• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * G.729, G729 Annex D decoders
3  * Copyright (c) 2008 Vladimir Voroshilov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <inttypes.h>
23 #include <string.h>
24 
25 #include "avcodec.h"
26 #include "libavutil/avutil.h"
27 #include "get_bits.h"
28 #include "audiodsp.h"
29 #include "codec_internal.h"
30 #include "internal.h"
31 
32 
33 #include "g729.h"
34 #include "lsp.h"
35 #include "celp_math.h"
36 #include "celp_filters.h"
37 #include "acelp_filters.h"
38 #include "acelp_pitch_delay.h"
39 #include "acelp_vectors.h"
40 #include "g729data.h"
41 #include "g729postfilter.h"
42 
43 /**
44  * minimum quantized LSF value (3.2.4)
45  * 0.005 in Q13
46  */
47 #define LSFQ_MIN                   40
48 
49 /**
50  * maximum quantized LSF value (3.2.4)
51  * 3.135 in Q13
52  */
53 #define LSFQ_MAX                   25681
54 
55 /**
56  * minimum LSF distance (3.2.4)
57  * 0.0391 in Q13
58  */
59 #define LSFQ_DIFF_MIN              321
60 
61 /// interpolation filter length
62 #define INTERPOL_LEN              11
63 
64 /**
65  * minimum gain pitch value (3.8, Equation 47)
66  * 0.2 in (1.14)
67  */
68 #define SHARP_MIN                  3277
69 
70 /**
71  * maximum gain pitch value (3.8, Equation 47)
72  * (EE) This does not comply with the specification.
73  * Specification says about 0.8, which should be
74  * 13107 in (1.14), but reference C code uses
75  * 13017 (equals to 0.7945) instead of it.
76  */
77 #define SHARP_MAX                  13017
78 
79 /**
80  * MR_ENERGY (mean removed energy) = mean_energy + 10 * log10(2^26  * subframe_size) in (7.13)
81  */
82 #define MR_ENERGY 1018156
83 
84 #define DECISION_NOISE        0
85 #define DECISION_INTERMEDIATE 1
86 #define DECISION_VOICE        2
87 
88 typedef enum {
89     FORMAT_G729_8K = 0,
90     FORMAT_G729D_6K4,
91     FORMAT_COUNT,
92 } G729Formats;
93 
94 typedef struct {
95     uint8_t ac_index_bits[2];   ///< adaptive codebook index for second subframe (size in bits)
96     uint8_t parity_bit;         ///< parity bit for pitch delay
97     uint8_t gc_1st_index_bits;  ///< gain codebook (first stage) index (size in bits)
98     uint8_t gc_2nd_index_bits;  ///< gain codebook (second stage) index (size in bits)
99     uint8_t fc_signs_bits;      ///< number of pulses in fixed-codebook vector
100     uint8_t fc_indexes_bits;    ///< size (in bits) of fixed-codebook index entry
101     uint8_t block_size;
102 } G729FormatDescription;
103 
104 typedef struct {
105     /// past excitation signal buffer
106     int16_t exc_base[2*SUBFRAME_SIZE+PITCH_DELAY_MAX+INTERPOL_LEN];
107 
108     int16_t* exc;               ///< start of past excitation data in buffer
109     int pitch_delay_int_prev;   ///< integer part of previous subframe's pitch delay (4.1.3)
110 
111     /// (2.13) LSP quantizer outputs
112     int16_t  past_quantizer_output_buf[MA_NP + 1][10];
113     int16_t* past_quantizer_outputs[MA_NP + 1];
114 
115     int16_t lsfq[10];           ///< (2.13) quantized LSF coefficients from previous frame
116     int16_t lsp_buf[2][10];     ///< (0.15) LSP coefficients (previous and current frames) (3.2.5)
117     int16_t *lsp[2];            ///< pointers to lsp_buf
118 
119     int16_t quant_energy[4];    ///< (5.10) past quantized energy
120 
121     /// previous speech data for LP synthesis filter
122     int16_t syn_filter_data[10];
123 
124 
125     /// residual signal buffer (used in long-term postfilter)
126     int16_t residual[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
127 
128     /// previous speech data for residual calculation filter
129     int16_t res_filter_data[SUBFRAME_SIZE+10];
130 
131     /// previous speech data for short-term postfilter
132     int16_t pos_filter_data[SUBFRAME_SIZE+10];
133 
134     /// (1.14) pitch gain of current and five previous subframes
135     int16_t past_gain_pitch[6];
136 
137     /// (14.1) gain code from current and previous subframe
