• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Real Audio 1.0 (14.4K) encoder
3  * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Real Audio 1.0 (14.4K) encoder
25  * @author Francesco Lavra <francescolavra@interfree.it>
26  */
27 
28 #include <float.h>
29 
30 #include "libavutil/channel_layout.h"
31 #include "avcodec.h"
32 #include "audio_frame_queue.h"
33 #include "celp_filters.h"
34 #include "codec_internal.h"
35 #include "encode.h"
36 #include "mathops.h"
37 #include "put_bits.h"
38 #include "ra144.h"
39 
ra144_encode_close(AVCodecContext * avctx)40 static av_cold int ra144_encode_close(AVCodecContext *avctx)
41 {
42     RA144Context *ractx = avctx->priv_data;
43     ff_lpc_end(&ractx->lpc_ctx);
44     ff_af_queue_close(&ractx->afq);
45     return 0;
46 }
47 
48 
ra144_encode_init(AVCodecContext * avctx)49 static av_cold int ra144_encode_init(AVCodecContext * avctx)
50 {
51     RA144Context *ractx;
52     int ret;
53 
54     avctx->frame_size = NBLOCKS * BLOCKSIZE;
55     avctx->initial_padding = avctx->frame_size;
56     avctx->bit_rate = 8000;
57     ractx = avctx->priv_data;
58     ractx->lpc_coef[0] = ractx->lpc_tables[0];
59     ractx->lpc_coef[1] = ractx->lpc_tables[1];
60     ractx->avctx = avctx;
61     ff_audiodsp_init(&ractx->adsp);
62     ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
63                       FF_LPC_TYPE_LEVINSON);
64     if (ret < 0)
65         return ret;
66 
67     ff_af_queue_init(avctx, &ractx->afq);
68 
69     return 0;
70 }
71 
72 
73 /**
74  * Quantize a value by searching a sorted table for the element with the
75  * nearest value
76  *
77  * @param value value to quantize
78  * @param table array containing the quantization table
79  * @param size size of the quantization table
80  * @return index of the quantization table corresponding to the element with the
81  *         nearest value
82  */
quantize(int value,const int16_t * table,unsigned int size)83 static int quantize(int value, const int16_t *table, unsigned int size)
84 {
85     unsigned int low = 0, high = size - 1;
86 
87     while (1) {
88         int index = (low + high) >> 1;
89         int error = table[index] - value;
90 
91         if (index == low)
92             return table[high] + error > value ? low : high;
93         if (error > 0) {
94             high = index;
95         } else {
96             low = index;
97         }
98     }
99 }
100 
101 
102 /**
103  * Orthogonalize a vector to another vector
104  *
105  * @param v vector to orthogonalize
106  * @param u vector against which orthogonalization is performed
107  */
orthogonalize(float * v,const float * u)108 static void orthogonalize(float *v, const float *u)
109 {
110     int i;
111     float num = 0, den = 0;
112 
113     for (i = 0; i < BLOCKSIZE; i++) {
114         num += v[i] * u[i];
115         den += u[i] * u[i];
116     }
117     num /= den;
118     for (i = 0; i < BLOCKSIZE; i++)
119         v[i] -= num * u[i];
120 }
121 
122 
123 /**
124  * Calculate match score and gain of an LPC-filtered vector with respect to
125  * input data, possibly orthogonalizing it to up to two other vectors.
