1 /*
2 * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
3 * Copyright (c) 2013 Paul B Mahol
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <float.h>
23 #include <math.h>
24
25 #include "libavutil/opt.h"
26 #include "audio.h"
27 #include "avfilter.h"
28 #include "internal.h"
29
30 #define HISTOGRAM_SIZE 8192
31 #define HISTOGRAM_MAX (HISTOGRAM_SIZE-1)
32
33 #define MEASURE_ALL UINT_MAX
34 #define MEASURE_NONE 0
35
36 #define MEASURE_DC_OFFSET (1 << 0)
37 #define MEASURE_MIN_LEVEL (1 << 1)
38 #define MEASURE_MAX_LEVEL (1 << 2)
39 #define MEASURE_MIN_DIFFERENCE (1 << 3)
40 #define MEASURE_MAX_DIFFERENCE (1 << 4)
41 #define MEASURE_MEAN_DIFFERENCE (1 << 5)
42 #define MEASURE_RMS_DIFFERENCE (1 << 6)
43 #define MEASURE_PEAK_LEVEL (1 << 7)
44 #define MEASURE_RMS_LEVEL (1 << 8)
45 #define MEASURE_RMS_PEAK (1 << 9)
46 #define MEASURE_RMS_TROUGH (1 << 10)
47 #define MEASURE_CREST_FACTOR (1 << 11)
48 #define MEASURE_FLAT_FACTOR (1 << 12)
49 #define MEASURE_PEAK_COUNT (1 << 13)
50 #define MEASURE_BIT_DEPTH (1 << 14)
51 #define MEASURE_DYNAMIC_RANGE (1 << 15)
52 #define MEASURE_ZERO_CROSSINGS (1 << 16)
53 #define MEASURE_ZERO_CROSSINGS_RATE (1 << 17)
54 #define MEASURE_NUMBER_OF_SAMPLES (1 << 18)
55 #define MEASURE_NUMBER_OF_NANS (1 << 19)
56 #define MEASURE_NUMBER_OF_INFS (1 << 20)
57 #define MEASURE_NUMBER_OF_DENORMALS (1 << 21)
58 #define MEASURE_NOISE_FLOOR (1 << 22)
59 #define MEASURE_NOISE_FLOOR_COUNT (1 << 23)
60 #define MEASURE_ENTROPY (1 << 24)
61
62 #define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL)
63
64 typedef struct ChannelStats {
65 double last;
66 double last_non_zero;
67 double min_non_zero;
68 double sigma_x, sigma_x2;
69 double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
70 double min, max;
71 double nmin, nmax;
72 double min_run, max_run;
73 double min_runs, max_runs;
74 double min_diff, max_diff;
75 double diff1_sum;
76 double diff1_sum_x2;
77 uint64_t mask, imask;
78 uint64_t min_count, max_count;
79 uint64_t noise_floor_count;
80 uint64_t zero_runs;
81 uint64_t nb_samples;
82 uint64_t nb_nans;
83 uint64_t nb_infs;
84 uint64_t nb_denormals;
85 double *win_samples;
86 uint64_t histogram[HISTOGRAM_SIZE];
87 uint64_t ehistogram[HISTOGRAM_SIZE];
88 int win_pos;
89 int max_index;
90 double noise_floor;
91 double entropy;
92 } ChannelStats;
93
94 typedef struct AudioStatsContext {
95 const AVClass *class;
96 ChannelStats *chstats;
97 int nb_channels;
98 uint64_t tc_samples;
99 double time_constant;
100 double mult;
101 int metadata;
102 int reset_count;
103 int nb_frames;
104 int maxbitdepth;
105 int measure_perchannel;
106 int measure_overall;
107 int is_float;
108 int is_double;
109 } AudioStatsContext;
110
111 #define OFFSET(x) offsetof(AudioStatsContext, x)
112 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
113
114 static const AVOption astats_options[] = {
115 { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, 0, 10, FLAGS },
116 { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
117 { "reset", "Set the number of frames over which cumulative stats are calculated before being reset", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
118 { "measure_perchannel", "Select the parameters which are measured per channel", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
119 { "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" },
120 { "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" },
121 { "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" },
122 { "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" },
123 { "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" },
124 { "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
125 { "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" },
126 { "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
127 { "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" },
128 { "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" },
129 { "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" },
130 { "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" },
131 { "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" },
132 { "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" },
133 { "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" },
134 { "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" },
135 { "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" },
136 { "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" },
137 { "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" },
