• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2014 Mozilla Corporation
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Celt non-power of 2 iMDCT
25  */
26 
27 #include <float.h>
28 #include <math.h>
29 #include <stddef.h>
30 #include <stdint.h>
31 
32 #include "config.h"
33 
34 #include "libavutil/attributes.h"
35 #include "libavutil/error.h"
36 
37 #include "mdct15.h"
38 
39 #define FFT_FLOAT 1
40 #include "fft-internal.h"
41 
42 #define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
43 
ff_mdct15_uninit(MDCT15Context ** ps)44 av_cold void ff_mdct15_uninit(MDCT15Context **ps)
45 {
46     MDCT15Context *s = *ps;
47 
48     if (!s)
49         return;
50 
51     ff_fft_end(&s->ptwo_fft);
52 
53     av_freep(&s->pfa_prereindex);
54     av_freep(&s->pfa_postreindex);
55     av_freep(&s->twiddle_exptab);
56     av_freep(&s->tmp);
57 
58     av_freep(ps);
59 }
60 
init_pfa_reindex_tabs(MDCT15Context * s)61 static inline int init_pfa_reindex_tabs(MDCT15Context *s)
62 {
63     int i, j;
64     const int b_ptwo = s->ptwo_fft.nbits; /* Bits for the power of two FFTs */
65     const int l_ptwo = 1 << b_ptwo; /* Total length for the power of two FFTs */
66     const int inv_1 = l_ptwo << ((4 - b_ptwo) & 3); /* (2^b_ptwo)^-1 mod 15 */
67     const int inv_2 = 0xeeeeeeef & ((1U << b_ptwo) - 1); /* 15^-1 mod 2^b_ptwo */
68 
69     s->pfa_prereindex = av_malloc_array(15 * l_ptwo, sizeof(*s->pfa_prereindex));
70     if (!s->pfa_prereindex)
71         return 1;
72 
73     s->pfa_postreindex = av_malloc_array(15 * l_ptwo, sizeof(*s->pfa_postreindex));
74     if (!s->pfa_postreindex)
75         return 1;
76 
77     /* Pre/Post-reindex */
78     for (i = 0; i < l_ptwo; i++) {
79         for (j = 0; j < 15; j++) {
80             const int q_pre = ((l_ptwo * j)/15 + i) >> b_ptwo;
81             const int q_post = (((j*inv_1)/15) + (i*inv_2)) >> b_ptwo;
82             const int k_pre = 15*i + (j - q_pre*15)*(1 << b_ptwo);
83             const int k_post = i*inv_2*15 + j*inv_1 - 15*q_post*l_ptwo;
84             s->pfa_prereindex[i*15 + j] = k_pre << 1;
85             s->pfa_postreindex[k_post] = l_ptwo*j + i;
86         }
87     }
88 
89     return 0;
90 }
91 
92 /* Stride is hardcoded to 3 */
fft5(FFTComplex * out,FFTComplex * in,FFTComplex exptab[2])93 static inline void fft5(FFTComplex *out, FFTComplex *in, FFTComplex exptab[2])
94 {
95     FFTComplex z0[4], t[6];
96 
97     t[0].re = in[3].re + in[12].re;
98     t[0].im = in[3].im + in[12].im;
99     t[1].im = in[3].re - in[12].re;
100     t[1].re = in[3].im - in[12].im;
101     t[2].re = in[6].re + in[ 9].re;
102     t[2].im = in[6].im + in[ 9].im;
103     t[3].im = in[6].re - in[ 9].re;
104     t[3].re = in[6].im - in[ 9].im;
105 
106     out[0].re = in[0].re + in[3].re + in[6].re + in[9].re + in[12].re;
107     out[0].im = in[0].im + in[3].im + in[6].im + in[9].im + in[12].im;
108 
109     t[4].re = exptab[0].re * t[2].re - exptab[1].re * t[0].re;
110     t[4].im = exptab[0].re * t[2].im - exptab[1].re * t[0].im;
111     t[0].re = exptab[0].re * t[0].re - exptab[1].re * t[2].re;
112     t[0].im = exptab[0].re * t[0].im - exptab[1].re * t[2].im;
113     t[5].re = exptab[0].im * t[3].re - exptab[1].im * t[1].re;
114     t[5].im = exptab[0].im * t[3].im - exptab[1].im * t[1].im;
115     t[1].re = exptab[0].im * t[1].re + exptab[1].im * t[3].re;
116     t[1].im = exptab[0].im * t[1].im + exptab[1].im * t[3].im;
117 
118     z0[0].re = t[0].re - t[1].re;
119     z0[0].im = t[0].im - t[1].im;
120     z0[1].re = t[4].re + t[5].re;
121     z0[1].im = t[4].im + t[5].im;
122 
123     z0[2].re = t[4].re - t[5].re;
124     z0[2].im = t[4].im - t[5].im;
125     z0[3].re = t[0].re + t[1].re;
126     z0[3].im = t[0].im + t[1].im;
127 
128     out[1].re = in[0].re + z0[3].re;
129     out[1].im = in[0].im + z0[0].im;
130     out[2].re = in[0].re + z0[2].re;
