• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  * Copyright (c) 2018 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * 3D Lookup table filter
25  */
26 
27 #include "config_components.h"
28 
29 #include "float.h"
30 
31 #include "libavutil/opt.h"
32 #include "libavutil/file.h"
33 #include "libavutil/intreadwrite.h"
34 #include "libavutil/intfloat.h"
35 #include "libavutil/avassert.h"
36 #include "libavutil/avstring.h"
37 #include "drawutils.h"
38 #include "formats.h"
39 #include "internal.h"
40 #include "video.h"
41 #include "lut3d.h"
42 
43 #define R 0
44 #define G 1
45 #define B 2
46 #define A 3
47 
48 #define OFFSET(x) offsetof(LUT3DContext, x)
49 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
50 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
51 #define COMMON_OPTIONS \
52     { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \
53         { "nearest",     "use values from the nearest defined points",            0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST},     0, 0, TFLAGS, "interp_mode" }, \
54         { "trilinear",   "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR},   0, 0, TFLAGS, "interp_mode" }, \
55         { "tetrahedral", "interpolate values using a tetrahedron",                0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \
56         { "pyramid",     "interpolate values using a pyramid",                    0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID},     0, 0, TFLAGS, "interp_mode" }, \
57         { "prism",       "interpolate values using a prism",                      0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM},       0, 0, TFLAGS, "interp_mode" }, \
58     { NULL }
59 
60 #define EXPONENT_MASK 0x7F800000
61 #define MANTISSA_MASK 0x007FFFFF
62 #define SIGN_MASK     0x80000000
63 
sanitizef(float f)64 static inline float sanitizef(float f)
65 {
66     union av_intfloat32 t;
67     t.f = f;
68 
69     if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) {
70         if ((t.i & MANTISSA_MASK) != 0) {
71             // NAN
72             return 0.0f;
73         } else if (t.i & SIGN_MASK) {
74             // -INF
75             return -FLT_MAX;
76         } else {
77             // +INF
78             return FLT_MAX;
79         }
80     }
81     return f;
82 }
83 
lerpf(float v0,float v1,float f)84 static inline float lerpf(float v0, float v1, float f)
85 {
86     return v0 + (v1 - v0) * f;
87 }
88 
lerp(const struct rgbvec * v0,const struct rgbvec * v1,float f)89 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
90 {
91     struct rgbvec v = {
92         lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
93     };
94     return v;
95 }
96 
97 #define NEAR(x) ((int)((x) + .5))
98 #define PREV(x) ((int)(x))
99 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
100 
101 /**
102  * Get the nearest defined point
103  */
interp_nearest(const LUT3DContext * lut3d,const struct rgbvec * s)104 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
105                                            const struct rgbvec *s)
106 {
107     return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
108 }
109 
110 /**
111  * Interpolate using the 8 vertices of a cube
112  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
113  */
interp_trilinear(const LUT3DContext * lut3d,const struct rgbvec * s)114 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
115                                              const struct rgbvec *s)
116 {
117     const int lutsize2 = lut3d->lutsize2;
118     const int lutsize  = lut3d->lutsize;
119     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
120     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
121     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
122     const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
123     const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
124     const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
125     const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
126     const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
127     const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
128     const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
129     const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
130     const struct rgbvec c00  = lerp(&c000, &c100, d.r);
131     const struct rgbvec c10  = lerp(&c010, &c110, d.r);
132     const struct rgbvec c01  = lerp(&c001, &c101, d.r);
133     const struct rgbvec c11  = lerp(&c011, &c111, d.r);
134     const struct rgbvec c0   = lerp(&c00,  &c10,  d.g);
135     const struct rgbvec c1   = lerp(&c01,  &c11,  d.g);
136     const struct rgbvec c    = lerp(&c0,   &c1,   d.b);
137     return c;
138 }
139 
interp_pyramid(const LUT3DContext * lut3d,const struct rgbvec * s)140 static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d,
141                                            const struct rgbvec *s)
142 {
143     const int lutsize2 = lut3d->lutsize2;
144     const int lutsize  = lut3d->lutsize;
145     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
146     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
147     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
148     const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
149     const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
150     struct rgbvec c;
151 
152     if (d.g > d.r && d.b > d.r) {
153         const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
154         const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
155         const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
156 
157         c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b +
158               (c011.r - c001.r - c010.r + c000.r) * d.g * d.b;
159         c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b +
160               (c011.g - c001.g - c010.g + c000.g) * d.g * d.b;
161         c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b +
162               (c011.b - c001.b - c010.b + c000.b) * d.g * d.b;
163     } else if (d.r > d.g && d.b > d.g) {
164         const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
165         const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
166         const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
167 
168         c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b +
169               (c101.r - c001.r - c100.r + c000.r) * d.r * d.b;
170         c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b +
171               (c101.g - c001.g - c100.g + c000.g) * d.r * d.b;
172         c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b +
173               (c101.b - c001.b - c100.b + c000.b) * d.r * d.b;
174     } else {
175         const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
176         const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
177         const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
178 
179         c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b +
180               (c110.r - c100.r - c010.r + c000.r) * d.r * d.g;
181         c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b +
182               (c110.g - c100.g - c010.g + c000.g) * d.r * d.g;
183         c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b +
184               (c110.b - c100.b - c010.b + c000.b) * d.r * d.g;
185     }
186 
187     return c;
188 }
189 
interp_prism(const LUT3DContext * lut3d,const struct rgbvec * s)190 static inline struct rgbvec interp_prism(const LUT3DContext *lut3d,
191                                          const struct rgbvec *s)
192 {
193     const int lutsize2 = lut3d->lutsize2;
194     const int lutsize  = lut3d->lutsize;
195     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
196     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
197     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
198     const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
199     const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
200     const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
201     const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
202     struct rgbvec c;
203 
204     if (d.b > d.r) {
205         const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
206         const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
207 
208         c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g +
209               (c000.r - c010.r - c001.r + c011.r) * d.b * d.g +
210               (c001.r - c011.r - c101.r + c111.r) * d.r * d.g;
211         c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g +
212               (c000.g - c010.g - c001.g + c011.g) * d.b * d.g +
213               (c001.g - c011.g - c101.g + c111.g) * d.r * d.g;
214         c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g +
215               (c000.b - c010.b - c001.b + c011.b) * d.b * d.g +
216               (c001.b - c011.b - c101.b + c111.b) * d.r * d.g;
217     } else {
218         const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
219         const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
220 
221         c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g +
222               (c100.r - c110.r - c101.r + c111.r) * d.b * d.g +
223               (c000.r - c010.r - c100.r + c110.r) * d.r * d.g;
224         c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g +
225               (c100.g - c110.g - c101.g + c111.g) * d.b * d.g +
226               (c000.g - c010.g - c100.g + c110.g) * d.r * d.g;
227         c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g +
228               (c100.b - c110.b - c101.b + c111.b) * d.b * d.g +
229               (c000.b - c010.b - c100.b + c110.b) * d.r * d.g;
230     }
231 
232     return c;
233 }
234 
235 /**
236  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
237  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
238  */
interp_tetrahedral(const LUT3DContext * lut3d,const struct rgbvec * s)239 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
240                                                const struct rgbvec *s)
241 {
242     const int lutsize2 = lut3d->lutsize2;
243     const int lutsize  = lut3d->lutsize;
244     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
245     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
246     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
247     const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
248     const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
249     struct rgbvec c;
250     if (d.r > d.g) {
251         if (d.g > d.b) {
252             const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
253             const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
254             c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
255             c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
256             c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
257         } else if (d.r > d.b) {
258             const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
259             const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
260             c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
261             c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
262             c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
263         } else {
264             const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
265             const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
266             c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
267             c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
268             c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
269         }
270     } else {
271         if (d.b > d.g) {
272             const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
273             const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
274             c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
275             c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
276             c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
277         } else if (d.b > d.r) {
278             const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
279             const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
280             c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
281             c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
282             c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
283         } else {
284             const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
285             const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
286             c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
287             c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
288             c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
289         }
290     }
291     return c;
292 }
293 
prelut_interp_1d_linear(const Lut3DPreLut * prelut,int idx,const float s)294 static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut,
295                                             int idx, const float s)
296 {
297     const int lut_max = prelut->size - 1;
298     const float scaled = (s - prelut->min[idx]) * prelut->scale[idx];