138 { "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" },
139 { "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" },
140 { "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" },
141 { "Entropy" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, FLAGS, "measure" },
142 { "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" },
143 { "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" },
144 { "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" },
145 { "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" },
146 { "measure_overall", "Select the parameters which are measured overall", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
147 { NULL }
148 };
149
150 AVFILTER_DEFINE_CLASS(astats);
151
reset_stats(AudioStatsContext * s)152 static void reset_stats(AudioStatsContext *s)
153 {
154 int c;
155
156 for (c = 0; c < s->nb_channels; c++) {
157 ChannelStats *p = &s->chstats[c];
158
159 p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
160 p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX;
161 p->min_non_zero = DBL_MAX;
162 p->min_diff = DBL_MAX;
163 p->max_diff = 0;
164 p->sigma_x = 0;
165 p->sigma_x2 = 0;
166 p->avg_sigma_x2 = 0;
167 p->min_run = 0;
168 p->max_run = 0;
169 p->min_runs = 0;
170 p->max_runs = 0;
171 p->diff1_sum = 0;
172 p->diff1_sum_x2 = 0;
173 p->mask = 0;
174 p->imask = 0xFFFFFFFFFFFFFFFF;
175 p->min_count = 0;
176 p->max_count = 0;
177 p->zero_runs = 0;
178 p->nb_samples = 0;
179 p->nb_nans = 0;
180 p->nb_infs = 0;
181 p->nb_denormals = 0;
182 p->last = NAN;
183 p->noise_floor = NAN;
184 p->noise_floor_count = 0;
185 p->entropy = 0;
186 p->win_pos = 0;
187 memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples));
188 memset(p->histogram, 0, sizeof(p->histogram));
189 memset(p->ehistogram, 0, sizeof(p->ehistogram));
190 }
191 }
192
config_output(AVFilterLink * outlink)193 static int config_output(AVFilterLink *outlink)
194 {
195 AudioStatsContext *s = outlink->src->priv;
196
197 s->chstats = av_calloc(sizeof(*s->chstats), outlink->ch_layout.nb_channels);
198 if (!s->chstats)
199 return AVERROR(ENOMEM);
200
201 s->tc_samples = FFMAX(s->time_constant * outlink->sample_rate + .5, 1);
202 s->nb_channels = outlink->ch_layout.nb_channels;
203
204 for (int i = 0; i < s->nb_channels; i++) {
205 ChannelStats *p = &s->chstats[i];
206
207 p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples));
208 if (!p->win_samples)
209 return AVERROR(ENOMEM);
210 }
211
212 s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
213 s->nb_frames = 0;
214 s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
215 s->is_double = outlink->format == AV_SAMPLE_FMT_DBL ||
216 outlink->format == AV_SAMPLE_FMT_DBLP;
217
218 s->is_float = outlink->format == AV_SAMPLE_FMT_FLT ||
219 outlink->format == AV_SAMPLE_FMT_FLTP;
220
221 reset_stats(s);
222
223 return 0;
224 }
225
bit_depth(AudioStatsContext * s,uint64_t mask,uint64_t imask,AVRational * depth)226 static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
227 {
228 unsigned result = s->maxbitdepth;
229
230 mask = mask & (~imask);
231
232 for (; result && !(mask & 1); --result, mask >>= 1);
233
234 depth->den = result;
235 depth->num = 0;
236
237 for (; result; --result, mask >>= 1)
238 if (mask & 1)
239 depth->num++;
240 }
241
calc_entropy(AudioStatsContext * s,ChannelStats * p)242 static double calc_entropy(AudioStatsContext *s, ChannelStats *p)
243 {
244 double entropy = 0.;
245
246 for (int i = 0; i < HISTOGRAM_SIZE; i++) {
247 double entry = p->ehistogram[i] / ((double)p->nb_samples);
248
249 if (entry > 1e-8)
250 entropy += entry * log2(entry);
251 }
252
253 return -entropy / log2(HISTOGRAM_SIZE);
254 }
255
update_minmax(AudioStatsContext * s,ChannelStats * p,double d)256 static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d)
257 {
258 if (d < p->min)
259 p->min = d;
260 if (d > p->max)
261 p->max = d;
262 }
263
update_stat(AudioStatsContext * s,ChannelStats * p,double d,double nd,int64_t i)264 static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
265 {
266 double drop;
267 int index;
268
269 if (d < p->min) {
270 p->min = d;
271 p->nmin = nd;
272 p->min_run = 1;
273 p->min_runs = 0;
274 p->min_count = 1;
275 } else if (d == p->min) {
276 p->min_count++;
277 p->min_run = d == p->last ? p->min_run + 1 : 1;
278 } else if (p->last == p->min) {
279 p->min_runs += p->min_run * p->min_run;
280 }
281
282 if (d != 0 && FFABS(d) < p->min_non_zero)
283 p->min_non_zero = FFABS(d);
284
285 if (d > p->max) {