138     int16_t past_gain_code[2];
139 
140     /// voice decision on previous subframe (0-noise, 1-intermediate, 2-voice), G.729D
141     int16_t voice_decision;
142 
143     int16_t onset;              ///< detected onset level (0-2)
144     int16_t was_periodic;       ///< whether previous frame was declared as periodic or not (4.4)
145     int16_t ht_prev_data;       ///< previous data for 4.2.3, equation 86
146     int gain_coeff;             ///< (1.14) gain coefficient (4.2.4)
147     uint16_t rand_value;        ///< random number generator value (4.4.4)
148     int ma_predictor_prev;      ///< switched MA predictor of LSP quantizer from last good frame
149 
150     /// (14.14) high-pass filter data (past input)
151     int hpf_f[2];
152 
153     /// high-pass filter data (past output)
154     int16_t hpf_z[2];
155 }  G729ChannelContext;
156 
157 typedef struct {
158     AudioDSPContext adsp;
159 
160     G729ChannelContext *channel_context;
161 } G729Context;
162 
163 static const G729FormatDescription format_g729_8k = {
164     .ac_index_bits     = {8,5},
165     .parity_bit        = 1,
166     .gc_1st_index_bits = GC_1ST_IDX_BITS_8K,
167     .gc_2nd_index_bits = GC_2ND_IDX_BITS_8K,
168     .fc_signs_bits     = 4,
169     .fc_indexes_bits   = 13,
170     .block_size        = G729_8K_BLOCK_SIZE,
171 };
172 
173 static const G729FormatDescription format_g729d_6k4 = {
174     .ac_index_bits     = {8,4},
175     .parity_bit        = 0,
176     .gc_1st_index_bits = GC_1ST_IDX_BITS_6K4,
177     .gc_2nd_index_bits = GC_2ND_IDX_BITS_6K4,
178     .fc_signs_bits     = 2,
179     .fc_indexes_bits   = 9,
180     .block_size        = G729D_6K4_BLOCK_SIZE,
181 };
182 
183 /**
184  * @brief pseudo random number generator
185  */
g729_prng(uint16_t value)186 static inline uint16_t g729_prng(uint16_t value)
187 {
188     return 31821 * value + 13849;
189 }
190 
191 /**
192  * Decodes LSF (Line Spectral Frequencies) from L0-L3 (3.2.4).
193  * @param[out] lsfq (2.13) quantized LSF coefficients
194  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
195  * @param ma_predictor switched MA predictor of LSP quantizer
196  * @param vq_1st first stage vector of quantizer
197  * @param vq_2nd_low second stage lower vector of LSP quantizer
198  * @param vq_2nd_high second stage higher vector of LSP quantizer
199  */
lsf_decode(int16_t * lsfq,int16_t * past_quantizer_outputs[MA_NP+1],int16_t ma_predictor,int16_t vq_1st,int16_t vq_2nd_low,int16_t vq_2nd_high)200 static void lsf_decode(int16_t* lsfq, int16_t* past_quantizer_outputs[MA_NP + 1],
201                        int16_t ma_predictor,
202                        int16_t vq_1st, int16_t vq_2nd_low, int16_t vq_2nd_high)
203 {
204     int i,j;
205     static const uint8_t min_distance[2]={10, 5}; //(2.13)
206     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
207 
208     for (i = 0; i < 5; i++) {
209         quantizer_output[i]     = cb_lsp_1st[vq_1st][i    ] + cb_lsp_2nd[vq_2nd_low ][i    ];
210         quantizer_output[i + 5] = cb_lsp_1st[vq_1st][i + 5] + cb_lsp_2nd[vq_2nd_high][i + 5];
211     }
212 
213     for (j = 0; j < 2; j++) {
214         for (i = 1; i < 10; i++) {
215             int diff = (quantizer_output[i - 1] - quantizer_output[i] + min_distance[j]) >> 1;
216             if (diff > 0) {
217                 quantizer_output[i - 1] -= diff;
218                 quantizer_output[i    ] += diff;
219             }
220         }
221     }
222 
223     for (i = 0; i < 10; i++) {
224         int sum = quantizer_output[i] * cb_ma_predictor_sum[ma_predictor][i];
225         for (j = 0; j < MA_NP; j++)
226             sum += past_quantizer_outputs[j][i] * cb_ma_predictor[ma_predictor][j][i];
227 
228         lsfq[i] = sum >> 15;
229     }
230 
231     ff_acelp_reorder_lsf(lsfq, LSFQ_DIFF_MIN, LSFQ_MIN, LSFQ_MAX, 10);
232 }
233 
234 /**
235  * Restores past LSP quantizer output using LSF from previous frame
