• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #if GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 
59 #include <cstdint>
60 #include <functional>
61 #include <iomanip>
62 #include <limits>
63 #include <map>
64 #include <set>
65 #include <string>
66 #include <type_traits>
67 #include <utility>
68 #include <vector>
69 
70 #include "gtest/gtest-message.h"
71 #include "gtest/internal/gtest-filepath.h"
72 #include "gtest/internal/gtest-string.h"
73 #include "gtest/internal/gtest-type-util.h"
74 
75 // Due to C++ preprocessor weirdness, we need double indirection to
76 // concatenate two tokens when one of them is __LINE__.  Writing
77 //
78 //   foo ## __LINE__
79 //
80 // will result in the token foo__LINE__, instead of foo followed by
81 // the current line number.  For more details, see
82 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
83 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
84 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
85 
86 // Stringifies its argument.
87 // Work around a bug in visual studio which doesn't accept code like this:
88 //
89 //   #define GTEST_STRINGIFY_(name) #name
90 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
91 //   MACRO(, x, y)
92 //
93 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
94 // This is allowed by the spec.
95 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
96 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
97 
98 namespace proto2 {
99 class MessageLite;
100 }
101 
102 namespace testing {
103 
104 // Forward declarations.
105 
106 class AssertionResult;  // Result of an assertion.
107 class Message;          // Represents a failure message.
108 class Test;             // Represents a test.
109 class TestInfo;         // Information about a test.
110 class TestPartResult;   // Result of a test part.
111 class UnitTest;         // A collection of test suites.
112 
113 template <typename T>
114 ::std::string PrintToString(const T& value);
115 
116 namespace internal {
117 
118 struct TraceInfo;    // Information about a trace point.
119 class TestInfoImpl;  // Opaque implementation of TestInfo
120 class UnitTestImpl;  // Opaque implementation of UnitTest
121 
122 // The text used in failure messages to indicate the start of the
123 // stack trace.
124 GTEST_API_ extern const char kStackTraceMarker[];
125 
126 // An IgnoredValue object can be implicitly constructed from ANY value.
127 class IgnoredValue {
128   struct Sink {};
129 
130  public:
131   // This constructor template allows any value to be implicitly
132   // converted to IgnoredValue.  The object has no data member and
133   // doesn't try to remember anything about the argument.  We
134   // deliberately omit the 'explicit' keyword in order to allow the
135   // conversion to be implicit.
136   // Disable the conversion if T already has a magical conversion operator.
137   // Otherwise we get ambiguity.
138   template <typename T,
139             typename std::enable_if<!std::is_convertible<T, Sink>::value,
140                                     int>::type = 0>
IgnoredValue(const T &)141   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
142 };
143 
144 // Appends the user-supplied message to the Google-Test-generated message.
145 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
146                                          const Message& user_msg);
147 
148 #if GTEST_HAS_EXCEPTIONS
149 
150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
151     4275 /* an exported class was derived from a class that was not exported */)
152 
153 // This exception is thrown by (and only by) a failed Google Test
154 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
155 // are enabled).  We derive it from std::runtime_error, which is for
156 // errors presumably detectable only at run time.  Since
157 // std::runtime_error inherits from std::exception, many testing
158 // frameworks know how to extract and print the message inside it.
159 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
160  public:
161   explicit GoogleTestFailureException(const TestPartResult& failure);
162 };
163 
GTEST_DISABLE_MSC_WARNINGS_POP_()164 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
165 
166 #endif  // GTEST_HAS_EXCEPTIONS
167 
168 namespace edit_distance {
169 // Returns the optimal edits to go from 'left' to 'right'.
170 // All edits cost the same, with replace having lower priority than
171 // add/remove.
172 // Simple implementation of the Wagner-Fischer algorithm.
173 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
174 enum EditType { kMatch, kAdd, kRemove, kReplace };
175 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
176     const std::vector<size_t>& left, const std::vector<size_t>& right);
177 
178 // Same as above, but the input is represented as strings.
179 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
180     const std::vector<std::string>& left,
181     const std::vector<std::string>& right);
182 
183 // Create a diff of the input strings in Unified diff format.
184 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
185                                          const std::vector<std::string>& right,
186                                          size_t context = 2);
187 
188 }  // namespace edit_distance
189 
190 // Constructs and returns the message for an equality assertion
191 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
192 //
193 // The first four parameters are the expressions used in the assertion
194 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
195 // where foo is 5 and bar is 6, we have:
196 //
197 //   expected_expression: "foo"
198 //   actual_expression:   "bar"
199 //   expected_value:      "5"
200 //   actual_value:        "6"
201 //
202 // The ignoring_case parameter is true if and only if the assertion is a
203 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
204 // be inserted into the message.
205 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
206                                      const char* actual_expression,
207                                      const std::string& expected_value,
208                                      const std::string& actual_value,
209                                      bool ignoring_case);
210 
211 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
212 GTEST_API_ std::string GetBoolAssertionFailureMessage(
213     const AssertionResult& assertion_result, const char* expression_text,
214     const char* actual_predicate_value, const char* expected_predicate_value);
215 
216 // This template class represents an IEEE floating-point number
217 // (either single-precision or double-precision, depending on the
218 // template parameters).
219 //
220 // The purpose of this class is to do more sophisticated number
221 // comparison.  (Due to round-off error, etc, it's very unlikely that
222 // two floating-points will be equal exactly.  Hence a naive
223 // comparison by the == operation often doesn't work.)
224 //
225 // Format of IEEE floating-point:
226 //
227 //   The most-significant bit being the leftmost, an IEEE
228 //   floating-point looks like
229 //
230 //     sign_bit exponent_bits fraction_bits
231 //
232 //   Here, sign_bit is a single bit that designates the sign of the
233 //   number.
234 //
235 //   For float, there are 8 exponent bits and 23 fraction bits.
236 //
237 //   For double, there are 11 exponent bits and 52 fraction bits.
238 //
239 //   More details can be found at
240 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
241 //
242 // Template parameter:
243 //
244 //   RawType: the raw floating-point type (either float or double)
245 template <typename RawType>
246 class FloatingPoint {
247  public:
248   // Defines the unsigned integer type that has the same size as the
249   // floating point number.