126  *
127  * @param work array used to calculate the filtered vector
128  * @param coefs coefficients of the LPC filter
129  * @param vect original vector
130  * @param ortho1 first vector against which orthogonalization is performed
131  * @param ortho2 second vector against which orthogonalization is performed
132  * @param data input data
133  * @param score pointer to variable where match score is returned
134  * @param gain pointer to variable where gain is returned
135  */
get_match_score(float * work,const float * coefs,float * vect,const float * ortho1,const float * ortho2,const float * data,float * score,float * gain)136 static void get_match_score(float *work, const float *coefs, float *vect,
137                             const float *ortho1, const float *ortho2,
138                             const float *data, float *score, float *gain)
139 {
140     float c, g;
141     int i;
142 
143     ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
144     if (ortho1)
145         orthogonalize(work, ortho1);
146     if (ortho2)
147         orthogonalize(work, ortho2);
148     c = g = 0;
149     for (i = 0; i < BLOCKSIZE; i++) {
150         g += work[i] * work[i];
151         c += data[i] * work[i];
152     }
153     if (c <= 0) {
154         *score = 0;
155         return;
156     }
157     *gain = c / g;
158     *score = *gain * c;
159 }
160 
161 
162 /**
163  * Create a vector from the adaptive codebook at a given lag value
164  *
165  * @param vect array where vector is stored
166  * @param cb adaptive codebook
167  * @param lag lag value
168  */
create_adapt_vect(float * vect,const int16_t * cb,int lag)169 static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
170 {
171     int i;
172 
173     cb += BUFFERSIZE - lag;
174     for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
175         vect[i] = cb[i];
176     if (lag < BLOCKSIZE)
177         for (i = 0; i < BLOCKSIZE - lag; i++)
178             vect[lag + i] = cb[i];
179 }
180 
181 
182 /**
183  * Search the adaptive codebook for the best entry and gain and remove its
184  * contribution from input data
185  *
186  * @param adapt_cb array from which the adaptive codebook is extracted
187  * @param work array used to calculate LPC-filtered vectors
188  * @param coefs coefficients of the LPC filter
189  * @param data input data
190  * @return index of the best entry of the adaptive codebook
191  */
adaptive_cb_search(const int16_t * adapt_cb,float * work,const float * coefs,float * data)192 static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
193                               const float *coefs, float *data)
194 {
195     int i, av_uninit(best_vect);
196     float score, gain, best_score, av_uninit(best_gain);
197     float exc[BLOCKSIZE];
198 
199     gain = best_score = 0;
200     for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
201         create_adapt_vect(exc, adapt_cb, i);
202         get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
203         if (score > best_score) {
204             best_score = score;
205             best_vect = i;
206             best_gain = gain;
207         }
208     }
209     if (!best_score)
210         return 0;
211 
212     /**
213      * Re-calculate the filtered vector from the vector with maximum match score
214      * and remove its contribution from input data.
215      */
216     create_adapt_vect(exc, adapt_cb, best_vect);
217     ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
218     for (i = 0; i < BLOCKSIZE; i++)
219         data[i] -= best_gain * work[i];
220     return best_vect - BLOCKSIZE / 2 + 1;
221 }
222 
223 
224 /**
225  * Find the best vector of a fixed codebook by applying an LPC filter to
226  * codebook entries, possibly orthogonalizing them to up to two other vectors
227  * and matching the results with input data.
228  *
229  * @param work array used to calculate the filtered vectors
230  * @param coefs coefficients of the LPC filter
231  * @param cb fixed codebook
232  * @param ortho1 first vector against which orthogonalization is performed
233  * @param ortho2 second vector against which orthogonalization is performed
234  * @param data input data
235  * @param idx pointer to variable where the index of the best codebook entry is
236  *        returned
237  * @param gain pointer to variable where the gain of the best codebook entry is
238  *        returned
239  */
find_best_vect(float * work,const float * coefs,const int8_t cb[][BLOCKSIZE],const float * ortho1,const float * ortho2,float * data,int * idx,float * gain)240 static void find_best_vect(float *work, const float *coefs,
241                            const int8_t cb[][BLOCKSIZE], const float *ortho1,
242                            const float *ortho2, float *data, int *idx,
243                            float *gain)
244 {
245     int i, j;
246     float g, score, best_score;
247     float vect[BLOCKSIZE];
248 
249     *idx = *gain = best_score = 0;
250     for (i = 0; i < FIXED_CB_SIZE; i++) {
251         for (j = 0; j < BLOCKSIZE; j++)
252             vect[j] = cb[i][j];
253         get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
254         if (score > best_score) {
255             best_score = score;
256             *idx = i;
257             *gain = g;
258         }
259     }
260 }
261 
262 
263 /**
264  * Search the two fixed codebooks for the best entry and gain
265  *
266  * @param work array used to calculate LPC-filtered vectors
267  * @param coefs coefficients of the LPC filter
268  * @param data input data
269  * @param cba_idx index of the best entry of the adaptive codebook
270  * @param cb1_idx pointer to variable where the index of the best entry of the
271  *        first fixed codebook is returned
272  * @param cb2_idx pointer to variable where the index of the best entry of the
273  *        second fixed codebook is returned
274  */
fixed_cb_search(float * work,const float * coefs,float * data,int cba_idx,int * cb1_idx,int * cb2_idx)275 static void fixed_cb_search(float *work, const float *coefs, float *data,
276                             int cba_idx, int *cb1_idx, int *cb2_idx)
277 {
278     int i, ortho_cb1;
279     float gain;
280     float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
281     float vect[BLOCKSIZE];
282 
283     /**
284      * The filtered vector from the adaptive codebook can be retrieved from
285      * work, because this function is called just after adaptive_cb_search().
