1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // Google Mock - a framework for writing C++ mock classes. 31 // 32 // The ACTION* family of macros can be used in a namespace scope to 33 // define custom actions easily. The syntax: 34 // 35 // ACTION(name) { statements; } 36 // 37 // will define an action with the given name that executes the 38 // statements. The value returned by the statements will be used as 39 // the return value of the action. Inside the statements, you can 40 // refer to the K-th (0-based) argument of the mock function by 41 // 'argK', and refer to its type by 'argK_type'. For example: 42 // 43 // ACTION(IncrementArg1) { 44 // arg1_type temp = arg1; 45 // return ++(*temp); 46 // } 47 // 48 // allows you to write 49 // 50 // ...WillOnce(IncrementArg1()); 51 // 52 // You can also refer to the entire argument tuple and its type by 53 // 'args' and 'args_type', and refer to the mock function type and its 54 // return type by 'function_type' and 'return_type'. 55 // 56 // Note that you don't need to specify the types of the mock function 57 // arguments. However rest assured that your code is still type-safe: 58 // you'll get a compiler error if *arg1 doesn't support the ++ 59 // operator, or if the type of ++(*arg1) isn't compatible with the 60 // mock function's return type, for example. 61 // 62 // Sometimes you'll want to parameterize the action. For that you can use 63 // another macro: 64 // 65 // ACTION_P(name, param_name) { statements; } 66 // 67 // For example: 68 // 69 // ACTION_P(Add, n) { return arg0 + n; } 70 // 71 // will allow you to write: 72 // 73 // ...WillOnce(Add(5)); 74 // 75 // Note that you don't need to provide the type of the parameter 76 // either. If you need to reference the type of a parameter named 77 // 'foo', you can write 'foo_type'. For example, in the body of 78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type 79 // of 'n'. 80 // 81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support 82 // multi-parameter actions. 83 // 84 // For the purpose of typing, you can view 85 // 86 // ACTION_Pk(Foo, p1, ..., pk) { ... } 87 // 88 // as shorthand for 89 // 90 // template <typename p1_type, ..., typename pk_type> 91 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } 92 // 93 // In particular, you can provide the template type arguments 94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); 95 // although usually you can rely on the compiler to infer the types 96 // for you automatically. You can assign the result of expression 97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., 98 // pk_type>. This can be useful when composing actions. 99 // 100 // You can also overload actions with different numbers of parameters: 101 // 102 // ACTION_P(Plus, a) { ... } 103 // ACTION_P2(Plus, a, b) { ... } 104 // 105 // While it's tempting to always use the ACTION* macros when defining 106 // a new action, you should also consider implementing ActionInterface 107 // or using MakePolymorphicAction() instead, especially if you need to 108 // use the action a lot. While these approaches require more work, 109 // they give you more control on the types of the mock function 110 // arguments and the action parameters, which in general leads to 111 // better compiler error messages that pay off in the long run. They 112 // also allow overloading actions based on parameter types (as opposed 113 // to just based on the number of parameters). 114 // 115 // CAVEAT: 116 // 117 // ACTION*() can only be used in a namespace scope as templates cannot be 118 // declared inside of a local class. 119 // Users can, however, define any local functors (e.g. a lambda) that 120 // can be used as actions. 121 // 122 // MORE INFORMATION: 123 // 124 // To learn more about using these macros, please search for 'ACTION' on 125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md 126 127 // IWYU pragma: private, include "gmock/gmock.h" 128 // IWYU pragma: friend gmock/.* 129 130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 132 133 #ifndef _WIN32_WCE 134 #include <errno.h> 135 #endif 136 137 #include <algorithm> 138 #include <functional> 139 #include <memory> 140 #include <string> 141 #include <tuple> 142 #include <type_traits> 143 #include <utility> 144 145 #include "gmock/internal/gmock-internal-utils.h" 146 #include "gmock/internal/gmock-port.h" 147 #include "gmock/internal/gmock-pp.h" 148 149 #ifdef _MSC_VER 150 #pragma warning(push) 151 #pragma warning(disable : 4100) 152 #endif 153 154 namespace testing { 155 156 // To implement an action Foo, define: 157 // 1. a class FooAction that implements the ActionInterface interface, and 158 // 2. a factory function that creates an Action object from a 159 // const FooAction*. 160 // 161 // The two-level delegation design follows that of Matcher, providing 162 // consistency for extension developers. It also eases ownership 163 // management as Action objects can now be copied like plain values. 164 165 namespace internal { 166 167 // BuiltInDefaultValueGetter<T, true>::Get() returns a 168 // default-constructed T value. BuiltInDefaultValueGetter<T, 169 // false>::Get() crashes with an error. 170 // 171 // This primary template is used when kDefaultConstructible is true. 172 template <typename T, bool kDefaultConstructible> 173 struct BuiltInDefaultValueGetter { GetBuiltInDefaultValueGetter174 static T Get() { return T(); } 175 }; 176 template <typename T> 177 struct BuiltInDefaultValueGetter<T, false> { 178 static T Get() { 179 Assert(false, __FILE__, __LINE__, 180 "Default action undefined for the function return type."); 181 return internal::Invalid<T>(); 182 // The above statement will never be reached, but is required in 183 // order for this function to compile. 184 } 185 }; 186 187 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 188 // for type T, which is NULL when T is a raw pointer type, 0 when T is 189 // a numeric type, false when T is bool, or "" when T is string or 190 // std::string. In addition, in C++11 and above, it turns a 191 // default-constructed T value if T is default constructible. For any 192 // other type T, the built-in default T value is undefined, and the 193 // function will abort the process. 194 template <typename T> 195 class BuiltInDefaultValue { 196 public: 197 // This function returns true if and only if type T has a built-in default 198 // value. 199 static bool Exists() { return ::std::is_default_constructible<T>::value; } 200 201 static T Get() { 202 return BuiltInDefaultValueGetter< 203 T, ::std::is_default_constructible<T>::value>::Get(); 204 } 205 }; 206 207 // This partial specialization says that we use the same built-in 208 // default value for T and const T. 209 template <typename T> 210 class BuiltInDefaultValue<const T> { 211 public: 212 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 213 static T Get() { return BuiltInDefaultValue<T>::Get(); } 214 }; 215 216 // This partial specialization defines the default values for pointer 217 // types. 218 template <typename T> 219 class BuiltInDefaultValue<T*> { 220 public: 221 static bool Exists() { return true; } 222 static T* Get() { return nullptr; } 223 }; 224 225 // The following specializations define the default values for 226 // specific types we care about. 227 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 228 template <> \ 229 class BuiltInDefaultValue<type> { \ 230 public: \ 231 static bool Exists() { return true; } \ 232 static type Get() { return value; } \ 233 } 234 235 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 236 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 238 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 241 242 // There's no need for a default action for signed wchar_t, as that 243 // type is the same as wchar_t for gcc, and invalid for MSVC. 244 // 245 // There's also no need for a default action for unsigned wchar_t, as 246 // that type is the same as unsigned int for gcc, and invalid for 247 // MSVC. 248 #if GMOCK_WCHAR_T_IS_NATIVE_ 249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 250 #endif 251 252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT 259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT 260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 262 263 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 264 265 // Partial implementations of metaprogramming types from the standard library 266 // not available in C++11. 267 268 template <typename P> 269 struct negation 270 // NOLINTNEXTLINE 271 : std::integral_constant<bool, bool(!P::value)> {}; 272 273 // Base case: with zero predicates the answer is always true. 274 template <typename...> 275 struct conjunction : std::true_type {}; 276 277 // With a single predicate, the answer is that predicate. 278 template <typename P1> 279 struct conjunction<P1> : P1 {}; 280 281 // With multiple predicates the answer is the first predicate if that is false, 282 // and we recurse otherwise. 283 template <typename P1, typename... Ps> 284 struct conjunction<P1, Ps...> 285 : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; 286 287 template <typename...> 288 struct disjunction : std::false_type {}; 289 290 template <typename P1> 291 struct disjunction<P1> : P1 {}; 292 293 template <typename P1, typename... Ps> 294 struct disjunction<P1, Ps...> 295 // NOLINTNEXTLINE 296 : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; 297 298 template <typename...> 299 using void_t = void; 300 301 // Detects whether an expression of type `From` can be implicitly converted to 302 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: 303 // 304 // An expression e can be implicitly converted to a type T if and only if 305 // the declaration T t=e; is well-formed, for some invented temporary 306 // variable t ([dcl.init]). 307 // 308 // [conv]/2 implies we can use function argument passing to detect whether this 309 // initialization is valid. 310 // 311 // Note that this is distinct from is_convertible, which requires this be valid: 312 // 313 // To test() { 314 // return declval<From>(); 315 // } 316 // 317 // In particular, is_convertible doesn't give the correct answer when `To` and 318 // `From` are the same non-moveable type since `declval<From>` will be an rvalue 319 // reference, defeating the guaranteed copy elision that would otherwise make 320 // this function work. 321 // 322 // REQUIRES: `From` is not cv void. 323 template <typename From, typename To> 324 struct is_implicitly_convertible { 325 private: 326 // A function that accepts a parameter of type T. This can be called with type 327 // U successfully only if U is implicitly convertible to T. 328 template <typename T> 329 static void Accept(T); 330 331 // A function that creates a value of type T. 332 template <typename T> 333 static T Make(); 334 335 // An overload be selected when implicit conversion from T to To is possible. 