250   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
251 
252   // Constants.
253 
254   // # of bits in a number.
255   static const size_t kBitCount = 8 * sizeof(RawType);
256 
257   // # of fraction bits in a number.
258   static const size_t kFractionBitCount =
259       std::numeric_limits<RawType>::digits - 1;
260 
261   // # of exponent bits in a number.
262   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
263 
264   // The mask for the sign bit.
265   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
266 
267   // The mask for the fraction bits.
268   static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
269                                        (kExponentBitCount + 1);
270 
271   // The mask for the exponent bits.
272   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
273 
274   // How many ULP's (Units in the Last Place) we want to tolerate when
275   // comparing two numbers.  The larger the value, the more error we
276   // allow.  A 0 value means that two numbers must be exactly the same
277   // to be considered equal.
278   //
279   // The maximum error of a single floating-point operation is 0.5
280   // units in the last place.  On Intel CPU's, all floating-point
281   // calculations are done with 80-bit precision, while double has 64
282   // bits.  Therefore, 4 should be enough for ordinary use.
283   //
284   // See the following article for more details on ULP:
285   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
286   static const uint32_t kMaxUlps = 4;
287 
288   // Constructs a FloatingPoint from a raw floating-point number.
289   //
290   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
291   // around may change its bits, although the new value is guaranteed
292   // to be also a NAN.  Therefore, don't expect this constructor to
293   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)294   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
295 
296   // Static methods
297 
298   // Reinterprets a bit pattern as a floating-point number.
299   //
300   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)301   static RawType ReinterpretBits(const Bits bits) {
302     FloatingPoint fp(0);
303     fp.u_.bits_ = bits;
304     return fp.u_.value_;
305   }
306 
307   // Returns the floating-point number that represent positive infinity.
Infinity()308   static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
309 
310   // Returns the maximum representable finite floating-point number.
311   static RawType Max();
312 
313   // Non-static methods
314 
315   // Returns the bits that represents this number.
bits()316   const Bits& bits() const { return u_.bits_; }
317 
318   // Returns the exponent bits of this number.
exponent_bits()319   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
320 
321   // Returns the fraction bits of this number.
fraction_bits()322   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
323 
324   // Returns the sign bit of this number.
sign_bit()325   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
326 
327   // Returns true if and only if this is NAN (not a number).
is_nan()328   bool is_nan() const {
329     // It's a NAN if the exponent bits are all ones and the fraction
330     // bits are not entirely zeros.
331     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
332   }
333 
334   // Returns true if and only if this number is at most kMaxUlps ULP's away
335   // from rhs.  In particular, this function:
336   //
337   //   - returns false if either number is (or both are) NAN.
338   //   - treats really large numbers as almost equal to infinity.
339   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)340   bool AlmostEquals(const FloatingPoint& rhs) const {
341     // The IEEE standard says that any comparison operation involving
342     // a NAN must return false.
343     if (is_nan() || rhs.is_nan()) return false;
344 
345     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
346            kMaxUlps;
347   }
348 
349  private:
350   // The data type used to store the actual floating-point number.
351   union FloatingPointUnion {
352     RawType value_;  // The raw floating-point number.
353     Bits bits_;      // The bits that represent the number.
354   };
355 
356   // Converts an integer from the sign-and-magnitude representation to
357   // the biased representation.  More precisely, let N be 2 to the
358   // power of (kBitCount - 1), an integer x is represented by the
359   // unsigned number x + N.
360   //
361   // For instance,
362   //
363   //   -N + 1 (the most negative number representable using
364   //          sign-and-magnitude) is represented by 1;
365   //   0      is represented by N; and
366   //   N - 1  (the biggest number representable using
367   //          sign-and-magnitude) is represented by 2N - 1.
368   //
369   // Read http://en.wikipedia.org/wiki/Signed_number_representations
370   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)371   static Bits SignAndMagnitudeToBiased(const Bits& sam) {
372     if (kSignBitMask & sam) {
373       // sam represents a negative number.
374       return ~sam + 1;
375     } else {
376       // sam represents a positive number.
377       return kSignBitMask | sam;
378     }
379   }
380 
381   // Given two numbers in the sign-and-magnitude representation,
382   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)383   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
384                                                      const Bits& sam2) {
385     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
386     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
387     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
388   }
389 
390   FloatingPointUnion u_;
391 };
392 
393 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
394 // macro defined by <windows.h>.
395 template <>
Max()396 inline float FloatingPoint<float>::Max() {
397   return FLT_MAX;
398 }
399 template <>
Max()400 inline double FloatingPoint<double>::Max() {
401   return DBL_MAX;
402 }
403 
404 // Typedefs the instances of the FloatingPoint template class that we
405 // care to use.
406 typedef FloatingPoint<float> Float;
407 typedef FloatingPoint<double> Double;
408 
409 // In order to catch the mistake of putting tests that use different
410 // test fixture classes in the same test suite, we need to assign
411 // unique IDs to fixture classes and compare them.  The TypeId type is
412 // used to hold such IDs.  The user should treat TypeId as an opaque
413 // type: the only operation allowed on TypeId values is to compare
414 // them for equality using the == operator.
415 typedef const void* TypeId;
416 
417 template <typename T>
418 class TypeIdHelper {
419  public:
420   // dummy_ must not have a const type.  Otherwise an overly eager
421   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
422   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
423   static bool dummy_;
424 };
425 
426 template <typename T>
427 bool TypeIdHelper<T>::dummy_ = false;
428 
429 // GetTypeId<T>() returns the ID of type T.  Different values will be
430 // returned for different types.  Calling the function twice with the
431 // same type argument is guaranteed to return the same ID.
432 template <typename T>
GetTypeId()433 TypeId GetTypeId() {
434   // The compiler is required to allocate a different
435   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
436   // the template.  Therefore, the address of dummy_ is guaranteed to
437   // be unique.
438   return &(TypeIdHelper<T>::dummy_);
439 }
440 
441 // Returns the type ID of ::testing::Test.  Always call this instead
442 // of GetTypeId< ::testing::Test>() to get the type ID of
443 // ::testing::Test, as the latter may give the wrong result due to a
444 // suspected linker bug when compiling Google Test as a Mac OS X
445 // framework.