299     const float x = av_clipf(scaled, 0.0f, lut_max);
300     const int prev = PREV(x);
301     const int next = FFMIN((int)(x) + 1, lut_max);
302     const float p = prelut->lut[idx][prev];
303     const float n = prelut->lut[idx][next];
304     const float d = x - (float)prev;
305     return lerpf(p, n, d);
306 }
307 
apply_prelut(const Lut3DPreLut * prelut,const struct rgbvec * s)308 static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut,
309                                          const struct rgbvec *s)
310 {
311     struct rgbvec c;
312 
313     if (prelut->size <= 0)
314         return *s;
315 
316     c.r = prelut_interp_1d_linear(prelut, 0, s->r);
317     c.g = prelut_interp_1d_linear(prelut, 1, s->g);
318     c.b = prelut_interp_1d_linear(prelut, 2, s->b);
319     return c;
320 }
321 
322 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)                                                  \
323 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
324 {                                                                                                      \
325     int x, y;                                                                                          \
326     const LUT3DContext *lut3d = ctx->priv;                                                             \
327     const Lut3DPreLut *prelut = &lut3d->prelut;                                                        \
328     const ThreadData *td = arg;                                                                        \
329     const AVFrame *in  = td->in;                                                                       \
330     const AVFrame *out = td->out;                                                                      \
331     const int direct = out == in;                                                                      \
332     const int slice_start = (in->height *  jobnr   ) / nb_jobs;                                        \
333     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;                                        \
334     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];                                     \
335     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];                                     \
336     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];                                     \
337     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];                                     \
338     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];                              \
339     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];                              \
340     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];                              \
341     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];                              \
342     const float lut_max = lut3d->lutsize - 1;                                                          \
343     const float scale_f = 1.0f / ((1<<depth) - 1);                                                     \
344     const float scale_r = lut3d->scale.r * lut_max;                                                    \
345     const float scale_g = lut3d->scale.g * lut_max;                                                    \
346     const float scale_b = lut3d->scale.b * lut_max;                                                    \
347                                                                                                        \
348     for (y = slice_start; y < slice_end; y++) {                                                        \
349         uint##nbits##_t *dstg = (uint##nbits##_t *)grow;                                               \
350         uint##nbits##_t *dstb = (uint##nbits##_t *)brow;                                               \
351         uint##nbits##_t *dstr = (uint##nbits##_t *)rrow;                                               \
352         uint##nbits##_t *dsta = (uint##nbits##_t *)arow;                                               \
353         const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow;                                \
354         const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow;                                \
355         const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow;                                \
356         const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow;                                \
357         for (x = 0; x < in->width; x++) {                                                              \
358             const struct rgbvec rgb = {srcr[x] * scale_f,                                              \
359                                        srcg[x] * scale_f,                                              \
360                                        srcb[x] * scale_f};                                             \
361             const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb);                               \
362             const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max),            \
363                                               av_clipf(prelut_rgb.g * scale_g, 0, lut_max),            \
364                                               av_clipf(prelut_rgb.b * scale_b, 0, lut_max)};           \
365             struct rgbvec vec = interp_##name(lut3d, &scaled_rgb);                                     \
366             dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth);                          \
367             dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth);                          \
368             dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth);                          \
369             if (!direct && in->linesize[3])                                                            \
370                 dsta[x] = srca[x];                                                                     \
371         }                                                                                              \
372         grow += out->linesize[0];                                                                      \
373         brow += out->linesize[1];                                                                      \
374         rrow += out->linesize[2];                                                                      \
375         arow += out->linesize[3];                                                                      \
376         srcgrow += in->linesize[0];                                                                    \
377         srcbrow += in->linesize[1];                                                                    \
378         srcrrow += in->linesize[2];                                                                    \
379         srcarow += in->linesize[3];                                                                    \
380     }                                                                                                  \
381     return 0;                                                                                          \
382 }
383 
384 DEFINE_INTERP_FUNC_PLANAR(nearest,     8, 8)
385 DEFINE_INTERP_FUNC_PLANAR(trilinear,   8, 8)
386 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
387 DEFINE_INTERP_FUNC_PLANAR(pyramid,     8, 8)
388 DEFINE_INTERP_FUNC_PLANAR(prism,       8, 8)
389 
390 DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 9)
391 DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 9)
392 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
393 DEFINE_INTERP_FUNC_PLANAR(pyramid,     16, 9)
394 DEFINE_INTERP_FUNC_PLANAR(prism,       16, 9)
395 
396 DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 10)
397 DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 10)
398 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
399 DEFINE_INTERP_FUNC_PLANAR(pyramid,     16, 10)
400 DEFINE_INTERP_FUNC_PLANAR(prism,       16, 10)
401 
402 DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 12)
403 DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 12)
404 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
405 DEFINE_INTERP_FUNC_PLANAR(pyramid,     16, 12)
406 DEFINE_INTERP_FUNC_PLANAR(prism,       16, 12)
407 
408 DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 14)
409 DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 14)
410 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
411 DEFINE_INTERP_FUNC_PLANAR(pyramid,     16, 14)
412 DEFINE_INTERP_FUNC_PLANAR(prism,       16, 14)
413 
414 DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 16)
415 DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 16)
416 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
417 DEFINE_INTERP_FUNC_PLANAR(pyramid,     16, 16)
418 DEFINE_INTERP_FUNC_PLANAR(prism,       16, 16)
419 
420 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)                                                   \
421 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)          \
422 {                                                                                                      \
423     int x, y;                                                                                          \
424     const LUT3DContext *lut3d = ctx->priv;                                                             \
425     const Lut3DPreLut *prelut = &lut3d->prelut;                                                        \
426     const ThreadData *td = arg;                                                                        \
427     const AVFrame *in  = td->in;                                                                       \
428     const AVFrame *out = td->out;                                                                      \
429     const int direct = out == in;                                                                      \
430     const int slice_start = (in->height *  jobnr   ) / nb_jobs;                                        \
431     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;                                        \
432     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];                                     \
433     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];                                     \
434     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];                                     \
435     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];                                     \
436     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];                              \
437     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];                              \
438     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];                              \
439     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];                              \
440     const float lut_max = lut3d->lutsize - 1;                                                          \
441     const float scale_r = lut3d->scale.r * lut_max;                                                    \
442     const float scale_g = lut3d->scale.g * lut_max;                                                    \
443     const float scale_b = lut3d->scale.b * lut_max;                                                    \
444                                                                                                        \
445     for (y = slice_start; y < slice_end; y++) {                                                        \
446         float *dstg = (float *)grow;                                                                   \
447         float *dstb = (float *)brow;                                                                   \
448         float *dstr = (float *)rrow;                                                                   \
449         float *dsta = (float *)arow;                                                                   \
450         const float *srcg = (const float *)srcgrow;                                                    \
451         const float *srcb = (const float *)srcbrow;                                                    \
452         const float *srcr = (const float *)srcrrow;                                                    \
453         const float *srca = (const float *)srcarow;                                                    \
454         for (x = 0; x < in->width; x++) {                                                              \
455             const struct rgbvec rgb = {sanitizef(srcr[x]),                                             \
456                                        sanitizef(srcg[x]),                                             \
457                                        sanitizef(srcb[x])};                                            \
458             const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb);                               \
459             const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max),            \
460                                               av_clipf(prelut_rgb.g * scale_g, 0, lut_max),            \
461                                               av_clipf(prelut_rgb.b * scale_b, 0, lut_max)};           \
462             struct rgbvec vec = interp_##name(lut3d, &scaled_rgb);                                     \