286 p->max = d;
287 p->nmax = nd;
288 p->max_run = 1;
289 p->max_runs = 0;
290 p->max_count = 1;
291 } else if (d == p->max) {
292 p->max_count++;
293 p->max_run = d == p->last ? p->max_run + 1 : 1;
294 } else if (p->last == p->max) {
295 p->max_runs += p->max_run * p->max_run;
296 }
297
298 if (d != 0) {
299 p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
300 p->last_non_zero = d;
301 }
302
303 p->sigma_x += nd;
304 p->sigma_x2 += nd * nd;
305 p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
306 if (!isnan(p->last)) {
307 p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
308 p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
309 p->diff1_sum += fabs(d - p->last);
310 p->diff1_sum_x2 += (d - p->last) * (d - p->last);
311 }
312 p->last = d;
313 p->mask |= i;
314 p->imask &= i;
315
316 drop = p->win_samples[p->win_pos];
317 p->win_samples[p->win_pos] = nd;
318 index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX);
319 p->max_index = FFMAX(p->max_index, index);
320 p->histogram[index]++;
321 p->ehistogram[index]++;
322 if (!isnan(p->noise_floor))
323 p->histogram[av_clip(lrint(av_clipd(FFABS(drop), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX)]--;
324 p->win_pos++;
325
326 while (p->histogram[p->max_index] == 0)
327 p->max_index--;
328 if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) {
329 double noise_floor = 1.;
330
331 for (int i = p->max_index; i >= 0; i--) {
332 if (p->histogram[i]) {
333 noise_floor = i / (double)HISTOGRAM_MAX;
334 break;
335 }
336 }
337
338 if (isnan(p->noise_floor)) {
339 p->noise_floor = noise_floor;
340 p->noise_floor_count = 1;
341 } else {
342 if (noise_floor < p->noise_floor) {
343 p->noise_floor = noise_floor;
344 p->noise_floor_count = 1;
345 } else if (noise_floor == p->noise_floor) {
346 p->noise_floor_count++;
347 }
348 }
349 }
350
351 if (p->win_pos >= s->tc_samples) {
352 p->win_pos = 0;
353 }
354
355 if (p->nb_samples >= s->tc_samples) {
356 p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
357 p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
358 }
359 p->nb_samples++;
360 }
361
update_float_stat(AudioStatsContext * s,ChannelStats * p,float d)362 static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d)
363 {
364 int type = fpclassify(d);
365
366 p->nb_nans += type == FP_NAN;
367 p->nb_infs += type == FP_INFINITE;
368 p->nb_denormals += type == FP_SUBNORMAL;
369 }
370
update_double_stat(AudioStatsContext * s,ChannelStats * p,double d)371 static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d)
372 {
373 int type = fpclassify(d);
374
375 p->nb_nans += type == FP_NAN;
376 p->nb_infs += type == FP_INFINITE;
377 p->nb_denormals += type == FP_SUBNORMAL;
378 }
379
set_meta(AVDictionary ** metadata,int chan,const char * key,const char * fmt,double val)380 static void set_meta(AVDictionary **metadata, int chan, const char *key,
381 const char *fmt, double val)
382 {
383 uint8_t value[128];
384 uint8_t key2[128];
385
386 snprintf(value, sizeof(value), fmt, val);
387 if (chan)
388 snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
389 else
390 snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
391 av_dict_set(metadata, key2, value, 0);
392 }
393
394 #define LINEAR_TO_DB(x) (log10(x) * 20)
395
set_metadata(AudioStatsContext * s,AVDictionary ** metadata)396 static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
397 {
398 uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
399 uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
400 double min_runs = 0, max_runs = 0,
401 min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
402 nmin = DBL_MAX, nmax =-DBL_MAX,
403 max_sigma_x = 0,
404 diff1_sum = 0,
405 diff1_sum_x2 = 0,
406 sigma_x2 = 0,
407 noise_floor = 0,
408 entropy = 0,
409 min_sigma_x2 = DBL_MAX,
410 max_sigma_x2 =-DBL_MAX;
411 AVRational depth;
412 int c;
413
414 for (c = 0; c < s->nb_channels; c++) {
415 ChannelStats *p = &s->chstats[c];
416
417 if (p->nb_samples < s->tc_samples)
418 p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
419
420 min = FFMIN(min, p->min);
421 max = FFMAX(max, p->max);
422 nmin = FFMIN(nmin, p->nmin);
423 nmax = FFMAX(nmax, p->nmax);
424 min_diff = FFMIN(min_diff, p->min_diff);
425 max_diff = FFMAX(max_diff, p->max_diff);
426 diff1_sum += p->diff1_sum;
427 diff1_sum_x2 += p->diff1_sum_x2;
428 min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
429 max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
430 sigma_x2 += p->sigma_x2;
431 noise_floor = FFMAX(noise_floor, p->noise_floor);
