1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* \param (#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 /* ===========================================================================
64 * Function prototypes.
65 */
66 typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local void fill_window OF((deflate_state *s));
77 local block_state deflate_stored OF((deflate_state *s, int flush));
78 local block_state deflate_fast OF((deflate_state *s, int flush));
79 #ifndef FASTEST
80 local block_state deflate_slow OF((deflate_state *s, int flush));
81 #endif
82 local block_state deflate_rle OF((deflate_state *s, int flush));
83 local block_state deflate_huff OF((deflate_state *s, int flush));
84 local void lm_init OF((deflate_state *s));
85 local void putShortMSB OF((deflate_state *s, uInt b));
86 local void flush_pending OF((z_streamp strm));
87 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
88 #ifdef ASMV
89 void match_init OF((void)); /* asm code initialization */
90 uInt longest_match OF((deflate_state *s, IPos cur_match));
91 #else
92 local uInt longest_match OF((deflate_state *s, IPos cur_match));
93 #endif
94
95 #ifdef DEBUG
96 local void check_match OF((deflate_state *s, IPos start, IPos match,
97 int length));
98 #endif
99
100 /* ===========================================================================
101 * Local data
102 */
103
104 #define NIL 0
105 /* Tail of hash chains */
106
107 #ifndef TOO_FAR
108 # define TOO_FAR 4096
109 #endif
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112 /* Values for max_lazy_match, good_match and max_chain_length, depending on
113 * the desired pack level (0..9). The values given below have been tuned to
114 * exclude worst case performance for pathological files. Better values may be
115 * found for specific files.
116 */
117 typedef struct config_s {
118 ush good_length; /* reduce lazy search above this match length */
119 ush max_lazy; /* do not perform lazy search above this match length */
120 ush nice_length; /* quit search above this match length */
121 ush max_chain;
122 compress_func func;
123 } config;
124
125 #ifdef FASTEST
126 local const config configuration_table[2] = {
127 /* good lazy nice chain */
128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
129 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
130 #else
131 local const config configuration_table[10] = {
132 /* good lazy nice chain */
133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
134 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
135 /* 2 */ {4, 5, 16, 8, deflate_fast},
136 /* 3 */ {4, 6, 32, 32, deflate_fast},
137
138 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
139 /* 5 */ {8, 16, 32, 32, deflate_slow},
140 /* 6 */ {8, 16, 128, 128, deflate_slow},
141 /* 7 */ {8, 32, 128, 256, deflate_slow},
142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144 #endif
145
146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148 * meaning.
149 */
150
151 #define EQUAL 0
152 /* result of memcmp for equal strings */
153
154 #ifndef NO_DUMMY_DECL
155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
156 #endif
157
158 /* ===========================================================================
159 * Update a hash value with the given input byte
160 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
161 * input characters, so that a running hash key can be computed from the
162 * previous key instead of complete recalculation each time.
163 */
164 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
165
166
167 /* ===========================================================================
168 * Insert string str in the dictionary and set match_head to the previous head
169 * of the hash chain (the most recent string with same hash key). Return
170 * the previous length of the hash chain.
171 * If this file is compiled with -DFASTEST, the compression level is forced
172 * to 1, and no hash chains are maintained.
173 * IN assertion: all calls to to INSERT_STRING are made with consecutive
174 * input characters and the first MIN_MATCH bytes of str are valid
175 * (except for the last MIN_MATCH-1 bytes of the input file).
176 */
177 #ifdef FASTEST
178 #define INSERT_STRING(s, str, match_head) \
179 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
180 match_head = s->head[s->ins_h], \
181 s->head[s->ins_h] = (Pos)(str))
182 #else
183 #define INSERT_STRING(s, str, match_head) \
184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
185 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
186 s->head[s->ins_h] = (Pos)(str))
187 #endif
188
189 /* ===========================================================================
190 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
191 * prev[] will be initialized on the fly.