286      */
287     if (cba_idx)
288         memcpy(cba_vect, work, sizeof(cba_vect));
289 
290     find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
291                    data, cb1_idx, &gain);
292 
293     /**
294      * Re-calculate the filtered vector from the vector with maximum match score
295      * and remove its contribution from input data.
296      */
297     if (gain) {
298         for (i = 0; i < BLOCKSIZE; i++)
299             vect[i] = ff_cb1_vects[*cb1_idx][i];
300         ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
301         if (cba_idx)
302             orthogonalize(work, cba_vect);
303         for (i = 0; i < BLOCKSIZE; i++)
304             data[i] -= gain * work[i];
305         memcpy(cb1_vect, work, sizeof(cb1_vect));
306         ortho_cb1 = 1;
307     } else
308         ortho_cb1 = 0;
309 
310     find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
311                    ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
312 }
313 
314 
315 /**
316  * Encode a subblock of the current frame
317  *
318  * @param ractx encoder context
319  * @param sblock_data input data of the subblock
320  * @param lpc_coefs coefficients of the LPC filter
321  * @param rms RMS of the reflection coefficients
322  * @param pb pointer to PutBitContext of the current frame
323  */
ra144_encode_subblock(RA144Context * ractx,const int16_t * sblock_data,const int16_t * lpc_coefs,unsigned int rms,PutBitContext * pb)324 static void ra144_encode_subblock(RA144Context *ractx,
325                                   const int16_t *sblock_data,
326                                   const int16_t *lpc_coefs, unsigned int rms,
327                                   PutBitContext *pb)
328 {
329     float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
330     float coefs[LPC_ORDER];
331     float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
332     int cba_idx, cb1_idx, cb2_idx, gain;
333     int i, n;
334     unsigned m[3];
335     float g[3];
336     float error, best_error;
337 
338     for (i = 0; i < LPC_ORDER; i++) {
339         work[i] = ractx->curr_sblock[BLOCKSIZE + i];
340         coefs[i] = lpc_coefs[i] * (1/4096.0);
341     }
342 
343     /**
344      * Calculate the zero-input response of the LPC filter and subtract it from
345      * input data.
346      */
347     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
348                                  LPC_ORDER);
349     for (i = 0; i < BLOCKSIZE; i++) {
350         zero[i] = work[LPC_ORDER + i];
351         data[i] = sblock_data[i] - zero[i];
352     }
353 
354     /**
355      * Codebook search is performed without taking into account the contribution
356      * of the previous subblock, since it has been just subtracted from input
357      * data.
358      */
359     memset(work, 0, LPC_ORDER * sizeof(*work));
360 
361     cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
362                                  data);
363     if (cba_idx) {
364         /**
365          * The filtered vector from the adaptive codebook can be retrieved from
366          * work, see implementation of adaptive_cb_search().
367          */
368         memcpy(cba, work + LPC_ORDER, sizeof(cba));
369 
370         ff_copy_and_dup(ractx->buffer_a, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
371         m[0] = (ff_irms(&ractx->adsp, ractx->buffer_a) * rms) >> 12;
372     }
373     fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
374     for (i = 0; i < BLOCKSIZE; i++) {
375         cb1[i] = ff_cb1_vects[cb1_idx][i];
376         cb2[i] = ff_cb2_vects[cb2_idx][i];
377     }
378     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
379                                  LPC_ORDER);
380     memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
381     m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
382     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
383                                  LPC_ORDER);
384     memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
385     m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
386     best_error = FLT_MAX;
387     gain = 0;
388     for (n = 0; n < 256; n++) {
389         g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
390                (1/4096.0);
391         g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
392                (1/4096.0);
393         error = 0;
394         if (cba_idx) {
395             g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
396                    (1/4096.0);
397             for (i = 0; i < BLOCKSIZE; i++) {
398                 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
399                           g[2] * cb2[i];
400                 error += (data[i] - sblock_data[i]) *
401                          (data[i] - sblock_data[i]);
402             }
403         } else {
404             for (i = 0; i < BLOCKSIZE; i++) {
405                 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
406                 error += (data[i] - sblock_data[i]) *
407                          (data[i] - sblock_data[i]);
408             }
409         }
410         if (error < best_error) {
411             best_error = error;
412             gain = n;
413         }
414     }
415     put_bits(pb, 7, cba_idx);
416     put_bits(pb, 8, gain);
417     put_bits(pb, 7, cb1_idx);
418     put_bits(pb, 7, cb2_idx);
419     ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
420                           gain);
421 }
422 
423 
ra144_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)424 static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
425                               const AVFrame *frame, int *got_packet_ptr)
426 {
427     static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
428     static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
429     RA144Context *ractx = avctx->priv_data;
430     PutBitContext pb;
431     int32_t lpc_data[NBLOCKS * BLOCKSIZE];
432     int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
433     int shift[LPC_ORDER];
434     int16_t block_coefs[NBLOCKS][LPC_ORDER];
435     int lpc_refl[LPC_ORDER];    /**< reflection coefficients of the frame */
436     unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
437     const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
438     int energy = 0;
439     int i, idx, ret;
440 
441     if (ractx->last_frame)
442         return 0;
443 
444     if ((ret = ff_get_encode_buffer(avctx, avpkt, FRAME_SIZE, 0)) < 0)
445         return ret;
446 
447     /**
448      * Since the LPC coefficients are calculated on a frame centered over the
449      * fourth subframe, to encode a given frame, data from the next frame is
450      * needed. In each call to this function, the previous frame (whose data are
451      * saved in the encoder context) is encoded, and data from the current frame
452      * are saved in the encoder context to be used in the next function call.