432 noise_floor_count += p->noise_floor_count;
433 p->entropy = calc_entropy(s, p);
434 entropy += p->entropy;
435 min_count += p->min_count;
436 max_count += p->max_count;
437 min_runs += p->min_runs;
438 max_runs += p->max_runs;
439 mask |= p->mask;
440 imask &= p->imask;
441 nb_samples += p->nb_samples;
442 nb_nans += p->nb_nans;
443 nb_infs += p->nb_infs;
444 nb_denormals += p->nb_denormals;
445 if (fabs(p->sigma_x) > fabs(max_sigma_x))
446 max_sigma_x = p->sigma_x;
447
448 if (s->measure_perchannel & MEASURE_DC_OFFSET)
449 set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
450 if (s->measure_perchannel & MEASURE_MIN_LEVEL)
451 set_meta(metadata, c + 1, "Min_level", "%f", p->min);
452 if (s->measure_perchannel & MEASURE_MAX_LEVEL)
453 set_meta(metadata, c + 1, "Max_level", "%f", p->max);
454 if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
455 set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
456 if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
457 set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
458 if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
459 set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
460 if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
461 set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
462 if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
463 set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
464 if (s->measure_perchannel & MEASURE_RMS_LEVEL)
465 set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
466 if (s->measure_perchannel & MEASURE_RMS_PEAK)
467 set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
468 if (s->measure_perchannel & MEASURE_RMS_TROUGH)
469 set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
470 if (s->measure_perchannel & MEASURE_CREST_FACTOR)
471 set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
472 if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
473 set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
474 if (s->measure_perchannel & MEASURE_PEAK_COUNT)
475 set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
476 if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
477 set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor));
478 if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
479 set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count);
480 if (s->measure_perchannel & MEASURE_ENTROPY)
481 set_meta(metadata, c + 1, "Entropy", "%f", p->entropy);
482 if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
483 bit_depth(s, p->mask, p->imask, &depth);
484 set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
485 set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
486 }
487 if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
488 set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
489 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
490 set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
491 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
492 set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
493 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
494 set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans);
495 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
496 set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs);
497 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
498 set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals);
499 }
500
501 if (s->measure_overall & MEASURE_DC_OFFSET)
502 set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
503 if (s->measure_overall & MEASURE_MIN_LEVEL)
504 set_meta(metadata, 0, "Overall.Min_level", "%f", min);
505 if (s->measure_overall & MEASURE_MAX_LEVEL)
506 set_meta(metadata, 0, "Overall.Max_level", "%f", max);
507 if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
508 set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
509 if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
510 set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
511 if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
512 set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
513 if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
514 set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
515 if (s->measure_overall & MEASURE_PEAK_LEVEL)
516 set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
517 if (s->measure_overall & MEASURE_RMS_LEVEL)
518 set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
519 if (s->measure_overall & MEASURE_RMS_PEAK)