446 GTEST_API_ TypeId GetTestTypeId();
447 
448 // Defines the abstract factory interface that creates instances
449 // of a Test object.
450 class TestFactoryBase {
451  public:
~TestFactoryBase()452   virtual ~TestFactoryBase() {}
453 
454   // Creates a test instance to run. The instance is both created and destroyed
455   // within TestInfoImpl::Run()
456   virtual Test* CreateTest() = 0;
457 
458  protected:
TestFactoryBase()459   TestFactoryBase() {}
460 
461  private:
462   TestFactoryBase(const TestFactoryBase&) = delete;
463   TestFactoryBase& operator=(const TestFactoryBase&) = delete;
464 };
465 
466 // This class provides implementation of TestFactoryBase interface.
467 // It is used in TEST and TEST_F macros.
468 template <class TestClass>
469 class TestFactoryImpl : public TestFactoryBase {
470  public:
CreateTest()471   Test* CreateTest() override { return new TestClass; }
472 };
473 
474 #if GTEST_OS_WINDOWS
475 
476 // Predicate-formatters for implementing the HRESULT checking macros
477 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
478 // We pass a long instead of HRESULT to avoid causing an
479 // include dependency for the HRESULT type.
480 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
481                                             long hr);  // NOLINT
482 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
483                                             long hr);  // NOLINT
484 
485 #endif  // GTEST_OS_WINDOWS
486 
487 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
488 using SetUpTestSuiteFunc = void (*)();
489 using TearDownTestSuiteFunc = void (*)();
490 
491 struct CodeLocation {
CodeLocationCodeLocation492   CodeLocation(const std::string& a_file, int a_line)
493       : file(a_file), line(a_line) {}
494 
495   std::string file;
496   int line;
497 };
498 
499 //  Helper to identify which setup function for TestCase / TestSuite to call.
500 //  Only one function is allowed, either TestCase or TestSute but not both.
501 
502 // Utility functions to help SuiteApiResolver
503 using SetUpTearDownSuiteFuncType = void (*)();
504 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)505 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
506     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
507   return a == def ? nullptr : a;
508 }
509 
510 template <typename T>
511 //  Note that SuiteApiResolver inherits from T because
512 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
513 //  SuiteApiResolver can access them.
514 struct SuiteApiResolver : T {
515   // testing::Test is only forward declared at this point. So we make it a
516   // dependent class for the compiler to be OK with it.
517   using Test =
518       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
519 
GetSetUpCaseOrSuiteSuiteApiResolver520   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
521                                                         int line_num) {
522 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
523     SetUpTearDownSuiteFuncType test_case_fp =
524         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
525     SetUpTearDownSuiteFuncType test_suite_fp =
526         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
527 
528     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
529         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
530            "make sure there is only one present at "
531         << filename << ":" << line_num;
532 
533     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
534 #else
535     (void)(filename);
536     (void)(line_num);
537     return &T::SetUpTestSuite;
538 #endif
539   }
540 
GetTearDownCaseOrSuiteSuiteApiResolver541   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
542                                                            int line_num) {
543 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
544     SetUpTearDownSuiteFuncType test_case_fp =
545         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
546     SetUpTearDownSuiteFuncType test_suite_fp =
547         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
548 
549     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
550         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
551            " please make sure there is only one present at"
552         << filename << ":" << line_num;
553 
554     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
555 #else
556     (void)(filename);
557     (void)(line_num);
558     return &T::TearDownTestSuite;
559 #endif
560   }
561 };
562 
563 // Creates a new TestInfo object and registers it with Google Test;
564 // returns the created object.
565 //
566 // Arguments:
567 //
568 //   test_suite_name:  name of the test suite
569 //   name:             name of the test
570 //   type_param:       the name of the test's type parameter, or NULL if
571 //                     this is not a typed or a type-parameterized test.
572 //   value_param:      text representation of the test's value parameter,
573 //                     or NULL if this is not a type-parameterized test.
574 //   code_location:    code location where the test is defined
575 //   fixture_class_id: ID of the test fixture class
576 //   set_up_tc:        pointer to the function that sets up the test suite
577 //   tear_down_tc:     pointer to the function that tears down the test suite
578 //   factory:          pointer to the factory that creates a test object.
579 //                     The newly created TestInfo instance will assume
580 //                     ownership of the factory object.
581 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
582     const char* test_suite_name, const char* name, const char* type_param,
583     const char* value_param, CodeLocation code_location,
584     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
585     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
586 
587 // If *pstr starts with the given prefix, modifies *pstr to be right
588 // past the prefix and returns true; otherwise leaves *pstr unchanged
589 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
590 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
591 
592 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
593 /* class A needs to have dll-interface to be used by clients of class B */)
594 
595 // State of the definition of a type-parameterized test suite.
596 class GTEST_API_ TypedTestSuitePState {
597  public:
TypedTestSuitePState()598   TypedTestSuitePState() : registered_(false) {}
599 
600   // Adds the given test name to defined_test_names_ and return true
601   // if the test suite hasn't been registered; otherwise aborts the
602   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)603   bool AddTestName(const char* file, int line, const char* case_name,
604                    const char* test_name) {
605     if (registered_) {
606       fprintf(stderr,
607               "%s Test %s must be defined before "
608               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
609               FormatFileLocation(file, line).c_str(), test_name, case_name);
610       fflush(stderr);
611       posix::Abort();
612     }
613     registered_tests_.insert(
614         ::std::make_pair(test_name, CodeLocation(file, line)));
615     return true;
616   }
617 
TestExists(const std::string & test_name)618   bool TestExists(const std::string& test_name) const {
619     return registered_tests_.count(test_name) > 0;
620   }
621 
GetCodeLocation(const std::string & test_name)622   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
623     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
624     GTEST_CHECK_(it != registered_tests_.end());
625     return it->second;
626   }
627 
628   // Verifies that registered_tests match the test names in
629   // defined_test_names_; returns registered_tests if successful, or
630   // aborts the program otherwise.