463             dstr[x] = vec.r;                                                                           \
464             dstg[x] = vec.g;                                                                           \
465             dstb[x] = vec.b;                                                                           \
466             if (!direct && in->linesize[3])                                                            \
467                 dsta[x] = srca[x];                                                                     \
468         }                                                                                              \
469         grow += out->linesize[0];                                                                      \
470         brow += out->linesize[1];                                                                      \
471         rrow += out->linesize[2];                                                                      \
472         arow += out->linesize[3];                                                                      \
473         srcgrow += in->linesize[0];                                                                    \
474         srcbrow += in->linesize[1];                                                                    \
475         srcrrow += in->linesize[2];                                                                    \
476         srcarow += in->linesize[3];                                                                    \
477     }                                                                                                  \
478     return 0;                                                                                          \
479 }
480 
481 DEFINE_INTERP_FUNC_PLANAR_FLOAT(nearest,     32)
482 DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear,   32)
483 DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32)
484 DEFINE_INTERP_FUNC_PLANAR_FLOAT(pyramid,     32)
485 DEFINE_INTERP_FUNC_PLANAR_FLOAT(prism,       32)
486 
487 #define DEFINE_INTERP_FUNC(name, nbits)                                                             \
488 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)         \
489 {                                                                                                   \
490     int x, y;                                                                                       \
491     const LUT3DContext *lut3d = ctx->priv;                                                          \
492     const Lut3DPreLut *prelut = &lut3d->prelut;                                                     \
493     const ThreadData *td = arg;                                                                     \
494     const AVFrame *in  = td->in;                                                                    \
495     const AVFrame *out = td->out;                                                                   \
496     const int direct = out == in;                                                                   \
497     const int step = lut3d->step;                                                                   \
498     const uint8_t r = lut3d->rgba_map[R];                                                           \
499     const uint8_t g = lut3d->rgba_map[G];                                                           \
500     const uint8_t b = lut3d->rgba_map[B];                                                           \
501     const uint8_t a = lut3d->rgba_map[A];                                                           \
502     const int slice_start = (in->height *  jobnr   ) / nb_jobs;                                     \
503     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;                                     \
504     uint8_t       *dstrow = out->data[0] + slice_start * out->linesize[0];                          \
505     const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0];                          \
506     const float lut_max = lut3d->lutsize - 1;                                                       \
507     const float scale_f = 1.0f / ((1<<nbits) - 1);                                                  \
508     const float scale_r = lut3d->scale.r * lut_max;                                                 \
509     const float scale_g = lut3d->scale.g * lut_max;                                                 \
510     const float scale_b = lut3d->scale.b * lut_max;                                                 \
511                                                                                                     \
512     for (y = slice_start; y < slice_end; y++) {                                                     \
513         uint##nbits##_t *dst = (uint##nbits##_t *)dstrow;                                           \
514         const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow;                               \
515         for (x = 0; x < in->width * step; x += step) {                                              \
516             const struct rgbvec rgb = {src[x + r] * scale_f,                                        \
517                                        src[x + g] * scale_f,                                        \
518                                        src[x + b] * scale_f};                                       \
519             const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb);                            \
520             const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max),         \
521                                               av_clipf(prelut_rgb.g * scale_g, 0, lut_max),         \
522                                               av_clipf(prelut_rgb.b * scale_b, 0, lut_max)};        \
523             struct rgbvec vec = interp_##name(lut3d, &scaled_rgb);                                  \
524             dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1));                      \
525             dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1));                      \
526             dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1));                      \
527             if (!direct && step == 4)                                                               \
528                 dst[x + a] = src[x + a];                                                            \
529         }                                                                                           \
530         dstrow += out->linesize[0];                                                                 \
531         srcrow += in ->linesize[0];                                                                 \
532     }                                                                                               \
533     return 0;                                                                                       \
534 }
535 
536 DEFINE_INTERP_FUNC(nearest,     8)
537 DEFINE_INTERP_FUNC(trilinear,   8)
538 DEFINE_INTERP_FUNC(tetrahedral, 8)
539 DEFINE_INTERP_FUNC(pyramid,     8)
540 DEFINE_INTERP_FUNC(prism,       8)
541 
542 DEFINE_INTERP_FUNC(nearest,     16)
543 DEFINE_INTERP_FUNC(trilinear,   16)
544 DEFINE_INTERP_FUNC(tetrahedral, 16)
545 DEFINE_INTERP_FUNC(pyramid,     16)
546 DEFINE_INTERP_FUNC(prism,       16)
547 
548 #define MAX_LINE_SIZE 512
549 
skip_line(const char * p)550 static int skip_line(const char *p)
551 {
552     while (*p && av_isspace(*p))
553         p++;
554     return !*p || *p == '#';
555 }
556 
fget_next_word(char * dst,int max,FILE * f)557 static char* fget_next_word(char* dst, int max, FILE* f)
558 {
559     int c;
560     char *p = dst;
561 
562     /* for null */
563     max--;
564     /* skip until next non whitespace char */
565     while ((c = fgetc(f)) != EOF) {
566         if (av_isspace(c))
567             continue;
568 
569         *p++ = c;
570         max--;
571         break;
572     }
573 
574     /* get max bytes or up until next whitespace char */
575     for (; max > 0; max--) {
576         if ((c = fgetc(f)) == EOF)
577             break;
578 
579         if (av_isspace(c))
580             break;
581 
582         *p++ = c;
583     }
584 
585     *p = 0;
586     if (p == dst)
587         return NULL;
588     return p;
589 }
590 
591 #define NEXT_LINE(loop_cond) do {                           \
592     if (!fgets(line, sizeof(line), f)) {                    \
593         av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n");      \
594         return AVERROR_INVALIDDATA;                         \
595     }                                                       \
596 } while (loop_cond)
597 
598 #define NEXT_LINE_OR_GOTO(loop_cond, label) do {            \
599     if (!fgets(line, sizeof(line), f)) {                    \
600         av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n");      \
601         ret = AVERROR_INVALIDDATA;                          \
602         goto label;                                         \
603     }                                                       \
604 } while (loop_cond)
605 
allocate_3dlut(AVFilterContext * ctx,int lutsize,int prelut)606 static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
607 {
608     LUT3DContext *lut3d = ctx->priv;
609     int i;
610     if (lutsize < 2 || lutsize > MAX_LEVEL) {
611         av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
612         return AVERROR(EINVAL);
613     }
614 
615     av_freep(&lut3d->lut);
616     lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
617     if (!lut3d->lut)
618         return AVERROR(ENOMEM);
619 
620     if (prelut) {
621         lut3d->prelut.size = PRELUT_SIZE;
622         for (i = 0; i < 3; i++) {
623             av_freep(&lut3d->prelut.lut[i]);
624             lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0]));
625             if (!lut3d->prelut.lut[i])
626                 return AVERROR(ENOMEM);
627         }
628     } else {
629         lut3d->prelut.size = 0;
630         for (i = 0; i < 3; i++) {
631             av_freep(&lut3d->prelut.lut[i]);
632         }
633     }
634     lut3d->lutsize = lutsize;
635     lut3d->lutsize2 = lutsize * lutsize;
636     return 0;
637 }
638 
639 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
640  * directive; seems to be generated by Davinci */
parse_dat(AVFilterContext * ctx,FILE * f)641 static int parse_dat(AVFilterContext *ctx, FILE *f)
642 {
643     LUT3DContext *lut3d = ctx->priv;
644     char line[MAX_LINE_SIZE];
645     int ret, i, j, k, size, size2;
646 
647     lut3d->lutsize = size = 33;
648     size2 = size * size;
649 
650     NEXT_LINE(skip_line(line));
651     if (!strncmp(line, "3DLUTSIZE ", 10)) {
652         size = strtol(line + 10, NULL, 0);
653 
654         NEXT_LINE(skip_line(line));
655     }
656 
657     ret = allocate_3dlut(ctx, size, 0);
658     if (ret < 0)
659         return ret;
660 
661     for (k = 0; k < size; k++) {
662         for (j = 0; j < size; j++) {
663             for (i = 0; i < size; i++) {
664                 struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
665                 if (k != 0 || j != 0 || i != 0)
666                     NEXT_LINE(skip_line(line));
667                 if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
668                     return AVERROR_INVALIDDATA;
669             }
670         }
671     }
672     return 0;
673 }
674 
675 /* Iridas format */
parse_cube(AVFilterContext * ctx,FILE * f)676 static int parse_cube(AVFilterContext *ctx, FILE *f)
677 {
678     LUT3DContext *lut3d = ctx->priv;
679     char line[MAX_LINE_SIZE];
680     float min[3] = {0.0, 0.0, 0.0};
681     float max[3] = {1.0, 1.0, 1.0};
682 
683     while (fgets(line, sizeof(line), f)) {
684         if (!strncmp(line, "LUT_3D_SIZE", 11)) {
685             int ret, i, j, k;
686             const int size = strtol(line + 12, NULL, 0);
687             const int size2 = size * size;
688 
689             ret = allocate_3dlut(ctx, size, 0);
690             if (ret < 0)
691                 return ret;
692 
693             for (k = 0; k < size; k++) {
694                 for (j = 0; j < size; j++) {
695                     for (i = 0; i < size; i++) {
696                         struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
697 
698                         do {
699 try_again:
700                             NEXT_LINE(0);
701                             if (!strncmp(line, "DOMAIN_", 7)) {
702                                 float *vals = NULL;
703                                 if      (!strncmp(line + 7, "MIN ", 4)) vals = min;
704                                 else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
705                                 if (!vals)
706                                     return AVERROR_INVALIDDATA;
707                                 av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
708                                 av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
709                                        min[0], min[1], min[2], max[0], max[1], max[2]);
710                                 goto try_again;
711                             } else if (!strncmp(line, "TITLE", 5)) {
712                                 goto try_again;
713                             }
714                         } while (skip_line(line));