192 */
193 #define CLEAR_HASH(s) \
194 s->head[s->hash_size-1] = NIL; \
195 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
196
197 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)198 int ZEXPORT deflateInit_(strm, level, version, stream_size)
199 z_streamp strm;
200 int level;
201 const char *version;
202 int stream_size;
203 {
204 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
205 Z_DEFAULT_STRATEGY, version, stream_size);
206 /* To do: ignore strm->next_in if we use it as window */
207 }
208
209 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)210 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
211 version, stream_size)
212 z_streamp strm;
213 int level;
214 int method;
215 int windowBits;
216 int memLevel;
217 int strategy;
218 const char *version;
219 int stream_size;
220 {
221 deflate_state *s;
222 int wrap = 1;
223 static const char my_version[] = ZLIB_VERSION;
224
225 if (version == Z_NULL || version[0] != my_version[0] ||
226 stream_size != sizeof(z_stream)) {
227 return Z_VERSION_ERROR;
228 }
229 if (strm == Z_NULL) return Z_STREAM_ERROR;
230
231 strm->msg = Z_NULL;
232 if (strm->zalloc == (alloc_func)0) {
233 strm->zalloc = zcalloc;
234 strm->opaque = (voidpf)0;
235 }
236 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
237
238 #ifdef FASTEST
239 if (level != 0) level = 1;
240 #else
241 if (level == Z_DEFAULT_COMPRESSION) level = 6;
242 #endif
243
244 if (windowBits < 0) { /* suppress zlib wrapper */
245 wrap = 0;
246 windowBits = -windowBits;
247 }
248 #ifdef GZIP
249 else if (windowBits > 15) {
250 wrap = 2; /* write gzip wrapper instead */
251 windowBits -= 16;
252 }
253 #endif
254 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
255 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
256 strategy < 0 || strategy > Z_FIXED) {
257 return Z_STREAM_ERROR;
258 }
259 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
260 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
261 if (s == Z_NULL) return Z_MEM_ERROR;
262 strm->state = (struct internal_state FAR *)s;
263 s->strm = strm;
264
265 s->wrap = wrap;
266 s->gzhead = Z_NULL;
267 s->w_bits = windowBits;
268 s->w_size = 1 << s->w_bits;
269 s->w_mask = s->w_size - 1;
270
271 s->hash_bits = memLevel + 7;
272 s->hash_size = 1 << s->hash_bits;
273 s->hash_mask = s->hash_size - 1;
274 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
275
276 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
277 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
278 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
279
280 s->high_water = 0; /* nothing written to s->window yet */
281
282 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
283
284 /* We overlay pending_buf and sym_buf. This works since the average size
285 * for length/distance pairs over any compressed block is assured to be 31
286 * bits or less.
287 *
288 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
289 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
290 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
291 * possible fixed-codes length/distance pair is then 31 bits total.
292 *
293 * sym_buf starts one-fourth of the way into pending_buf. So there are
294 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
295 * in sym_buf is three bytes -- two for the distance and one for the
296 * literal/length. As each symbol is consumed, the pointer to the next
297 * sym_buf value to read moves forward three bytes. From that symbol, up to
298 * 31 bits are written to pending_buf. The closest the written pending_buf
299 * bits gets to the next sym_buf symbol to read is just before the last
300 * code is written. At that time, 31*(n-2) bits have been written, just
301 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
302 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
303 * symbols are written.) The closest the writing gets to what is unread is
304 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
305 * can range from 128 to 32768.
306 *
307 * Therefore, at a minimum, there are 142 bits of space between what is
308 * written and what is read in the overlain buffers, so the symbols cannot
309 * be overwritten by the compressed data. That space is actually 139 bits,
310 * due to the three-bit fixed-code block header.
311 *
312 * That covers the case where either Z_FIXED is specified, forcing fixed
313 * codes, or when the use of fixed codes is chosen, because that choice
314 * results in a smaller compressed block than dynamic codes. That latter
315 * condition then assures that the above analysis also covers all dynamic
316 * blocks. A dynamic-code block will only be chosen to be emitted if it has
317 * fewer bits than a fixed-code block would for the same set of symbols.
318 * Therefore its average symbol length is assured to be less than 31. So
319 * the compressed data for a dynamic block also cannot overwrite the
320 * symbols from which it is being constructed.
321 */
322
323 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
324 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
325
326 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
327 s->pending_buf == Z_NULL) {
328 s->status = FINISH_STATE;
329 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
330 deflateEnd (strm);
331 return Z_MEM_ERROR;
332 }
333 s->sym_buf = s->pending_buf + s->lit_bufsize;
334 s->sym_end = (s->lit_bufsize - 1) * 3;
335 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
336 * on 16 bit machines and because stored blocks are restricted to
337 * 64K-1 bytes.