631   const char* VerifyRegisteredTestNames(const char* test_suite_name,
632                                         const char* file, int line,
633                                         const char* registered_tests);
634 
635  private:
636   typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
637 
638   bool registered_;
639   RegisteredTestsMap registered_tests_;
640 };
641 
642 //  Legacy API is deprecated but still available
643 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
644 using TypedTestCasePState = TypedTestSuitePState;
645 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
646 
GTEST_DISABLE_MSC_WARNINGS_POP_()647 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
648 
649 // Skips to the first non-space char after the first comma in 'str';
650 // returns NULL if no comma is found in 'str'.
651 inline const char* SkipComma(const char* str) {
652   const char* comma = strchr(str, ',');
653   if (comma == nullptr) {
654     return nullptr;
655   }
656   while (IsSpace(*(++comma))) {
657   }
658   return comma;
659 }
660 
661 // Returns the prefix of 'str' before the first comma in it; returns
662 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)663 inline std::string GetPrefixUntilComma(const char* str) {
664   const char* comma = strchr(str, ',');
665   return comma == nullptr ? str : std::string(str, comma);
666 }
667 
668 // Splits a given string on a given delimiter, populating a given
669 // vector with the fields.
670 void SplitString(const ::std::string& str, char delimiter,
671                  ::std::vector<::std::string>* dest);
672 
673 // The default argument to the template below for the case when the user does
674 // not provide a name generator.
675 struct DefaultNameGenerator {
676   template <typename T>
GetNameDefaultNameGenerator677   static std::string GetName(int i) {
678     return StreamableToString(i);
679   }
680 };
681 
682 template <typename Provided = DefaultNameGenerator>
683 struct NameGeneratorSelector {
684   typedef Provided type;
685 };
686 
687 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)688 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
689 
690 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)691 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
692   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
693   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
694                                           i + 1);
695 }
696 
697 template <typename NameGenerator, typename Types>
GenerateNames()698 std::vector<std::string> GenerateNames() {
699   std::vector<std::string> result;
700   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
701   return result;
702 }
703 
704 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
705 // registers a list of type-parameterized tests with Google Test.  The
706 // return value is insignificant - we just need to return something
707 // such that we can call this function in a namespace scope.
708 //
709 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
710 // template parameter.  It's defined in gtest-type-util.h.
711 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
712 class TypeParameterizedTest {
713  public:
714   // 'index' is the index of the test in the type list 'Types'
715   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
716   // Types).  Valid values for 'index' are [0, N - 1] where N is the
717   // length of Types.
718   static bool Register(const char* prefix, const CodeLocation& code_location,
719                        const char* case_name, const char* test_names, int index,
720                        const std::vector<std::string>& type_names =
721                            GenerateNames<DefaultNameGenerator, Types>()) {
722     typedef typename Types::Head Type;
723     typedef Fixture<Type> FixtureClass;
724     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
725 
726     // First, registers the first type-parameterized test in the type
727     // list.
728     MakeAndRegisterTestInfo(
729         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
730          "/" + type_names[static_cast<size_t>(index)])
731             .c_str(),
732         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
733         GetTypeName<Type>().c_str(),
734         nullptr,  // No value parameter.
735         code_location, GetTypeId<FixtureClass>(),
736         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
737             code_location.file.c_str(), code_location.line),
738         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
739             code_location.file.c_str(), code_location.line),
740         new TestFactoryImpl<TestClass>);
741 
742     // Next, recurses (at compile time) with the tail of the type list.
743     return TypeParameterizedTest<Fixture, TestSel,
744                                  typename Types::Tail>::Register(prefix,
745                                                                  code_location,
746                                                                  case_name,
747                                                                  test_names,
748                                                                  index + 1,
749                                                                  type_names);
750   }
751 };
752 
753 // The base case for the compile time recursion.
754 template <GTEST_TEMPLATE_ Fixture, class TestSel>
755 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
756  public:
757   static bool Register(const char* /*prefix*/, const CodeLocation&,
758                        const char* /*case_name*/, const char* /*test_names*/,
759                        int /*index*/,
760                        const std::vector<std::string>& =
761                            std::vector<std::string>() /*type_names*/) {
762     return true;
763   }
764 };
765 
766 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
767                                                    CodeLocation code_location);
768 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
769     const char* case_name);
770 
771 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
772 // registers *all combinations* of 'Tests' and 'Types' with Google
773 // Test.  The return value is insignificant - we just need to return
774 // something such that we can call this function in a namespace scope.
775 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
776 class TypeParameterizedTestSuite {
777  public:
778   static bool Register(const char* prefix, CodeLocation code_location,
779                        const TypedTestSuitePState* state, const char* case_name,
780                        const char* test_names,
781                        const std::vector<std::string>& type_names =
782                            GenerateNames<DefaultNameGenerator, Types>()) {
783     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
784     std::string test_name =
785         StripTrailingSpaces(GetPrefixUntilComma(test_names));
786     if (!state->TestExists(test_name)) {
787       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
788               case_name, test_name.c_str(),
789               FormatFileLocation(code_location.file.c_str(), code_location.line)
790                   .c_str());
791       fflush(stderr);
792       posix::Abort();
793     }
794     const CodeLocation& test_location = state->GetCodeLocation(test_name);
795 
796     typedef typename Tests::Head Head;
797 
798     // First, register the first test in 'Test' for each type in 'Types'.
799     TypeParameterizedTest<Fixture, Head, Types>::Register(
800         prefix, test_location, case_name, test_names, 0, type_names);
801 
802     // Next, recurses (at compile time) with the tail of the test list.
803     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
804                                       Types>::Register(prefix, code_location,
805                                                        state, case_name,
806                                                        SkipComma(test_names),
807                                                        type_names);
808   }
809 };
810 
811 // The base case for the compile time recursion.
812 template <GTEST_TEMPLATE_ Fixture, typename Types>
813 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
814  public:
815   static bool Register(const char* /*prefix*/, const CodeLocation&,
816                        const TypedTestSuitePState* /*state*/,
817                        const char* /*case_name*/, const char* /*test_names*/,
818                        const std::vector<std::string>& =
819                            std::vector<std::string>() /*type_names*/) {
820     return true;
821   }
822 };
823 
824 // Returns the current OS stack trace as an std::string.
825 //
826 // The maximum number of stack frames to be included is specified by
827 // the gtest_stack_trace_depth flag.  The skip_count parameter
828 // specifies the number of top frames to be skipped, which doesn't
829 // count against the number of frames to be included.
