1 /*
2 * Ut Video encoder
3 * Copyright (c) 2012 Jan Ekström
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Ut Video encoder
25 */
26
27 #include "libavutil/imgutils.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/opt.h"
30
31 #include "avcodec.h"
32 #include "codec_internal.h"
33 #include "encode.h"
34 #include "bswapdsp.h"
35 #include "bytestream.h"
36 #include "put_bits.h"
37 #include "mathops.h"
38 #include "utvideo.h"
39 #include "huffman.h"
40
41 typedef struct HuffEntry {
42 uint16_t sym;
43 uint8_t len;
44 uint32_t code;
45 } HuffEntry;
46
47 /* Compare huffman tree nodes */
ut_huff_cmp_len(const void * a,const void * b)48 static int ut_huff_cmp_len(const void *a, const void *b)
49 {
50 const HuffEntry *aa = a, *bb = b;
51 return (aa->len - bb->len)*256 + aa->sym - bb->sym;
52 }
53
54 /* Compare huffentry symbols */
huff_cmp_sym(const void * a,const void * b)55 static int huff_cmp_sym(const void *a, const void *b)
56 {
57 const HuffEntry *aa = a, *bb = b;
58 return aa->sym - bb->sym;
59 }
60
utvideo_encode_close(AVCodecContext * avctx)61 static av_cold int utvideo_encode_close(AVCodecContext *avctx)
62 {
63 UtvideoContext *c = avctx->priv_data;
64 int i;
65
66 av_freep(&c->slice_bits);
67 for (i = 0; i < 4; i++)
68 av_freep(&c->slice_buffer[i]);
69
70 return 0;
71 }
72
utvideo_encode_init(AVCodecContext * avctx)73 static av_cold int utvideo_encode_init(AVCodecContext *avctx)
74 {
75 UtvideoContext *c = avctx->priv_data;
76 int i, subsampled_height;
77 uint32_t original_format;
78
79 c->avctx = avctx;
80 c->frame_info_size = 4;
81 c->slice_stride = FFALIGN(avctx->width, 32);
82
83 switch (avctx->pix_fmt) {
84 case AV_PIX_FMT_GBRP:
85 c->planes = 3;
86 avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
87 original_format = UTVIDEO_RGB;
88 break;
89 case AV_PIX_FMT_GBRAP:
90 c->planes = 4;
91 avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
92 original_format = UTVIDEO_RGBA;
93 avctx->bits_per_coded_sample = 32;
94 break;
95 case AV_PIX_FMT_YUV420P:
96 if (avctx->width & 1 || avctx->height & 1) {
97 av_log(avctx, AV_LOG_ERROR,
98 "4:2:0 video requires even width and height.\n");
99 return AVERROR_INVALIDDATA;
100 }
101 c->planes = 3;
102 if (avctx->colorspace == AVCOL_SPC_BT709)
103 avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
104 else
105 avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
106 original_format = UTVIDEO_420;
107 break;
108 case AV_PIX_FMT_YUV422P:
109 if (avctx->width & 1) {
110 av_log(avctx, AV_LOG_ERROR,
111 "4:2:2 video requires even width.\n");
112 return AVERROR_INVALIDDATA;
113 }
114 c->planes = 3;
115 if (avctx->colorspace == AVCOL_SPC_BT709)
116 avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
117 else
118 avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
119 original_format = UTVIDEO_422;
120 break;
121 case AV_PIX_FMT_YUV444P:
122 c->planes = 3;
123 if (avctx->colorspace == AVCOL_SPC_BT709)
124 avctx->codec_tag = MKTAG('U', 'L', 'H', '4');
125 else
126 avctx->codec_tag = MKTAG('U', 'L', 'Y', '4');
127 original_format = UTVIDEO_444;
128 break;
129 default:
130 av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
131 avctx->pix_fmt);
132 return AVERROR_INVALIDDATA;
133 }
134
135 ff_bswapdsp_init(&c->bdsp);
136 ff_llvidencdsp_init(&c->llvidencdsp);
137
138 if (c->frame_pred == PRED_GRADIENT) {
139 av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
140 return AVERROR_OPTION_NOT_FOUND;
141 }
142
143 /*
144 * Check the asked slice count for obviously invalid
145 * values (> 256 or negative).