453      */
454     for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
455         lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
456         energy += (lpc_data[i] * lpc_data[i]) >> 4;
457     }
458     if (frame) {
459         int j;
460         for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
461             lpc_data[i] = samples[j] >> 2;
462             energy += (lpc_data[i] * lpc_data[i]) >> 4;
463         }
464     }
465     if (i < NBLOCKS * BLOCKSIZE)
466         memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
467     energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
468                                     32)];
469 
470     ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
471                       LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
472                       0, ORDER_METHOD_EST, 0, 12, 0);
473     for (i = 0; i < LPC_ORDER; i++)
474         block_coefs[NBLOCKS - 1][i] = -lpc_coefs[LPC_ORDER - 1][i]
475                                        * (1 << (12 - shift[LPC_ORDER - 1]));
476 
477     /**
478      * TODO: apply perceptual weighting of the input speech through bandwidth
479      * expansion of the LPC filter.
480      */
481 
482     if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
483         /**
484          * The filter is unstable: use the coefficients of the previous frame.
485          */
486         ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
487         if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
488             /* the filter is still unstable. set reflection coeffs to zero. */
489             memset(lpc_refl, 0, sizeof(lpc_refl));
490         }
491     }
492     init_put_bits(&pb, avpkt->data, avpkt->size);
493     for (i = 0; i < LPC_ORDER; i++) {
494         idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
495         put_bits(&pb, bit_sizes[i], idx);
496         lpc_refl[i] = ff_lpc_refl_cb[i][idx];
497     }
498     ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
499     ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
500     refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
501     refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
502                             energy <= ractx->old_energy,
503                             ff_t_sqrt(energy * ractx->old_energy) >> 12);
504     refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
505     refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
506     ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
507     put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
508     for (i = 0; i < NBLOCKS; i++)
509         ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
510                               block_coefs[i], refl_rms[i], &pb);
511     flush_put_bits(&pb);
512     ractx->old_energy = energy;
513     ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
514     FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
515 
516     /* copy input samples to current block for processing in next call */
517     i = 0;
518     if (frame) {
519         for (; i < frame->nb_samples; i++)
520             ractx->curr_block[i] = samples[i] >> 2;
521 
522         if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
523             return ret;
524     } else
525         ractx->last_frame = 1;
526     memset(&ractx->curr_block[i], 0,
527            (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
528 
529     /* Get the next frame pts/duration */
530     ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
531                        &avpkt->duration);
532 
533     *got_packet_ptr = 1;
534     return 0;
535 }
536 
537 
538 const FFCodec ff_ra_144_encoder = {
539     .p.name         = "real_144",
540     .p.long_name    = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
541     .p.type         = AVMEDIA_TYPE_AUDIO,
542     .p.id           = AV_CODEC_ID_RA_144,
543     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
544                       AV_CODEC_CAP_SMALL_LAST_FRAME,
545     .priv_data_size = sizeof(RA144Context),
546     .init           = ra144_encode_init,
547     FF_CODEC_ENCODE_CB(ra144_encode_frame),
548     .close          = ra144_encode_close,
549     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
550                                                      AV_SAMPLE_FMT_NONE },
551     .p.supported_samplerates = (const int[]){ 8000, 0 },
552 #if FF_API_OLD_CHANNEL_LAYOUT
553     .p.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, 0 },
554 #endif
555     .p.ch_layouts   = (const AVChannelLayout[]){ AV_CHANNEL_LAYOUT_MONO, { 0 } },
556     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
557 };
558