336 template <typename T, typename = decltype(Accept<To>(Make<T>()))> 337 static std::true_type TestImplicitConversion(int); 338 339 // A fallback overload selected in all other cases. 340 template <typename T> 341 static std::false_type TestImplicitConversion(...); 342 343 public: 344 using type = decltype(TestImplicitConversion<From>(0)); 345 static constexpr bool value = type::value; 346 }; 347 348 // Like std::invoke_result_t from C++17, but works only for objects with call 349 // operators (not e.g. member function pointers, which we don't need specific 350 // support for in OnceAction because std::function deals with them). 351 template <typename F, typename... Args> 352 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); 353 354 template <typename Void, typename R, typename F, typename... Args> 355 struct is_callable_r_impl : std::false_type {}; 356 357 // Specialize the struct for those template arguments where call_result_t is 358 // well-formed. When it's not, the generic template above is chosen, resulting 359 // in std::false_type. 360 template <typename R, typename F, typename... Args> 361 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> 362 : std::conditional< 363 std::is_void<R>::value, // 364 std::true_type, // 365 is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; 366 367 // Like std::is_invocable_r from C++17, but works only for objects with call 368 // operators. See the note on call_result_t. 369 template <typename R, typename F, typename... Args> 370 using is_callable_r = is_callable_r_impl<void, R, F, Args...>; 371 372 // Like std::as_const from C++17. 373 template <typename T> 374 typename std::add_const<T>::type& as_const(T& t) { 375 return t; 376 } 377 378 } // namespace internal 379 380 // Specialized for function types below. 381 template <typename F> 382 class OnceAction; 383 384 // An action that can only be used once. 385 // 386 // This is accepted by WillOnce, which doesn't require the underlying action to 387 // be copy-constructible (only move-constructible), and promises to invoke it as 388 // an rvalue reference. This allows the action to work with move-only types like 389 // std::move_only_function in a type-safe manner. 390 // 391 // For example: 392 // 393 // // Assume we have some API that needs to accept a unique pointer to some 394 // // non-copyable object Foo. 395 // void AcceptUniquePointer(std::unique_ptr<Foo> foo); 396 // 397 // // We can define an action that provides a Foo to that API. Because It 398 // // has to give away its unique pointer, it must not be called more than 399 // // once, so its call operator is &&-qualified. 400 // struct ProvideFoo { 401 // std::unique_ptr<Foo> foo; 402 // 403 // void operator()() && { 404 // AcceptUniquePointer(std::move(Foo)); 405 // } 406 // }; 407 // 408 // // This action can be used with WillOnce. 409 // EXPECT_CALL(mock, Call) 410 // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); 411 // 412 // // But a call to WillRepeatedly will fail to compile. This is correct, 413 // // since the action cannot correctly be used repeatedly. 414 // EXPECT_CALL(mock, Call) 415 // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); 416 // 417 // A less-contrived example would be an action that returns an arbitrary type, 418 // whose &&-qualified call operator is capable of dealing with move-only types. 419 template <typename Result, typename... Args> 420 class OnceAction<Result(Args...)> final { 421 private: 422 // True iff we can use the given callable type (or lvalue reference) directly 423 // via StdFunctionAdaptor. 424 template <typename Callable> 425 using IsDirectlyCompatible = internal::conjunction< 426 // It must be possible to capture the callable in StdFunctionAdaptor. 427 std::is_constructible<typename std::decay<Callable>::type, Callable>, 428 // The callable must be compatible with our signature. 429 internal::is_callable_r<Result, typename std::decay<Callable>::type, 430 Args...>>; 431 432 // True iff we can use the given callable type via StdFunctionAdaptor once we 433 // ignore incoming arguments. 434 template <typename Callable> 435 using IsCompatibleAfterIgnoringArguments = internal::conjunction< 436 // It must be possible to capture the callable in a lambda. 437 std::is_constructible<typename std::decay<Callable>::type, Callable>, 438 // The callable must be invocable with zero arguments, returning something 439 // convertible to Result. 440 internal::is_callable_r<Result, typename std::decay<Callable>::type>>; 441 442 public: 443 // Construct from a callable that is directly compatible with our mocked 444 // signature: it accepts our function type's arguments and returns something 445 // convertible to our result type. 446 template <typename Callable, 447 typename std::enable_if< 448 internal::conjunction< 449 // Teach clang on macOS that we're not talking about a 450 // copy/move constructor here. Otherwise it gets confused 451 // when checking the is_constructible requirement of our 452 // traits above. 453 internal::negation<std::is_same< 454 OnceAction, typename std::decay<Callable>::type>>, 455 IsDirectlyCompatible<Callable>> // 456 ::value, 457 int>::type = 0> 458 OnceAction(Callable&& callable) // NOLINT 459 : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( 460 {}, std::forward<Callable>(callable))) {} 461 462 // As above, but for a callable that ignores the mocked function's arguments. 463 template <typename Callable, 464 typename std::enable_if< 465 internal::conjunction< 466 // Teach clang on macOS that we're not talking about a 467 // copy/move constructor here. Otherwise it gets confused 468 // when checking the is_constructible requirement of our 469 // traits above. 470 internal::negation<std::is_same< 471 OnceAction, typename std::decay<Callable>::type>>, 472 // Exclude callables for which the overload above works. 473 // We'd rather provide the arguments if possible. 474 internal::negation<IsDirectlyCompatible<Callable>>, 475 IsCompatibleAfterIgnoringArguments<Callable>>::value, 476 int>::type = 0> 477 OnceAction(Callable&& callable) // NOLINT 478 // Call the constructor above with a callable 479 // that ignores the input arguments. 480 : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ 481 std::forward<Callable>(callable)}) {} 482 483 // We are naturally copyable because we store only an std::function, but 484 // semantically we should not be copyable. 485 OnceAction(const OnceAction&) = delete; 486 OnceAction& operator=(const OnceAction&) = delete; 487 OnceAction(OnceAction&&) = default; 488 489 // Invoke the underlying action callable with which we were constructed, 490 // handing it the supplied arguments. 491 Result Call(Args... args) && { 492 return function_(std::forward<Args>(args)...); 493 } 494 495 private: 496 // An adaptor that wraps a callable that is compatible with our signature and 497 // being invoked as an rvalue reference so that it can be used as an 498 // StdFunctionAdaptor. This throws away type safety, but that's fine because 499 // this is only used by WillOnce, which we know calls at most once. 500 // 501 // Once we have something like std::move_only_function from C++23, we can do 502 // away with this. 503 template <typename Callable> 504 class StdFunctionAdaptor final { 505 public: 506 // A tag indicating that the (otherwise universal) constructor is accepting 507 // the callable itself, instead of e.g. stealing calls for the move 508 // constructor. 509 struct CallableTag final {}; 510 511 template <typename F> 512 explicit StdFunctionAdaptor(CallableTag, F&& callable) 513 : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} 514 515 // Rather than explicitly returning Result, we return whatever the wrapped 516 // callable returns. This allows for compatibility with existing uses like 517 // the following, when the mocked function returns void: 518 // 519 // EXPECT_CALL(mock_fn_, Call) 520 // .WillOnce([&] { 521 // [...] 522 // return 0; 523 // }); 524 // 525 // Such a callable can be turned into std::function<void()>. If we use an 526 // explicit return type of Result here then it *doesn't* work with 527 // std::function, because we'll get a "void function should not return a 528 // value" error. 529 // 530 // We need not worry about incompatible result types because the SFINAE on 531 // OnceAction already checks this for us. std::is_invocable_r_v itself makes 532 // the same allowance for void result types. 533 template <typename... ArgRefs> 534 internal::call_result_t<Callable, ArgRefs...> operator()( 535 ArgRefs&&... args) const { 536 return std::move(*callable_)(std::forward<ArgRefs>(args)...); 537 } 538 539 private: 540 // We must put the callable on the heap so that we are copyable, which 541 // std::function needs. 542 std::shared_ptr<Callable> callable_; 543 }; 544 545 // An adaptor that makes a callable that accepts zero arguments callable with 546 // our mocked arguments. 547 template <typename Callable> 548 struct IgnoreIncomingArguments { 549 internal::call_result_t<Callable> operator()(Args&&...) { 550 return std::move(callable)(); 551 } 552 553 Callable callable; 554 }; 555 556 std::function<Result(Args...)> function_; 557 }; 558 559 // When an unexpected function call is encountered, Google Mock will 560 // let it return a default value if the user has specified one for its 561 // return type, or if the return type has a built-in default value; 562 // otherwise Google Mock won't know what value to return and will have 563 // to abort the process. 564 // 565 // The DefaultValue<T> class allows a user to specify the 566 // default value for a type T that is both copyable and publicly 567 // destructible (i.e. anything that can be used as a function return 568 // type). The usage is: 569 // 570 // // Sets the default value for type T to be foo. 571 // DefaultValue<T>::Set(foo); 572 template <typename T> 573 class DefaultValue { 574 public: 575 // Sets the default value for type T; requires T to be 576 // copy-constructable and have a public destructor. 577 static void Set(T x) { 578 delete producer_; 579 producer_ = new FixedValueProducer(x); 580 } 581 582 // Provides a factory function to be called to generate the default value. 