1 /*
2 * SIPR / ACELP.NET decoder
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 * Copyright (c) 2009 Vitor Sessak
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 #include <math.h>
25 #include <stdint.h>
26 #include <string.h>
27
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/float_dsp.h"
30 #include "libavutil/mathematics.h"
31
32 #define BITSTREAM_READER_LE
33 #include "avcodec.h"
34 #include "codec_internal.h"
35 #include "get_bits.h"
36 #include "internal.h"
37 #include "lsp.h"
38 #include "acelp_vectors.h"
39 #include "acelp_pitch_delay.h"
40 #include "acelp_filters.h"
41 #include "celp_filters.h"
42
43 #define MAX_SUBFRAME_COUNT 5
44
45 #include "sipr.h"
46 #include "siprdata.h"
47
48 typedef struct SiprModeParam {
49 const char *mode_name;
50 uint16_t bits_per_frame;
51 uint8_t subframe_count;
52 uint8_t frames_per_packet;
53 float pitch_sharp_factor;
54
55 /* bitstream parameters */
56 uint8_t number_of_fc_indexes;
57 uint8_t ma_predictor_bits; ///< size in bits of the switched MA predictor
58
59 /** size in bits of the i-th stage vector of quantizer */
60 uint8_t vq_indexes_bits[5];
61
62 /** size in bits of the adaptive-codebook index for every subframe */
63 uint8_t pitch_delay_bits[5];
64
65 uint8_t gp_index_bits;
66 uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
67 uint8_t gc_index_bits; ///< size in bits of the gain codebook indexes
68 } SiprModeParam;
69
70 static const SiprModeParam modes[MODE_COUNT] = {
71 [MODE_16k] = {
72 .mode_name = "16k",
73 .bits_per_frame = 160,
74 .subframe_count = SUBFRAME_COUNT_16k,
75 .frames_per_packet = 1,
76 .pitch_sharp_factor = 0.00,
77
78 .number_of_fc_indexes = 10,
79 .ma_predictor_bits = 1,
80 .vq_indexes_bits = {7, 8, 7, 7, 7},
81 .pitch_delay_bits = {9, 6},
82 .gp_index_bits = 4,
83 .fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
84 .gc_index_bits = 5
85 },
86
87 [MODE_8k5] = {
88 .mode_name = "8k5",
89 .bits_per_frame = 152,
90 .subframe_count = 3,
91 .frames_per_packet = 1,
92 .pitch_sharp_factor = 0.8,
93
94 .number_of_fc_indexes = 3,
95 .ma_predictor_bits = 0,
96 .vq_indexes_bits = {6, 7, 7, 7, 5},
97 .pitch_delay_bits = {8, 5, 5},
98 .gp_index_bits = 0,
99 .fc_index_bits = {9, 9, 9},
100 .gc_index_bits = 7
101 },
102
103 [MODE_6k5] = {
104 .mode_name = "6k5",
105 .bits_per_frame = 232,
106 .subframe_count = 3,
107 .frames_per_packet = 2,
108 .pitch_sharp_factor = 0.8,
109
110 .number_of_fc_indexes = 3,
111 .ma_predictor_bits = 0,
112 .vq_indexes_bits = {6, 7, 7, 7, 5},
113 .pitch_delay_bits = {8, 5, 5},
114 .gp_index_bits = 0,
115 .fc_index_bits = {5, 5, 5},
116 .gc_index_bits = 7
117 },
118
119 [MODE_5k0] = {
120 .mode_name = "5k0",
121 .bits_per_frame = 296,
122 .subframe_count = 5,
123 .frames_per_packet = 2,
124 .pitch_sharp_factor = 0.85,
125
126 .number_of_fc_indexes = 1,
127 .ma_predictor_bits = 0,
128 .vq_indexes_bits = {6, 7, 7, 7, 5},
129 .pitch_delay_bits = {8, 5, 8, 5, 5},
130 .gp_index_bits = 0,
131 .fc_index_bits = {10},
132 .gc_index_bits = 7
133 }
134 };
135
136 const float ff_pow_0_5[] = {
137 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4),
138 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8),
139 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
140 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
141 };
142
dequant(float * out,const int * idx,const float * const cbs[])143 static void dequant(float *out, const int *idx, const float * const cbs[])
144 {
145 int i;
146 int stride = 2;
147 int num_vec = 5;
148
149 for (i = 0; i < num_vec; i++)
150 memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
151
152 }
153
lsf_decode_fp(float * lsfnew,float * lsf_history,const SiprParameters * parm)154 static void lsf_decode_fp(float *lsfnew, float *lsf_history,
155 const SiprParameters *parm)
156 {
157 int i;
158 float lsf_tmp[LP_FILTER_ORDER];
159
160 dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
161
162 for (i = 0; i < LP_FILTER_ORDER; i++)
163 lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
164
165 ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
166
167 /* Note that a minimum distance is not enforced between the last value and
168 the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
169 ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
170 lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
171
172 memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
173
174 for (i = 0; i < LP_FILTER_ORDER - 1; i++)
175 lsfnew[i] = cos(lsfnew[i]);
176 lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
177 }
178
179 /** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
pitch_sharpening(int pitch_lag_int,float beta,float * fixed_vector)180 static void pitch_sharpening(int pitch_lag_int, float beta,
181 float *fixed_vector)
182 {
183 int i;
184
185 for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
186 fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
187 }
188
189 /**
190 * Extract decoding parameters from the input bitstream.