830 //
831 // For example, if Foo() calls Bar(), which in turn calls
832 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
833 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
834 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
835 
836 // Helpers for suppressing warnings on unreachable code or constant
837 // condition.
838 
839 // Always returns true.
840 GTEST_API_ bool AlwaysTrue();
841 
842 // Always returns false.
AlwaysFalse()843 inline bool AlwaysFalse() { return !AlwaysTrue(); }
844 
845 // Helper for suppressing false warning from Clang on a const char*
846 // variable declared in a conditional expression always being NULL in
847 // the else branch.
848 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr849   ConstCharPtr(const char* str) : value(str) {}
850   operator bool() const { return true; }
851   const char* value;
852 };
853 
854 // Helper for declaring std::string within 'if' statement
855 // in pre C++17 build environment.
856 struct TrueWithString {
857   TrueWithString() = default;
TrueWithStringTrueWithString858   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString859   explicit TrueWithString(const std::string& str) : value(str) {}
860   explicit operator bool() const { return true; }
861   std::string value;
862 };
863 
864 // A simple Linear Congruential Generator for generating random
865 // numbers with a uniform distribution.  Unlike rand() and srand(), it
866 // doesn't use global state (and therefore can't interfere with user
867 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
868 // but it's good enough for our purposes.
869 class GTEST_API_ Random {
870  public:
871   static const uint32_t kMaxRange = 1u << 31;
872 
Random(uint32_t seed)873   explicit Random(uint32_t seed) : state_(seed) {}
874 
Reseed(uint32_t seed)875   void Reseed(uint32_t seed) { state_ = seed; }
876 
877   // Generates a random number from [0, range).  Crashes if 'range' is
878   // 0 or greater than kMaxRange.
879   uint32_t Generate(uint32_t range);
880 
881  private:
882   uint32_t state_;
883   Random(const Random&) = delete;
884   Random& operator=(const Random&) = delete;
885 };
886 
887 // Turns const U&, U&, const U, and U all into U.
888 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
889   typename std::remove_const<typename std::remove_reference<T>::type>::type
890 
891 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
892 // that's true if and only if T has methods DebugString() and ShortDebugString()
893 // that return std::string.
894 template <typename T>
895 class HasDebugStringAndShortDebugString {
896  private:
897   template <typename C>
898   static auto CheckDebugString(C*) -> typename std::is_same<
899       std::string, decltype(std::declval<const C>().DebugString())>::type;
900   template <typename>
901   static std::false_type CheckDebugString(...);
902 
903   template <typename C>
904   static auto CheckShortDebugString(C*) -> typename std::is_same<
905       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
906   template <typename>
907   static std::false_type CheckShortDebugString(...);
908 
909   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
910   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
911 
912  public:
913   static constexpr bool value =
914       HasDebugStringType::value && HasShortDebugStringType::value;
915 };
916 
917 template <typename T>
918 constexpr bool HasDebugStringAndShortDebugString<T>::value;
919 
920 // When the compiler sees expression IsContainerTest<C>(0), if C is an
921 // STL-style container class, the first overload of IsContainerTest
922 // will be viable (since both C::iterator* and C::const_iterator* are
923 // valid types and NULL can be implicitly converted to them).  It will
924 // be picked over the second overload as 'int' is a perfect match for
925 // the type of argument 0.  If C::iterator or C::const_iterator is not
926 // a valid type, the first overload is not viable, and the second
927 // overload will be picked.  Therefore, we can determine whether C is
928 // a container class by checking the type of IsContainerTest<C>(0).
929 // The value of the expression is insignificant.
930 //
931 // In C++11 mode we check the existence of a const_iterator and that an
932 // iterator is properly implemented for the container.
933 //
934 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
935 // The reason is that C++ injects the name of a class as a member of the
936 // class itself (e.g. you can refer to class iterator as either
937 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
938 // only, for example, we would mistakenly think that a class named
939 // iterator is an STL container.
940 //
941 // Also note that the simpler approach of overloading
942 // IsContainerTest(typename C::const_iterator*) and
943 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
944 typedef int IsContainer;
945 template <class C,
946           class Iterator = decltype(::std::declval<const C&>().begin()),
947           class = decltype(::std::declval<const C&>().end()),
948           class = decltype(++::std::declval<Iterator&>()),
949           class = decltype(*::std::declval<Iterator>()),
950           class = typename C::const_iterator>
IsContainerTest(int)951 IsContainer IsContainerTest(int /* dummy */) {
952   return 0;
953 }
954 
955 typedef char IsNotContainer;
956 template <class C>
IsContainerTest(long)957 IsNotContainer IsContainerTest(long /* dummy */) {
958   return '\0';
959 }
960 
961 // Trait to detect whether a type T is a hash table.
962 // The heuristic used is that the type contains an inner type `hasher` and does
963 // not contain an inner type `reverse_iterator`.
964 // If the container is iterable in reverse, then order might actually matter.
965 template <typename T>
966 struct IsHashTable {
967  private:
968   template <typename U>
969   static char test(typename U::hasher*, typename U::reverse_iterator*);
970   template <typename U>
971   static int test(typename U::hasher*, ...);
972   template <typename U>
973   static char test(...);
974 
975  public:
976   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
977 };
978 
979 template <typename T>
980 const bool IsHashTable<T>::value;
981 
982 template <typename C,
983           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
984 struct IsRecursiveContainerImpl;
985 
986 template <typename C>
987 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
988 
989 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
990 // obey the same inconsistencies as the IsContainerTest, namely check if
991 // something is a container is relying on only const_iterator in C++11 and
992 // is relying on both const_iterator and iterator otherwise
993 template <typename C>
994 struct IsRecursiveContainerImpl<C, true> {
995   using value_type = decltype(*std::declval<typename C::const_iterator>());
996   using type =
997       std::is_same<typename std::remove_const<
998                        typename std::remove_reference<value_type>::type>::type,
999                    C>;
1000 };
1001 
1002 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1003 // evaluates whether C is a recursive container type. A recursive container
1004 // type is a container type whose value_type is equal to the container type
1005 // itself. An example for a recursive container type is
1006 // boost::filesystem::path, whose iterator has a value_type that is equal to
1007 // boost::filesystem::path.