583 // This method can be used even if T is only move-constructible, but it is not 584 // limited to that case. 585 typedef T (*FactoryFunction)(); 586 static void SetFactory(FactoryFunction factory) { 587 delete producer_; 588 producer_ = new FactoryValueProducer(factory); 589 } 590 591 // Unsets the default value for type T. 592 static void Clear() { 593 delete producer_; 594 producer_ = nullptr; 595 } 596 597 // Returns true if and only if the user has set the default value for type T. 598 static bool IsSet() { return producer_ != nullptr; } 599 600 // Returns true if T has a default return value set by the user or there 601 // exists a built-in default value. 602 static bool Exists() { 603 return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 604 } 605 606 // Returns the default value for type T if the user has set one; 607 // otherwise returns the built-in default value. Requires that Exists() 608 // is true, which ensures that the return value is well-defined. 609 static T Get() { 610 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 611 : producer_->Produce(); 612 } 613 614 private: 615 class ValueProducer { 616 public: 617 virtual ~ValueProducer() {} 618 virtual T Produce() = 0; 619 }; 620 621 class FixedValueProducer : public ValueProducer { 622 public: 623 explicit FixedValueProducer(T value) : value_(value) {} 624 T Produce() override { return value_; } 625 626 private: 627 const T value_; 628 FixedValueProducer(const FixedValueProducer&) = delete; 629 FixedValueProducer& operator=(const FixedValueProducer&) = delete; 630 }; 631 632 class FactoryValueProducer : public ValueProducer { 633 public: 634 explicit FactoryValueProducer(FactoryFunction factory) 635 : factory_(factory) {} 636 T Produce() override { return factory_(); } 637 638 private: 639 const FactoryFunction factory_; 640 FactoryValueProducer(const FactoryValueProducer&) = delete; 641 FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; 642 }; 643 644 static ValueProducer* producer_; 645 }; 646 647 // This partial specialization allows a user to set default values for 648 // reference types. 649 template <typename T> 650 class DefaultValue<T&> { 651 public: 652 // Sets the default value for type T&. 653 static void Set(T& x) { // NOLINT 654 address_ = &x; 655 } 656 657 // Unsets the default value for type T&. 658 static void Clear() { address_ = nullptr; } 659 660 // Returns true if and only if the user has set the default value for type T&. 661 static bool IsSet() { return address_ != nullptr; } 662 663 // Returns true if T has a default return value set by the user or there 664 // exists a built-in default value. 665 static bool Exists() { 666 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 667 } 668 669 // Returns the default value for type T& if the user has set one; 670 // otherwise returns the built-in default value if there is one; 671 // otherwise aborts the process. 672 static T& Get() { 673 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 674 : *address_; 675 } 676 677 private: 678 static T* address_; 679 }; 680 681 // This specialization allows DefaultValue<void>::Get() to 682 // compile. 683 template <> 684 class DefaultValue<void> { 685 public: 686 static bool Exists() { return true; } 687 static void Get() {} 688 }; 689 690 // Points to the user-set default value for type T. 691 template <typename T> 692 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 693 694 // Points to the user-set default value for type T&. 695 template <typename T> 696 T* DefaultValue<T&>::address_ = nullptr; 697 698 // Implement this interface to define an action for function type F. 699 template <typename F> 700 class ActionInterface { 701 public: 702 typedef typename internal::Function<F>::Result Result; 703 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 704 705 ActionInterface() {} 706 virtual ~ActionInterface() {} 707 708 // Performs the action. This method is not const, as in general an 709 // action can have side effects and be stateful. For example, a 710 // get-the-next-element-from-the-collection action will need to 711 // remember the current element. 712 virtual Result Perform(const ArgumentTuple& args) = 0; 713 714 private: 715 ActionInterface(const ActionInterface&) = delete; 716 ActionInterface& operator=(const ActionInterface&) = delete; 717 }; 718 719 template <typename F> 720 class Action; 721 722 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) 723 // object that represents an action to be taken when a mock function of type 724 // R(Args...) is called. The implementation of Action<T> is just a 725 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You 726 // can view an object implementing ActionInterface<F> as a concrete action 727 // (including its current state), and an Action<F> object as a handle to it. 728 template <typename R, typename... Args> 729 class Action<R(Args...)> { 730 private: 731 using F = R(Args...); 732 733 // Adapter class to allow constructing Action from a legacy ActionInterface. 734 // New code should create Actions from functors instead. 735 struct ActionAdapter { 736 // Adapter must be copyable to satisfy std::function requirements. 737 ::std::shared_ptr<ActionInterface<F>> impl_; 738 739 template <typename... InArgs> 740 typename internal::Function<F>::Result operator()(InArgs&&... args) { 741 return impl_->Perform( 742 ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); 743 } 744 }; 745 746 template <typename G> 747 using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; 748 749 public: 750 typedef typename internal::Function<F>::Result Result; 751 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 752 753 // Constructs a null Action. Needed for storing Action objects in 754 // STL containers. 755 Action() {} 756 757 // Construct an Action from a specified callable. 758 // This cannot take std::function directly, because then Action would not be 759 // directly constructible from lambda (it would require two conversions). 760 template < 761 typename G, 762 typename = typename std::enable_if<internal::disjunction< 763 IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, 764 G>>::value>::type> 765 Action(G&& fun) { // NOLINT 766 Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); 767 } 768 769 // Constructs an Action from its implementation. 770 explicit Action(ActionInterface<F>* impl) 771 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 772 773 // This constructor allows us to turn an Action<Func> object into an 774 // Action<F>, as long as F's arguments can be implicitly converted 775 // to Func's and Func's return type can be implicitly converted to F's. 776 template <typename Func> 777 Action(const Action<Func>& action) // NOLINT 778 : fun_(action.fun_) {} 779 780 // Returns true if and only if this is the DoDefault() action. 781 bool IsDoDefault() const { return fun_ == nullptr; } 782 783 // Performs the action. Note that this method is const even though 784 // the corresponding method in ActionInterface is not. The reason 785 // is that a const Action<F> means that it cannot be re-bound to 786 // another concrete action, not that the concrete action it binds to 787 // cannot change state. (Think of the difference between a const 788 // pointer and a pointer to const.) 789 Result Perform(ArgumentTuple args) const { 790 if (IsDoDefault()) { 791 internal::IllegalDoDefault(__FILE__, __LINE__); 792 } 793 return internal::Apply(fun_, ::std::move(args)); 794 } 795 796 // An action can be used as a OnceAction, since it's obviously safe to call it 797 // once. 798 operator OnceAction<F>() const { // NOLINT 799 // Return a OnceAction-compatible callable that calls Perform with the 800 // arguments it is provided. We could instead just return fun_, but then 801 // we'd need to handle the IsDoDefault() case separately. 802 struct OA { 803 Action<F> action; 804 805 R operator()(Args... args) && { 806 return action.Perform( 807 std::forward_as_tuple(std::forward<Args>(args)...)); 808 } 809 }; 810 811 return OA{*this}; 812 } 813 814 private: 815 template <typename G> 816 friend class Action; 817 818 template <typename G> 819 void Init(G&& g, ::std::true_type) { 820 fun_ = ::std::forward<G>(g); 821 } 822 823 template <typename G> 824 void Init(G&& g, ::std::false_type) { 825 fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; 826 } 827 828 template <typename FunctionImpl> 829 struct IgnoreArgs { 830 template <typename... InArgs> 831 Result operator()(const InArgs&...) const { 832 return function_impl(); 833 } 834 835 FunctionImpl function_impl; 836 }; 837 838 // fun_ is an empty function if and only if this is the DoDefault() action. 839 ::std::function<F> fun_; 840 }; 841 842 // The PolymorphicAction class template makes it easy to implement a 843 // polymorphic action (i.e. an action that can be used in mock 844 // functions of than one type, e.g. Return()). 845 // 846 // To define a polymorphic action, a user first provides a COPYABLE 847 // implementation class that has a Perform() method template: 848 // 849 // class FooAction { 850 // public: 851 // template <typename Result, typename ArgumentTuple> 852 // Result Perform(const ArgumentTuple& args) const { 853 // // Processes the arguments and returns a result, using 854 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 855 // } 856 // ... 857 // }; 858 // 859 // Then the user creates the polymorphic action using 860 // MakePolymorphicAction(object) where object has type FooAction. See 861 // the definition of Return(void) and SetArgumentPointee<N>(value) for 862 // complete examples. 863 template <typename Impl> 864 class PolymorphicAction { 865 public: 866 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 867 868 template <typename F> 869 operator Action<F>() const { 870 return Action<F>(new MonomorphicImpl<F>(impl_)); 871 } 872 873 private: 874 template <typename F> 875 class MonomorphicImpl : public ActionInterface<F> { 876 public: 877 typedef typename internal::Function<F>::Result Result; 878 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 879 880 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 881 882 Result Perform(const ArgumentTuple& args) override { 883 return impl_.template Perform<Result>(args); 884 } 885 886 private: 887 Impl impl_; 888 }; 889 890 Impl impl_; 891 }; 892 893 // Creates an Action from its implementation and returns it. The 894 // created Action object owns the implementation. 