236  * @param[in,out] lsfq (2.13) quantized LSF coefficients
237  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
238  * @param ma_predictor_prev MA predictor from previous frame
239  * @param lsfq_prev (2.13) quantized LSF coefficients from previous frame
240  */
lsf_restore_from_previous(int16_t * lsfq,int16_t * past_quantizer_outputs[MA_NP+1],int ma_predictor_prev)241 static void lsf_restore_from_previous(int16_t* lsfq,
242                                       int16_t* past_quantizer_outputs[MA_NP + 1],
243                                       int ma_predictor_prev)
244 {
245     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
246     int i,k;
247 
248     for (i = 0; i < 10; i++) {
249         int tmp = lsfq[i] << 15;
250 
251         for (k = 0; k < MA_NP; k++)
252             tmp -= past_quantizer_outputs[k][i] * cb_ma_predictor[ma_predictor_prev][k][i];
253 
254         quantizer_output[i] = ((tmp >> 15) * cb_ma_predictor_sum_inv[ma_predictor_prev][i]) >> 12;
255     }
256 }
257 
258 /**
259  * Constructs new excitation signal and applies phase filter to it
260  * @param[out] out constructed speech signal
261  * @param in original excitation signal
262  * @param fc_cur (2.13) original fixed-codebook vector
263  * @param gain_code (14.1) gain code
264  * @param subframe_size length of the subframe
265  */
g729d_get_new_exc(int16_t * out,const int16_t * in,const int16_t * fc_cur,int dstate,int gain_code,int subframe_size)266 static void g729d_get_new_exc(
267         int16_t* out,
268         const int16_t* in,
269         const int16_t* fc_cur,
270         int dstate,
271         int gain_code,
272         int subframe_size)
273 {
274     int i;
275     int16_t fc_new[SUBFRAME_SIZE];
276 
277     ff_celp_convolve_circ(fc_new, fc_cur, phase_filter[dstate], subframe_size);
278 
279     for (i = 0; i < subframe_size; i++) {
280         out[i]  = in[i];
281         out[i] -= (gain_code * fc_cur[i] + 0x2000) >> 14;
282         out[i] += (gain_code * fc_new[i] + 0x2000) >> 14;
283     }
284 }
285 
286 /**
287  * Makes decision about onset in current subframe
288  * @param past_onset decision result of previous subframe
289  * @param past_gain_code gain code of current and previous subframe
290  *
291  * @return onset decision result for current subframe
292  */
g729d_onset_decision(int past_onset,const int16_t * past_gain_code)293 static int g729d_onset_decision(int past_onset, const int16_t* past_gain_code)
294 {
295     if ((past_gain_code[0] >> 1) > past_gain_code[1])
296         return 2;
297 
298     return FFMAX(past_onset-1, 0);
299 }
300 
301 /**
302  * Makes decision about voice presence in current subframe
303  * @param onset onset level
304  * @param prev_voice_decision voice decision result from previous subframe
305  * @param past_gain_pitch pitch gain of current and previous subframes
306  *
307  * @return voice decision result for current subframe
308  */
g729d_voice_decision(int onset,int prev_voice_decision,const int16_t * past_gain_pitch)309 static int16_t g729d_voice_decision(int onset, int prev_voice_decision, const int16_t* past_gain_pitch)
310 {
311     int i, low_gain_pitch_cnt, voice_decision;
312 
313     if (past_gain_pitch[0] >= 14745) {       // 0.9
314         voice_decision = DECISION_VOICE;
315     } else if (past_gain_pitch[0] <= 9830) { // 0.6
316         voice_decision = DECISION_NOISE;
317     } else {
318         voice_decision = DECISION_INTERMEDIATE;
319     }
320 
321     for (i = 0, low_gain_pitch_cnt = 0; i < 6; i++)
322         if (past_gain_pitch[i] < 9830)
323             low_gain_pitch_cnt++;
324 
325     if (low_gain_pitch_cnt > 2 && !onset)
326         voice_decision = DECISION_NOISE;
327 
328     if (!onset && voice_decision > prev_voice_decision + 1)
329         voice_decision--;
330 
331     if (onset && voice_decision < DECISION_VOICE)
332         voice_decision++;
333 
334     return voice_decision;