520 set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
521 if (s->measure_overall & MEASURE_RMS_TROUGH)
522 set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
523 if (s->measure_overall & MEASURE_FLAT_FACTOR)
524 set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
525 if (s->measure_overall & MEASURE_PEAK_COUNT)
526 set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
527 if (s->measure_overall & MEASURE_NOISE_FLOOR)
528 set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor));
529 if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
530 set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels);
531 if (s->measure_overall & MEASURE_ENTROPY)
532 set_meta(metadata, 0, "Overall.Entropy", "%f", entropy / (double)s->nb_channels);
533 if (s->measure_overall & MEASURE_BIT_DEPTH) {
534 bit_depth(s, mask, imask, &depth);
535 set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
536 set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
537 }
538 if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
539 set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
540 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
541 set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels);
542 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
543 set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels);
544 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
545 set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels);
546 }
547
548 #define UPDATE_STATS_P(type, update_func, update_float, channel_func) \
549 for (int c = start; c < end; c++) { \
550 ChannelStats *p = &s->chstats[c]; \
551 const type *src = (const type *)data[c]; \
552 const type * const srcend = src + samples; \
553 for (; src < srcend; src++) { \
554 update_func; \
555 update_float; \
556 } \
557 channel_func; \
558 }
559
560 #define UPDATE_STATS_I(type, update_func, update_float, channel_func) \
561 for (int c = start; c < end; c++) { \
562 ChannelStats *p = &s->chstats[c]; \
563 const type *src = (const type *)data[0]; \
564 const type * const srcend = src + samples * channels; \
565 for (src += c; src < srcend; src += channels) { \
566 update_func; \
567 update_float; \
568 } \
569 channel_func; \
570 }
571
572 #define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \
573 if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \
574 UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \
575 } else { \
576 UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \
577 }
578
filter_channel(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)579 static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
580 {
581 AudioStatsContext *s = ctx->priv;
582 AVFilterLink *inlink = ctx->inputs[0];
583 AVFrame *buf = arg;
584 const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data;
585 const int channels = s->nb_channels;
586 const int samples = buf->nb_samples;
587 const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs;
588 const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
589
590 switch (inlink->format) {
591 case AV_SAMPLE_FMT_DBLP:
592 UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
593 break;
594 case AV_SAMPLE_FMT_DBL:
595 UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
596 break;
597 case AV_SAMPLE_FMT_FLTP:
598 UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
599 break;
600 case AV_SAMPLE_FMT_FLT:
601 UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
602 break;
603 case AV_SAMPLE_FMT_S64P:
604 UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src);
605 break;
606 case AV_SAMPLE_FMT_S64:
607 UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src);
608 break;
609 case AV_SAMPLE_FMT_S32P:
610 UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src);
611 break;
612 case AV_SAMPLE_FMT_S32:
613 UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src);
614 break;
615 case AV_SAMPLE_FMT_S16P:
616 UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src);
617 break;
618 case AV_SAMPLE_FMT_S16:
619 UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src);
620 break;
621 }
622
623 return 0;
624 }
625
filter_frame(AVFilterLink * inlink,AVFrame * buf)626 static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
627 {
628 AVFilterContext *ctx = inlink->dst;
629 AudioStatsContext *s = ctx->priv;
630 AVDictionary **metadata = &buf->metadata;
631
632 if (s->reset_count > 0) {
633 if (s->nb_frames >= s->reset_count) {
634 reset_stats(s);
635 s->nb_frames = 0;