715                         if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
716                             return AVERROR_INVALIDDATA;
717                     }
718                 }
719             }
720             break;
721         }
722     }
723 
724     lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
725     lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
726     lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
727 
728     return 0;
729 }
730 
731 /* Assume 17x17x17 LUT with a 16-bit depth
732  * FIXME: it seems there are various 3dl formats */
parse_3dl(AVFilterContext * ctx,FILE * f)733 static int parse_3dl(AVFilterContext *ctx, FILE *f)
734 {
735     char line[MAX_LINE_SIZE];
736     LUT3DContext *lut3d = ctx->priv;
737     int ret, i, j, k;
738     const int size = 17;
739     const int size2 = 17 * 17;
740     const float scale = 16*16*16;
741 
742     lut3d->lutsize = size;
743 
744     ret = allocate_3dlut(ctx, size, 0);
745     if (ret < 0)
746         return ret;
747 
748     NEXT_LINE(skip_line(line));
749     for (k = 0; k < size; k++) {
750         for (j = 0; j < size; j++) {
751             for (i = 0; i < size; i++) {
752                 int r, g, b;
753                 struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
754 
755                 NEXT_LINE(skip_line(line));
756                 if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
757                     return AVERROR_INVALIDDATA;
758                 vec->r = r / scale;
759                 vec->g = g / scale;
760                 vec->b = b / scale;
761             }
762         }
763     }
764     return 0;
765 }
766 
767 /* Pandora format */
parse_m3d(AVFilterContext * ctx,FILE * f)768 static int parse_m3d(AVFilterContext *ctx, FILE *f)
769 {
770     LUT3DContext *lut3d = ctx->priv;
771     float scale;
772     int ret, i, j, k, size, size2, in = -1, out = -1;
773     char line[MAX_LINE_SIZE];
774     uint8_t rgb_map[3] = {0, 1, 2};
775 
776     while (fgets(line, sizeof(line), f)) {
777         if      (!strncmp(line, "in",  2)) in  = strtol(line + 2, NULL, 0);
778         else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
779         else if (!strncmp(line, "values", 6)) {
780             const char *p = line + 6;
781 #define SET_COLOR(id) do {                  \
782     while (av_isspace(*p))                  \
783         p++;                                \
784     switch (*p) {                           \
785     case 'r': rgb_map[id] = 0; break;       \
786     case 'g': rgb_map[id] = 1; break;       \
787     case 'b': rgb_map[id] = 2; break;       \
788     }                                       \
789     while (*p && !av_isspace(*p))           \
790         p++;                                \
791 } while (0)
792             SET_COLOR(0);
793             SET_COLOR(1);
794             SET_COLOR(2);
795             break;
796         }
797     }
798 
799     if (in == -1 || out == -1) {
800         av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
801         return AVERROR_INVALIDDATA;
802     }
803     if (in < 2 || out < 2 ||
804         in  > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL ||
805         out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) {
806         av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
807         return AVERROR_INVALIDDATA;
808     }
809     for (size = 1; size*size*size < in; size++);
810     lut3d->lutsize = size;
811     size2 = size * size;
812 
813     ret = allocate_3dlut(ctx, size, 0);
814     if (ret < 0)
815         return ret;
816 
817     scale = 1. / (out - 1);
818 
819     for (k = 0; k < size; k++) {
820         for (j = 0; j < size; j++) {
821             for (i = 0; i < size; i++) {
822                 struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
823                 float val[3];
824 
825                 NEXT_LINE(0);
826                 if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
827                     return AVERROR_INVALIDDATA;
828                 vec->r = val[rgb_map[0]] * scale;
829                 vec->g = val[rgb_map[1]] * scale;
830                 vec->b = val[rgb_map[2]] * scale;
831             }
832         }
833     }
834     return 0;
835 }
836 
nearest_sample_index(float * data,float x,int low,int hi)837 static int nearest_sample_index(float *data, float x, int low, int hi)
838 {
839     int mid;
840     if (x < data[low])
841         return low;
842 
843     if (x > data[hi])
844         return hi;
845 
846     for (;;) {
847         av_assert0(x >= data[low]);
848         av_assert0(x <= data[hi]);
849         av_assert0((hi-low) > 0);
850 
851         if (hi - low == 1)
852             return low;
853 
854         mid = (low + hi) / 2;
855 
856         if (x < data[mid])
857             hi = mid;
858         else
859             low = mid;
860     }
861 
862     return 0;
863 }
864 
865 #define NEXT_FLOAT_OR_GOTO(value, label)                    \
866     if (!fget_next_word(line, sizeof(line) ,f)) {           \
867         ret = AVERROR_INVALIDDATA;                          \
868         goto label;                                         \
869     }                                                       \
870     if (av_sscanf(line, "%f", &value) != 1) {               \
871         ret = AVERROR_INVALIDDATA;                          \
872         goto label;                                         \
873     }
874 
parse_cinespace(AVFilterContext * ctx,FILE * f)875 static int parse_cinespace(AVFilterContext *ctx, FILE *f)
876 {
877     LUT3DContext *lut3d = ctx->priv;
878     char line[MAX_LINE_SIZE];
879     float in_min[3]  = {0.0, 0.0, 0.0};
880     float in_max[3]  = {1.0, 1.0, 1.0};
881     float out_min[3] = {0.0, 0.0, 0.0};
882     float out_max[3] = {1.0, 1.0, 1.0};
883     int inside_metadata = 0, size, size2;
884     int prelut = 0;
885     int ret = 0;
886 
887     int prelut_sizes[3] = {0, 0, 0};
888     float *in_prelut[3]  = {NULL, NULL, NULL};
889     float *out_prelut[3] = {NULL, NULL, NULL};
890 
891     NEXT_LINE_OR_GOTO(skip_line(line), end);
892     if (strncmp(line, "CSPLUTV100", 10)) {
893         av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
894         ret = AVERROR(EINVAL);
895         goto end;
896     }
897 
898     NEXT_LINE_OR_GOTO(skip_line(line), end);
899     if (strncmp(line, "3D", 2)) {
900         av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
901         ret = AVERROR(EINVAL);
902         goto end;
903     }
904 
905     while (1) {
906         NEXT_LINE_OR_GOTO(skip_line(line), end);
907 
908         if (!strncmp(line, "BEGIN METADATA", 14)) {
909             inside_metadata = 1;
910             continue;
911         }
912         if (!strncmp(line, "END METADATA", 12)) {
913             inside_metadata = 0;
914             continue;
915         }
916         if (inside_metadata == 0) {
917             int size_r, size_g, size_b;
918 
919             for (int i = 0; i < 3; i++) {
920                 int npoints = strtol(line, NULL, 0);
921 
922                 if (npoints > 2) {
923                     float v,last;
924 
925                     if (npoints > PRELUT_SIZE) {
926                         av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n");
927                         ret = AVERROR_INVALIDDATA;
928                         goto end;
929                     }
930 
931                     if (in_prelut[i] || out_prelut[i]) {
932                         av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n");
933                         ret = AVERROR_INVALIDDATA;
934                         goto end;
935                     }
936 
937                     in_prelut[i]  = (float*)av_malloc(npoints * sizeof(float));
938                     out_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
939                     if (!in_prelut[i] || !out_prelut[i]) {
940                         ret = AVERROR(ENOMEM);
941                         goto end;
942                     }
943 
944                     prelut_sizes[i] = npoints;
945                     in_min[i] = FLT_MAX;
946                     in_max[i] = -FLT_MAX;
947                     out_min[i] = FLT_MAX;
948                     out_max[i] = -FLT_MAX;
949 
950                     for (int j = 0; j < npoints; j++) {
951                         NEXT_FLOAT_OR_GOTO(v, end)
952                         in_min[i] = FFMIN(in_min[i], v);
953                         in_max[i] = FFMAX(in_max[i], v);
954                         in_prelut[i][j] = v;
955                         if (j > 0 && v < last) {
956                             av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n");
957                             ret = AVERROR(ENOMEM);
958                             goto end;
959                         }
960                         last = v;
961                     }
962 
963                     for (int j = 0; j < npoints; j++) {
964                         NEXT_FLOAT_OR_GOTO(v, end)
965                         out_min[i] = FFMIN(out_min[i], v);
966                         out_max[i] = FFMAX(out_max[i], v);
967                         out_prelut[i][j] = v;
968                     }
969 
970                 } else if (npoints == 2)  {
971                     NEXT_LINE_OR_GOTO(skip_line(line), end);
972                     if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) {
973                         ret = AVERROR_INVALIDDATA;
974                         goto end;
975                     }
976                     NEXT_LINE_OR_GOTO(skip_line(line), end);
977                     if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) {
978                         ret = AVERROR_INVALIDDATA;
979                         goto end;
980                     }
981 
982                 } else {
983                     av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
984                     ret = AVERROR_PATCHWELCOME;
985                     goto end;
986                 }
987 
988                 NEXT_LINE_OR_GOTO(skip_line(line), end);
989             }
990 
991             if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) {
992                 ret = AVERROR(EINVAL);
993                 goto end;
994             }
995             if (size_r != size_g || size_r != size_b) {
996                 av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
997                 ret = AVERROR_PATCHWELCOME;
998                 goto end;
999             }
1000 
1001             size = size_r;
1002             size2 = size * size;
1003 
1004             if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1005                 prelut = 1;
1006 
1007             ret = allocate_3dlut(ctx, size, prelut);
1008             if (ret < 0)
1009                 return ret;
1010 
1011             for (int k = 0; k < size; k++) {
1012                 for (int j = 0; j < size; j++) {
1013                     for (int i = 0; i < size; i++) {
1014                         struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
1015 
1016                         NEXT_LINE_OR_GOTO(skip_line(line), end);
1017                         if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) {
1018                             ret = AVERROR_INVALIDDATA;
1019                             goto end;
1020                         }
1021 
1022                         vec->r *= out_max[0] - out_min[0];
1023                         vec->g *= out_max[1] - out_min[1];
1024                         vec->b *= out_max[2] - out_min[2];
1025                     }
1026                 }
1027             }
1028 
1029             break;
1030         }
1031     }
1032 
1033     if (prelut) {
1034         for (int c = 0; c < 3; c++) {
1035 
1036             lut3d->prelut.min[c] = in_min[c];
1037             lut3d->prelut.max[c] = in_max[c];
1038             lut3d->prelut.scale[c] =  (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1);
1039 
1040             for (int i = 0; i < lut3d->prelut.size; ++i) {
1041                 float mix = (float) i / (float)(lut3d->prelut.size - 1);
1042                 float x = lerpf(in_min[c], in_max[c], mix), a, b;
1043 
1044                 int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1);
1045                 av_assert0(idx + 1 < prelut_sizes[c]);
1046 
1047                 a   = out_prelut[c][idx + 0];
1048                 b   = out_prelut[c][idx + 1];
1049                 mix = x - in_prelut[c][idx];
1050 
1051                 lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix));
1052             }
1053         }
1054         lut3d->scale.r = 1.00f;
1055         lut3d->scale.g = 1.00f;
1056         lut3d->scale.b = 1.00f;
1057 
1058     } else {
1059         lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1060         lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1061         lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1062     }
1063 
1064 end:
1065     for (int c = 0; c < 3; c++) {
1066         av_freep(&in_prelut[c]);
1067         av_freep(&out_prelut[c]);
1068     }
1069     return ret;
1070 }
1071 
set_identity_matrix(AVFilterContext * ctx,int size)1072 static int set_identity_matrix(AVFilterContext *ctx, int size)
1073 {
1074     LUT3DContext *lut3d = ctx->priv;
1075     int ret, i, j, k;
1076     const int size2 = size * size;