895 template <typename F> 896 Action<F> MakeAction(ActionInterface<F>* impl) { 897 return Action<F>(impl); 898 } 899 900 // Creates a polymorphic action from its implementation. This is 901 // easier to use than the PolymorphicAction<Impl> constructor as it 902 // doesn't require you to explicitly write the template argument, e.g. 903 // 904 // MakePolymorphicAction(foo); 905 // vs 906 // PolymorphicAction<TypeOfFoo>(foo); 907 template <typename Impl> 908 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 909 return PolymorphicAction<Impl>(impl); 910 } 911 912 namespace internal { 913 914 // Helper struct to specialize ReturnAction to execute a move instead of a copy 915 // on return. Useful for move-only types, but could be used on any type. 916 template <typename T> 917 struct ByMoveWrapper { 918 explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 919 T payload; 920 }; 921 922 // The general implementation of Return(R). Specializations follow below. 923 template <typename R> 924 class ReturnAction final { 925 public: 926 explicit ReturnAction(R value) : value_(std::move(value)) {} 927 928 template <typename U, typename... Args, 929 typename = typename std::enable_if<conjunction< 930 // See the requirements documented on Return. 931 negation<std::is_same<void, U>>, // 932 negation<std::is_reference<U>>, // 933 std::is_convertible<R, U>, // 934 std::is_move_constructible<U>>::value>::type> 935 operator OnceAction<U(Args...)>() && { // NOLINT 936 return Impl<U>(std::move(value_)); 937 } 938 939 template <typename U, typename... Args, 940 typename = typename std::enable_if<conjunction< 941 // See the requirements documented on Return. 942 negation<std::is_same<void, U>>, // 943 negation<std::is_reference<U>>, // 944 std::is_convertible<const R&, U>, // 945 std::is_copy_constructible<U>>::value>::type> 946 operator Action<U(Args...)>() const { // NOLINT 947 return Impl<U>(value_); 948 } 949 950 private: 951 // Implements the Return(x) action for a mock function that returns type U. 952 template <typename U> 953 class Impl final { 954 public: 955 // The constructor used when the return value is allowed to move from the 956 // input value (i.e. we are converting to OnceAction). 957 explicit Impl(R&& input_value) 958 : state_(new State(std::move(input_value))) {} 959 960 // The constructor used when the return value is not allowed to move from 961 // the input value (i.e. we are converting to Action). 962 explicit Impl(const R& input_value) : state_(new State(input_value)) {} 963 964 U operator()() && { return std::move(state_->value); } 965 U operator()() const& { return state_->value; } 966 967 private: 968 // We put our state on the heap so that the compiler-generated copy/move 969 // constructors work correctly even when U is a reference-like type. This is 970 // necessary only because we eagerly create State::value (see the note on 971 // that symbol for details). If we instead had only the input value as a 972 // member then the default constructors would work fine. 973 // 974 // For example, when R is std::string and U is std::string_view, value is a 975 // reference to the string backed by input_value. The copy constructor would 976 // copy both, so that we wind up with a new input_value object (with the 977 // same contents) and a reference to the *old* input_value object rather 978 // than the new one. 979 struct State { 980 explicit State(const R& input_value_in) 981 : input_value(input_value_in), 982 // Make an implicit conversion to Result before initializing the U 983 // object we store, avoiding calling any explicit constructor of U 984 // from R. 985 // 986 // This simulates the language rules: a function with return type U 987 // that does `return R()` requires R to be implicitly convertible to 988 // U, and uses that path for the conversion, even U Result has an 989 // explicit constructor from R. 990 value(ImplicitCast_<U>(internal::as_const(input_value))) {} 991 992 // As above, but for the case where we're moving from the ReturnAction 993 // object because it's being used as a OnceAction. 994 explicit State(R&& input_value_in) 995 : input_value(std::move(input_value_in)), 996 // For the same reason as above we make an implicit conversion to U 997 // before initializing the value. 998 // 999 // Unlike above we provide the input value as an rvalue to the 1000 // implicit conversion because this is a OnceAction: it's fine if it 1001 // wants to consume the input value. 1002 value(ImplicitCast_<U>(std::move(input_value))) {} 1003 1004 // A copy of the value originally provided by the user. We retain this in 1005 // addition to the value of the mock function's result type below in case 1006 // the latter is a reference-like type. See the std::string_view example 1007 // in the documentation on Return. 1008 R input_value; 1009 1010 // The value we actually return, as the type returned by the mock function 1011 // itself. 1012 // 1013 // We eagerly initialize this here, rather than lazily doing the implicit 1014 // conversion automatically each time Perform is called, for historical 1015 // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) 1016 // made the Action<U()> conversion operator eagerly convert the R value to 1017 // U, but without keeping the R alive. This broke the use case discussed 1018 // in the documentation for Return, making reference-like types such as 1019 // std::string_view not safe to use as U where the input type R is a 1020 // value-like type such as std::string. 1021 // 1022 // The example the commit gave was not very clear, nor was the issue 1023 // thread (https://github.com/google/googlemock/issues/86), but it seems 1024 // the worry was about reference-like input types R that flatten to a 1025 // value-like type U when being implicitly converted. An example of this 1026 // is std::vector<bool>::reference, which is often a proxy type with an 1027 // reference to the underlying vector: 1028 // 1029 // // Helper method: have the mock function return bools according 1030 // // to the supplied script. 1031 // void SetActions(MockFunction<bool(size_t)>& mock, 1032 // const std::vector<bool>& script) { 1033 // for (size_t i = 0; i < script.size(); ++i) { 1034 // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); 1035 // } 1036 // } 1037 // 1038 // TEST(Foo, Bar) { 1039 // // Set actions using a temporary vector, whose operator[] 1040 // // returns proxy objects that references that will be 1041 // // dangling once the call to SetActions finishes and the 1042 // // vector is destroyed. 1043 // MockFunction<bool(size_t)> mock; 1044 // SetActions(mock, {false, true}); 1045 // 1046 // EXPECT_FALSE(mock.AsStdFunction()(0)); 1047 // EXPECT_TRUE(mock.AsStdFunction()(1)); 1048 // } 1049 // 1050 // This eager conversion helps with a simple case like this, but doesn't 1051 // fully make these types work in general. For example the following still 1052 // uses a dangling reference: 1053 // 1054 // TEST(Foo, Baz) { 1055 // MockFunction<std::vector<std::string>()> mock; 1056 // 1057 // // Return the same vector twice, and then the empty vector 1058 // // thereafter. 1059 // auto action = Return(std::initializer_list<std::string>{ 1060 // "taco", "burrito", 1061 // }); 1062 // 1063 // EXPECT_CALL(mock, Call) 1064 // .WillOnce(action) 1065 // .WillOnce(action) 1066 // .WillRepeatedly(Return(std::vector<std::string>{})); 1067 // 1068 // EXPECT_THAT(mock.AsStdFunction()(), 1069 // ElementsAre("taco", "burrito")); 1070 // EXPECT_THAT(mock.AsStdFunction()(), 1071 // ElementsAre("taco", "burrito")); 1072 // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); 1073 // } 1074 // 1075 U value; 1076 }; 1077 1078 const std::shared_ptr<State> state_; 1079 }; 1080 1081 R value_; 1082 }; 1083 1084 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. 1085 // 1086 // This version applies the type system-defeating hack of moving from T even in 1087 // the const call operator, checking at runtime that it isn't called more than 1088 // once, since the user has declared their intent to do so by using ByMove. 1089 template <typename T> 1090 class ReturnAction<ByMoveWrapper<T>> final { 1091 public: 1092 explicit ReturnAction(ByMoveWrapper<T> wrapper) 1093 : state_(new State(std::move(wrapper.payload))) {} 1094 1095 T operator()() const { 1096 GTEST_CHECK_(!state_->called) 1097 << "A ByMove() action must be performed at most once."; 1098 1099 state_->called = true; 1100 return std::move(state_->value); 1101 } 1102 1103 private: 1104 // We store our state on the heap so that we are copyable as required by 1105 // Action, despite the fact that we are stateful and T may not be copyable. 1106 struct State { 1107 explicit State(T&& value_in) : value(std::move(value_in)) {} 1108 1109 T value; 1110 bool called = false; 1111 }; 1112 1113 const std::shared_ptr<State> state_; 1114 }; 1115 1116 // Implements the ReturnNull() action. 1117 class ReturnNullAction { 1118 public: 1119 // Allows ReturnNull() to be used in any pointer-returning function. In C++11 1120 // this is enforced by returning nullptr, and in non-C++11 by asserting a 1121 // pointer type on compile time. 1122 template <typename Result, typename ArgumentTuple> 1123 static Result Perform(const ArgumentTuple&) { 1124 return nullptr; 1125 } 1126 }; 1127 1128 // Implements the Return() action. 1129 class ReturnVoidAction { 1130 public: 1131 // Allows Return() to be used in any void-returning function. 1132 template <typename Result, typename ArgumentTuple> 1133 static void Perform(const ArgumentTuple&) { 1134 static_assert(std::is_void<Result>::value, "Result should be void."); 1135 } 1136 }; 1137 1138 // Implements the polymorphic ReturnRef(x) action, which can be used 1139 // in any function that returns a reference to the type of x, 1140 // regardless of the argument types. 1141 template <typename T> 1142 class ReturnRefAction { 1143 public: 1144 // Constructs a ReturnRefAction object from the reference to be returned. 1145 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 1146 1147 // This template type conversion operator allows ReturnRef(x) to be 1148 // used in ANY function that returns a reference to x's type. 1149 template <typename F> 1150 operator Action<F>() const { 1151 typedef typename Function<F>::Result Result; 1152 // Asserts that the function return type is a reference. This 1153 // catches the user error of using ReturnRef(x) when Return(x) 1154 // should be used, and generates some helpful error message. 