335 }
336 
scalarproduct_int16_c(const int16_t * v1,const int16_t * v2,int order)337 static int32_t scalarproduct_int16_c(const int16_t * v1, const int16_t * v2, int order)
338 {
339     int64_t res = 0;
340 
341     while (order--)
342         res += *v1++ * *v2++;
343 
344     if      (res > INT32_MAX) return INT32_MAX;
345     else if (res < INT32_MIN) return INT32_MIN;
346 
347     return res;
348 }
349 
decoder_init(AVCodecContext * avctx)350 static av_cold int decoder_init(AVCodecContext * avctx)
351 {
352     G729Context *s = avctx->priv_data;
353     G729ChannelContext *ctx;
354     int channels = avctx->ch_layout.nb_channels;
355     int c,i,k;
356 
357     if (channels < 1 || channels > 2) {
358         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", channels);
359         return AVERROR(EINVAL);
360     }
361     avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
362 
363     /* Both 8kbit/s and 6.4kbit/s modes uses two subframes per frame. */
364     avctx->frame_size = SUBFRAME_SIZE << 1;
365 
366     ctx =
367     s->channel_context = av_mallocz(sizeof(G729ChannelContext) * channels);
368     if (!ctx)
369         return AVERROR(ENOMEM);
370 
371     for (c = 0; c < channels; c++) {
372         ctx->gain_coeff = 16384; // 1.0 in (1.14)
373 
374         for (k = 0; k < MA_NP + 1; k++) {
375             ctx->past_quantizer_outputs[k] = ctx->past_quantizer_output_buf[k];
376             for (i = 1; i < 11; i++)
377                 ctx->past_quantizer_outputs[k][i - 1] = (18717 * i) >> 3;
378         }
379 
380         ctx->lsp[0] = ctx->lsp_buf[0];
381         ctx->lsp[1] = ctx->lsp_buf[1];
382         memcpy(ctx->lsp[0], lsp_init, 10 * sizeof(int16_t));
383 
384         ctx->exc = &ctx->exc_base[PITCH_DELAY_MAX+INTERPOL_LEN];
385 
386         ctx->pitch_delay_int_prev = PITCH_DELAY_MIN;
387 
388         /* random seed initialization */
389         ctx->rand_value = 21845;
390 
391         /* quantized prediction error */
392         for (i = 0; i < 4; i++)
393             ctx->quant_energy[i] = -14336; // -14 in (5.10)
394 
395         ctx++;
396     }
397 
398     ff_audiodsp_init(&s->adsp);
399     s->adsp.scalarproduct_int16 = scalarproduct_int16_c;
400 
401     return 0;
402 }
403 
decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)404 static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
405                         int *got_frame_ptr, AVPacket *avpkt)
406 {
407     const uint8_t *buf = avpkt->data;
408     int buf_size       = avpkt->size;
409     int16_t *out_frame;
410     GetBitContext gb;
411     const G729FormatDescription *format;
412     int c, i;
413     int16_t *tmp;
414     G729Formats packet_type;
415     G729Context *s = avctx->priv_data;
416     G729ChannelContext *ctx = s->channel_context;
417     int channels = avctx->ch_layout.nb_channels;
418     int16_t lp[2][11];           // (3.12)
419     uint8_t ma_predictor;     ///< switched MA predictor of LSP quantizer
420     uint8_t quantizer_1st;    ///< first stage vector of quantizer
421     uint8_t quantizer_2nd_lo; ///< second stage lower vector of quantizer (size in bits)
422     uint8_t quantizer_2nd_hi; ///< second stage higher vector of quantizer (size in bits)
423 
424     int pitch_delay_int[2];      // pitch delay, integer part
425     int pitch_delay_3x;          // pitch delay, multiplied by 3
426     int16_t fc[SUBFRAME_SIZE];   // fixed-codebook vector
427     int16_t synth[SUBFRAME_SIZE+10]; // fixed-codebook vector
428     int j, ret;
429     int gain_before, gain_after;
430 
431     frame->nb_samples = SUBFRAME_SIZE<<1;
432     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
433         return ret;
434 
435     if (buf_size && buf_size % ((G729_8K_BLOCK_SIZE + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * channels) == 0) {
436         packet_type = FORMAT_G729_8K;
437         format = &format_g729_8k;
438         //Reset voice decision
