• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017 Ming Yang
3  * Copyright (c) 2019 Paul B Mahol
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "libavutil/imgutils.h"
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "avfilter.h"
28 #include "formats.h"
29 #include "internal.h"
30 #include "video.h"
31 
32 typedef struct BilateralContext {
33     const AVClass *class;
34 
35     float sigmaS;
36     float sigmaR;
37     int planes;
38 
39     int nb_threads;
40     int nb_planes;
41     int depth;
42     int planewidth[4];
43     int planeheight[4];
44 
45     float alpha;
46     float range_table[65536];
47 
48     float *img_out_f[4];
49     float *img_temp[4];
50     float *map_factor_a[4];
51     float *map_factor_b[4];
52     float *slice_factor_a[4];
53     float *slice_factor_b[4];
54     float *line_factor_a[4];
55     float *line_factor_b[4];
56 } BilateralContext;
57 
58 #define OFFSET(x) offsetof(BilateralContext, x)
59 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
60 
61 static const AVOption bilateral_options[] = {
62     { "sigmaS", "set spatial sigma",    OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
63     { "sigmaR", "set range sigma",      OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0,   1, FLAGS },
64     { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT,   {.i64=1},     0, 0xF, FLAGS },
65     { NULL }
66 };
67 
68 AVFILTER_DEFINE_CLASS(bilateral);
69 
70 static const enum AVPixelFormat pix_fmts[] = {
71     AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
72     AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
73     AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
74     AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
75     AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
76     AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
77     AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
78     AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
79     AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
80     AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
81     AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
82     AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
83     AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
84     AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
85     AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
86     AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
87     AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
88     AV_PIX_FMT_NONE
89 };
90 
config_params(AVFilterContext * ctx)91 static int config_params(AVFilterContext *ctx)
92 {
93     BilateralContext *s = ctx->priv;
94     float inv_sigma_range;
95 
96     inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
97     s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
98 
99     //compute a lookup table
100     for (int i = 0; i < (1 << s->depth); i++)
101         s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
102 
103     return 0;
104 }
105 
106 typedef struct ThreadData {
107     AVFrame *in, *out;
108 } ThreadData;
109 
config_input(AVFilterLink * inlink)110 static int config_input(AVFilterLink *inlink)
111 {
112     AVFilterContext *ctx = inlink->dst;
113     BilateralContext *s = ctx->priv;
114     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
115 
116     s->depth = desc->comp[0].depth;
117     config_params(ctx);
118 
119     s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
120     s->planewidth[0] = s->planewidth[3] = inlink->w;
121     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
122     s->planeheight[0] = s->planeheight[3] = inlink->h;
123 
124     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
125     s->nb_threads = ff_filter_get_nb_threads(ctx);
126 
127     for (int p = 0; p < s->nb_planes; p++) {
128         const int w = s->planewidth[p];
129         const int h = s->planeheight[p];
130 
131         s->img_out_f[p] = av_calloc(w * h, sizeof(float));
132         s->img_temp[p] = av_calloc(w * h, sizeof(float));
133         s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
134         s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
135         s->slice_factor_a[p] = av_calloc(w, sizeof(float));
136         s->slice_factor_b[p] = av_calloc(w, sizeof(float));
137         s->line_factor_a[p] = av_calloc(w, sizeof(float));
138         s->line_factor_b[p] = av_calloc(w, sizeof(float));
139 
140         if (!s->img_out_f[p] ||
141             !s->img_temp[p] ||
142             !s->map_factor_a[p] ||
143             !s->map_factor_b[p] ||
144             !s->slice_factor_a[p] ||
145             !s->slice_factor_a[p] ||
146             !s->line_factor_a[p] ||
147             !s->line_factor_a[p])
148             return AVERROR(ENOMEM);
149     }
150 
151     return 0;
152 }
153 
154 #define BILATERAL_H(type, name)                                               \
155 static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
156                               int jobnr, int nb_jobs, int plane)              \
157 {                                                                             \
158     const int width = s->planewidth[plane];                                   \
159     const int height = s->planeheight[plane];                                 \
160     const int slice_start = (height * jobnr) / nb_jobs;                       \
161     const int slice_end = (height * (jobnr+1)) / nb_jobs;                     \
162     const int src_linesize = in->linesize[plane] / sizeof(type);              \
163     const type *src = (const type *)in->data[plane];                          \
164     float *img_temp = s->img_temp[plane];                                     \
165     float *map_factor_a = s->map_factor_a[plane];                             \
166     const float *const range_table = s->range_table;                          \
167     const float alpha = s->alpha;                                             \
168     float ypr, ycr, fp, fc;                                                   \
169     const float inv_alpha_ = 1.f - alpha;                                     \
170                                                                               \
171     for (int y = slice_start; y < slice_end; y++) {                           \
172         float *temp_factor_x, *temp_x = &img_temp[y * width];                 \
173         const type *in_x = &src[y * src_linesize];                            \
174         const type *texture_x = &src[y * src_linesize];                       \
175         type tpr;                                                             \