636 }
637 s->nb_frames++;
638 }
639
640 ff_filter_execute(ctx, filter_channel, buf, NULL,
641 FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
642
643 if (s->metadata)
644 set_metadata(s, metadata);
645
646 return ff_filter_frame(inlink->dst->outputs[0], buf);
647 }
648
print_stats(AVFilterContext * ctx)649 static void print_stats(AVFilterContext *ctx)
650 {
651 AudioStatsContext *s = ctx->priv;
652 uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
653 uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
654 double min_runs = 0, max_runs = 0,
655 min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
656 nmin = DBL_MAX, nmax =-DBL_MAX,
657 max_sigma_x = 0,
658 diff1_sum_x2 = 0,
659 diff1_sum = 0,
660 sigma_x2 = 0,
661 noise_floor = 0,
662 entropy = 0,
663 min_sigma_x2 = DBL_MAX,
664 max_sigma_x2 =-DBL_MAX;
665 AVRational depth;
666 int c;
667
668 for (c = 0; c < s->nb_channels; c++) {
669 ChannelStats *p = &s->chstats[c];
670
671 if (p->nb_samples < s->tc_samples)
672 p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
673
674 min = FFMIN(min, p->min);
675 max = FFMAX(max, p->max);
676 nmin = FFMIN(nmin, p->nmin);
677 nmax = FFMAX(nmax, p->nmax);
678 min_diff = FFMIN(min_diff, p->min_diff);
679 max_diff = FFMAX(max_diff, p->max_diff);
680 diff1_sum_x2 += p->diff1_sum_x2;
681 diff1_sum += p->diff1_sum;
682 min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
683 max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
684 sigma_x2 += p->sigma_x2;
685 noise_floor = FFMAX(noise_floor, p->noise_floor);
686 p->entropy = calc_entropy(s, p);
687 entropy += p->entropy;
688 min_count += p->min_count;
689 max_count += p->max_count;
690 noise_floor_count += p->noise_floor_count;
691 min_runs += p->min_runs;
692 max_runs += p->max_runs;
693 mask |= p->mask;
694 imask &= p->imask;
695 nb_samples += p->nb_samples;
696 nb_nans += p->nb_nans;
697 nb_infs += p->nb_infs;
698 nb_denormals += p->nb_denormals;
699 if (fabs(p->sigma_x) > fabs(max_sigma_x))
700 max_sigma_x = p->sigma_x;
701
702 if (s->measure_perchannel != MEASURE_NONE)
703 av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
704 if (s->measure_perchannel & MEASURE_DC_OFFSET)
705 av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
706 if (s->measure_perchannel & MEASURE_MIN_LEVEL)
707 av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
708 if (s->measure_perchannel & MEASURE_MAX_LEVEL)
709 av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
710 if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
711 av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
712 if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
713 av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
714 if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
715 av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
716 if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
717 av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
718 if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
719 av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
720 if (s->measure_perchannel & MEASURE_RMS_LEVEL)
721 av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
722 if (s->measure_perchannel & MEASURE_RMS_PEAK)
723 av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
724 if (s->measure_perchannel & MEASURE_RMS_TROUGH)
725 if (p->min_sigma_x2 != 1)
726 av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
727 if (s->measure_perchannel & MEASURE_CREST_FACTOR)
728 av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
729 if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
730 av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
731 if (s->measure_perchannel & MEASURE_PEAK_COUNT)
732 av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
733 if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
734 av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor));
735 if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
736 av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count);
737 if (s->measure_perchannel & MEASURE_ENTROPY)
738 av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", p->entropy);
739 if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
740 bit_depth(s, p->mask, p->imask, &depth);
741 av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
742 }
743 if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
744 av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
745 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