1077     const float c = 1. / (size - 1);
1078 
1079     ret = allocate_3dlut(ctx, size, 0);
1080     if (ret < 0)
1081         return ret;
1082 
1083     for (k = 0; k < size; k++) {
1084         for (j = 0; j < size; j++) {
1085             for (i = 0; i < size; i++) {
1086                 struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
1087                 vec->r = k * c;
1088                 vec->g = j * c;
1089                 vec->b = i * c;
1090             }
1091         }
1092     }
1093 
1094     return 0;
1095 }
1096 
1097 static const enum AVPixelFormat pix_fmts[] = {
1098     AV_PIX_FMT_RGB24,  AV_PIX_FMT_BGR24,
1099     AV_PIX_FMT_RGBA,   AV_PIX_FMT_BGRA,
1100     AV_PIX_FMT_ARGB,   AV_PIX_FMT_ABGR,
1101     AV_PIX_FMT_0RGB,   AV_PIX_FMT_0BGR,
1102     AV_PIX_FMT_RGB0,   AV_PIX_FMT_BGR0,
1103     AV_PIX_FMT_RGB48,  AV_PIX_FMT_BGR48,
1104     AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
1105     AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRAP,
1106     AV_PIX_FMT_GBRP9,
1107     AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
1108     AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
1109     AV_PIX_FMT_GBRP14,
1110     AV_PIX_FMT_GBRP16,  AV_PIX_FMT_GBRAP16,
1111     AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32,
1112     AV_PIX_FMT_NONE
1113 };
1114 
config_input(AVFilterLink * inlink)1115 static int config_input(AVFilterLink *inlink)
1116 {
1117     int depth, is16bit, isfloat, planar;
1118     LUT3DContext *lut3d = inlink->dst->priv;
1119     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
1120 
1121     depth = desc->comp[0].depth;
1122     is16bit = desc->comp[0].depth > 8;
1123     planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
1124     isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1125     ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
1126     lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
1127 
1128 #define SET_FUNC(name) do {                                     \
1129     if (planar && !isfloat) {                                   \
1130         switch (depth) {                                        \
1131         case  8: lut3d->interp = interp_8_##name##_p8;   break; \
1132         case  9: lut3d->interp = interp_16_##name##_p9;  break; \
1133         case 10: lut3d->interp = interp_16_##name##_p10; break; \
1134         case 12: lut3d->interp = interp_16_##name##_p12; break; \
1135         case 14: lut3d->interp = interp_16_##name##_p14; break; \
1136         case 16: lut3d->interp = interp_16_##name##_p16; break; \
1137         }                                                       \
1138     } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1139     } else if (is16bit) { lut3d->interp = interp_16_##name;     \
1140     } else {       lut3d->interp = interp_8_##name; }           \
1141 } while (0)
1142 
1143     switch (lut3d->interpolation) {
1144     case INTERPOLATE_NEAREST:     SET_FUNC(nearest);        break;
1145     case INTERPOLATE_TRILINEAR:   SET_FUNC(trilinear);      break;
1146     case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral);    break;
1147     case INTERPOLATE_PYRAMID:     SET_FUNC(pyramid);        break;
1148     case INTERPOLATE_PRISM:       SET_FUNC(prism);          break;
1149     default:
1150         av_assert0(0);
1151     }
1152 
1153 #if ARCH_X86
1154     ff_lut3d_init_x86(lut3d, desc);
1155 #endif
1156 
1157     return 0;
1158 }
1159 
apply_lut(AVFilterLink * inlink,AVFrame * in)1160 static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in)
1161 {
1162     AVFilterContext *ctx = inlink->dst;
1163     LUT3DContext *lut3d = ctx->priv;
1164     AVFilterLink *outlink = inlink->dst->outputs[0];
1165     AVFrame *out;
1166     ThreadData td;
1167 
1168     if (av_frame_is_writable(in)) {
1169         out = in;
1170     } else {
1171         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1172         if (!out) {
1173             av_frame_free(&in);
1174             return NULL;
1175         }
1176         av_frame_copy_props(out, in);
1177     }
1178 
1179     td.in  = in;
1180     td.out = out;
1181     ff_filter_execute(ctx, lut3d->interp, &td, NULL,
1182                       FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
1183 
1184     if (out != in)
1185         av_frame_free(&in);
1186 
1187     return out;
1188 }
1189 
filter_frame(AVFilterLink * inlink,AVFrame * in)1190 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
1191 {
1192     AVFilterLink *outlink = inlink->dst->outputs[0];
1193     AVFrame *out = apply_lut(inlink, in);
1194     if (!out)
1195         return AVERROR(ENOMEM);
1196     return ff_filter_frame(outlink, out);
1197 }
1198 
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)1199 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
1200                            char *res, int res_len, int flags)
1201 {
1202     int ret;
1203 
1204     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
1205     if (ret < 0)
1206         return ret;
1207 
1208     return config_input(ctx->inputs[0]);
1209 }
1210 
1211 #if CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER
1212 
1213 /* These options are shared between several filters;
1214  * &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET] must always
1215  * point to the first of the COMMON_OPTIONS. */
1216 #define COMMON_OPTIONS_OFFSET CONFIG_LUT3D_FILTER
1217 static const AVOption lut3d_haldclut_options[] = {
1218 #if CONFIG_LUT3D_FILTER
1219     { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1220 #endif
1221 #if CONFIG_HALDCLUT_FILTER
1222     { "clut", "when to process CLUT", OFFSET(clut), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = TFLAGS, "clut" },
1223     {   "first", "process only first CLUT, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = TFLAGS, "clut" },
1224     {   "all",   "process all CLUTs",                    0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = TFLAGS, "clut" },
1225 #endif
1226     COMMON_OPTIONS
1227 };
1228 
1229 #if CONFIG_LUT3D_FILTER
1230 
1231 AVFILTER_DEFINE_CLASS_EXT(lut3d, "lut3d", lut3d_haldclut_options);
1232 
lut3d_init(AVFilterContext * ctx)1233 static av_cold int lut3d_init(AVFilterContext *ctx)
1234 {
1235     int ret;
1236     FILE *f;
1237     const char *ext;
1238     LUT3DContext *lut3d = ctx->priv;
1239 
1240     lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1241 
1242     if (!lut3d->file) {
1243         return set_identity_matrix(ctx, 32);
1244     }
1245 
1246     f = avpriv_fopen_utf8(lut3d->file, "r");
1247     if (!f) {
1248         ret = AVERROR(errno);
1249         av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
1250         return ret;
1251     }
1252 
1253     ext = strrchr(lut3d->file, '.');
1254     if (!ext) {
1255         av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
1256         ret = AVERROR_INVALIDDATA;
1257         goto end;
1258     }
1259     ext++;
1260 
1261     if (!av_strcasecmp(ext, "dat")) {
1262         ret = parse_dat(ctx, f);
1263     } else if (!av_strcasecmp(ext, "3dl")) {
1264         ret = parse_3dl(ctx, f);
1265     } else if (!av_strcasecmp(ext, "cube")) {
1266         ret = parse_cube(ctx, f);
1267     } else if (!av_strcasecmp(ext, "m3d")) {
1268         ret = parse_m3d(ctx, f);
1269     } else if (!av_strcasecmp(ext, "csp")) {
1270         ret = parse_cinespace(ctx, f);
1271     } else {
1272         av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
1273         ret = AVERROR(EINVAL);
1274     }
1275 
1276     if (!ret && !lut3d->lutsize) {
1277         av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
1278         ret = AVERROR_INVALIDDATA;
1279     }
1280 
1281 end:
1282     fclose(f);
1283     return ret;
1284 }
1285 
lut3d_uninit(AVFilterContext * ctx)1286 static av_cold void lut3d_uninit(AVFilterContext *ctx)
1287 {
1288     LUT3DContext *lut3d = ctx->priv;
1289     int i;
1290     av_freep(&lut3d->lut);
1291 
1292     for (i = 0; i < 3; i++) {
1293         av_freep(&lut3d->prelut.lut[i]);
1294     }
1295 }
1296 
1297 static const AVFilterPad lut3d_inputs[] = {
1298     {
1299         .name         = "default",
1300         .type         = AVMEDIA_TYPE_VIDEO,
1301         .filter_frame = filter_frame,
1302         .config_props = config_input,
1303     },
1304 };
1305 
1306 static const AVFilterPad lut3d_outputs[] = {
1307     {
1308         .name = "default",
1309         .type = AVMEDIA_TYPE_VIDEO,
1310     },
1311 };
1312 
1313 const AVFilter ff_vf_lut3d = {
1314     .name          = "lut3d",
1315     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
1316     .priv_size     = sizeof(LUT3DContext),
1317     .init          = lut3d_init,
1318     .uninit        = lut3d_uninit,
1319     FILTER_INPUTS(lut3d_inputs),
1320     FILTER_OUTPUTS(lut3d_outputs),
1321     FILTER_PIXFMTS_ARRAY(pix_fmts),
1322     .priv_class    = &lut3d_class,
1323     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
1324     .process_command = process_command,
1325 };
1326 #endif
1327 
1328 #if CONFIG_HALDCLUT_FILTER
1329 
update_clut_packed(LUT3DContext * lut3d,const AVFrame * frame)1330 static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
1331 {
1332     const uint8_t *data = frame->data[0];
1333     const int linesize  = frame->linesize[0];
1334     const int w = lut3d->clut_width;
1335     const int step = lut3d->clut_step;
1336     const uint8_t *rgba_map = lut3d->clut_rgba_map;
1337     const int level = lut3d->lutsize;
1338     const int level2 = lut3d->lutsize2;
1339 
1340 #define LOAD_CLUT(nbits) do {                                           \
1341     int i, j, k, x = 0, y = 0;                                          \
1342                                                                         \
1343     for (k = 0; k < level; k++) {                                       \
1344         for (j = 0; j < level; j++) {                                   \
1345             for (i = 0; i < level; i++) {                               \
1346                 const uint##nbits##_t *src = (const uint##nbits##_t *)  \
1347                     (data + y*linesize + x*step);                       \
1348                 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1349                 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1);  \
1350                 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1);  \
1351                 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1);  \
1352                 if (++x == w) {                                         \
1353                     x = 0;                                              \
1354                     y++;                                                \
1355                 }                                                       \
1356             }                                                           \
1357         }                                                               \
1358     }                                                                   \
1359 } while (0)
1360 
1361     switch (lut3d->clut_bits) {
1362     case  8: LOAD_CLUT(8);  break;
1363     case 16: LOAD_CLUT(16); break;
1364     }
1365 }
1366 
update_clut_planar(LUT3DContext * lut3d,const AVFrame * frame)1367 static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
1368 {
1369     const uint8_t *datag = frame->data[0];
1370     const uint8_t *datab = frame->data[1];
1371     const uint8_t *datar = frame->data[2];
1372     const int glinesize  = frame->linesize[0];
1373     const int blinesize  = frame->linesize[1];
1374     const int rlinesize  = frame->linesize[2];
1375     const int w = lut3d->clut_width;
1376     const int level = lut3d->lutsize;
1377     const int level2 = lut3d->lutsize2;
1378 
1379 #define LOAD_CLUT_PLANAR(nbits, depth) do {                             \
1380     int i, j, k, x = 0, y = 0;                                          \
1381                                                                         \
1382     for (k = 0; k < level; k++) {                                       \
1383         for (j = 0; j < level; j++) {                                   \
1384             for (i = 0; i < level; i++) {                               \
1385                 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1386                     (datag + y*glinesize);                              \
1387                 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1388                     (datab + y*blinesize);                              \
1389                 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1390                     (datar + y*rlinesize);                              \
1391                 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1392                 vec->r = gsrc[x] / (float)((1<<(depth)) - 1);           \
1393                 vec->g = bsrc[x] / (float)((1<<(depth)) - 1);           \
1394                 vec->b = rsrc[x] / (float)((1<<(depth)) - 1);           \
1395                 if (++x == w) {                                         \
1396                     x = 0;                                              \
1397                     y++;                                                \
1398                 }                                                       \
1399             }                                                           \