176                                                                               \
177         *temp_x++ = ypr = *in_x++;                                            \
178         tpr = *texture_x++;                                                   \
179                                                                               \
180         temp_factor_x = &map_factor_a[y * width];                             \
181         *temp_factor_x++ = fp = 1;                                            \
182                                                                               \
183         for (int x = 1; x < width; x++) {                                     \
184             float alpha_;                                                     \
185             int range_dist;                                                   \
186             type tcr = *texture_x++;                                          \
187             type dr = abs(tcr - tpr);                                         \
188                                                                               \
189             range_dist = dr;                                                  \
190             alpha_ = range_table[range_dist];                                 \
191             *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr;              \
192             tpr = tcr;                                                        \
193             ypr = ycr;                                                        \
194             *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp;                 \
195             fp = fc;                                                          \
196         }                                                                     \
197         --temp_x; *temp_x = ((*temp_x) + (*--in_x));                          \
198         tpr = *--texture_x;                                                   \
199         ypr = *in_x;                                                          \
200                                                                               \
201         --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1);             \
202         fp = 1;                                                               \
203                                                                               \
204         for (int x = width - 2; x >= 0; x--) {                                \
205             type tcr = *--texture_x;                                          \
206             type dr = abs(tcr - tpr);                                         \
207             int range_dist = dr;                                              \
208             float alpha_ = range_table[range_dist];                           \
209                                                                               \
210             ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr;                      \
211             --temp_x; *temp_x = ((*temp_x) + ycr);                            \
212             tpr = tcr;                                                        \
213             ypr = ycr;                                                        \
214                                                                               \
215             fc = inv_alpha_ + alpha_*fp;                                      \
216             --temp_factor_x;                                                  \
217             *temp_factor_x = ((*temp_factor_x) + fc);                         \
218             fp = fc;                                                          \
219         }                                                                     \
220     }                                                                         \
221 }
222 
BILATERAL_H(uint8_t,byte)223 BILATERAL_H(uint8_t, byte)
224 BILATERAL_H(uint16_t, word)
225 
226 #define BILATERAL_V(type, name)                                               \
227 static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
228                               int jobnr, int nb_jobs, int plane)              \
229 {                                                                             \
230     const int width = s->planewidth[plane];                                   \
231     const int height = s->planeheight[plane];                                 \
232     const int slice_start = (width * jobnr) / nb_jobs;                        \
233     const int slice_end = (width * (jobnr+1)) / nb_jobs;                      \
234     const int src_linesize = in->linesize[plane] / sizeof(type);              \
235     const type *src = (const type *)in->data[plane] + slice_start;            \
236     float *img_out_f = s->img_out_f[plane] + slice_start;                     \
237     float *img_temp = s->img_temp[plane] + slice_start;                       \
238     float *map_factor_a = s->map_factor_a[plane] + slice_start;               \
239     float *map_factor_b = s->map_factor_b[plane] + slice_start;               \
240     float *slice_factor_a = s->slice_factor_a[plane] + slice_start;           \
241     float *slice_factor_b = s->slice_factor_b[plane] + slice_start;           \
242     float *line_factor_a = s->line_factor_a[plane] + slice_start;             \
243     float *line_factor_b = s->line_factor_b[plane] + slice_start;             \
244     const float *const range_table = s->range_table;                          \
245     const float alpha = s->alpha;                                             \
246     float *ycy, *ypy, *xcy;                                                   \
247     const float inv_alpha_ = 1.f - alpha;                                     \
248     float *ycf, *ypf, *xcf, *in_factor;                                       \
249     const type *tcy, *tpy;                                                    \
250     int h1;                                                                   \
251                                                                               \
252     memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start));   \
253                                                                               \
254     in_factor = map_factor_a;                                                   \
255     memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
256     for (int y = 1; y < height; y++) {                                          \
257         tpy = &src[(y - 1) * src_linesize];                                   \
258         tcy = &src[y * src_linesize];                                         \
259         xcy = &img_temp[y * width];                                           \