1008 template <typename C>
1009 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1010 
1011 // Utilities for native arrays.
1012 
1013 // ArrayEq() compares two k-dimensional native arrays using the
1014 // elements' operator==, where k can be any integer >= 0.  When k is
1015 // 0, ArrayEq() degenerates into comparing a single pair of values.
1016 
1017 template <typename T, typename U>
1018 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1019 
1020 // This generic version is used when k is 0.
1021 template <typename T, typename U>
1022 inline bool ArrayEq(const T& lhs, const U& rhs) {
1023   return lhs == rhs;
1024 }
1025 
1026 // This overload is used when k >= 1.
1027 template <typename T, typename U, size_t N>
1028 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1029   return internal::ArrayEq(lhs, N, rhs);
1030 }
1031 
1032 // This helper reduces code bloat.  If we instead put its logic inside
1033 // the previous ArrayEq() function, arrays with different sizes would
1034 // lead to different copies of the template code.
1035 template <typename T, typename U>
1036 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1037   for (size_t i = 0; i != size; i++) {
1038     if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1039   }
1040   return true;
1041 }
1042 
1043 // Finds the first element in the iterator range [begin, end) that
1044 // equals elem.  Element may be a native array type itself.
1045 template <typename Iter, typename Element>
1046 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1047   for (Iter it = begin; it != end; ++it) {
1048     if (internal::ArrayEq(*it, elem)) return it;
1049   }
1050   return end;
1051 }
1052 
1053 // CopyArray() copies a k-dimensional native array using the elements'
1054 // operator=, where k can be any integer >= 0.  When k is 0,
1055 // CopyArray() degenerates into copying a single value.
1056 
1057 template <typename T, typename U>
1058 void CopyArray(const T* from, size_t size, U* to);
1059 
1060 // This generic version is used when k is 0.
1061 template <typename T, typename U>
1062 inline void CopyArray(const T& from, U* to) {
1063   *to = from;
1064 }
1065 
1066 // This overload is used when k >= 1.
1067 template <typename T, typename U, size_t N>
1068 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1069   internal::CopyArray(from, N, *to);
1070 }
1071 
1072 // This helper reduces code bloat.  If we instead put its logic inside
1073 // the previous CopyArray() function, arrays with different sizes
1074 // would lead to different copies of the template code.
1075 template <typename T, typename U>
1076 void CopyArray(const T* from, size_t size, U* to) {
1077   for (size_t i = 0; i != size; i++) {
1078     internal::CopyArray(from[i], to + i);
1079   }
1080 }
1081 
1082 // The relation between an NativeArray object (see below) and the
1083 // native array it represents.
1084 // We use 2 different structs to allow non-copyable types to be used, as long
1085 // as RelationToSourceReference() is passed.
1086 struct RelationToSourceReference {};
1087 struct RelationToSourceCopy {};
1088 
1089 // Adapts a native array to a read-only STL-style container.  Instead
1090 // of the complete STL container concept, this adaptor only implements
1091 // members useful for Google Mock's container matchers.  New members
1092 // should be added as needed.  To simplify the implementation, we only
1093 // support Element being a raw type (i.e. having no top-level const or
1094 // reference modifier).  It's the client's responsibility to satisfy
1095 // this requirement.  Element can be an array type itself (hence
1096 // multi-dimensional arrays are supported).
1097 template <typename Element>
1098 class NativeArray {
1099  public:
1100   // STL-style container typedefs.
1101   typedef Element value_type;
1102   typedef Element* iterator;
1103   typedef const Element* const_iterator;
1104 
1105   // Constructs from a native array. References the source.
1106   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1107     InitRef(array, count);
1108   }
1109 
1110   // Constructs from a native array. Copies the source.
1111   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1112     InitCopy(array, count);
1113   }
1114 
1115   // Copy constructor.
1116   NativeArray(const NativeArray& rhs) {
1117     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1118   }
1119 
1120   ~NativeArray() {
1121     if (clone_ != &NativeArray::InitRef) delete[] array_;
1122   }
1123 
1124   // STL-style container methods.
1125   size_t size() const { return size_; }
1126   const_iterator begin() const { return array_; }
1127   const_iterator end() const { return array_ + size_; }
1128   bool operator==(const NativeArray& rhs) const {
1129     return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1130   }
1131 
1132  private:
1133   static_assert(!std::is_const<Element>::value, "Type must not be const");
1134   static_assert(!std::is_reference<Element>::value,
1135                 "Type must not be a reference");
1136 
1137   // Initializes this object with a copy of the input.
1138   void InitCopy(const Element* array, size_t a_size) {
1139     Element* const copy = new Element[a_size];
1140     CopyArray(array, a_size, copy);
1141     array_ = copy;
1142     size_ = a_size;
1143     clone_ = &NativeArray::InitCopy;
1144   }
1145 
1146   // Initializes this object with a reference of the input.
1147   void InitRef(const Element* array, size_t a_size) {
1148     array_ = array;
1149     size_ = a_size;
1150     clone_ = &NativeArray::InitRef;
1151   }
1152 
1153   const Element* array_;
1154   size_t size_;
1155   void (NativeArray::*clone_)(const Element*, size_t);
1156 };
1157 
1158 // Backport of std::index_sequence.
1159 template <size_t... Is>
1160 struct IndexSequence {
1161   using type = IndexSequence;
1162 };
1163 
1164 // Double the IndexSequence, and one if plus_one is true.
1165 template <bool plus_one, typename T, size_t sizeofT>
1166 struct DoubleSequence;
1167 template <size_t... I, size_t sizeofT>
1168 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1169   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1170 };
1171 template <size_t... I, size_t sizeofT>
1172 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1173   using type = IndexSequence<I..., (sizeofT + I)...>;
1174 };
1175 
1176 // Backport of std::make_index_sequence.
1177 // It uses O(ln(N)) instantiation depth.
1178 template <size_t N>
1179 struct MakeIndexSequenceImpl
1180     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1181                      N / 2>::type {};
1182 
1183 template <>
1184 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1185 
1186 template <size_t N>
1187 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1188 
1189 template <typename... T>
1190 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1191 
1192 template <size_t>
1193 struct Ignore {
1194   Ignore(...);  // NOLINT
1195 };
1196 
1197 template <typename>
1198 struct ElemFromListImpl;
1199 template <size_t... I>
1200 struct ElemFromListImpl<IndexSequence<I...>> {
1201   // We make Ignore a template to solve a problem with MSVC.