1400         }                                                               \
1401     }                                                                   \
1402 } while (0)
1403 
1404     switch (lut3d->clut_bits) {
1405     case  8: LOAD_CLUT_PLANAR(8, 8);   break;
1406     case  9: LOAD_CLUT_PLANAR(16, 9);  break;
1407     case 10: LOAD_CLUT_PLANAR(16, 10); break;
1408     case 12: LOAD_CLUT_PLANAR(16, 12); break;
1409     case 14: LOAD_CLUT_PLANAR(16, 14); break;
1410     case 16: LOAD_CLUT_PLANAR(16, 16); break;
1411     }
1412 }
1413 
update_clut_float(LUT3DContext * lut3d,const AVFrame * frame)1414 static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame)
1415 {
1416     const uint8_t *datag = frame->data[0];
1417     const uint8_t *datab = frame->data[1];
1418     const uint8_t *datar = frame->data[2];
1419     const int glinesize  = frame->linesize[0];
1420     const int blinesize  = frame->linesize[1];
1421     const int rlinesize  = frame->linesize[2];
1422     const int w = lut3d->clut_width;
1423     const int level = lut3d->lutsize;
1424     const int level2 = lut3d->lutsize2;
1425 
1426     int i, j, k, x = 0, y = 0;
1427 
1428     for (k = 0; k < level; k++) {
1429         for (j = 0; j < level; j++) {
1430             for (i = 0; i < level; i++) {
1431                 const float *gsrc = (const float *)(datag + y*glinesize);
1432                 const float *bsrc = (const float *)(datab + y*blinesize);
1433                 const float *rsrc = (const float *)(datar + y*rlinesize);
1434                 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k];
1435                 vec->r = rsrc[x];
1436                 vec->g = gsrc[x];
1437                 vec->b = bsrc[x];
1438                 if (++x == w) {
1439                     x = 0;
1440                     y++;
1441                 }
1442             }
1443         }
1444     }
1445 }
1446 
config_output(AVFilterLink * outlink)1447 static int config_output(AVFilterLink *outlink)
1448 {
1449     AVFilterContext *ctx = outlink->src;
1450     LUT3DContext *lut3d = ctx->priv;
1451     int ret;
1452 
1453     ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
1454     if (ret < 0)
1455         return ret;
1456     outlink->w = ctx->inputs[0]->w;
1457     outlink->h = ctx->inputs[0]->h;
1458     outlink->time_base = ctx->inputs[0]->time_base;
1459     if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
1460         return ret;
1461     return 0;
1462 }
1463 
activate(AVFilterContext * ctx)1464 static int activate(AVFilterContext *ctx)
1465 {
1466     LUT3DContext *s = ctx->priv;
1467     return ff_framesync_activate(&s->fs);
1468 }
1469 
config_clut(AVFilterLink * inlink)1470 static int config_clut(AVFilterLink *inlink)
1471 {
1472     int size, level, w, h;
1473     AVFilterContext *ctx = inlink->dst;
1474     LUT3DContext *lut3d = ctx->priv;
1475     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
1476 
1477     av_assert0(desc);
1478 
1479     lut3d->clut_bits = desc->comp[0].depth;
1480     lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
1481     lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1482 
1483     lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
1484     ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
1485 
1486     if (inlink->w > inlink->h)
1487         av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
1488                "Hald CLUT will be ignored\n", inlink->w - inlink->h);
1489     else if (inlink->w < inlink->h)
1490         av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
1491                "Hald CLUT will be ignored\n", inlink->h - inlink->w);
1492     lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
1493 
1494     for (level = 1; level*level*level < w; level++);
1495     size = level*level*level;
1496     if (size != w) {
1497         av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
1498         return AVERROR_INVALIDDATA;
1499     }
1500     av_assert0(w == h && w == size);
1501     level *= level;
1502     if (level > MAX_LEVEL) {
1503         const int max_clut_level = sqrt(MAX_LEVEL);
1504         const int max_clut_size  = max_clut_level*max_clut_level*max_clut_level;
1505         av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
1506                "(maximum level is %d, or %dx%d CLUT)\n",
1507                max_clut_level, max_clut_size, max_clut_size);
1508         return AVERROR(EINVAL);
1509     }
1510 
1511     return allocate_3dlut(ctx, level, 0);
1512 }
1513 
update_apply_clut(FFFrameSync * fs)1514 static int update_apply_clut(FFFrameSync *fs)
1515 {
1516     AVFilterContext *ctx = fs->parent;
1517     LUT3DContext *lut3d = ctx->priv;
1518     AVFilterLink *inlink = ctx->inputs[0];
1519     AVFrame *master, *second, *out;
1520     int ret;
1521 
1522     ret = ff_framesync_dualinput_get(fs, &master, &second);
1523     if (ret < 0)
1524         return ret;
1525     if (!second)
1526         return ff_filter_frame(ctx->outputs[0], master);
1527     if (lut3d->clut || !lut3d->got_clut) {
1528         if (lut3d->clut_float)
1529             update_clut_float(ctx->priv, second);
1530         else if (lut3d->clut_planar)
1531             update_clut_planar(ctx->priv, second);
1532         else
1533             update_clut_packed(ctx->priv, second);
1534         lut3d->got_clut = 1;
1535     }
1536     out = apply_lut(inlink, master);
1537     return ff_filter_frame(ctx->outputs[0], out);
1538 }
1539 
haldclut_init(AVFilterContext * ctx)1540 static av_cold int haldclut_init(AVFilterContext *ctx)
1541 {
1542     LUT3DContext *lut3d = ctx->priv;
1543     lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1544     lut3d->fs.on_event = update_apply_clut;
1545     return 0;
1546 }
1547 
haldclut_uninit(AVFilterContext * ctx)1548 static av_cold void haldclut_uninit(AVFilterContext *ctx)
1549 {
1550     LUT3DContext *lut3d = ctx->priv;
1551     ff_framesync_uninit(&lut3d->fs);
1552     av_freep(&lut3d->lut);
1553 }
1554 
1555 FRAMESYNC_DEFINE_CLASS_EXT(haldclut, LUT3DContext, fs,
1556                            &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET]);
1557 
1558 static const AVFilterPad haldclut_inputs[] = {
1559     {
1560         .name         = "main",
1561         .type         = AVMEDIA_TYPE_VIDEO,
1562         .config_props = config_input,
1563     },{
1564         .name         = "clut",
1565         .type         = AVMEDIA_TYPE_VIDEO,
1566         .config_props = config_clut,
1567     },
1568 };
1569 
1570 static const AVFilterPad haldclut_outputs[] = {
1571     {
1572         .name          = "default",
1573         .type          = AVMEDIA_TYPE_VIDEO,
1574         .config_props  = config_output,
1575     },
1576 };
1577 
1578 const AVFilter ff_vf_haldclut = {
1579     .name          = "haldclut",
1580     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
1581     .priv_size     = sizeof(LUT3DContext),
1582     .preinit       = haldclut_framesync_preinit,
1583     .init          = haldclut_init,
1584     .uninit        = haldclut_uninit,
1585     .activate      = activate,
1586     FILTER_INPUTS(haldclut_inputs),
1587     FILTER_OUTPUTS(haldclut_outputs),
1588     FILTER_PIXFMTS_ARRAY(pix_fmts),
1589     .priv_class    = &haldclut_class,
1590     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
1591     .process_command = process_command,
1592 };
1593 #endif
1594 
1595 #endif /* CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER */
1596 
1597 #if CONFIG_LUT1D_FILTER
1598 
1599 enum interp_1d_mode {
1600     INTERPOLATE_1D_NEAREST,
1601     INTERPOLATE_1D_LINEAR,
1602     INTERPOLATE_1D_CUBIC,
1603     INTERPOLATE_1D_COSINE,
1604     INTERPOLATE_1D_SPLINE,
1605     NB_INTERP_1D_MODE
1606 };
1607 
1608 #define MAX_1D_LEVEL 65536
1609 
1610 typedef struct LUT1DContext {
1611     const AVClass *class;
1612     char *file;
1613     int interpolation;          ///<interp_1d_mode
1614     struct rgbvec scale;
1615     uint8_t rgba_map[4];
1616     int step;
1617     float lut[3][MAX_1D_LEVEL];
1618     int lutsize;
1619     avfilter_action_func *interp;
1620 } LUT1DContext;
1621 
1622 #undef OFFSET
1623 #define OFFSET(x) offsetof(LUT1DContext, x)
1624 
set_identity_matrix_1d(LUT1DContext * lut1d,int size)1625 static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
1626 {
1627     const float c = 1. / (size - 1);
1628     int i;
1629 
1630     lut1d->lutsize = size;
1631     for (i = 0; i < size; i++) {
1632         lut1d->lut[0][i] = i * c;
1633         lut1d->lut[1][i] = i * c;
1634         lut1d->lut[2][i] = i * c;
1635     }
1636 }
1637 
parse_cinespace_1d(AVFilterContext * ctx,FILE * f)1638 static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
1639 {
1640     LUT1DContext *lut1d = ctx->priv;
1641     char line[MAX_LINE_SIZE];
1642     float in_min[3]  = {0.0, 0.0, 0.0};
1643     float in_max[3]  = {1.0, 1.0, 1.0};
1644     float out_min[3] = {0.0, 0.0, 0.0};
1645     float out_max[3] = {1.0, 1.0, 1.0};
1646     int inside_metadata = 0, size;
1647 
1648     NEXT_LINE(skip_line(line));
1649     if (strncmp(line, "CSPLUTV100", 10)) {
1650         av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
1651         return AVERROR(EINVAL);
1652     }
1653 
1654     NEXT_LINE(skip_line(line));
1655     if (strncmp(line, "1D", 2)) {
1656         av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
1657         return AVERROR(EINVAL);
1658     }
1659 
1660     while (1) {
1661         NEXT_LINE(skip_line(line));
1662 
1663         if (!strncmp(line, "BEGIN METADATA", 14)) {
1664             inside_metadata = 1;
1665             continue;
1666         }
1667         if (!strncmp(line, "END METADATA", 12)) {
1668             inside_metadata = 0;
1669             continue;
1670         }
1671         if (inside_metadata == 0) {
1672             for (int i = 0; i < 3; i++) {
1673                 int npoints = strtol(line, NULL, 0);
1674 
1675                 if (npoints != 2) {
1676                     av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1677                     return AVERROR_PATCHWELCOME;
1678                 }
1679 
1680                 NEXT_LINE(skip_line(line));
1681                 if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
1682                     return AVERROR_INVALIDDATA;
1683                 NEXT_LINE(skip_line(line));
1684                 if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
1685                     return AVERROR_INVALIDDATA;
1686                 NEXT_LINE(skip_line(line));
1687             }
1688 
1689             size = strtol(line, NULL, 0);
1690 
1691             if (size < 2 || size > MAX_1D_LEVEL) {
1692                 av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1693                 return AVERROR(EINVAL);
1694             }
1695 
1696             lut1d->lutsize = size;
1697 
1698             for (int i = 0; i < size; i++) {
1699                 NEXT_LINE(skip_line(line));
1700                 if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1701                     return AVERROR_INVALIDDATA;
1702                 lut1d->lut[0][i] *= out_max[0] - out_min[0];
1703                 lut1d->lut[1][i] *= out_max[1] - out_min[1];
1704                 lut1d->lut[2][i] *= out_max[2] - out_min[2];
1705             }
1706 
1707             break;
1708         }
1709     }
1710 
1711     lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1712     lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1713     lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1714 
1715     return 0;
1716 }
1717 
parse_cube_1d(AVFilterContext * ctx,FILE * f)1718 static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
1719 {
1720     LUT1DContext *lut1d = ctx->priv;
1721     char line[MAX_LINE_SIZE];
1722     float min[3] = {0.0, 0.0, 0.0};
1723     float max[3] = {1.0, 1.0, 1.0};
1724 
1725     while (fgets(line, sizeof(line), f)) {
1726         if (!strncmp(line, "LUT_1D_SIZE", 11)) {
1727             const int size = strtol(line + 12, NULL, 0);
1728             int i;
1729 
1730             if (size < 2 || size > MAX_1D_LEVEL) {
1731                 av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1732                 return AVERROR(EINVAL);
1733             }
1734             lut1d->lutsize = size;
1735             for (i = 0; i < size; i++) {
1736                 do {
1737 try_again:
1738                     NEXT_LINE(0);
1739                     if (!strncmp(line, "DOMAIN_", 7)) {
1740                         float *vals = NULL;
1741                         if      (!strncmp(line + 7, "MIN ", 4)) vals = min;
1742                         else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
1743                         if (!vals)
1744                             return AVERROR_INVALIDDATA;
1745                         av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
1746                         av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
1747                                min[0], min[1], min[2], max[0], max[1], max[2]);
1748                         goto try_again;
1749                     } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
1750                         av_sscanf(line + 19, "%f %f", min, max);
1751                         min[1] = min[2] = min[0];
1752                         max[1] = max[2] = max[0];