439         ctx->onset = 0;
440         ctx->voice_decision = DECISION_VOICE;
441         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729 @ 8kbit/s");
442     } else if (buf_size == G729D_6K4_BLOCK_SIZE * channels && avctx->codec_id != AV_CODEC_ID_ACELP_KELVIN) {
443         packet_type = FORMAT_G729D_6K4;
444         format = &format_g729d_6k4;
445         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729D @ 6.4kbit/s");
446     } else {
447         av_log(avctx, AV_LOG_ERROR, "Packet size %d is unknown.\n", buf_size);
448         return AVERROR_INVALIDDATA;
449     }
450 
451     for (c = 0; c < channels; c++) {
452         int frame_erasure = 0; ///< frame erasure detected during decoding
453         int bad_pitch = 0;     ///< parity check failed
454         int is_periodic = 0;   ///< whether one of the subframes is declared as periodic or not
455         out_frame = (int16_t*)frame->data[c];
456         if (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN) {
457             if (*buf != ((avctx->ch_layout.nb_channels - 1 - c) * 0x80 | 2))
458                 avpriv_request_sample(avctx, "First byte value %x for channel %d", *buf, c);
459             buf++;
460         }
461 
462         for (i = 0; i < format->block_size; i++)
463             frame_erasure |= buf[i];
464         frame_erasure = !frame_erasure;
465 
466         init_get_bits8(&gb, buf, format->block_size);
467 
468         ma_predictor     = get_bits(&gb, 1);
469         quantizer_1st    = get_bits(&gb, VQ_1ST_BITS);
470         quantizer_2nd_lo = get_bits(&gb, VQ_2ND_BITS);
471         quantizer_2nd_hi = get_bits(&gb, VQ_2ND_BITS);
472 
473         if (frame_erasure) {
474             lsf_restore_from_previous(ctx->lsfq, ctx->past_quantizer_outputs,
475                                       ctx->ma_predictor_prev);
476         } else {
477             lsf_decode(ctx->lsfq, ctx->past_quantizer_outputs,
478                        ma_predictor,
479                        quantizer_1st, quantizer_2nd_lo, quantizer_2nd_hi);
480             ctx->ma_predictor_prev = ma_predictor;
481         }
482 
483         tmp = ctx->past_quantizer_outputs[MA_NP];
484         memmove(ctx->past_quantizer_outputs + 1, ctx->past_quantizer_outputs,
485                 MA_NP * sizeof(int16_t*));
486         ctx->past_quantizer_outputs[0] = tmp;
487 
488         ff_acelp_lsf2lsp(ctx->lsp[1], ctx->lsfq, 10);
489 
490         ff_acelp_lp_decode(&lp[0][0], &lp[1][0], ctx->lsp[1], ctx->lsp[0], 10);
491 
492         FFSWAP(int16_t*, ctx->lsp[1], ctx->lsp[0]);
493 
494         for (i = 0; i < 2; i++) {
495             int gain_corr_factor;
496 
497             uint8_t ac_index;      ///< adaptive codebook index
498             uint8_t pulses_signs;  ///< fixed-codebook vector pulse signs
499             int fc_indexes;        ///< fixed-codebook indexes
500             uint8_t gc_1st_index;  ///< gain codebook (first stage) index
501             uint8_t gc_2nd_index;  ///< gain codebook (second stage) index
502 
503             ac_index      = get_bits(&gb, format->ac_index_bits[i]);
504             if (!i && format->parity_bit)
505                 bad_pitch = av_parity(ac_index >> 2) == get_bits1(&gb);
506             fc_indexes    = get_bits(&gb, format->fc_indexes_bits);
507             pulses_signs  = get_bits(&gb, format->fc_signs_bits);
508             gc_1st_index  = get_bits(&gb, format->gc_1st_index_bits);
509             gc_2nd_index  = get_bits(&gb, format->gc_2nd_index_bits);
510 
511             if (frame_erasure) {
512                 pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
513             } else if (!i) {
514                 if (bad_pitch) {
515                     pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
516                 } else {
517                     pitch_delay_3x = ff_acelp_decode_8bit_to_1st_delay3(ac_index);
518                 }
519             } else {
