[0].im = tmpz[0].im + tmp6;
383         tmpz[6].re = tmpz[2].re - tmp8;
384         tmpz[2].re = tmpz[2].re + tmp8;
385         tmpz[6].im = tmpz[2].im + tmp7;
386         tmpz[2].im = tmpz[2].im - tmp7;
387 
388         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
389         tmp5 = (int32_t)((accu + 0x40000000) >> 31);
390         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
391         tmp7 = (int32_t)((accu + 0x40000000) >> 31);
392         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
393         tmp6 = (int32_t)((accu + 0x40000000) >> 31);
394         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
395         tmp8 = (int32_t)((accu + 0x40000000) >> 31);
396         tmp1 = tmp5 + tmp7;
397         tmp3 = tmp5 - tmp7;
398         tmp2 = tmp6 + tmp8;
399         tmp4 = tmp6 - tmp8;
400 
401         tmpz[5].re = tmpz[1].re - tmp1;
402         tmpz[1].re = tmpz[1].re + tmp1;
403         tmpz[5].im = tmpz[1].im - tmp2;
404         tmpz[1].im = tmpz[1].im + tmp2;
405         tmpz[7].re = tmpz[3].re - tmp4;
406         tmpz[3].re = tmpz[3].re + tmp4;
407         tmpz[7].im = tmpz[3].im + tmp3;
408         tmpz[3].im = tmpz[3].im - tmp3;
409     }
410 
411     step = 1 << ((MAX_LOG2_NFFT-4) - 4);
412     n4 = 4;
413 
414     for (nbits=4; nbits<=s->nbits; nbits++){
415         n2  = 2*n4;
416         n34 = 3*n4;
417         num_transforms = (num_transforms >> 1) | 1;
418 
419         for (n=0; n<num_transforms; n++){
420             const FFTSample *w_re_ptr = ff_w_tab_sr + step;
421             const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
422             offset = ff_fft_offsets_lut[n] << nbits;
423             tmpz = z + offset;
424 
425             tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
426             tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
427             tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
428             tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
429 
430             tmpz[ n2].re = tmpz[ 0].re - tmp5;
431             tmpz[  0].re = tmpz[ 0].re + tmp5;
432             tmpz[ n2].im = tmpz[ 0].im - tmp6;
433             tmpz[  0].im = tmpz[ 0].im + tmp6;
434             tmpz[n34].re = tmpz[n4].re - tmp2;
435             tmpz[ n4].re = tmpz[n4].re + tmp2;
436             tmpz[n34].im = tmpz[n4].im + tmp1;
437             tmpz[ n4].im = tmpz[n4].im - tmp1;
438 
439             for (i=1; i<n4; i++){
440                 FFTSample w_re = w_re_ptr[0];
441                 FFTSample w_im = w_im_ptr[0];
442                 accu  = (int64_t)w_re*tmpz[ n2+i].re;
443                 accu += (int64_t)w_im*tmpz[ n2+i].im;
444                 tmp1 = (int32_t)((accu + 0x40000000) >> 31);
445                 accu  = (int64_t)w_re*tmpz[ n2+i].im;
446                 accu -= (int64_t)w_im*tmpz[ n2+i].re;
447                 tmp2 = (int32_t)((accu + 0x40000000) >> 31);
448                 accu  = (int64_t)w_re*tmpz[n34+i].re;
449                 accu -= (int64_t)w_im*tmpz[n34+i].im;
450                 tmp3 = (int32_t)((accu + 0x40000000) >> 31);
451                 accu  = (int64_t)w_re*tmpz[n34+i].im;
452                 accu += (int64_t)w_im*tmpz[n34+i].re;
453                 tmp4 = (int32_t)((accu + 0x40000000) >> 31);
454 
455                 tmp5 = tmp1 + tmp3;
456                 tmp1 = tmp1 - tmp3;
457                 tmp6 = tmp2 + tmp4;
458                 tmp2 = tmp2 - tmp4;
459 
460                 tmpz[ n2+i].re = tmpz[   i].re - tmp5;
461                 tmpz[    i].re = tmpz[   i].re + tmp5;
462                 tmpz[ n2+i].im = tmpz[   i].im - tmp6;
463                 tmpz[    i].im = tmpz[   i].im + tmp6;
464                 tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
465                 tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
466                 tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
467                 tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
468 
469                 w_re_ptr += step;
470                 w_im_ptr -= step;
471             }
472         }
473         step >>= 1;
474         n4   <<= 1;
475     }
476 }
477 
478 #else /* !FFT_FLOAT */
479 
480 #define BUTTERFLIES(a0,a1,a2,a3) {\
481     BF(t3, t5, t5, t1);\
482     BF(a2.re, a0.re, a0.re, t5);\
483     BF(a3.im, a1.im, a1.im, t3);\
484     BF(t4, t6, t2, t6);\
485     BF(a3.re, a1.re, a1.re, t4);\
486     BF(a2.im, a0.im, a0.im, t6);\
487 }
488 
489 // force loading all the inputs before storing any.