146 */
147 if (avctx->slices > 256 || avctx->slices < 0) {
148 av_log(avctx, AV_LOG_ERROR,
149 "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
150 avctx->slices);
151 return AVERROR(EINVAL);
152 }
153
154 /* Check that the slice count is not larger than the subsampled height */
155 subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
156 if (avctx->slices > subsampled_height) {
157 av_log(avctx, AV_LOG_ERROR,
158 "Slice count %d is larger than the subsampling-applied height %d.\n",
159 avctx->slices, subsampled_height);
160 return AVERROR(EINVAL);
161 }
162
163 /* extradata size is 4 * 32 bits */
164 avctx->extradata_size = 16;
165
166 avctx->extradata = av_mallocz(avctx->extradata_size +
167 AV_INPUT_BUFFER_PADDING_SIZE);
168
169 if (!avctx->extradata) {
170 av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
171 return AVERROR(ENOMEM);
172 }
173
174 for (i = 0; i < c->planes; i++) {
175 c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
176 AV_INPUT_BUFFER_PADDING_SIZE);
177 if (!c->slice_buffer[i]) {
178 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
179 return AVERROR(ENOMEM);
180 }
181 }
182
183 /*
184 * Set the version of the encoder.
185 * Last byte is "implementation ID", which is
186 * obtained from the creator of the format.
187 * Libavcodec has been assigned with the ID 0xF0.
188 */
189 AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
190
191 /*
192 * Set the "original format"
193 * Not used for anything during decoding.
194 */
195 AV_WL32(avctx->extradata + 4, original_format);
196
197 /* Write 4 as the 'frame info size' */
198 AV_WL32(avctx->extradata + 8, c->frame_info_size);
199
200 /*
201 * Set how many slices are going to be used.
202 * By default uses multiple slices depending on the subsampled height.
203 * This enables multithreading in the official decoder.
204 */
205 if (!avctx->slices) {
206 c->slices = subsampled_height / 120;
207
208 if (!c->slices)
209 c->slices = 1;
210 else if (c->slices > 256)
211 c->slices = 256;
212 } else {
213 c->slices = avctx->slices;
214 }
215
216 /* Set compression mode */
217 c->compression = COMP_HUFF;
218
219 /*
220 * Set the encoding flags:
221 * - Slice count minus 1
222 * - Interlaced encoding mode flag, set to zero for now.
223 * - Compression mode (none/huff)
224 * And write the flags.
225 */
226 c->flags = (c->slices - 1) << 24;
227 c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
228 c->flags |= c->compression;
229
230 AV_WL32(avctx->extradata + 12, c->flags);
231
232 return 0;
233 }
234
mangle_rgb_planes(uint8_t * dst[4],ptrdiff_t dst_stride,uint8_t * const src[4],int planes,const int stride[4],int width,int height)235 static void mangle_rgb_planes(uint8_t *dst[4], ptrdiff_t dst_stride,
236 uint8_t *const src[4], int planes, const int stride[4],
237 int width, int height)
238 {
239 int i, j;
240 int k = 2 * dst_stride;
241 const uint8_t *sg = src[0];
242 const uint8_t *sb = src[1];
243 const uint8_t *sr = src[2];
244 const uint8_t *sa = src[3];
245 unsigned int g;
246
247 for (j = 0; j < height; j++) {
248 if (planes == 3) {
249 for (i = 0; i < width; i++) {
250 g = sg[i];
251 dst[0][k] = g;
252 g += 0x80;
253 dst[1][k] = sb[i] - g;
254 dst[2][k] = sr[i] - g;
255 k++;
256 }
257 } else {
258 for (i = 0; i < width; i++) {
259 g = sg[i];
260 dst[0][k] = g;
261 g += 0x80;
262 dst[1][k] = sb[i] - g;
263 dst[2][k] = sr[i] - g;
264 dst[3][k] = sa[i];
265 k++;
266 }
267 sa += stride[3];
268 }
269 k += dst_stride - width;
270 sg += stride[0];
271 sb += stride[1];
272 sr += stride[2];
273 }
274 }
275
276 #undef A
277 #undef B
278
279 /* Write data to a plane with median prediction */
median_predict(UtvideoContext * c,uint8_t * src,uint8_t * dst,ptrdiff_t stride,int width,int height)280 static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst,
281 ptrdiff_t stride, int width, int height)
282 {
283 int i, j;
284 int A, B;
285 uint8_t prev;
286
287 /* First line uses left neighbour prediction */
288 prev = 0x80; /* Set the initial value */
289 for (i = 0; i < width; i++) {
290 *dst++ = src[i] - prev;
291 prev = src[i];
292 }
293
294 if (height == 1)
295 return;
296
297 src += stride;
298
299 /*
300 * Second line uses top prediction for the first sample,
301 * and median for the rest.