520                 int pitch_delay_min = av_clip(ctx->pitch_delay_int_prev - 5,
521                                               PITCH_DELAY_MIN, PITCH_DELAY_MAX - 9);
522 
523                 if (packet_type == FORMAT_G729D_6K4) {
524                     pitch_delay_3x = ff_acelp_decode_4bit_to_2nd_delay3(ac_index, pitch_delay_min);
525                 } else {
526                     pitch_delay_3x = ff_acelp_decode_5_6_bit_to_2nd_delay3(ac_index, pitch_delay_min);
527                 }
528             }
529 
530             /* Round pitch delay to nearest (used everywhere except ff_acelp_interpolate). */
531             pitch_delay_int[i]  = (pitch_delay_3x + 1) / 3;
532             if (pitch_delay_int[i] > PITCH_DELAY_MAX) {
533                 av_log(avctx, AV_LOG_WARNING, "pitch_delay_int %d is too large\n", pitch_delay_int[i]);
534                 pitch_delay_int[i] = PITCH_DELAY_MAX;
535             }
536 
537             if (frame_erasure) {
538                 ctx->rand_value = g729_prng(ctx->rand_value);
539                 fc_indexes   = av_mod_uintp2(ctx->rand_value, format->fc_indexes_bits);
540 
541                 ctx->rand_value = g729_prng(ctx->rand_value);
542                 pulses_signs = ctx->rand_value;
543             }
544 
545 
546             memset(fc, 0, sizeof(int16_t) * SUBFRAME_SIZE);
547             switch (packet_type) {
548                 case FORMAT_G729_8K:
549                     ff_acelp_fc_pulse_per_track(fc, ff_fc_4pulses_8bits_tracks_13,
550                                                 ff_fc_4pulses_8bits_track_4,
551                                                 fc_indexes, pulses_signs, 3, 3);
552                     break;
553                 case FORMAT_G729D_6K4:
554                     ff_acelp_fc_pulse_per_track(fc, ff_fc_2pulses_9bits_track1_gray,
555                                                 ff_fc_2pulses_9bits_track2_gray,
556                                                 fc_indexes, pulses_signs, 1, 4);
557                     break;
558             }
559 
560             /*
561               This filter enhances harmonic components of the fixed-codebook vector to
562               improve the quality of the reconstructed speech.
563 
564                          / fc_v[i],                                    i < pitch_delay
565               fc_v[i] = <
566                          \ fc_v[i] + gain_pitch * fc_v[i-pitch_delay], i >= pitch_delay
567             */
568             if (SUBFRAME_SIZE > pitch_delay_int[i])
569                 ff_acelp_weighted_vector_sum(fc + pitch_delay_int[i],
570                                              fc + pitch_delay_int[i],
571                                              fc, 1 << 14,
572                                              av_clip(ctx->past_gain_pitch[0], SHARP_MIN, SHARP_MAX),
573                                              0, 14,
574                                              SUBFRAME_SIZE - pitch_delay_int[i]);
575 
576             memmove(ctx->past_gain_pitch+1, ctx->past_gain_pitch, 5 * sizeof(int16_t));
577             ctx->past_gain_code[1] = ctx->past_gain_code[0];
578 
579             if (frame_erasure) {
580                 ctx->past_gain_pitch[0] = (29491 * ctx->past_gain_pitch[0]) >> 15; // 0.90 (0.15)
581                 ctx->past_gain_code[0]  = ( 2007 * ctx->past_gain_code[0] ) >> 11; // 0.98 (0.11)
582 
583                 gain_corr_factor = 0;
584             } else {
585                 if (packet_type == FORMAT_G729D_6K4) {
586                     ctx->past_gain_pitch[0]  = cb_gain_1st_6k4[gc_1st_index][0] +
587                                                cb_gain_2nd_6k4[gc_2nd_index][0];
588                     gain_corr_factor = cb_gain_1st_6k4[gc_1st_index][1] +
589                                        cb_gain_2nd_6k4[gc_2nd_index][1];
590 
591                     /* Without check below overflow can occur in ff_acelp_update_past_gain.