191 * @param parms parameters structure
192 * @param pgb pointer to initialized GetBitContext structure
193 */
decode_parameters(SiprParameters * parms,GetBitContext * pgb,const SiprModeParam * p)194 static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
195 const SiprModeParam *p)
196 {
197 int i, j;
198
199 if (p->ma_predictor_bits)
200 parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits);
201
202 for (i = 0; i < 5; i++)
203 parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]);
204
205 for (i = 0; i < p->subframe_count; i++) {
206 parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]);
207 if (p->gp_index_bits)
208 parms->gp_index[i] = get_bits(pgb, p->gp_index_bits);
209
210 for (j = 0; j < p->number_of_fc_indexes; j++)
211 parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
212
213 parms->gc_index[i] = get_bits(pgb, p->gc_index_bits);
214 }
215 }
216
sipr_decode_lp(float * lsfnew,const float * lsfold,float * Az,int num_subfr)217 static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
218 int num_subfr)
219 {
220 double lsfint[LP_FILTER_ORDER];
221 int i,j;
222 float t, t0 = 1.0 / num_subfr;
223
224 t = t0 * 0.5;
225 for (i = 0; i < num_subfr; i++) {
226 for (j = 0; j < LP_FILTER_ORDER; j++)
227 lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
228
229 ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
230 Az += LP_FILTER_ORDER;
231 t += t0;
232 }
233 }
234
235 /**
236 * Evaluate the adaptive impulse response.
237 */
eval_ir(const float * Az,int pitch_lag,float * freq,float pitch_sharp_factor)238 static void eval_ir(const float *Az, int pitch_lag, float *freq,
239 float pitch_sharp_factor)
240 {
241 float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
242 int i;
243
244 tmp1[0] = 1.0;
245 for (i = 0; i < LP_FILTER_ORDER; i++) {
246 tmp1[i+1] = Az[i] * ff_pow_0_55[i];
247 tmp2[i ] = Az[i] * ff_pow_0_7 [i];
248 }
249 memset(tmp1 + 11, 0, 37 * sizeof(float));
250
251 ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
252 LP_FILTER_ORDER);
253
254 pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
255 }
256
257 /**
258 * Evaluate the convolution of a vector with a sparse vector.
259 */
convolute_with_sparse(float * out,const AMRFixed * pulses,const float * shape,int length)260 static void convolute_with_sparse(float *out, const AMRFixed *pulses,
261 const float *shape, int length)
262 {
263 int i, j;
264
265 memset(out, 0, length*sizeof(float));
266 for (i = 0; i < pulses->n; i++)
267 for (j = pulses->x[i]; j < length; j++)
268 out[j] += pulses->y[i] * shape[j - pulses->x[i]];
269 }
270
271 /**
272 * Apply postfilter, very similar to AMR one.