302 */
303 A = B = 0;
304
305 /* Rest of the coded part uses median prediction */
306 for (j = 1; j < height; j++) {
307 c->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &A, &B);
308 dst += width;
309 src += stride;
310 }
311 }
312
313 /* Count the usage of values in a plane */
count_usage(uint8_t * src,int width,int height,uint64_t * counts)314 static void count_usage(uint8_t *src, int width,
315 int height, uint64_t *counts)
316 {
317 int i, j;
318
319 for (j = 0; j < height; j++) {
320 for (i = 0; i < width; i++) {
321 counts[src[i]]++;
322 }
323 src += width;
324 }
325 }
326
327 /* Calculate the actual huffman codes from the code lengths */
calculate_codes(HuffEntry * he)328 static void calculate_codes(HuffEntry *he)
329 {
330 int last, i;
331 uint32_t code;
332
333 qsort(he, 256, sizeof(*he), ut_huff_cmp_len);
334
335 last = 255;
336 while (he[last].len == 255 && last)
337 last--;
338
339 code = 0;
340 for (i = last; i >= 0; i--) {
341 he[i].code = code >> (32 - he[i].len);
342 code += 0x80000000u >> (he[i].len - 1);
343 }
344
345 qsort(he, 256, sizeof(*he), huff_cmp_sym);
346 }
347
348 /* Write huffman bit codes to a memory block */
write_huff_codes(uint8_t * src,uint8_t * dst,int dst_size,int width,int height,HuffEntry * he)349 static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
350 int width, int height, HuffEntry *he)
351 {
352 PutBitContext pb;
353 int i, j;
354 int count;
355
356 init_put_bits(&pb, dst, dst_size);
357
358 /* Write the codes */
359 for (j = 0; j < height; j++) {
360 for (i = 0; i < width; i++)
361 put_bits(&pb, he[src[i]].len, he[src[i]].code);
362
363 src += width;
364 }
365
366 /* Pad output to a 32-bit boundary */
367 count = put_bits_count(&pb) & 0x1F;
368
369 if (count)
370 put_bits(&pb, 32 - count, 0);
371
372 /* Flush the rest with zeroes */
373 flush_put_bits(&pb);
374
375 /* Return the amount of bytes written */
376 return put_bytes_output(&pb);
377 }
378
encode_plane(AVCodecContext * avctx,uint8_t * src,uint8_t * dst,ptrdiff_t stride,int plane_no,int width,int height,PutByteContext * pb)379 static int encode_plane(AVCodecContext *avctx, uint8_t *src,
380 uint8_t *dst, ptrdiff_t stride, int plane_no,
381 int width, int height, PutByteContext *pb)
382 {
383 UtvideoContext *c = avctx->priv_data;
384 uint8_t lengths[256];
385 uint64_t counts[256] = { 0 };
386
387 HuffEntry he[256];
388
389 uint32_t offset = 0, slice_len = 0;
390 const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
391 int i, sstart, send = 0;
392 int symbol;
393 int ret;
394
395 /* Do prediction / make planes */
396 switch (c->frame_pred) {
397 case PRED_NONE:
398 for (i = 0; i < c->slices; i++) {
399 sstart = send;
400 send = height * (i + 1) / c->slices & cmask;
401 av_image_copy_plane(dst + sstart * width, width,
402 src + sstart * stride, stride,
403 width, send - sstart);
404 }
405 break;
406 case PRED_LEFT:
407 for (i = 0; i < c->slices; i++) {
408 sstart = send;
409 send = height * (i + 1) / c->slices & cmask;
410 c->llvidencdsp.sub_left_predict(dst + sstart * width, src + sstart * stride, stride, width, send - sstart);
411 }
412 break;
413 case PRED_MEDIAN:
414 for (i = 0; i < c->slices; i++) {
415 sstart = send;
416 send = height * (i + 1) / c->slices & cmask;
417 median_predict(c, src + sstart * stride, dst + sstart * width,
418 stride, width, send - sstart);
419 }
420 break;
421 default:
422 av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
423 c->frame_pred);
424 return AVERROR_OPTION_NOT_FOUND;