592                        It is not issue for G.729, because gain_corr_factor in it's case is always
593                        greater than 1024, while in G.729D it can be even zero. */
594                     gain_corr_factor = FFMAX(gain_corr_factor, 1024);
595     #ifndef G729_BITEXACT
596                     gain_corr_factor >>= 1;
597     #endif
598                 } else {
599                     ctx->past_gain_pitch[0]  = cb_gain_1st_8k[gc_1st_index][0] +
600                                                cb_gain_2nd_8k[gc_2nd_index][0];
601                     gain_corr_factor = cb_gain_1st_8k[gc_1st_index][1] +
602                                        cb_gain_2nd_8k[gc_2nd_index][1];
603                 }
604 
605                 /* Decode the fixed-codebook gain. */
606                 ctx->past_gain_code[0] = ff_acelp_decode_gain_code(&s->adsp, gain_corr_factor,
607                                                                    fc, MR_ENERGY,
608                                                                    ctx->quant_energy,
609                                                                    ma_prediction_coeff,
610                                                                    SUBFRAME_SIZE, 4);
611     #ifdef G729_BITEXACT
612                 /*
613                   This correction required to get bit-exact result with
614                   reference code, because gain_corr_factor in G.729D is
615                   two times larger than in original G.729.
616 
617                   If bit-exact result is not issue then gain_corr_factor
618                   can be simpler divided by 2 before call to g729_get_gain_code
619                   instead of using correction below.
620                 */
621                 if (packet_type == FORMAT_G729D_6K4) {
622                     gain_corr_factor >>= 1;
623                     ctx->past_gain_code[0] >>= 1;
624                 }
625     #endif
626             }
627             ff_acelp_update_past_gain(ctx->quant_energy, gain_corr_factor, 2, frame_erasure);
628 
629             /* Routine requires rounding to lowest. */
630             ff_acelp_interpolate(ctx->exc + i * SUBFRAME_SIZE,
631                                  ctx->exc + i * SUBFRAME_SIZE - pitch_delay_3x / 3,
632                                  ff_acelp_interp_filter, 6,
633                                  (pitch_delay_3x % 3) << 1,
634                                  10, SUBFRAME_SIZE);
635 
636             ff_acelp_weighted_vector_sum(ctx->exc + i * SUBFRAME_SIZE,
637                                          ctx->exc + i * SUBFRAME_SIZE, fc,
638                                          (!ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_pitch[0],
639                                          ( ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_code[0],
640                                          1 << 13, 14, SUBFRAME_SIZE);
641 
642             memcpy(synth, ctx->syn_filter_data, 10 * sizeof(int16_t));
643 
644             if (ff_celp_lp_synthesis_filter(
645                 synth+10,
646                 &lp[i][1],
647                 ctx->exc  + i * SUBFRAME_SIZE,
648                 SUBFRAME_SIZE,
649                 10,
650                 1,
651                 0,
652                 0x800))
653                 /* Overflow occurred, downscale excitation signal... */
654                 for (j = 0; j < 2 * SUBFRAME_SIZE + PITCH_DELAY_MAX + INTERPOL_LEN; j++)
655                     ctx->exc_base[j] >>= 2;
656 
657             /* ... and make synthesis again. */
658             if (packet_type == FORMAT_G729D_6K4) {
659                 int16_t exc_new[SUBFRAME_SIZE];
660 
661                 ctx->onset = g729d_onset_decision(ctx->onset, ctx->past_gain_code);
662                 ctx->voice_decision = g729d_voice_decision(ctx->onset, ctx->voice_decision, ctx->past_gain_pitch);
663 
664                 g729d_get_new_exc(exc_new, ctx->exc  + i * SUBFRAME_SIZE, fc, ctx->voice_decision, ctx->past_gain_code[0], SUBFRAME_SIZE);
665 
666                 ff_celp_lp_synthesis_filter(
667                         synth+10,
668                         &lp[i][1],
669                         exc_new,
670                         SUBFRAME_SIZE,
671                         10,