1753                         goto try_again;
1754                     } else if (!strncmp(line, "TITLE", 5)) {
1755                         goto try_again;
1756                     }
1757                 } while (skip_line(line));
1758                 if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1759                     return AVERROR_INVALIDDATA;
1760             }
1761             break;
1762         }
1763     }
1764 
1765     lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1766     lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1767     lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1768 
1769     return 0;
1770 }
1771 
1772 static const AVOption lut1d_options[] = {
1773     { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS },
1774     { "interp", "select interpolation mode", OFFSET(interpolation),    AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, "interp_mode" },
1775         { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST},   0, 0, TFLAGS, "interp_mode" },
1776         { "linear",  "use values from the linear interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR},    0, 0, TFLAGS, "interp_mode" },
1777         { "cosine",  "use values from the cosine interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE},    0, 0, TFLAGS, "interp_mode" },
1778         { "cubic",   "use values from the cubic interpolation",    0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC},     0, 0, TFLAGS, "interp_mode" },
1779         { "spline",  "use values from the spline interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE},    0, 0, TFLAGS, "interp_mode" },
1780     { NULL }
1781 };
1782 
1783 AVFILTER_DEFINE_CLASS(lut1d);
1784 
interp_1d_nearest(const LUT1DContext * lut1d,int idx,const float s)1785 static inline float interp_1d_nearest(const LUT1DContext *lut1d,
1786                                       int idx, const float s)
1787 {
1788     return lut1d->lut[idx][NEAR(s)];
1789 }
1790 
1791 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1792 
interp_1d_linear(const LUT1DContext * lut1d,int idx,const float s)1793 static inline float interp_1d_linear(const LUT1DContext *lut1d,
1794                                      int idx, const float s)
1795 {
1796     const int prev = PREV(s);
1797     const int next = NEXT1D(s);
1798     const float d = s - prev;
1799     const float p = lut1d->lut[idx][prev];
1800     const float n = lut1d->lut[idx][next];
1801 
1802     return lerpf(p, n, d);
1803 }
1804 
interp_1d_cosine(const LUT1DContext * lut1d,int idx,const float s)1805 static inline float interp_1d_cosine(const LUT1DContext *lut1d,
1806                                      int idx, const float s)
1807 {
1808     const int prev = PREV(s);
1809     const int next = NEXT1D(s);
1810     const float d = s - prev;
1811     const float p = lut1d->lut[idx][prev];
1812     const float n = lut1d->lut[idx][next];
1813     const float m = (1.f - cosf(d * M_PI)) * .5f;
1814 
1815     return lerpf(p, n, m);
1816 }
1817 
interp_1d_cubic(const LUT1DContext * lut1d,int idx,const float s)1818 static inline float interp_1d_cubic(const LUT1DContext *lut1d,
1819                                     int idx, const float s)
1820 {
1821     const int prev = PREV(s);
1822     const int next = NEXT1D(s);
1823     const float mu = s - prev;
1824     float a0, a1, a2, a3, mu2;
1825 
1826     float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1827     float y1 = lut1d->lut[idx][prev];
1828     float y2 = lut1d->lut[idx][next];
1829     float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1830 
1831 
1832     mu2 = mu * mu;
1833     a0 = y3 - y2 - y0 + y1;
1834     a1 = y0 - y1 - a0;
1835     a2 = y2 - y0;
1836     a3 = y1;
1837 
1838     return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
1839 }
1840 
interp_1d_spline(const LUT1DContext * lut1d,int idx,const float s)1841 static inline float interp_1d_spline(const LUT1DContext *lut1d,
1842                                      int idx, const float s)
1843 {
1844     const int prev = PREV(s);
1845     const int next = NEXT1D(s);
1846     const float x = s - prev;
1847     float c0, c1, c2, c3;
1848 
1849     float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1850     float y1 = lut1d->lut[idx][prev];
1851     float y2 = lut1d->lut[idx][next];
1852     float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1853 
1854     c0 = y1;
1855     c1 = .5f * (y2 - y0);
1856     c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1857     c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1858 
1859     return ((c3 * x + c2) * x + c1) * x + c0;
1860 }
1861 
1862 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth)                     \
1863 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx,       \
1864                                                  void *arg, int jobnr,       \
1865                                                  int nb_jobs)                \
1866 {                                                                            \
1867     int x, y;                                                                \
1868     const LUT1DContext *lut1d = ctx->priv;                                   \
1869     const ThreadData *td = arg;                                              \
1870     const AVFrame *in  = td->in;                                             \
1871     const AVFrame *out = td->out;                                            \
1872     const int direct = out == in;                                            \
1873     const int slice_start = (in->height *  jobnr   ) / nb_jobs;              \
1874     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;              \
1875     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];           \
1876     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];           \
1877     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];           \
1878     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];           \
1879     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];    \
1880     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];    \
1881     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];    \
1882     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];    \
1883     const float factor = (1 << depth) - 1;                                   \
1884     const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1);  \
1885     const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1);  \
1886     const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1);  \
1887                                                                              \
1888     for (y = slice_start; y < slice_end; y++) {                              \
1889         uint##nbits##_t *dstg = (uint##nbits##_t *)grow;                     \
1890         uint##nbits##_t *dstb = (uint##nbits##_t *)brow;                     \
1891         uint##nbits##_t *dstr = (uint##nbits##_t *)rrow;                     \
1892         uint##nbits##_t *dsta = (uint##nbits##_t *)arow;                     \
1893         const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow;      \
1894         const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow;      \
1895         const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow;      \
1896         const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow;      \
1897         for (x = 0; x < in->width; x++) {                                    \
1898             float r = srcr[x] * scale_r;                                     \
1899             float g = srcg[x] * scale_g;                                     \
1900             float b = srcb[x] * scale_b;                                     \
1901             r = interp_1d_##name(lut1d, 0, r);                               \
1902             g = interp_1d_##name(lut1d, 1, g);                               \
1903             b = interp_1d_##name(lut1d, 2, b);                               \
1904             dstr[x] = av_clip_uintp2(r * factor, depth);                     \
1905             dstg[x] = av_clip_uintp2(g * factor, depth);                     \
1906             dstb[x] = av_clip_uintp2(b * factor, depth);                     \
1907             if (!direct && in->linesize[3])                                  \
1908                 dsta[x] = srca[x];                                           \
1909         }                                                                    \
1910         grow += out->linesize[0];                                            \
1911         brow += out->linesize[1];                                            \
1912         rrow += out->linesize[2];                                            \
1913         arow += out->linesize[3];                                            \
1914         srcgrow += in->linesize[0];                                          \
1915         srcbrow += in->linesize[1];                                          \
1916         srcrrow += in->linesize[2];                                          \
1917         srcarow += in->linesize[3];                                          \
1918     }                                                                        \
1919     return 0;                                                                \
1920 }
1921 
1922 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     8, 8)
1923 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      8, 8)
1924 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      8, 8)
1925 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       8, 8)
1926 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      8, 8)
1927 
1928 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 9)
1929 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 9)
1930 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 9)
1931 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 9)
1932 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 9)
1933 
1934 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 10)
1935 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 10)
1936 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 10)
1937 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 10)
1938 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 10)
1939 
1940 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 12)
1941 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 12)
1942 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 12)
1943 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 12)
1944 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 12)
1945 
1946 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 14)
1947 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 14)
1948 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 14)
1949 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 14)
1950 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 14)
1951 
1952 DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 16)
1953 DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 16)
1954 DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 16)
1955 DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 16)
1956 DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 16)
1957 
1958 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth)                      \
1959 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx,                \
1960                                                  void *arg, int jobnr,       \
1961                                                  int nb_jobs)                \
1962 {                                                                            \
1963     int x, y;                                                                \
1964     const LUT1DContext *lut1d = ctx->priv;                                   \
1965     const ThreadData *td = arg;                                              \
1966     const AVFrame *in  = td->in;                                             \
1967     const AVFrame *out = td->out;                                            \
1968     const int direct = out == in;                                            \
1969     const int slice_start = (in->height *  jobnr   ) / nb_jobs;              \
1970     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;              \
1971     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];           \
1972     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];           \
1973     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];           \
1974     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];           \
1975     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];    \
1976     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];    \
1977     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];    \
1978     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];    \
1979     const float lutsize = lut1d->lutsize - 1;                                \
1980     const float scale_r = lut1d->scale.r * lutsize;                          \
1981     const float scale_g = lut1d->scale.g * lutsize;                          \
1982     const float scale_b = lut1d->scale.b * lutsize;                          \
1983                                                                              \