273 */
postfilter_5k0(SiprContext * ctx,const float * lpc,float * samples)274 static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
275 {
276 float buf[SUBFR_SIZE + LP_FILTER_ORDER];
277 float *pole_out = buf + LP_FILTER_ORDER;
278 float lpc_n[LP_FILTER_ORDER];
279 float lpc_d[LP_FILTER_ORDER];
280 int i;
281
282 for (i = 0; i < LP_FILTER_ORDER; i++) {
283 lpc_d[i] = lpc[i] * ff_pow_0_75[i];
284 lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
285 };
286
287 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
288 LP_FILTER_ORDER*sizeof(float));
289
290 ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
291 LP_FILTER_ORDER);
292
293 memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
294 LP_FILTER_ORDER*sizeof(float));
295
296 ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
297
298 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
299 LP_FILTER_ORDER*sizeof(*pole_out));
300
301 memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
302 LP_FILTER_ORDER*sizeof(*pole_out));
303
304 ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
305 LP_FILTER_ORDER);
306
307 }
308
decode_fixed_sparse(AMRFixed * fixed_sparse,const int16_t * pulses,SiprMode mode,int low_gain)309 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
310 SiprMode mode, int low_gain)
311 {
312 int i;
313
314 switch (mode) {
315 case MODE_6k5:
316 for (i = 0; i < 3; i++) {
317 fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
318 fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
319 }
320 fixed_sparse->n = 3;
321 break;
322 case MODE_8k5:
323 for (i = 0; i < 3; i++) {
324 fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
325 fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i;
326
327 fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0;
328
329 fixed_sparse->y[2*i + 1] =
330 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
331 -fixed_sparse->y[2*i ] : fixed_sparse->y[2*i];
332 }
333
334 fixed_sparse->n = 6;
335 break;
336 case MODE_5k0:
337 default:
338 if (low_gain) {
339 int offset = (pulses[0] & 0x200) ? 2 : 0;
340 int val = pulses[0];
341
342 for (i = 0; i < 3; i++) {
343 int index = (val & 0x7) * 6 + 4 - i*2;
344
345 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
346 fixed_sparse->x[i] = index;
347
348 val >>= 3;
349 }
350 fixed_sparse->n = 3;
351 } else {
352 int pulse_subset = (pulses[0] >> 8) & 1;
353
354 fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
355 fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1;
356
357 fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
358 fixed_sparse->y[1] = -fixed_sparse->y[0];
359 fixed_sparse->n = 2;
360 }
361 break;
362 }
363 }
364
decode_frame(SiprContext * ctx,SiprParameters * params,float * out_data)365 static void decode_frame(SiprContext *ctx, SiprParameters *params,
366 float *out_data)
367 {
368 int i, j;
369 int subframe_count = modes[ctx->mode].subframe_count;
370 int frame_size = subframe_count * SUBFR_SIZE;
371 float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
372 float *excitation;
373 float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
374 float lsf_new[LP_FILTER_ORDER];
375 float *impulse_response = ir_buf + LP_FILTER_ORDER;
376 float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
377 // memory alignment
378 int t0_first = 0;
379 AMRFixed fixed_cb;
380
381 memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
382 lsf_decode_fp(lsf_new, ctx->lsf_history, params);
383
384 sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
385
386 memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
387
388 excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
389
390 for (i = 0; i < subframe_count; i++) {
391 float *pAz = Az + i*LP_FILTER_ORDER;
392 float fixed_vector[SUBFR_SIZE];
393 int T0,T0_frac;
394 float pitch_gain, gain_code, avg_energy;
395
396 ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
397 ctx->mode == MODE_5k0, 6);
398
399 if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
400 t0_first = T0;
401
402 ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
403 ff_b60_sinc, 6,
404 2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
405 SUBFR_SIZE);
406
407 decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
408 ctx->past_pitch_gain < 0.8);
409
410 eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
411
412 convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
413 SUBFR_SIZE);
414
415 avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
416 fixed_vector,
417 SUBFR_SIZE)) /
418 SUBFR_SIZE;
419
420 ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
421
422 gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
423 avg_energy, ctx->energy_history,
424 34 - 15.0/(0.05*M_LN10/M_LN2),
425 pred);
426
427 ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