131     out[2].im = in[0].im + z0[1].im;
132     out[3].re = in[0].re + z0[1].re;
133     out[3].im = in[0].im + z0[2].im;
134     out[4].re = in[0].re + z0[0].re;
135     out[4].im = in[0].im + z0[3].im;
136 }
137 
fft15_c(FFTComplex * out,FFTComplex * in,FFTComplex * exptab,ptrdiff_t stride)138 static void fft15_c(FFTComplex *out, FFTComplex *in, FFTComplex *exptab, ptrdiff_t stride)
139 {
140     int k;
141     FFTComplex tmp1[5], tmp2[5], tmp3[5];
142 
143     fft5(tmp1, in + 0, exptab + 19);
144     fft5(tmp2, in + 1, exptab + 19);
145     fft5(tmp3, in + 2, exptab + 19);
146 
147     for (k = 0; k < 5; k++) {
148         FFTComplex t[2];
149 
150         CMUL3(t[0], tmp2[k], exptab[k]);
151         CMUL3(t[1], tmp3[k], exptab[2 * k]);
152         out[stride*k].re = tmp1[k].re + t[0].re + t[1].re;
153         out[stride*k].im = tmp1[k].im + t[0].im + t[1].im;
154 
155         CMUL3(t[0], tmp2[k], exptab[k + 5]);
156         CMUL3(t[1], tmp3[k], exptab[2 * (k + 5)]);
157         out[stride*(k + 5)].re = tmp1[k].re + t[0].re + t[1].re;
158         out[stride*(k + 5)].im = tmp1[k].im + t[0].im + t[1].im;
159 
160         CMUL3(t[0], tmp2[k], exptab[k + 10]);
161         CMUL3(t[1], tmp3[k], exptab[2 * k + 5]);
162         out[stride*(k + 10)].re = tmp1[k].re + t[0].re + t[1].re;
163         out[stride*(k + 10)].im = tmp1[k].im + t[0].im + t[1].im;
164     }
165 }
166 
mdct15(MDCT15Context * s,float * dst,const float * src,ptrdiff_t stride)167 static void mdct15(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
168 {
169     int i, j;
170     const int len4 = s->len4, len3 = len4 * 3, len8 = len4 >> 1;
171     const int l_ptwo = 1 << s->ptwo_fft.nbits;
172     FFTComplex fft15in[15];
173 
174     /* Folding and pre-reindexing */
175     for (i = 0; i < l_ptwo; i++) {
176         for (j = 0; j < 15; j++) {
177             const int k = s->pfa_prereindex[i*15 + j];
178             FFTComplex tmp, exp = s->twiddle_exptab[k >> 1];
179             if (k < len4) {
180                 tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
181                 tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
182             } else {
183                 tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
184                 tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];
185             }
186             CMUL(fft15in[j].im, fft15in[j].re, tmp.re, tmp.im, exp.re, exp.im);
187         }
188         s->fft15(s->tmp + s->ptwo_fft.revtab[i], fft15in, s->exptab, l_ptwo);
189     }
190 
191     /* Then a 15xN FFT (where N is a power of two) */
192     for (i = 0; i < 15; i++)
193         s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);
194 
195     /* Reindex again, apply twiddles and output */
196     for (i = 0; i < len8; i++) {
197         const int i0 = len8 + i, i1 = len8 - i - 1;
198         const int s0 = s->pfa_postreindex[i0], s1 = s->pfa_postreindex[i1];
199 
200         CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], s->tmp[s0].re, s->tmp[s0].im,
201              s->twiddle_exptab[i0].im, s->twiddle_exptab[i0].re);
202         CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], s->tmp[s1].re, s->tmp[s1].im,
203              s->twiddle_exptab[i1].im, s->twiddle_exptab[i1].re);
204     }
205 }
206 
imdct15_half(MDCT15Context * s,float * dst,const float * src,ptrdiff_t stride)207 static void imdct15_half(MDCT15Context *s, float *dst, const float *src,
208                          ptrdiff_t stride)
209 {
210     FFTComplex fft15in[15];
211     FFTComplex *z = (FFTComplex *)dst;
212     int i, j, len8 = s->len4 >> 1, l_ptwo = 1 << s->ptwo_fft.nbits;
213     const float *in1 = src, *in2 = src + (s->len2 - 1) * stride;
214 
215     /* Reindex input, putting it into a buffer and doing an Nx15 FFT */
216     for (i = 0; i < l_ptwo; i++) {
217         for (j = 0; j < 15; j++) {