1155 static_assert(std::is_reference<Result>::value, 1156 "use Return instead of ReturnRef to return a value"); 1157 return Action<F>(new Impl<F>(ref_)); 1158 } 1159 1160 private: 1161 // Implements the ReturnRef(x) action for a particular function type F. 1162 template <typename F> 1163 class Impl : public ActionInterface<F> { 1164 public: 1165 typedef typename Function<F>::Result Result; 1166 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1167 1168 explicit Impl(T& ref) : ref_(ref) {} // NOLINT 1169 1170 Result Perform(const ArgumentTuple&) override { return ref_; } 1171 1172 private: 1173 T& ref_; 1174 }; 1175 1176 T& ref_; 1177 }; 1178 1179 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 1180 // used in any function that returns a reference to the type of x, 1181 // regardless of the argument types. 1182 template <typename T> 1183 class ReturnRefOfCopyAction { 1184 public: 1185 // Constructs a ReturnRefOfCopyAction object from the reference to 1186 // be returned. 1187 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 1188 1189 // This template type conversion operator allows ReturnRefOfCopy(x) to be 1190 // used in ANY function that returns a reference to x's type. 1191 template <typename F> 1192 operator Action<F>() const { 1193 typedef typename Function<F>::Result Result; 1194 // Asserts that the function return type is a reference. This 1195 // catches the user error of using ReturnRefOfCopy(x) when Return(x) 1196 // should be used, and generates some helpful error message. 1197 static_assert(std::is_reference<Result>::value, 1198 "use Return instead of ReturnRefOfCopy to return a value"); 1199 return Action<F>(new Impl<F>(value_)); 1200 } 1201 1202 private: 1203 // Implements the ReturnRefOfCopy(x) action for a particular function type F. 1204 template <typename F> 1205 class Impl : public ActionInterface<F> { 1206 public: 1207 typedef typename Function<F>::Result Result; 1208 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1209 1210 explicit Impl(const T& value) : value_(value) {} // NOLINT 1211 1212 Result Perform(const ArgumentTuple&) override { return value_; } 1213 1214 private: 1215 T value_; 1216 }; 1217 1218 const T value_; 1219 }; 1220 1221 // Implements the polymorphic ReturnRoundRobin(v) action, which can be 1222 // used in any function that returns the element_type of v. 1223 template <typename T> 1224 class ReturnRoundRobinAction { 1225 public: 1226 explicit ReturnRoundRobinAction(std::vector<T> values) { 1227 GTEST_CHECK_(!values.empty()) 1228 << "ReturnRoundRobin requires at least one element."; 1229 state_->values = std::move(values); 1230 } 1231 1232 template <typename... Args> 1233 T operator()(Args&&...) const { 1234 return state_->Next(); 1235 } 1236 1237 private: 1238 struct State { 1239 T Next() { 1240 T ret_val = values[i++]; 1241 if (i == values.size()) i = 0; 1242 return ret_val; 1243 } 1244 1245 std::vector<T> values; 1246 size_t i = 0; 1247 }; 1248 std::shared_ptr<State> state_ = std::make_shared<State>(); 1249 }; 1250 1251 // Implements the polymorphic DoDefault() action. 1252 class DoDefaultAction { 1253 public: 1254 // This template type conversion operator allows DoDefault() to be 1255 // used in any function. 1256 template <typename F> 1257 operator Action<F>() const { 1258 return Action<F>(); 1259 } // NOLINT 1260 }; 1261 1262 // Implements the Assign action to set a given pointer referent to a 1263 // particular value. 1264 template <typename T1, typename T2> 1265 class AssignAction { 1266 public: 1267 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 1268 1269 template <typename Result, typename ArgumentTuple> 1270 void Perform(const ArgumentTuple& /* args */) const { 1271 *ptr_ = value_; 1272 } 1273 1274 private: 1275 T1* const ptr_; 1276 const T2 value_; 1277 }; 1278 1279 #if !GTEST_OS_WINDOWS_MOBILE 1280 1281 // Implements the SetErrnoAndReturn action to simulate return from 1282 // various system calls and libc functions. 1283 template <typename T> 1284 class SetErrnoAndReturnAction { 1285 public: 1286 SetErrnoAndReturnAction(int errno_value, T result) 1287 : errno_(errno_value), result_(result) {} 1288 template <typename Result, typename ArgumentTuple> 1289 Result Perform(const ArgumentTuple& /* args */) const { 1290 errno = errno_; 1291 return result_; 1292 } 1293 1294 private: 1295 const int errno_; 1296 const T result_; 1297 }; 1298 1299 #endif // !GTEST_OS_WINDOWS_MOBILE 1300 1301 // Implements the SetArgumentPointee<N>(x) action for any function 1302 // whose N-th argument (0-based) is a pointer to x's type. 1303 template <size_t N, typename A, typename = void> 1304 struct SetArgumentPointeeAction { 1305 A value; 1306 1307 template <typename... Args> 1308 void operator()(const Args&... args) const { 1309 *::std::get<N>(std::tie(args...)) = value; 1310 } 1311 }; 1312 1313 // Implements the Invoke(object_ptr, &Class::Method) action. 1314 template <class Class, typename MethodPtr> 1315 struct InvokeMethodAction { 1316 Class* const obj_ptr; 1317 const MethodPtr method_ptr; 1318 1319 template <typename... Args> 1320 auto operator()(Args&&... args) const 1321 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 1322 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 1323 } 1324 }; 1325 1326 // Implements the InvokeWithoutArgs(f) action. The template argument 1327 // FunctionImpl is the implementation type of f, which can be either a 1328 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 1329 // Action<F> as long as f's type is compatible with F. 1330 template <typename FunctionImpl> 1331 struct InvokeWithoutArgsAction { 1332 FunctionImpl function_impl; 1333 1334 // Allows InvokeWithoutArgs(f) to be used as any action whose type is 1335 // compatible with f. 1336 template <typename... Args> 1337 auto operator()(const Args&...) -> decltype(function_impl()) { 1338 return function_impl(); 1339 } 1340 }; 1341 1342 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 1343 template <class Class, typename MethodPtr> 1344 struct InvokeMethodWithoutArgsAction { 1345 Class* const obj_ptr; 1346 const MethodPtr method_ptr; 1347 1348 using ReturnType = 1349 decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); 1350 1351 template <typename... Args> 1352 ReturnType operator()(const Args&...) const { 1353 return (obj_ptr->*method_ptr)(); 1354 } 1355 }; 1356 1357 // Implements the IgnoreResult(action) action. 1358 template <typename A> 1359 class IgnoreResultAction { 1360 public: 1361 explicit IgnoreResultAction(const A& action) : action_(action) {} 1362 1363 template <typename F> 1364 operator Action<F>() const { 1365 // Assert statement belongs here because this is the best place to verify 1366 // conditions on F. It produces the clearest error messages 1367 // in most compilers. 1368 // Impl really belongs in this scope as a local class but can't 1369 // because MSVC produces duplicate symbols in different translation units 1370 // in this case. Until MS fixes that bug we put Impl into the class scope 1371 // and put the typedef both here (for use in assert statement) and 1372 // in the Impl class. But both definitions must be the same. 1373 typedef typename internal::Function<F>::Result Result; 1374 1375 // Asserts at compile time that F returns void. 1376 static_assert(std::is_void<Result>::value, "Result type should be void."); 1377 1378 return Action<F>(new Impl<F>(action_)); 1379 } 1380 1381 private: 1382 template <typename F> 1383 class Impl : public ActionInterface<F> { 1384 public: 1385 typedef typename internal::Function<F>::Result Result; 1386 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 1387 1388 explicit Impl(const A& action) : action_(action) {} 1389 1390 void Perform(const ArgumentTuple& args) override { 1391 // Performs the action and ignores its result. 1392 action_.Perform(args); 1393 } 1394 1395 private: 1396 // Type OriginalFunction is the same as F except that its return 1397 // type is IgnoredValue. 1398 typedef 1399 typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; 1400 1401 const Action<OriginalFunction> action_; 1402 }; 1403 1404 const A action_; 1405 }; 1406 1407 template <typename InnerAction, size_t... I> 1408 struct WithArgsAction { 1409 InnerAction inner_action; 1410 1411 // The signature of the function as seen by the inner action, given an out 1412 // action with the given result and argument types. 1413 template <typename R, typename... Args> 1414 using InnerSignature = 1415 R(typename std::tuple_element<I, std::tuple<Args...>>::type...); 1416 1417 // Rather than a call operator, we must define conversion operators to 1418 // particular action types. This is necessary for embedded actions like 1419 // DoDefault(), which rely on an action conversion operators rather than 1420 // providing a call operator because even with a particular set of arguments 1421 // they don't have a fixed return type. 1422 1423 template <typename R, typename... Args, 1424 typename std::enable_if< 1425 std::is_convertible< 1426 InnerAction, 1427 // Unfortunately we can't use the InnerSignature alias here; 1428 // MSVC complains about the I parameter pack not being 1429 // expanded (error C3520) despite it being expanded in the 1430 // type alias. 1431 // TupleElement is also an MSVC workaround. 1432 // See its definition for details. 1433 OnceAction<R(internal::TupleElement< 1434 I, std::tuple<Args...>>...)>>::value, 1435 int>::type = 0> 1436 operator OnceAction<R(Args...)>() && { // NOLINT 1437 struct OA { 1438 OnceAction<InnerSignature<R, Args...>> inner_action; 1439 1440 R operator()(Args&&... args) && { 1441 return std::move(inner_action) 1442 .Call(std::get<I>( 1443 std::forward_as_tuple(std::forward<Args>(args)...))...); 1444 } 1445 }; 1446 1447 return OA{std::move(inner_action)}; 1448 } 1449 1450 template <typename R, typename... Args, 1451 typename std::enable_if< 1452 std::is_convertible< 1453 const InnerAction&, 1454 // Unfortunately we can't use the InnerSignature alias here; 1455 // MSVC complains about the I parameter pack not being 1456 // expanded (error C3520) despite it being expanded in the 1457 // type alias. 1458 // TupleElement is also an MSVC workaround. 1459 // See its definition for details. 1460 Action<R(internal::TupleElement< 1461 I, std::tuple<Args...>>...)>>::value, 1462 int>::type = 0> 1463 operator Action<R(Args...)>() const { // NOLINT 1464 Action<InnerSignature<R, Args...>> converted(inner_action); 1465 1466 return [converted](Args&&... args) -> R { 1467 return converted.Perform(std::forward_as_tuple( 1468 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 1469 }; 1470 } 1471 }; 1472 1473 template <typename... Actions> 1474 class DoAllAction; 1475 1476 // Base case: only a single action. 