428 pitch_gain, gain_code, SUBFR_SIZE);
429
430 pitch_gain *= 0.5 * pitch_gain;
431 pitch_gain = FFMIN(pitch_gain, 0.4);
432
433 ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
434 ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
435 gain_code *= ctx->gain_mem;
436
437 for (j = 0; j < SUBFR_SIZE; j++)
438 fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
439
440 if (ctx->mode == MODE_5k0) {
441 postfilter_5k0(ctx, pAz, fixed_vector);
442
443 ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
444 pAz, excitation, SUBFR_SIZE,
445 LP_FILTER_ORDER);
446 }
447
448 ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
449 SUBFR_SIZE, LP_FILTER_ORDER);
450
451 excitation += SUBFR_SIZE;
452 }
453
454 memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
455 LP_FILTER_ORDER * sizeof(float));
456
457 if (ctx->mode == MODE_5k0) {
458 for (i = 0; i < subframe_count; i++) {
459 float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
460 ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
461 SUBFR_SIZE);
462 ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
463 &synth[i * SUBFR_SIZE], energy,
464 SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
465 }
466
467 memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
468 LP_FILTER_ORDER*sizeof(float));
469 }
470 memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
471 (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
472
473 ff_acelp_apply_order_2_transfer_function(out_data, synth,
474 (const float[2]) {-1.99997 , 1.000000000},
475 (const float[2]) {-1.93307352, 0.935891986},
476 0.939805806,
477 ctx->highpass_filt_mem,
478 frame_size);
479 }
480
sipr_decoder_init(AVCodecContext * avctx)481 static av_cold int sipr_decoder_init(AVCodecContext * avctx)
482 {
483 SiprContext *ctx = avctx->priv_data;
484 int i;
485
486 switch (avctx->block_align) {
487 case 20: ctx->mode = MODE_16k; break;
488 case 19: ctx->mode = MODE_8k5; break;
489 case 29: ctx->mode = MODE_6k5; break;
490 case 37: ctx->mode = MODE_5k0; break;
491 default:
492 if (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
493 else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
494 else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
495 else ctx->mode = MODE_5k0;
496 av_log(avctx, AV_LOG_WARNING,
497 "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n",
498 avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
499 }
500
501 av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
502
503 if (ctx->mode == MODE_16k) {
504 ff_sipr_init_16k(ctx);
505 ctx->decode_frame = ff_sipr_decode_frame_16k;
506 } else {
507 ctx->decode_frame = decode_frame;
508 }
509
510 for (i = 0; i < LP_FILTER_ORDER; i++)
511 ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
512
513 for (i = 0; i < 4; i++)
514 ctx->energy_history[i] = -14;
515
516 av_channel_layout_uninit(&avctx->ch_layout);
517 avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
518 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
519
520 return 0;
521 }
522
sipr_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)523 static int sipr_decode_frame(AVCodecContext *avctx, AVFrame *frame,
524 int *got_frame_ptr, AVPacket *avpkt)
525 {
526 SiprContext *ctx = avctx->priv_data;
527 const uint8_t *buf=avpkt->data;
528 SiprParameters parm;
529 const SiprModeParam *mode_par = &modes[ctx->mode];
530 GetBitContext gb;
531 float *samples;
532 int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
533 int i, ret;
534
535 ctx->avctx = avctx;
536 if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
537 av_log(avctx, AV_LOG_ERROR,
538 "Error processing packet: packet size (%d) too small\n",
539 avpkt->size);
540 return AVERROR_INVALIDDATA;
541 }
542
543 /* get output buffer */
544 frame->nb_samples = mode_par->frames_per_packet * subframe_size *
545 mode_par->subframe_count;
546 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
547 return ret;
548 samples = (float *)frame->data[0];
549
550 init_get_bits(&gb, buf, mode_par->bits_per_frame);
551
552 for (i = 0; i < mode_par->frames_per_packet; i++) {
553 decode_parameters(&parm, &gb, mode_par);
554
555 ctx->decode_frame(ctx, &parm, samples);
556
557 samples += subframe_size * mode_par->subframe_count;
558 }
559
560 *got_frame_ptr = 1;
561
562 return mode_par->bits_per_frame >> 3;
563 }
564
565 const FFCodec ff_sipr_decoder = {
566 .p.name = "sipr",
567 .p.long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
568 .p.type = AVMEDIA_TYPE_AUDIO,
569 .p.id = AV_CODEC_ID_SIPR,
570 .priv_data_size = sizeof(SiprContext),
571 .init = sipr_decoder_init,
572 FF_CODEC_DECODE_CB(sipr_decode_frame),
573 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
574 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
575 };
576