746 av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
747 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
748 av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
749 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
750 av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans);
751 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
752 av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs);
753 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
754 av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals);
755 }
756
757 if (s->measure_overall != MEASURE_NONE)
758 av_log(ctx, AV_LOG_INFO, "Overall\n");
759 if (s->measure_overall & MEASURE_DC_OFFSET)
760 av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
761 if (s->measure_overall & MEASURE_MIN_LEVEL)
762 av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
763 if (s->measure_overall & MEASURE_MAX_LEVEL)
764 av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
765 if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
766 av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
767 if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
768 av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
769 if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
770 av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
771 if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
772 av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
773 if (s->measure_overall & MEASURE_PEAK_LEVEL)
774 av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
775 if (s->measure_overall & MEASURE_RMS_LEVEL)
776 av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
777 if (s->measure_overall & MEASURE_RMS_PEAK)
778 av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
779 if (s->measure_overall & MEASURE_RMS_TROUGH)
780 if (min_sigma_x2 != 1)
781 av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
782 if (s->measure_overall & MEASURE_FLAT_FACTOR)
783 av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
784 if (s->measure_overall & MEASURE_PEAK_COUNT)
785 av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
786 if (s->measure_overall & MEASURE_NOISE_FLOOR)
787 av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor));
788 if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
789 av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels);
790 if (s->measure_overall & MEASURE_ENTROPY)
791 av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", entropy / (double)s->nb_channels);
792 if (s->measure_overall & MEASURE_BIT_DEPTH) {
793 bit_depth(s, mask, imask, &depth);
794 av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
795 }
796 if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
797 av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
798 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
799 av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels);
800 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
801 av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels);
802 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
803 av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels);
804 }
805
uninit(AVFilterContext * ctx)806 static av_cold void uninit(AVFilterContext *ctx)
807 {
808 AudioStatsContext *s = ctx->priv;
809
810 if (s->nb_channels)
811 print_stats(ctx);
812 if (s->chstats) {
813 for (int i = 0; i < s->nb_channels; i++) {
814 ChannelStats *p = &s->chstats[i];
815
816 av_freep(&p->win_samples);
817 }
818 }
819 av_freep(&s->chstats);
820 }
821
822 static const AVFilterPad astats_inputs[] = {
823 {
824 .name = "default",
825 .type = AVMEDIA_TYPE_AUDIO,
826 .filter_frame = filter_frame,
827 },
828 };
829
830 static const AVFilterPad astats_outputs[] = {
831 {
832 .name = "default",
833 .type = AVMEDIA_TYPE_AUDIO,
834 .config_props = config_output,
835 },
836 };
837
838 const AVFilter ff_af_astats = {
839 .name = "astats",
840 .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
841 .priv_size = sizeof(AudioStatsContext),
842 .priv_class = &astats_class,
843 .uninit = uninit,
844 FILTER_INPUTS(astats_inputs),
845 FILTER_OUTPUTS(astats_outputs),
846 FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
847 AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
848 AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
849 AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
850 AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP),
851 .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY,
852 };
853