1202   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1203   // MSVC doesn't understand how to deal with that pack expansion.
1204   // Use `0 * I` to have a single instantiation of Ignore.
1205   template <typename R>
1206   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1207 };
1208 
1209 template <size_t N, typename... T>
1210 struct ElemFromList {
1211   using type =
1212       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1213           static_cast<T (*)()>(nullptr)...));
1214 };
1215 
1216 struct FlatTupleConstructTag {};
1217 
1218 template <typename... T>
1219 class FlatTuple;
1220 
1221 template <typename Derived, size_t I>
1222 struct FlatTupleElemBase;
1223 
1224 template <typename... T, size_t I>
1225 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1226   using value_type = typename ElemFromList<I, T...>::type;
1227   FlatTupleElemBase() = default;
1228   template <typename Arg>
1229   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1230       : value(std::forward<Arg>(t)) {}
1231   value_type value;
1232 };
1233 
1234 template <typename Derived, typename Idx>
1235 struct FlatTupleBase;
1236 
1237 template <size_t... Idx, typename... T>
1238 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1239     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1240   using Indices = IndexSequence<Idx...>;
1241   FlatTupleBase() = default;
1242   template <typename... Args>
1243   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1244       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1245                                                 std::forward<Args>(args))... {}
1246 
1247   template <size_t I>
1248   const typename ElemFromList<I, T...>::type& Get() const {
1249     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1250   }
1251 
1252   template <size_t I>
1253   typename ElemFromList<I, T...>::type& Get() {
1254     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1255   }
1256 
1257   template <typename F>
1258   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1259     return std::forward<F>(f)(Get<Idx>()...);
1260   }
1261 
1262   template <typename F>
1263   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1264     return std::forward<F>(f)(Get<Idx>()...);
1265   }
1266 };
1267 
1268 // Analog to std::tuple but with different tradeoffs.
1269 // This class minimizes the template instantiation depth, thus allowing more
1270 // elements than std::tuple would. std::tuple has been seen to require an
1271 // instantiation depth of more than 10x the number of elements in some
1272 // implementations.
1273 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1274 // regardless of T...
1275 // MakeIndexSequence, on the other hand, it is recursive but with an
1276 // instantiation depth of O(ln(N)).
1277 template <typename... T>
1278 class FlatTuple
1279     : private FlatTupleBase<FlatTuple<T...>,
1280                             typename MakeIndexSequence<sizeof...(T)>::type> {
1281   using Indices = typename FlatTupleBase<
1282       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1283 
1284  public:
1285   FlatTuple() = default;
1286   template <typename... Args>
1287   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1288       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1289 
1290   using FlatTuple::FlatTupleBase::Apply;
1291   using FlatTuple::FlatTupleBase::Get;
1292 };
1293 
1294 // Utility functions to be called with static_assert to induce deprecation
1295 // warnings.
1296 GTEST_INTERNAL_DEPRECATED(
1297     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1298     "INSTANTIATE_TEST_SUITE_P")
1299 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1300 
1301 GTEST_INTERNAL_DEPRECATED(
1302     "TYPED_TEST_CASE_P is deprecated, please use "
1303     "TYPED_TEST_SUITE_P")
1304 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1305 
1306 GTEST_INTERNAL_DEPRECATED(
1307     "TYPED_TEST_CASE is deprecated, please use "
1308     "TYPED_TEST_SUITE")
1309 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1310 
1311 GTEST_INTERNAL_DEPRECATED(
1312     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1313     "REGISTER_TYPED_TEST_SUITE_P")
1314 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1315 
1316 GTEST_INTERNAL_DEPRECATED(
1317     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1318     "INSTANTIATE_TYPED_TEST_SUITE_P")
1319 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1320 
1321 }  // namespace internal
1322 }  // namespace testing
1323 
1324 namespace std {
1325 // Some standard library implementations use `struct tuple_size` and some use
1326 // `class tuple_size`. Clang warns about the mismatch.
1327 // https://reviews.llvm.org/D55466
1328 #ifdef __clang__
1329 #pragma clang diagnostic push
1330 #pragma clang diagnostic ignored "-Wmismatched-tags"
1331 #endif
1332 template <typename... Ts>
1333 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1334     : std::integral_constant<size_t, sizeof...(Ts)> {};
1335 #ifdef __clang__
1336 #pragma clang diagnostic pop
1337 #endif
1338 }  // namespace std
1339 
1340 #define GTEST_MESSAGE_AT_(file, line, message, result_type)             \
1341   ::testing::internal::AssertHelper(result_type, file, line, message) = \
1342       ::testing::Message()
1343 
1344 #define GTEST_MESSAGE_(message, result_type) \
1345   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1346 
1347 #define GTEST_FATAL_FAILURE_(message) \
1348   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1349 
1350 #define GTEST_NONFATAL_FAILURE_(message) \
1351   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1352 
1353 #define GTEST_SUCCESS_(message) \
1354   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1355 
1356 #define GTEST_SKIP_(message) \
1357   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1358 
1359 // Suppress MSVC warning 4072 (unreachable code) for the code following
1360 // statement if it returns or throws (or doesn't return or throw in some
1361 // situations).
1362 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1363 // "else" from attaching to our "if".
1364 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1365   if (::testing::internal::AlwaysTrue()) {                        \
1366     statement;                                                    \
1367   } else                     /* NOLINT */                         \
1368     static_assert(true, "")  // User must have a semicolon after expansion.