260         ypy = &img_out_f[(y - 1) * width];                                    \
261         ycy = &img_out_f[y * width];                                          \
262                                                                               \
263         xcf = &in_factor[y * width];                                          \
264         ypf = &map_factor_b[(y - 1) * width];                                 \
265         ycf = &map_factor_b[y * width];                                       \
266         for (int x = 0; x < slice_end - slice_start; x++) {                   \
267             type dr = abs((*tcy++) - (*tpy++));                               \
268             int range_dist = dr;                                              \
269             float alpha_ = range_table[range_dist];                           \
270                                                                               \
271             *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++);                   \
272             *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++);                   \
273         }                                                                     \
274     }                                                                         \
275     h1 = height - 1;                                                          \
276     ycf = line_factor_a;                                                      \
277     ypf = line_factor_b;                                                            \
278     memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
279     for (int x = 0, k = 0; x < slice_end - slice_start; x++)                        \
280         map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
281                                                                                   \
282     ycy = slice_factor_a;                                                         \
283     ypy = slice_factor_b;                                                         \
284     memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
285     for (int x = 0, k = 0; x < slice_end - slice_start; x++) {                \
286         int idx = h1 * width + x;                                             \
287         img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
288     }                                                                                     \
289                                                                                           \
290     for (int y = h1 - 1; y >= 0; y--) {                                                   \
291         float *ycf_, *ypf_, *factor_;                                                     \
292         float *ycy_, *ypy_, *out_;                                                        \
293                                                                                           \
294         tpy = &src[(y + 1) * src_linesize];                                               \
295         tcy = &src[y * src_linesize];                                                     \
296         xcy = &img_temp[y * width];                                                       \
297         ycy_ = ycy;                                                                       \
298         ypy_ = ypy;                                                                       \
299         out_ = &img_out_f[y * width];                                                     \
300                                                                                           \
301         xcf = &in_factor[y * width];                                                      \
302         ycf_ = ycf;                                                                       \
303         ypf_ = ypf;                                                                       \
304         factor_ = &map_factor_b[y * width];                                               \
305         for (int x = 0; x < slice_end - slice_start; x++) {                               \
306             type dr = abs((*tcy++) - (*tpy++));                                           \
307             int range_dist = dr;                                                          \
308             float alpha_ = range_table[range_dist];                                       \
309             float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++);                      \
310                                                                                           \
311             *ycf_++ = fcc;                                                                \
312             *factor_ = (*factor_ + fcc);                                                  \
313                                                                                           \
314             ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++);                                 \
315             *ycy_++ = ycc;                                                                \
316             *out_ = (*out_ + ycc) / (*factor_);                                           \
317             out_++;                                                                       \
318             factor_++;                                                                    \
319         }                                                                                 \
320                                                                                           \
321         ypy = ycy;                                                                        \
322         ypf = ycf;                                                                        \
323     }                                                                                     \
324 }
325 
326 BILATERAL_V(uint8_t, byte)
327 BILATERAL_V(uint16_t, word)
328 
329 #define BILATERAL_O(type, name)                                               \
330 static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
331                               int jobnr, int nb_jobs, int plane)              \
332 {                                                                             \
333     const int width = s->planewidth[plane];                                   \
334     const int height = s->planeheight[plane];                                 \
335     const int slice_start = (height * jobnr) / nb_jobs;                       \
336     const int slice_end = (height * (jobnr+1)) / nb_jobs;                     \
337     const int dst_linesize = out->linesize[plane] / sizeof(type);             \