1477 template <typename FinalAction> 1478 class DoAllAction<FinalAction> { 1479 public: 1480 struct UserConstructorTag {}; 1481 1482 template <typename T> 1483 explicit DoAllAction(UserConstructorTag, T&& action) 1484 : final_action_(std::forward<T>(action)) {} 1485 1486 // Rather than a call operator, we must define conversion operators to 1487 // particular action types. This is necessary for embedded actions like 1488 // DoDefault(), which rely on an action conversion operators rather than 1489 // providing a call operator because even with a particular set of arguments 1490 // they don't have a fixed return type. 1491 1492 template <typename R, typename... Args, 1493 typename std::enable_if< 1494 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, 1495 int>::type = 0> 1496 operator OnceAction<R(Args...)>() && { // NOLINT 1497 return std::move(final_action_); 1498 } 1499 1500 template < 1501 typename R, typename... Args, 1502 typename std::enable_if< 1503 std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, 1504 int>::type = 0> 1505 operator Action<R(Args...)>() const { // NOLINT 1506 return final_action_; 1507 } 1508 1509 private: 1510 FinalAction final_action_; 1511 }; 1512 1513 // Recursive case: support N actions by calling the initial action and then 1514 // calling through to the base class containing N-1 actions. 1515 template <typename InitialAction, typename... OtherActions> 1516 class DoAllAction<InitialAction, OtherActions...> 1517 : private DoAllAction<OtherActions...> { 1518 private: 1519 using Base = DoAllAction<OtherActions...>; 1520 1521 // The type of reference that should be provided to an initial action for a 1522 // mocked function parameter of type T. 1523 // 1524 // There are two quirks here: 1525 // 1526 // * Unlike most forwarding functions, we pass scalars through by value. 1527 // This isn't strictly necessary because an lvalue reference would work 1528 // fine too and be consistent with other non-reference types, but it's 1529 // perhaps less surprising. 1530 // 1531 // For example if the mocked function has signature void(int), then it 1532 // might seem surprising for the user's initial action to need to be 1533 // convertible to Action<void(const int&)>. This is perhaps less 1534 // surprising for a non-scalar type where there may be a performance 1535 // impact, or it might even be impossible, to pass by value. 1536 // 1537 // * More surprisingly, `const T&` is often not a const reference type. 1538 // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to 1539 // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is 1540 // U&. In other words, we may hand over a non-const reference. 1541 // 1542 // So for example, given some non-scalar type Obj we have the following 1543 // mappings: 1544 // 1545 // T InitialActionArgType<T> 1546 // ------- ----------------------- 1547 // Obj const Obj& 1548 // Obj& Obj& 1549 // Obj&& Obj& 1550 // const Obj const Obj& 1551 // const Obj& const Obj& 1552 // const Obj&& const Obj& 1553 // 1554 // In other words, the initial actions get a mutable view of an non-scalar 1555 // argument if and only if the mock function itself accepts a non-const 1556 // reference type. They are never given an rvalue reference to an 1557 // non-scalar type. 1558 // 1559 // This situation makes sense if you imagine use with a matcher that is 1560 // designed to write through a reference. For example, if the caller wants 1561 // to fill in a reference argument and then return a canned value: 1562 // 1563 // EXPECT_CALL(mock, Call) 1564 // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); 1565 // 1566 template <typename T> 1567 using InitialActionArgType = 1568 typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; 1569 1570 public: 1571 struct UserConstructorTag {}; 1572 1573 template <typename T, typename... U> 1574 explicit DoAllAction(UserConstructorTag, T&& initial_action, 1575 U&&... other_actions) 1576 : Base({}, std::forward<U>(other_actions)...), 1577 initial_action_(std::forward<T>(initial_action)) {} 1578 1579 template <typename R, typename... Args, 1580 typename std::enable_if< 1581 conjunction< 1582 // Both the initial action and the rest must support 1583 // conversion to OnceAction. 1584 std::is_convertible< 1585 InitialAction, 1586 OnceAction<void(InitialActionArgType<Args>...)>>, 1587 std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 1588 int>::type = 0> 1589 operator OnceAction<R(Args...)>() && { // NOLINT 1590 // Return an action that first calls the initial action with arguments 1591 // filtered through InitialActionArgType, then forwards arguments directly 1592 // to the base class to deal with the remaining actions. 1593 struct OA { 1594 OnceAction<void(InitialActionArgType<Args>...)> initial_action; 1595 OnceAction<R(Args...)> remaining_actions; 1596 1597 R operator()(Args... args) && { 1598 std::move(initial_action) 1599 .Call(static_cast<InitialActionArgType<Args>>(args)...); 1600 1601 return std::move(remaining_actions).Call(std::forward<Args>(args)...); 1602 } 1603 }; 1604 1605 return OA{ 1606 std::move(initial_action_), 1607 std::move(static_cast<Base&>(*this)), 1608 }; 1609 } 1610 1611 template < 1612 typename R, typename... Args, 1613 typename std::enable_if< 1614 conjunction< 1615 // Both the initial action and the rest must support conversion to 1616 // Action. 1617 std::is_convertible<const InitialAction&, 1618 Action<void(InitialActionArgType<Args>...)>>, 1619 std::is_convertible<const Base&, Action<R(Args...)>>>::value, 1620 int>::type = 0> 1621 operator Action<R(Args...)>() const { // NOLINT 1622 // Return an action that first calls the initial action with arguments 1623 // filtered through InitialActionArgType, then forwards arguments directly 1624 // to the base class to deal with the remaining actions. 1625 struct OA { 1626 Action<void(InitialActionArgType<Args>...)> initial_action; 1627 Action<R(Args...)> remaining_actions; 1628 1629 R operator()(Args... args) const { 1630 initial_action.Perform(std::forward_as_tuple( 1631 static_cast<InitialActionArgType<Args>>(args)...)); 1632 1633 return remaining_actions.Perform( 1634 std::forward_as_tuple(std::forward<Args>(args)...)); 1635 } 1636 }; 1637 1638 return OA{ 1639 initial_action_, 1640 static_cast<const Base&>(*this), 1641 }; 1642 } 1643 1644 private: 1645 InitialAction initial_action_; 1646 }; 1647 1648 template <typename T, typename... Params> 1649 struct ReturnNewAction { 1650 T* operator()() const { 1651 return internal::Apply( 1652 [](const Params&... unpacked_params) { 1653 return new T(unpacked_params...); 1654 }, 1655 params); 1656 } 1657 std::tuple<Params...> params; 1658 }; 1659 1660 template <size_t k> 1661 struct ReturnArgAction { 1662 template <typename... Args, 1663 typename = typename std::enable_if<(k < sizeof...(Args))>::type> 1664 auto operator()(Args&&... args) const -> decltype(std::get<k>( 1665 std::forward_as_tuple(std::forward<Args>(args)...))) { 1666 return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); 1667 } 1668 }; 1669 1670 template <size_t k, typename Ptr> 1671 struct SaveArgAction { 1672 Ptr pointer; 1673 1674 template <typename... Args> 1675 void operator()(const Args&... args) const { 1676 *pointer = std::get<k>(std::tie(args...)); 1677 } 1678 }; 1679 1680 template <size_t k, typename Ptr> 1681 struct SaveArgPointeeAction { 1682 Ptr pointer; 1683 1684 template <typename... Args> 1685 void operator()(const Args&... args) const { 1686 *pointer = *std::get<k>(std::tie(args...)); 1687 } 1688 }; 1689 1690 template <size_t k, typename T> 1691 struct SetArgRefereeAction { 1692 T value; 1693 1694 template <typename... Args> 1695 void operator()(Args&&... args) const { 1696 using argk_type = 1697 typename ::std::tuple_element<k, std::tuple<Args...>>::type; 1698 static_assert(std::is_lvalue_reference<argk_type>::value, 1699 "Argument must be a reference type."); 1700 std::get<k>(std::tie(args...)) = value; 1701 } 1702 }; 1703 1704 template <size_t k, typename I1, typename I2> 1705 struct SetArrayArgumentAction { 1706 I1 first; 1707 I2 last; 1708 1709 template <typename... Args> 1710 void operator()(const Args&... args) const { 1711 auto value = std::get<k>(std::tie(args...)); 1712 for (auto it = first; it != last; ++it, (void)++value) { 1713 *value = *it; 1714 } 1715 } 1716 }; 1717 1718 template <size_t k> 1719 struct DeleteArgAction { 1720 template <typename... Args> 1721 void operator()(const Args&... args) const { 1722 delete std::get<k>(std::tie(args...)); 1723 } 1724 }; 1725 1726 template <typename Ptr> 1727 struct ReturnPointeeAction { 1728 Ptr pointer; 1729 template <typename... Args> 1730 auto operator()(const Args&...) const -> decltype(*pointer) { 1731 return *pointer; 1732 } 1733 }; 1734 1735 #if GTEST_HAS_EXCEPTIONS 1736 template <typename T> 1737 struct ThrowAction { 1738 T exception; 1739 // We use a conversion operator to adapt to any return type. 1740 template <typename R, typename... Args> 1741 operator Action<R(Args...)>() const { // NOLINT 1742 T copy = exception; 1743 return [copy](Args...) -> R { throw copy; }; 1744 } 1745 }; 1746 #endif // GTEST_HAS_EXCEPTIONS 1747 1748 } // namespace internal 1749 1750 // An Unused object can be implicitly constructed from ANY value. 1751 // This is handy when defining actions that ignore some or all of the 1752 // mock function arguments. For example, given 1753 // 1754 // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 1755 // MOCK_METHOD3(Bar, double(int index, double x, double y)); 1756 // 1757 // instead of 1758 // 1759 // double DistanceToOriginWithLabel(const string& label, double x, double y) { 1760 // return sqrt(x*x + y*y); 1761 // } 1762 // double DistanceToOriginWithIndex(int index, double x, double y) { 1763 // return sqrt(x*x + y*y); 1764 // } 1765 // ... 1766 // EXPECT_CALL(mock, Foo("abc", _, _)) 1767 // .WillOnce(Invoke(DistanceToOriginWithLabel)); 1768 // EXPECT_CALL(mock, Bar(5, _, _)) 1769 // .WillOnce(Invoke(DistanceToOriginWithIndex)); 1770 // 1771 // you could write 1772 // 1773 // // We can declare any uninteresting argument as Unused. 1774 // double DistanceToOrigin(Unused, double x, double y) { 1775 // return sqrt(x*x + y*y); 1776 // } 1777 // ... 1778 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 1779 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 1780 typedef internal::IgnoredValue Unused; 1781 1782 // Creates an action that does actions a1, a2, ..., sequentially in 1783 // each invocation. All but the last action will have a readonly view of the 1784 // arguments. 