425 }
426
427 /* Count the usage of values */
428 count_usage(dst, width, height, counts);
429
430 /* Check for a special case where only one symbol was used */
431 for (symbol = 0; symbol < 256; symbol++) {
432 /* If non-zero count is found, see if it matches width * height */
433 if (counts[symbol]) {
434 /* Special case if only one symbol was used */
435 if (counts[symbol] == width * (int64_t)height) {
436 /*
437 * Write a zero for the single symbol
438 * used in the plane, else 0xFF.
439 */
440 for (i = 0; i < 256; i++) {
441 if (i == symbol)
442 bytestream2_put_byte(pb, 0);
443 else
444 bytestream2_put_byte(pb, 0xFF);
445 }
446
447 /* Write zeroes for lengths */
448 for (i = 0; i < c->slices; i++)
449 bytestream2_put_le32(pb, 0);
450
451 /* And that's all for that plane folks */
452 return 0;
453 }
454 break;
455 }
456 }
457
458 /* Calculate huffman lengths */
459 if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
460 return ret;
461
462 /*
463 * Write the plane's header into the output packet:
464 * - huffman code lengths (256 bytes)
465 * - slice end offsets (gotten from the slice lengths)
466 */
467 for (i = 0; i < 256; i++) {
468 bytestream2_put_byte(pb, lengths[i]);
469
470 he[i].len = lengths[i];
471 he[i].sym = i;
472 }
473
474 /* Calculate the huffman codes themselves */
475 calculate_codes(he);
476
477 send = 0;
478 for (i = 0; i < c->slices; i++) {
479 sstart = send;
480 send = height * (i + 1) / c->slices & cmask;
481
482 /*
483 * Write the huffman codes to a buffer,
484 * get the offset in bytes.
485 */
486 offset += write_huff_codes(dst + sstart * width, c->slice_bits,
487 width * height + 4, width,
488 send - sstart, he);
489
490 slice_len = offset - slice_len;
491
492 /* Byteswap the written huffman codes */
493 c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
494 (uint32_t *) c->slice_bits,
495 slice_len >> 2);
496
497 /* Write the offset to the stream */
498 bytestream2_put_le32(pb, offset);
499
500 /* Seek to the data part of the packet */
501 bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
502 offset - slice_len, SEEK_CUR);
503
504 /* Write the slices' data into the output packet */
505 bytestream2_put_buffer(pb, c->slice_bits, slice_len);
506
507 /* Seek back to the slice offsets */
508 bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
509 SEEK_CUR);
510
511 slice_len = offset;
512 }
513
514 /* And at the end seek to the end of written slice(s) */
515 bytestream2_seek_p(pb, offset, SEEK_CUR);
516
517 return 0;
518 }
519
utvideo_encode_frame(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * pic,int * got_packet)520 static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
521 const AVFrame *pic, int *got_packet)
522 {
523 UtvideoContext *c = avctx->priv_data;
524 PutByteContext pb;
525
526 uint32_t frame_info;
527
528 uint8_t *dst;
529
530 int width = avctx->width, height = avctx->height;
531 int i, ret = 0;
532
533 /* Allocate a new packet if needed, and set it to the pointer dst */
534 ret = ff_alloc_packet(avctx, pkt, (256 + 4 * c->slices + width * height)
535 * c->planes + 4);
536
537 if (ret < 0)
538 return ret;
539
540 dst = pkt->data;
541
542 bytestream2_init_writer(&pb, dst, pkt->size);
543
544 av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
545
546 if (!c->slice_bits) {
547 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
548 return AVERROR(ENOMEM);
549 }
550
551 /* In case of RGB, mangle the planes to Ut Video's format */