1984     for (y = slice_start; y < slice_end; y++) {                              \
1985         float *dstg = (float *)grow;                                         \
1986         float *dstb = (float *)brow;                                         \
1987         float *dstr = (float *)rrow;                                         \
1988         float *dsta = (float *)arow;                                         \
1989         const float *srcg = (const float *)srcgrow;                          \
1990         const float *srcb = (const float *)srcbrow;                          \
1991         const float *srcr = (const float *)srcrrow;                          \
1992         const float *srca = (const float *)srcarow;                          \
1993         for (x = 0; x < in->width; x++) {                                    \
1994             float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1995             float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1996             float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1997             r = interp_1d_##name(lut1d, 0, r);                               \
1998             g = interp_1d_##name(lut1d, 1, g);                               \
1999             b = interp_1d_##name(lut1d, 2, b);                               \
2000             dstr[x] = r;                                                     \
2001             dstg[x] = g;                                                     \
2002             dstb[x] = b;                                                     \
2003             if (!direct && in->linesize[3])                                  \
2004                 dsta[x] = srca[x];                                           \
2005         }                                                                    \
2006         grow += out->linesize[0];                                            \
2007         brow += out->linesize[1];                                            \
2008         rrow += out->linesize[2];                                            \
2009         arow += out->linesize[3];                                            \
2010         srcgrow += in->linesize[0];                                          \
2011         srcbrow += in->linesize[1];                                          \
2012         srcrrow += in->linesize[2];                                          \
2013         srcarow += in->linesize[3];                                          \
2014     }                                                                        \
2015     return 0;                                                                \
2016 }
2017 
2018 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2019 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear,  32)
2020 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine,  32)
2021 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic,   32)
2022 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline,  32)
2023 
2024 #define DEFINE_INTERP_FUNC_1D(name, nbits)                                   \
2025 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg,       \
2026                                       int jobnr, int nb_jobs)                \
2027 {                                                                            \
2028     int x, y;                                                                \
2029     const LUT1DContext *lut1d = ctx->priv;                                   \
2030     const ThreadData *td = arg;                                              \
2031     const AVFrame *in  = td->in;                                             \
2032     const AVFrame *out = td->out;                                            \
2033     const int direct = out == in;                                            \
2034     const int step = lut1d->step;                                            \
2035     const uint8_t r = lut1d->rgba_map[R];                                    \
2036     const uint8_t g = lut1d->rgba_map[G];                                    \
2037     const uint8_t b = lut1d->rgba_map[B];                                    \
2038     const uint8_t a = lut1d->rgba_map[A];                                    \
2039     const int slice_start = (in->height *  jobnr   ) / nb_jobs;              \
2040     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;              \
2041     uint8_t       *dstrow = out->data[0] + slice_start * out->linesize[0];   \
2042     const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0];   \
2043     const float factor = (1 << nbits) - 1;                                   \
2044     const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1);  \
2045     const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1);  \
2046     const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1);  \
2047                                                                              \
2048     for (y = slice_start; y < slice_end; y++) {                              \
2049         uint##nbits##_t *dst = (uint##nbits##_t *)dstrow;                    \
2050         const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow;        \
2051         for (x = 0; x < in->width * step; x += step) {                       \
2052             float rr = src[x + r] * scale_r;                                 \
2053             float gg = src[x + g] * scale_g;                                 \
2054             float bb = src[x + b] * scale_b;                                 \
2055             rr = interp_1d_##name(lut1d, 0, rr);                             \
2056             gg = interp_1d_##name(lut1d, 1, gg);                             \
2057             bb = interp_1d_##name(lut1d, 2, bb);                             \
2058             dst[x + r] = av_clip_uint##nbits(rr * factor);                   \
2059             dst[x + g] = av_clip_uint##nbits(gg * factor);                   \
2060             dst[x + b] = av_clip_uint##nbits(bb * factor);                   \
2061             if (!direct && step == 4)                                        \
2062                 dst[x + a] = src[x + a];                                     \
2063         }                                                                    \
2064         dstrow += out->linesize[0];                                          \
2065         srcrow += in ->linesize[0];                                          \
2066     }                                                                        \
2067     return 0;                                                                \
2068 }
2069 
2070 DEFINE_INTERP_FUNC_1D(nearest,     8)
2071 DEFINE_INTERP_FUNC_1D(linear,      8)
2072 DEFINE_INTERP_FUNC_1D(cosine,      8)
2073 DEFINE_INTERP_FUNC_1D(cubic,       8)
2074 DEFINE_INTERP_FUNC_1D(spline,      8)
2075 
2076 DEFINE_INTERP_FUNC_1D(nearest,     16)
2077 DEFINE_INTERP_FUNC_1D(linear,      16)
2078 DEFINE_INTERP_FUNC_1D(cosine,      16)
2079 DEFINE_INTERP_FUNC_1D(cubic,       16)
2080 DEFINE_INTERP_FUNC_1D(spline,      16)
2081 
config_input_1d(AVFilterLink * inlink)2082 static int config_input_1d(AVFilterLink *inlink)
2083 {
2084     int depth, is16bit, isfloat, planar;
2085     LUT1DContext *lut1d = inlink->dst->priv;
2086     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
2087 
2088     depth = desc->comp[0].depth;
2089     is16bit = desc->comp[0].depth > 8;
2090     planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
2091     isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
2092     ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
2093     lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
2094 
2095 #define SET_FUNC_1D(name) do {                                     \
2096     if (planar && !isfloat) {                                      \
2097         switch (depth) {                                           \
2098         case  8: lut1d->interp = interp_1d_8_##name##_p8;   break; \
2099         case  9: lut1d->interp = interp_1d_16_##name##_p9;  break; \
2100         case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2101         case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2102         case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2103         case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2104         }                                                          \
2105     } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2106     } else if (is16bit) { lut1d->interp = interp_1d_16_##name;     \
2107     } else {              lut1d->interp = interp_1d_8_##name; }    \
2108 } while (0)
2109 
2110     switch (lut1d->interpolation) {
2111     case INTERPOLATE_1D_NEAREST:     SET_FUNC_1D(nearest);  break;
2112     case INTERPOLATE_1D_LINEAR:      SET_FUNC_1D(linear);   break;
2113     case INTERPOLATE_1D_COSINE:      SET_FUNC_1D(cosine);   break;
2114     case INTERPOLATE_1D_CUBIC:       SET_FUNC_1D(cubic);    break;
2115     case INTERPOLATE_1D_SPLINE:      SET_FUNC_1D(spline);   break;
2116     default:
2117         av_assert0(0);
2118     }
2119 
2120     return 0;
2121 }
2122 
lut1d_init(AVFilterContext * ctx)2123 static av_cold int lut1d_init(AVFilterContext *ctx)
2124 {
2125     int ret;
2126     FILE *f;
2127     const char *ext;
2128     LUT1DContext *lut1d = ctx->priv;
2129 
2130     lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2131 
2132     if (!lut1d->file) {
2133         set_identity_matrix_1d(lut1d, 32);
2134         return 0;
2135     }
2136 
2137     f = avpriv_fopen_utf8(lut1d->file, "r");
2138     if (!f) {
2139         ret = AVERROR(errno);
2140         av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
2141         return ret;
2142     }
2143 
2144     ext = strrchr(lut1d->file, '.');
2145     if (!ext) {
2146         av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
2147         ret = AVERROR_INVALIDDATA;
2148         goto end;
2149     }
2150     ext++;
2151 
2152     if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
2153         ret = parse_cube_1d(ctx, f);
2154     } else if (!av_strcasecmp(ext, "csp")) {
2155         ret = parse_cinespace_1d(ctx, f);
2156     } else {
2157         av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
2158         ret = AVERROR(EINVAL);
2159     }
2160 
2161     if (!ret && !lut1d->lutsize) {
2162         av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
2163         ret = AVERROR_INVALIDDATA;
2164     }
2165 
2166 end:
2167     fclose(f);
2168     return ret;
2169 }
2170 
apply_1d_lut(AVFilterLink * inlink,AVFrame * in)2171 static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
2172 {
2173     AVFilterContext *ctx = inlink->dst;
2174     LUT1DContext *lut1d = ctx->priv;
2175     AVFilterLink *outlink = inlink->dst->outputs[0];
2176     AVFrame *out;
2177     ThreadData td;
2178 
2179     if (av_frame_is_writable(in)) {
2180         out = in;
2181     } else {
2182         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
2183         if (!out) {
2184             av_frame_free(&in);
2185             return NULL;
2186         }
2187         av_frame_copy_props(out, in);
2188     }
2189 
2190     td.in  = in;
2191     td.out = out;
2192     ff_filter_execute(ctx, lut1d->interp, &td, NULL,
2193                       FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
2194 
2195     if (out != in)
2196         av_frame_free(&in);
2197 
2198     return out;
2199 }
2200 
filter_frame_1d(AVFilterLink * inlink,AVFrame * in)2201 static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
2202 {
2203     AVFilterLink *outlink = inlink->dst->outputs[0];
2204     AVFrame *out = apply_1d_lut(inlink, in);
2205     if (!out)
2206         return AVERROR(ENOMEM);
2207     return ff_filter_frame(outlink, out);
2208 }
2209 
lut1d_process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)2210 static int lut1d_process_command(AVFilterContext *ctx, const char *cmd, const char *args,
2211                            char *res, int res_len, int flags)
2212 {
2213     LUT1DContext *lut1d = ctx->priv;
2214     int ret;
2215 
2216     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
2217     if (ret < 0)
2218         return ret;
2219 
2220     ret = lut1d_init(ctx);
2221     if (ret < 0) {
2222         set_identity_matrix_1d(lut1d, 32);
2223         return ret;
2224     }
2225     return config_input_1d(ctx->inputs[0]);
2226 }
2227 
2228 static const AVFilterPad lut1d_inputs[] = {
2229     {
2230         .name         = "default",
2231         .type         = AVMEDIA_TYPE_VIDEO,
2232         .filter_frame = filter_frame_1d,
2233         .config_props = config_input_1d,
2234     },
2235 };
2236 
2237 static const AVFilterPad lut1d_outputs[] = {
2238     {
2239         .name = "default",
2240         .type = AVMEDIA_TYPE_VIDEO,
2241     },
2242 };
2243 
2244 const AVFilter ff_vf_lut1d = {
2245     .name          = "lut1d",
2246     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
2247     .priv_size     = sizeof(LUT1DContext),
2248     .init          = lut1d_init,
2249     FILTER_INPUTS(lut1d_inputs),
2250     FILTER_OUTPUTS(lut1d_outputs),
2251     FILTER_PIXFMTS_ARRAY(pix_fmts),
2252     .priv_class    = &lut1d_class,
2253     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
2254     .process_command = lut1d_process_command,
2255 };
2256 #endif
2257