1369 
1370 #if GTEST_HAS_EXCEPTIONS
1371 
1372 namespace testing {
1373 namespace internal {
1374 
1375 class NeverThrown {
1376  public:
1377   const char* what() const noexcept {
1378     return "this exception should never be thrown";
1379   }
1380 };
1381 
1382 }  // namespace internal
1383 }  // namespace testing
1384 
1385 #if GTEST_HAS_RTTI
1386 
1387 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1388 
1389 #else  // GTEST_HAS_RTTI
1390 
1391 #define GTEST_EXCEPTION_TYPE_(e) \
1392   std::string { "an std::exception-derived error" }
1393 
1394 #endif  // GTEST_HAS_RTTI
1395 
1396 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1397   catch (typename std::conditional<                                            \
1398          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1399                           expected_exception>::type>::type,                    \
1400                       std::exception>::value,                                  \
1401          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1402              e) {                                                              \
1403     gtest_msg.value = "Expected: " #statement                                  \
1404                       " throws an exception of type " #expected_exception      \
1405                       ".\n  Actual: it throws ";                               \
1406     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1407     gtest_msg.value += " with description \"";                                 \
1408     gtest_msg.value += e.what();                                               \
1409     gtest_msg.value += "\".";                                                  \
1410     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1411   }
1412 
1413 #else  // GTEST_HAS_EXCEPTIONS
1414 
1415 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1416 
1417 #endif  // GTEST_HAS_EXCEPTIONS
1418 
1419 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1420   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1421   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1422     bool gtest_caught_expected = false;                                     \
1423     try {                                                                   \
1424       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1425     } catch (expected_exception const&) {                                   \
1426       gtest_caught_expected = true;                                         \
1427     }                                                                       \
1428     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1429     catch (...) {                                                           \
1430       gtest_msg.value = "Expected: " #statement                             \
1431                         " throws an exception of type " #expected_exception \
1432                         ".\n  Actual: it throws a different type.";         \
1433       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1434     }                                                                       \
1435     if (!gtest_caught_expected) {                                           \
1436       gtest_msg.value = "Expected: " #statement                             \
1437                         " throws an exception of type " #expected_exception \
1438                         ".\n  Actual: it throws nothing.";                  \
1439       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1440     }                                                                       \
1441   } else /*NOLINT*/                                                         \
1442     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1443         : fail(gtest_msg.value.c_str())
1444 
1445 #if GTEST_HAS_EXCEPTIONS
1446 
1447 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1448   catch (std::exception const& e) {                               \
1449     gtest_msg.value = "it throws ";                               \
1450     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1451     gtest_msg.value += " with description \"";                    \
1452     gtest_msg.value += e.what();                                  \
1453     gtest_msg.value += "\".";                                     \
1454     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1455   }
1456 
1457 #else  // GTEST_HAS_EXCEPTIONS
1458 
1459 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1460 
1461 #endif  // GTEST_HAS_EXCEPTIONS
1462 
1463 #define GTEST_TEST_NO_THROW_(statement, fail)                            \
1464   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                          \
1465   if (::testing::internal::TrueWithString gtest_msg{}) {                 \
1466     try {                                                                \
1467       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);         \
1468     }                                                                    \
1469     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                           \
1470     catch (...) {                                                        \
1471       gtest_msg.value = "it throws.";                                    \
1472       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__);      \
1473     }                                                                    \
1474   } else                                                                 \
1475     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__)              \
1476         : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1477                 "  Actual: " +                                           \
1478                 gtest_msg.value)                                         \
1479                    .c_str())
1480 
1481 #define GTEST_TEST_ANY_THROW_(statement, fail)                       \
1482   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                      \
1483   if (::testing::internal::AlwaysTrue()) {                           \
1484     bool gtest_caught_any = false;                                   \
1485     try {                                                            \
1486       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);     \
1487     } catch (...) {                                                  \
1488       gtest_caught_any = true;                                       \
1489     }                                                                \
1490     if (!gtest_caught_any) {                                         \
1491       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1492     }                                                                \
1493   } else                                                             \
1494     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__)         \
1495         : fail("Expected: " #statement                               \
1496                " throws an exception.\n"                             \
1497                "  Actual: it doesn't.")
1498 
1499 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1500 // either a boolean expression or an AssertionResult. text is a textual
1501 // representation of expression as it was passed into the EXPECT_TRUE.
1502 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1503   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                       \
1504   if (const ::testing::AssertionResult gtest_ar_ =                    \
1505           ::testing::AssertionResult(expression))                     \
1506     ;                                                                 \
1507   else                                                                \
1508     fail(::testing::internal::GetBoolAssertionFailureMessage(         \
1509              gtest_ar_, text, #actual, #expected)                     \
1510              .c_str())
1511 
1512 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail)                          \
1513   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                                \
1514   if (::testing::internal::AlwaysTrue()) {                                     \
1515     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1516     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);                 \
1517     if (gtest_fatal_failure_checker.has_new_fatal_failure()) {                 \
1518       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__);            \
1519     }                                                                          \
1520   } else                                                                       \
1521     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__)                    \
1522         : fail("Expected: " #statement                                         \
1523                " doesn't generate new fatal "                                  \
1524                "failures in the current thread.\n"                             \
1525                "  Actual: it does.")
1526 
1527 // Expands to the name of the class that implements the given test.
1528 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1529   test_suite_name##_##test_name##_Test
1530 
1531 // Helper macro for defining tests.
1532 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)       \
1533   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                 \
1534                 "test_suite_name must not be empty");                          \
1535   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                       \
1536                 "test_name must not be empty");                                \
1537   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                     \
1538       : public parent_class {                                                  \
1539    public:                                                                     \
1540     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;            \
1541     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default;  \
1542     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1543     (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete;     \
1544     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1545         const GTEST_TEST_CLASS_NAME_(test_suite_name,                          \
1546                                      test_name) &) = delete; /* NOLINT */      \
1547     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1548     (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1549     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1550         GTEST_TEST_CLASS_NAME_(test_suite_name,                                \
1551                                test_name) &&) noexcept = delete; /* NOLINT */  \
1552                                                                                \
1553    private:                                                                    \
1554     void TestBody() override;                                                  \
1555     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;      \
1556   };                                                                           \
1557                                                                                \
1558   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,           \
1559                                                     test_name)::test_info_ =   \
1560       ::testing::internal::MakeAndRegisterTestInfo(                            \
1561           #test_suite_name, #test_name, nullptr, nullptr,                      \
1562           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id),  \
1563           ::testing::internal::SuiteApiResolver<                               \
1564               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),          \
1565           ::testing::internal::SuiteApiResolver<                               \
1566               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),       \
1567           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(     \
1568               test_suite_name, test_name)>);                                   \
1569   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1570 
1571 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1572