338                                                                               \
339     for (int i = slice_start; i < slice_end; i++) {                           \
340         type *dst = (type *)out->data[plane] + i * dst_linesize;              \
341         const float *const img_out_f = s->img_out_f[plane] + i * width;       \
342         for (int j = 0; j < width; j++)                                       \
343             dst[j] = lrintf(img_out_f[j]);                                    \
344     }                                                                         \
345 }
346 
347 BILATERAL_O(uint8_t, byte)
348 BILATERAL_O(uint16_t, word)
349 
350 static int bilateralh_planes(AVFilterContext *ctx, void *arg,
351                              int jobnr, int nb_jobs)
352 {
353     BilateralContext *s = ctx->priv;
354     ThreadData *td = arg;
355     AVFrame *out = td->out;
356     AVFrame *in = td->in;
357 
358     for (int plane = 0; plane < s->nb_planes; plane++) {
359         if (!(s->planes & (1 << plane)))
360             continue;
361 
362         if (s->depth <= 8)
363            bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
364         else
365            bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
366     }
367 
368     return 0;
369 }
370 
bilateralv_planes(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)371 static int bilateralv_planes(AVFilterContext *ctx, void *arg,
372                              int jobnr, int nb_jobs)
373 {
374     BilateralContext *s = ctx->priv;
375     ThreadData *td = arg;
376     AVFrame *out = td->out;
377     AVFrame *in = td->in;
378 
379     for (int plane = 0; plane < s->nb_planes; plane++) {
380         if (!(s->planes & (1 << plane)))
381             continue;
382 
383         if (s->depth <= 8)
384            bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
385         else
386            bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
387     }
388 
389     return 0;
390 }
391 
bilateralo_planes(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)392 static int bilateralo_planes(AVFilterContext *ctx, void *arg,
393                             int jobnr, int nb_jobs)
394 {
395     BilateralContext *s = ctx->priv;
396     ThreadData *td = arg;
397     AVFrame *out = td->out;
398     AVFrame *in = td->in;
399 
400     for (int plane = 0; plane < s->nb_planes; plane++) {
401         if (!(s->planes & (1 << plane))) {
402             if (out != in) {
403                 const int height = s->planeheight[plane];
404                 const int slice_start = (height * jobnr) / nb_jobs;
405                 const int slice_end = (height * (jobnr+1)) / nb_jobs;
406                 const int width = s->planewidth[plane];
407                 const int linesize = in->linesize[plane];
408                 const int dst_linesize = out->linesize[plane];
409                 const uint8_t *src = in->data[plane];
410                 uint8_t *dst = out->data[plane];
411 
412                 av_image_copy_plane(dst + slice_start * dst_linesize,
413                                     dst_linesize,
414                                     src + slice_start * linesize,
415                                     linesize,
416                                     width * ((s->depth + 7) / 8),
417                                     slice_end - slice_start);
418             }
419             continue;
420         }
421 
422         if (s->depth <= 8)
423            bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
424         else
425            bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
426     }
427 
428     return 0;
429 }
430 
filter_frame(AVFilterLink * inlink,AVFrame * in)431 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
432 {
433     AVFilterContext *ctx = inlink->dst;
434     BilateralContext *s = ctx->priv;
435     AVFilterLink *outlink = ctx->outputs[0];
436     ThreadData td;
437     AVFrame *out;
438 
439     if (av_frame_is_writable(in)) {
440         out = in;
441     } else {
442         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
443         if (!out) {
444             av_frame_free(&in);
445             return AVERROR(ENOMEM);
446         }
447         av_frame_copy_props(out, in);
448     }
449 
450     td.in = in;
451     td.out = out;
452     ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
453     ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
454     ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
455 
456     if (out != in)
457         av_frame_free(&in);
458     return ff_filter_frame(outlink, out);
459 }
460 
uninit(AVFilterContext * ctx)461 static av_cold void uninit(AVFilterContext *ctx)
462 {
463     BilateralContext *s = ctx->priv;
464 
465     for (int p = 0; p < s->nb_planes; p++) {
466         av_freep(&s->img_out_f[p]);
467         av_freep(&s->img_temp[p]);
468         av_freep(&s->map_factor_a[p]);
469         av_freep(&s->map_factor_b[p]);
470         av_freep(&s->slice_factor_a[p]);
471         av_freep(&s->slice_factor_b[p]);
472         av_freep(&s->line_factor_a[p]);
473         av_freep(&s->line_factor_b[p]);
474     }
475 }
476 
process_command(AVFilterContext * ctx,const char * cmd,const char * arg,char * res,int res_len,int flags)477 static int process_command(AVFilterContext *ctx,
478                            const char *cmd,
479                            const char *arg,
480                            char *res,
481                            int res_len,
482                            int flags)
483 {
484     int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
485 
486     if (ret < 0)
487         return ret;
488 
489     return config_params(ctx);
490 }
491 
492 static const AVFilterPad bilateral_inputs[] = {
493     {
494         .name         = "default",
495         .type         = AVMEDIA_TYPE_VIDEO,
496         .config_props = config_input,
497         .filter_frame = filter_frame,
498     },
499 };
500 
501 static const AVFilterPad bilateral_outputs[] = {
502     {
503         .name = "default",
504         .type = AVMEDIA_TYPE_VIDEO,
505     },
506 };
507 
508 const AVFilter ff_vf_bilateral = {
509     .name          = "bilateral",
510     .description   = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
511     .priv_size     = sizeof(BilateralContext),
512     .priv_class    = &bilateral_class,
513     .uninit        = uninit,
514     FILTER_INPUTS(bilateral_inputs),
515     FILTER_OUTPUTS(bilateral_outputs),
516     FILTER_PIXFMTS_ARRAY(pix_fmts),
517     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
518                      AVFILTER_FLAG_SLICE_THREADS,
519     .process_command = process_command,
520 };
521