218             const int k = s->pfa_prereindex[i*15 + j];
219             FFTComplex tmp = { in2[-k*stride], in1[k*stride] };
220             CMUL3(fft15in[j], tmp, s->twiddle_exptab[k >> 1]);
221         }
222         s->fft15(s->tmp + s->ptwo_fft.revtab[i], fft15in, s->exptab, l_ptwo);
223     }
224 
225     /* Then a 15xN FFT (where N is a power of two) */
226     for (i = 0; i < 15; i++)
227         s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);
228 
229     /* Reindex again, apply twiddles and output */
230     s->postreindex(z, s->tmp, s->twiddle_exptab, s->pfa_postreindex, len8);
231 }
232 
postrotate_c(FFTComplex * out,FFTComplex * in,FFTComplex * exp,int * lut,ptrdiff_t len8)233 static void postrotate_c(FFTComplex *out, FFTComplex *in, FFTComplex *exp,
234                          int *lut, ptrdiff_t len8)
235 {
236     int i;
237 
238     /* Reindex again, apply twiddles and output */
239     for (i = 0; i < len8; i++) {
240         const int i0 = len8 + i, i1 = len8 - i - 1;
241         const int s0 = lut[i0], s1 = lut[i1];
242 
243         CMUL(out[i1].re, out[i0].im, in[s1].im, in[s1].re, exp[i1].im, exp[i1].re);
244         CMUL(out[i0].re, out[i1].im, in[s0].im, in[s0].re, exp[i0].im, exp[i0].re);
245     }
246 }
247 
ff_mdct15_init(MDCT15Context ** ps,int inverse,int N,double scale)248 av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
249 {
250     MDCT15Context *s;
251     double alpha, theta;
252     int len2 = 15 * (1 << N);
253     int len  = 2 * len2;
254     int i;
255 
256     /* Tested and verified to work on everything in between */
257     if ((N < 2) || (N > 13))
258         return AVERROR(EINVAL);
259 
260     s = av_mallocz(sizeof(*s));
261     if (!s)
262         return AVERROR(ENOMEM);
263 
264     s->fft_n       = N - 1;
265     s->len4        = len2 / 2;
266     s->len2        = len2;
267     s->inverse     = inverse;
268     s->fft15       = fft15_c;
269     s->mdct        = mdct15;
270     s->imdct_half  = imdct15_half;
271     s->postreindex = postrotate_c;
272 
273     if (ff_fft_init(&s->ptwo_fft, N - 1, s->inverse) < 0)
274         goto fail;
275 
276     if (init_pfa_reindex_tabs(s))
277         goto fail;
278 
279     s->tmp  = av_malloc_array(len, 2 * sizeof(*s->tmp));
280     if (!s->tmp)
281         goto fail;
282 
283     s->twiddle_exptab = av_malloc_array(s->len4, sizeof(*s->twiddle_exptab));
284     if (!s->twiddle_exptab)
285         goto fail;
286 
287     theta = 0.125f + (scale < 0 ? s->len4 : 0);
288     scale = sqrt(fabs(scale));
289     for (i = 0; i < s->len4; i++) {
290         alpha = 2 * M_PI * (i + theta) / len;
291         s->twiddle_exptab[i].re = cosf(alpha) * scale;
292         s->twiddle_exptab[i].im = sinf(alpha) * scale;
293     }
294 
295     /* 15-point FFT exptab */
296     for (i = 0; i < 19; i++) {
297         if (i < 15) {
298             double theta = (2.0f * M_PI * i) / 15.0f;
299             if (!s->inverse)
300                 theta *= -1;
301             s->exptab[i].re = cosf(theta);
302             s->exptab[i].im = sinf(theta);
303         } else { /* Wrap around to simplify fft15 */
304             s->exptab[i] = s->exptab[i - 15];
305         }
306     }
307 
308     /* 5-point FFT exptab */
309     s->exptab[19].re = cosf(2.0f * M_PI / 5.0f);
310     s->exptab[19].im = sinf(2.0f * M_PI / 5.0f);
311     s->exptab[20].re = cosf(1.0f * M_PI / 5.0f);
312     s->exptab[20].im = sinf(1.0f * M_PI / 5.0f);
313 
314     /* Invert the phase for an inverse transform, do nothing for a forward transform */
315     if (s->inverse) {
316         s->exptab[19].im *= -1;
317         s->exptab[20].im *= -1;
318     }
319 
320 #if ARCH_X86
321     ff_mdct15_init_x86(s);
322 #endif
323 
324     *ps = s;
325 
326     return 0;
327 
328 fail:
329     ff_mdct15_uninit(&s);
330     return AVERROR(ENOMEM);
331 }
332