552 if (avctx->pix_fmt == AV_PIX_FMT_GBRAP || avctx->pix_fmt == AV_PIX_FMT_GBRP)
553 mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data,
554 c->planes, pic->linesize, width, height);
555
556 /* Deal with the planes */
557 switch (avctx->pix_fmt) {
558 case AV_PIX_FMT_GBRP:
559 case AV_PIX_FMT_GBRAP:
560 for (i = 0; i < c->planes; i++) {
561 ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
562 c->slice_buffer[i], c->slice_stride, i,
563 width, height, &pb);
564
565 if (ret) {
566 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
567 return ret;
568 }
569 }
570 break;
571 case AV_PIX_FMT_YUV444P:
572 for (i = 0; i < c->planes; i++) {
573 ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
574 pic->linesize[i], i, width, height, &pb);
575
576 if (ret) {
577 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
578 return ret;
579 }
580 }
581 break;
582 case AV_PIX_FMT_YUV422P:
583 for (i = 0; i < c->planes; i++) {
584 ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
585 pic->linesize[i], i, width >> !!i, height, &pb);
586
587 if (ret) {
588 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
589 return ret;
590 }
591 }
592 break;
593 case AV_PIX_FMT_YUV420P:
594 for (i = 0; i < c->planes; i++) {
595 ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
596 pic->linesize[i], i, width >> !!i, height >> !!i,
597 &pb);
598
599 if (ret) {
600 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
601 return ret;
602 }
603 }
604 break;
605 default:
606 av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
607 avctx->pix_fmt);
608 return AVERROR_INVALIDDATA;
609 }
610
611 /*
612 * Write frame information (LE 32-bit unsigned)
613 * into the output packet.
614 * Contains the prediction method.
615 */
616 frame_info = c->frame_pred << 8;
617 bytestream2_put_le32(&pb, frame_info);
618
619 pkt->size = bytestream2_tell_p(&pb);
620
621 /* Packet should be done */
622 *got_packet = 1;
623
624 return 0;
625 }
626
627 #define OFFSET(x) offsetof(UtvideoContext, x)
628 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
629 static const AVOption options[] = {
630 { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, { .i64 = PRED_LEFT }, PRED_NONE, PRED_MEDIAN, VE, "pred" },
631 { "none", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_NONE }, INT_MIN, INT_MAX, VE, "pred" },
632 { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_LEFT }, INT_MIN, INT_MAX, VE, "pred" },
633 { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_GRADIENT }, INT_MIN, INT_MAX, VE, "pred" },
634 { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_MEDIAN }, INT_MIN, INT_MAX, VE, "pred" },
635
636 { NULL},
637 };
638
639 static const AVClass utvideo_class = {
640 .class_name = "utvideo",
641 .item_name = av_default_item_name,
642 .option = options,
643 .version = LIBAVUTIL_VERSION_INT,
644 };
645
646 const FFCodec ff_utvideo_encoder = {
647 .p.name = "utvideo",
648 .p.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
649 .p.type = AVMEDIA_TYPE_VIDEO,
650 .p.id = AV_CODEC_ID_UTVIDEO,
651 .priv_data_size = sizeof(UtvideoContext),
652 .p.priv_class = &utvideo_class,
653 .init = utvideo_encode_init,
654 FF_CODEC_ENCODE_CB(utvideo_encode_frame),
655 .close = utvideo_encode_close,
656 .p.capabilities = AV_CODEC_CAP_FRAME_THREADS,
657 .p.pix_fmts = (const enum AVPixelFormat[]) {
658 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
659 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE
660 },
661 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
662 };
663