672                         0,
673                         0,
674                         0x800);
675             } else {
676                 ff_celp_lp_synthesis_filter(
677                         synth+10,
678                         &lp[i][1],
679                         ctx->exc  + i * SUBFRAME_SIZE,
680                         SUBFRAME_SIZE,
681                         10,
682                         0,
683                         0,
684                         0x800);
685             }
686             /* Save data (without postfilter) for use in next subframe. */
687             memcpy(ctx->syn_filter_data, synth+SUBFRAME_SIZE, 10 * sizeof(int16_t));
688 
689             /* Calculate gain of unfiltered signal for use in AGC. */
690             gain_before = 0;
691             for (j = 0; j < SUBFRAME_SIZE; j++)
692                 gain_before += FFABS(synth[j+10]);
693 
694             /* Call postfilter and also update voicing decision for use in next frame. */
695             ff_g729_postfilter(
696                     &s->adsp,
697                     &ctx->ht_prev_data,
698                     &is_periodic,
699                     &lp[i][0],
700                     pitch_delay_int[0],
701                     ctx->residual,
702                     ctx->res_filter_data,
703                     ctx->pos_filter_data,
704                     synth+10,
705                     SUBFRAME_SIZE);
706 
707             /* Calculate gain of filtered signal for use in AGC. */
708             gain_after = 0;
709             for (j = 0; j < SUBFRAME_SIZE; j++)
710                 gain_after += FFABS(synth[j+10]);
711 
712             ctx->gain_coeff = ff_g729_adaptive_gain_control(
713                     gain_before,
714                     gain_after,
715                     synth+10,
716                     SUBFRAME_SIZE,
717                     ctx->gain_coeff);
718 
719             if (frame_erasure) {
720                 ctx->pitch_delay_int_prev = FFMIN(ctx->pitch_delay_int_prev + 1, PITCH_DELAY_MAX);
721             } else {
722                 ctx->pitch_delay_int_prev = pitch_delay_int[i];
723             }
724 
725             memcpy(synth+8, ctx->hpf_z, 2*sizeof(int16_t));
726             ff_acelp_high_pass_filter(
727                     out_frame + i*SUBFRAME_SIZE,
728                     ctx->hpf_f,
729                     synth+10,
730                     SUBFRAME_SIZE);
731             memcpy(ctx->hpf_z, synth+8+SUBFRAME_SIZE, 2*sizeof(int16_t));
732         }
733 
734         ctx->was_periodic = is_periodic;
735 
736         /* Save signal for use in next frame. */
737         memmove(ctx->exc_base, ctx->exc_base + 2 * SUBFRAME_SIZE, (PITCH_DELAY_MAX+INTERPOL_LEN)*sizeof(int16_t));
738 
739         buf += format->block_size;
740         ctx++;
741     }
742 
743     *got_frame_ptr = 1;
744     return (format->block_size + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * channels;
745 }
746 
decode_close(AVCodecContext * avctx)747 static av_cold int decode_close(AVCodecContext *avctx)
748 {
749     G729Context *s = avctx->priv_data;
750     av_freep(&s->channel_context);
751 
752     return 0;
753 }
754 
755 const FFCodec ff_g729_decoder = {
756     .p.name         = "g729",
757     .p.long_name    = NULL_IF_CONFIG_SMALL("G.729"),
758     .p.type         = AVMEDIA_TYPE_AUDIO,
759     .p.id           = AV_CODEC_ID_G729,
760     .priv_data_size = sizeof(G729Context),
761     .init           = decoder_init,
762     FF_CODEC_DECODE_CB(decode_frame),
763     .close          = decode_close,
764     .p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
765     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
766 };
767 
768 const FFCodec ff_acelp_kelvin_decoder = {
769     .p.name         = "acelp.kelvin",
770     .p.long_name    = NULL_IF_CONFIG_SMALL("Sipro ACELP.KELVIN"),
771     .p.type         = AVMEDIA_TYPE_AUDIO,
772     .p.id           = AV_CODEC_ID_ACELP_KELVIN,
773     .priv_data_size = sizeof(G729Context),
774     .init           = decoder_init,
775     FF_CODEC_DECODE_CB(decode_frame),
776     .close          = decode_close,
777     .p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
778     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
779 };
780