1785 template <typename... Action> 1786 internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 1787 Action&&... action) { 1788 return internal::DoAllAction<typename std::decay<Action>::type...>( 1789 {}, std::forward<Action>(action)...); 1790 } 1791 1792 // WithArg<k>(an_action) creates an action that passes the k-th 1793 // (0-based) argument of the mock function to an_action and performs 1794 // it. It adapts an action accepting one argument to one that accepts 1795 // multiple arguments. For convenience, we also provide 1796 // WithArgs<k>(an_action) (defined below) as a synonym. 1797 template <size_t k, typename InnerAction> 1798 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( 1799 InnerAction&& action) { 1800 return {std::forward<InnerAction>(action)}; 1801 } 1802 1803 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 1804 // the selected arguments of the mock function to an_action and 1805 // performs it. It serves as an adaptor between actions with 1806 // different argument lists. 1807 template <size_t k, size_t... ks, typename InnerAction> 1808 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 1809 WithArgs(InnerAction&& action) { 1810 return {std::forward<InnerAction>(action)}; 1811 } 1812 1813 // WithoutArgs(inner_action) can be used in a mock function with a 1814 // non-empty argument list to perform inner_action, which takes no 1815 // argument. In other words, it adapts an action accepting no 1816 // argument to one that accepts (and ignores) arguments. 1817 template <typename InnerAction> 1818 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( 1819 InnerAction&& action) { 1820 return {std::forward<InnerAction>(action)}; 1821 } 1822 1823 // Creates an action that returns a value. 1824 // 1825 // The returned type can be used with a mock function returning a non-void, 1826 // non-reference type U as follows: 1827 // 1828 // * If R is convertible to U and U is move-constructible, then the action can 1829 // be used with WillOnce. 1830 // 1831 // * If const R& is convertible to U and U is copy-constructible, then the 1832 // action can be used with both WillOnce and WillRepeatedly. 1833 // 1834 // The mock expectation contains the R value from which the U return value is 1835 // constructed (a move/copy of the argument to Return). This means that the R 1836 // value will survive at least until the mock object's expectations are cleared 1837 // or the mock object is destroyed, meaning that U can safely be a 1838 // reference-like type such as std::string_view: 1839 // 1840 // // The mock function returns a view of a copy of the string fed to 1841 // // Return. The view is valid even after the action is performed. 1842 // MockFunction<std::string_view()> mock; 1843 // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); 1844 // const std::string_view result = mock.AsStdFunction()(); 1845 // EXPECT_EQ("taco", result); 1846 // 1847 template <typename R> 1848 internal::ReturnAction<R> Return(R value) { 1849 return internal::ReturnAction<R>(std::move(value)); 1850 } 1851 1852 // Creates an action that returns NULL. 1853 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1854 return MakePolymorphicAction(internal::ReturnNullAction()); 1855 } 1856 1857 // Creates an action that returns from a void function. 1858 inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1859 return MakePolymorphicAction(internal::ReturnVoidAction()); 1860 } 1861 1862 // Creates an action that returns the reference to a variable. 1863 template <typename R> 1864 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1865 return internal::ReturnRefAction<R>(x); 1866 } 1867 1868 // Prevent using ReturnRef on reference to temporary. 1869 template <typename R, R* = nullptr> 1870 internal::ReturnRefAction<R> ReturnRef(R&&) = delete; 1871 1872 // Creates an action that returns the reference to a copy of the 1873 // argument. The copy is created when the action is constructed and 1874 // lives as long as the action. 1875 template <typename R> 1876 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1877 return internal::ReturnRefOfCopyAction<R>(x); 1878 } 1879 1880 // DEPRECATED: use Return(x) directly with WillOnce. 1881 // 1882 // Modifies the parent action (a Return() action) to perform a move of the 1883 // argument instead of a copy. 1884 // Return(ByMove()) actions can only be executed once and will assert this 1885 // invariant. 1886 template <typename R> 1887 internal::ByMoveWrapper<R> ByMove(R x) { 1888 return internal::ByMoveWrapper<R>(std::move(x)); 1889 } 1890 1891 // Creates an action that returns an element of `vals`. Calling this action will 1892 // repeatedly return the next value from `vals` until it reaches the end and 1893 // will restart from the beginning. 1894 template <typename T> 1895 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { 1896 return internal::ReturnRoundRobinAction<T>(std::move(vals)); 1897 } 1898 1899 // Creates an action that returns an element of `vals`. Calling this action will 1900 // repeatedly return the next value from `vals` until it reaches the end and 1901 // will restart from the beginning. 1902 template <typename T> 1903 internal::ReturnRoundRobinAction<T> ReturnRoundRobin( 1904 std::initializer_list<T> vals) { 1905 return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); 1906 } 1907 1908 // Creates an action that does the default action for the give mock function. 1909 inline internal::DoDefaultAction DoDefault() { 1910 return internal::DoDefaultAction(); 1911 } 1912 1913 // Creates an action that sets the variable pointed by the N-th 1914 // (0-based) function argument to 'value'. 1915 template <size_t N, typename T> 1916 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { 1917 return {std::move(value)}; 1918 } 1919 1920 // The following version is DEPRECATED. 1921 template <size_t N, typename T> 1922 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { 1923 return {std::move(value)}; 1924 } 1925 1926 // Creates an action that sets a pointer referent to a given value. 1927 template <typename T1, typename T2> 1928 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { 1929 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1930 } 1931 1932 #if !GTEST_OS_WINDOWS_MOBILE 1933 1934 // Creates an action that sets errno and returns the appropriate error. 1935 template <typename T> 1936 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( 1937 int errval, T result) { 1938 return MakePolymorphicAction( 1939 internal::SetErrnoAndReturnAction<T>(errval, result)); 1940 } 1941 1942 #endif // !GTEST_OS_WINDOWS_MOBILE 1943 1944 // Various overloads for Invoke(). 1945 1946 // Legacy function. 1947 // Actions can now be implicitly constructed from callables. No need to create 1948 // wrapper objects. 1949 // This function exists for backwards compatibility. 1950 template <typename FunctionImpl> 1951 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 1952 return std::forward<FunctionImpl>(function_impl); 1953 } 1954 1955 // Creates an action that invokes the given method on the given object 1956 // with the mock function's arguments. 1957 template <class Class, typename MethodPtr> 1958 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 1959 MethodPtr method_ptr) { 1960 return {obj_ptr, method_ptr}; 1961 } 1962 1963 // Creates an action that invokes 'function_impl' with no argument. 1964 template <typename FunctionImpl> 1965 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 1966 InvokeWithoutArgs(FunctionImpl function_impl) { 1967 return {std::move(function_impl)}; 1968 } 1969 1970 // Creates an action that invokes the given method on the given object 1971 // with no argument. 1972 template <class Class, typename MethodPtr> 1973 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 1974 Class* obj_ptr, MethodPtr method_ptr) { 1975 return {obj_ptr, method_ptr}; 1976 } 1977 1978 // Creates an action that performs an_action and throws away its 1979 // result. In other words, it changes the return type of an_action to 1980 // void. an_action MUST NOT return void, or the code won't compile. 1981 template <typename A> 1982 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 1983 return internal::IgnoreResultAction<A>(an_action); 1984 } 1985 1986 // Creates a reference wrapper for the given L-value. If necessary, 1987 // you can explicitly specify the type of the reference. For example, 1988 // suppose 'derived' is an object of type Derived, ByRef(derived) 1989 // would wrap a Derived&. If you want to wrap a const Base& instead, 1990 // where Base is a base class of Derived, just write: 1991 // 1992 // ByRef<const Base>(derived) 1993 // 1994 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 1995 // However, it may still be used for consistency with ByMove(). 1996 template <typename T> 1997 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 1998 return ::std::reference_wrapper<T>(l_value); 1999 } 2000 2001 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new 2002 // instance of type T, constructed on the heap with constructor arguments 2003 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. 2004 template <typename T, typename... Params> 2005 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( 2006 Params&&... params) { 2007 return {std::forward_as_tuple(std::forward<Params>(params)...)}; 2008 } 2009 2010 // Action ReturnArg<k>() returns the k-th argument of the mock function. 2011 template <size_t k> 2012 internal::ReturnArgAction<k> ReturnArg() { 2013 return {}; 2014 } 2015 2016 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the 2017 // mock function to *pointer. 2018 template <size_t k, typename Ptr> 2019 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { 2020 return {pointer}; 2021 } 2022 2023 // Action SaveArgPointee<k>(pointer) saves the value pointed to 2024 // by the k-th (0-based) argument of the mock function to *pointer. 2025 template <size_t k, typename Ptr> 2026 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { 2027 return {pointer}; 2028 } 2029 2030 // Action SetArgReferee<k>(value) assigns 'value' to the variable 2031 // referenced by the k-th (0-based) argument of the mock function. 2032 template <size_t k, typename T> 2033 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( 2034 T&& value) { 2035 return {std::forward<T>(value)}; 2036 } 2037 2038 // Action SetArrayArgument<k>(first, last) copies the elements in 2039 // source range [first, last) to the array pointed to by the k-th 2040 // (0-based) argument, which can be either a pointer or an 2041 // iterator. The action does not take ownership of the elements in the 2042 // source range. 