490 // this is slightly slower for small data, but avoids store->load aliasing
491 // for addresses separated by large powers of 2.
492 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
493     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
494     BF(t3, t5, t5, t1);\
495     BF(a2.re, a0.re, r0, t5);\
496     BF(a3.im, a1.im, i1, t3);\
497     BF(t4, t6, t2, t6);\
498     BF(a3.re, a1.re, r1, t4);\
499     BF(a2.im, a0.im, i0, t6);\
500 }
501 
502 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
503     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
504     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
505     BUTTERFLIES(a0,a1,a2,a3)\
506 }
507 
508 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
509     t1 = a2.re;\
510     t2 = a2.im;\
511     t5 = a3.re;\
512     t6 = a3.im;\
513     BUTTERFLIES(a0,a1,a2,a3)\
514 }
515 
516 /* z[0...8n-1], w[1...2n-1] */
517 #define PASS(name)\
518 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
519 {\
520     FFTDouble t1, t2, t3, t4, t5, t6;\
521     int o1 = 2*n;\
522     int o2 = 4*n;\
523     int o3 = 6*n;\
524     const FFTSample *wim = wre+o1;\
525     n--;\
526 \
527     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
528     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
529     do {\
530         z += 2;\
531         wre += 2;\
532         wim -= 2;\
533         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
534         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
535     } while(--n);\
536 }
537 
538 PASS(pass)
539 #if !CONFIG_SMALL
540 #undef BUTTERFLIES
541 #define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)542 PASS(pass_big)
543 #endif
544 
545 #define DECL_FFT(n,n2,n4)\
546 static void fft##n(FFTComplex *z)\
547 {\
548     fft##n2(z);\
549     fft##n4(z+n4*2);\
550     fft##n4(z+n4*3);\
551     pass(z,FFT_NAME(ff_cos_##n),n4/2);\
552 }
553 
554 static void fft4(FFTComplex *z)
555 {
556     FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
557 
558     BF(t3, t1, z[0].re, z[1].re);
559     BF(t8, t6, z[3].re, z[2].re);
560     BF(z[2].re, z[0].re, t1, t6);
561     BF(t4, t2, z[0].im, z[1].im);
562     BF(t7, t5, z[2].im, z[3].im);
563     BF(z[3].im, z[1].im, t4, t8);
564     BF(z[3].re, z[1].re, t3, t7);
565     BF(z[2].im, z[0].im, t2, t5);
566 }
567 
fft8(FFTComplex * z)568 static void fft8(FFTComplex *z)
569 {
570     FFTDouble t1, t2, t3, t4, t5, t6;
571 
572     fft4(z);
573 
574     BF(t1, z[5].re, z[4].re, -z[5].re);
575     BF(t2, z[5].im, z[4].im, -z[5].im);
576     BF(t5, z[7].re, z[6].re, -z[7].re);
577     BF(t6, z[7].im, z[6].im, -z[7].im);
578 
579     BUTTERFLIES(z[0],z[2],z[4],z[6]);
580     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
581 }
582 
583 #if !CONFIG_SMALL
fft16(FFTComplex * z)584 static void fft16(FFTComplex *z)
585 {
586     FFTDouble t1, t2, t3, t4, t5, t6;
587     FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
588     FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
589 
590     fft8(z);
591     fft4(z+8);
592     fft4(z+12);
593 
594     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
595     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
596     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
597     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
598 }
599 #else
600 DECL_FFT(16,8,4)
601 #endif
602 DECL_FFT(32,16,8)
603 DECL_FFT(64,32,16)
604 DECL_FFT(128,64,32)
605 DECL_FFT(256,128,64)
606 DECL_FFT(512,256,128)
607 #if !CONFIG_SMALL
608 #define pass pass_big
609 #endif
610 DECL_FFT(1024,512,256)
611 DECL_FFT(2048,1024,512)
612 DECL_FFT(4096,2048,1024)
613 DECL_FFT(8192,4096,2048)
614 DECL_FFT(16384,8192,4096)
615 DECL_FFT(32768,16384,8192)
616 DECL_FFT(65536,32768,16384)
617 DECL_FFT(131072,65536,32768)
618 
619 static void (* const fft_dispatch[])(FFTComplex*) = {
620     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
621     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
622 };
623 
fft_calc_c(FFTContext * s,FFTComplex * z)624 static void fft_calc_c(FFTContext *s, FFTComplex *z)
625 {
626     fft_dispatch[s->nbits-2](z);
627 }
628 #endif /* !FFT_FLOAT */
629