2043 template <size_t k, typename I1, typename I2> 2044 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, 2045 I2 last) { 2046 return {first, last}; 2047 } 2048 2049 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock 2050 // function. 2051 template <size_t k> 2052 internal::DeleteArgAction<k> DeleteArg() { 2053 return {}; 2054 } 2055 2056 // This action returns the value pointed to by 'pointer'. 2057 template <typename Ptr> 2058 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { 2059 return {pointer}; 2060 } 2061 2062 // Action Throw(exception) can be used in a mock function of any type 2063 // to throw the given exception. Any copyable value can be thrown. 2064 #if GTEST_HAS_EXCEPTIONS 2065 template <typename T> 2066 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { 2067 return {std::forward<T>(exception)}; 2068 } 2069 #endif // GTEST_HAS_EXCEPTIONS 2070 2071 namespace internal { 2072 2073 // A macro from the ACTION* family (defined later in gmock-generated-actions.h) 2074 // defines an action that can be used in a mock function. Typically, 2075 // these actions only care about a subset of the arguments of the mock 2076 // function. For example, if such an action only uses the second 2077 // argument, it can be used in any mock function that takes >= 2 2078 // arguments where the type of the second argument is compatible. 2079 // 2080 // Therefore, the action implementation must be prepared to take more 2081 // arguments than it needs. The ExcessiveArg type is used to 2082 // represent those excessive arguments. In order to keep the compiler 2083 // error messages tractable, we define it in the testing namespace 2084 // instead of testing::internal. However, this is an INTERNAL TYPE 2085 // and subject to change without notice, so a user MUST NOT USE THIS 2086 // TYPE DIRECTLY. 2087 struct ExcessiveArg {}; 2088 2089 // Builds an implementation of an Action<> for some particular signature, using 2090 // a class defined by an ACTION* macro. 2091 template <typename F, typename Impl> 2092 struct ActionImpl; 2093 2094 template <typename Impl> 2095 struct ImplBase { 2096 struct Holder { 2097 // Allows each copy of the Action<> to get to the Impl. 2098 explicit operator const Impl&() const { return *ptr; } 2099 std::shared_ptr<Impl> ptr; 2100 }; 2101 using type = typename std::conditional<std::is_constructible<Impl>::value, 2102 Impl, Holder>::type; 2103 }; 2104 2105 template <typename R, typename... Args, typename Impl> 2106 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { 2107 using Base = typename ImplBase<Impl>::type; 2108 using function_type = R(Args...); 2109 using args_type = std::tuple<Args...>; 2110 2111 ActionImpl() = default; // Only defined if appropriate for Base. 2112 explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} 2113 2114 R operator()(Args&&... arg) const { 2115 static constexpr size_t kMaxArgs = 2116 sizeof...(Args) <= 10 ? sizeof...(Args) : 10; 2117 return Apply(MakeIndexSequence<kMaxArgs>{}, 2118 MakeIndexSequence<10 - kMaxArgs>{}, 2119 args_type{std::forward<Args>(arg)...}); 2120 } 2121 2122 template <std::size_t... arg_id, std::size_t... excess_id> 2123 R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, 2124 const args_type& args) const { 2125 // Impl need not be specific to the signature of action being implemented; 2126 // only the implementing function body needs to have all of the specific 2127 // types instantiated. Up to 10 of the args that are provided by the 2128 // args_type get passed, followed by a dummy of unspecified type for the 2129 // remainder up to 10 explicit args. 2130 static constexpr ExcessiveArg kExcessArg{}; 2131 return static_cast<const Impl&>(*this) 2132 .template gmock_PerformImpl< 2133 /*function_type=*/function_type, /*return_type=*/R, 2134 /*args_type=*/args_type, 2135 /*argN_type=*/ 2136 typename std::tuple_element<arg_id, args_type>::type...>( 2137 /*args=*/args, std::get<arg_id>(args)..., 2138 ((void)excess_id, kExcessArg)...); 2139 } 2140 }; 2141 2142 // Stores a default-constructed Impl as part of the Action<>'s 2143 // std::function<>. The Impl should be trivial to copy. 2144 template <typename F, typename Impl> 2145 ::testing::Action<F> MakeAction() { 2146 return ::testing::Action<F>(ActionImpl<F, Impl>()); 2147 } 2148 2149 // Stores just the one given instance of Impl. 2150 template <typename F, typename Impl> 2151 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { 2152 return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); 2153 } 2154 2155 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ 2156 , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ 2157 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ 2158 const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ 2159 GMOCK_INTERNAL_ARG_UNUSED, , 10) 2160 2161 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i 2162 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ 2163 const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) 2164 2165 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type 2166 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ 2167 GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) 2168 2169 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type 2170 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ 2171 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) 2172 2173 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type 2174 #define GMOCK_ACTION_TYPE_PARAMS_(params) \ 2175 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) 2176 2177 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ 2178 , param##_type gmock_p##i 2179 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ 2180 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) 2181 2182 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ 2183 , std::forward<param##_type>(gmock_p##i) 2184 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ 2185 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) 2186 2187 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ 2188 , param(::std::forward<param##_type>(gmock_p##i)) 2189 #define GMOCK_ACTION_INIT_PARAMS_(params) \ 2190 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) 2191 2192 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; 2193 #define GMOCK_ACTION_FIELD_PARAMS_(params) \ 2194 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) 2195 2196 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ 2197 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2198 class full_name { \ 2199 public: \ 2200 explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2201 : impl_(std::make_shared<gmock_Impl>( \ 2202 GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ 2203 full_name(const full_name&) = default; \ 2204 full_name(full_name&&) noexcept = default; \ 2205 template <typename F> \ 2206 operator ::testing::Action<F>() const { \ 2207 return ::testing::internal::MakeAction<F>(impl_); \ 2208 } \ 2209 \ 2210 private: \ 2211 class gmock_Impl { \ 2212 public: \ 2213 explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2214 : GMOCK_ACTION_INIT_PARAMS_(params) {} \ 2215 template <typename function_type, typename return_type, \ 2216 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2217 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2218 GMOCK_ACTION_FIELD_PARAMS_(params) \ 2219 }; \ 2220 std::shared_ptr<const gmock_Impl> impl_; \ 2221 }; \ 2222 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2223 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2224 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ 2225 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2226 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2227 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ 2228 return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ 2229 GMOCK_ACTION_GVALUE_PARAMS_(params)); \ 2230 } \ 2231 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2232 template <typename function_type, typename return_type, typename args_type, \ 2233 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2234 return_type \ 2235 full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ 2236 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2237 2238 } // namespace internal 2239 2240 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. 2241 #define ACTION(name) \ 2242 class name##Action { \ 2243 public: \ 2244 explicit name##Action() noexcept {} \ 2245 name##Action(const name##Action&) noexcept {} \ 2246 template <typename F> \ 2247 operator ::testing::Action<F>() const { \ 2248 return ::testing::internal::MakeAction<F, gmock_Impl>(); \ 2249 } \ 2250 \ 2251 private: \ 2252 class gmock_Impl { \ 2253 public: \ 2254 template <typename function_type, typename return_type, \ 2255 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2256 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2257 }; \ 2258 }; \ 2259 inline name##Action name() GTEST_MUST_USE_RESULT_; \ 2260 inline name##Action name() { return name##Action(); } \ 2261 template <typename function_type, typename return_type, typename args_type, \ 2262 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2263 return_type name##Action::gmock_Impl::gmock_PerformImpl( \ 2264 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2265 2266 #define ACTION_P(name, ...) \ 2267 GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) 2268 2269 #define ACTION_P2(name, ...) \ 2270 GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) 2271 2272 #define ACTION_P3(name, ...) \ 2273 GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) 2274 2275 #define ACTION_P4(name, ...) \ 2276 GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) 2277 2278 #define ACTION_P5(name, ...) \ 2279 GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) 2280 2281 #define ACTION_P6(name, ...) \ 2282 GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) 2283 2284 #define ACTION_P7(name, ...) \ 2285 GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) 2286 2287 #define ACTION_P8(name, ...) \ 2288 GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) 2289 2290 #define ACTION_P9(name, ...) \ 2291 GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) 2292 2293 #define ACTION_P10(name, ...) \ 2294 GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) 2295 2296 } // namespace testing 2297 2298 #ifdef _MSC_VER 2299 #pragma warning(pop) 2300 #endif 2301 2302 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 2303