338 */
339
340 s->level = level;
341 s->strategy = strategy;
342 s->method = (Byte)method;
343
344 return deflateReset(strm);
345 }
346
347 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)348 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
349 z_streamp strm;
350 const Bytef *dictionary;
351 uInt dictLength;
352 {
353 deflate_state *s;
354 uInt length = dictLength;
355 uInt n;
356 IPos hash_head = 0;
357
358 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
359 strm->state->wrap == 2 ||
360 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
361 return Z_STREAM_ERROR;
362
363 s = strm->state;
364 if (s->wrap)
365 strm->adler = adler32(strm->adler, dictionary, dictLength);
366
367 if (length < MIN_MATCH) return Z_OK;
368 if (length > s->w_size) {
369 length = s->w_size;
370 dictionary += dictLength - length; /* use the tail of the dictionary */
371 }
372 zmemcpy(s->window, dictionary, length);
373 s->strstart = length;
374 s->block_start = (long)length;
375
376 /* Insert all strings in the hash table (except for the last two bytes).
377 * s->lookahead stays null, so s->ins_h will be recomputed at the next
378 * call of fill_window.
379 */
380 s->ins_h = s->window[0];
381 UPDATE_HASH(s, s->ins_h, s->window[1]);
382 for (n = 0; n <= length - MIN_MATCH; n++) {
383 INSERT_STRING(s, n, hash_head);
384 }
385 if (hash_head) hash_head = 0; /* to make compiler happy */
386 return Z_OK;
387 }
388
389 /* ========================================================================= */
deflateReset(strm)390 int ZEXPORT deflateReset (strm)
391 z_streamp strm;
392 {
393 deflate_state *s;
394
395 if (strm == Z_NULL || strm->state == Z_NULL ||
396 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
397 return Z_STREAM_ERROR;
398 }
399
400 strm->total_in = strm->total_out = 0;
401 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
402 strm->data_type = Z_UNKNOWN;
403
404 s = (deflate_state *)strm->state;
405 s->pending = 0;
406 s->pending_out = s->pending_buf;
407
408 if (s->wrap < 0) {
409 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
410 }
411 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
412 strm->adler =
413 #ifdef GZIP
414 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
415 #endif
416 adler32(0L, Z_NULL, 0);
417 s->last_flush = Z_NO_FLUSH;
418
419 _tr_init(s);
420 lm_init(s);
421
422 return Z_OK;
423 }
424
425 /* ========================================================================= */
deflateSetHeader(strm,head)426 int ZEXPORT deflateSetHeader (strm, head)
427 z_streamp strm;
428 gz_headerp head;
429 {
430 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
431 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
432 strm->state->gzhead = head;
433 return Z_OK;
434 }
435
436 /* ========================================================================= */
deflatePending(strm,pending,bits)437 int ZEXPORT deflatePending (strm, pending, bits)
438 unsigned *pending;
439 int *bits;
440 z_streamp strm;
441 {
442 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
443 *pending = strm->state->pending;
444 *bits = strm->state->bi_valid;
445 return Z_OK;
446 }
447
448 /* ========================================================================= */
deflatePrime(strm,bits,value)449 int ZEXPORT deflatePrime (strm, bits, value)
450 z_streamp strm;
451 int bits;
452 int value;
453 {
454 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
455 strm->state->bi_valid = bits;
456 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
457 return Z_OK;
458 }
459
460 /* ========================================================================= */
deflateParams(strm,level,strategy)461 int ZEXPORT deflateParams(strm, level, strategy)
462 z_streamp strm;
463 int level;
464 int strategy;
465 {
466 deflate_state *s;
467 compress_func func;
468 int err = Z_OK;
469
470 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
471 s = strm->state;
472
473 #ifdef FASTEST
474 if (level != 0) level = 1;
475 #else
476 if (level == Z_DEFAULT_COMPRESSION) level = 6;
477 #endif
478 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
479 return Z_STREAM_ERROR;
480 }
481 func = configuration_table[s->level].func;
482
483 if ((strategy != s->strategy || func != configuration_table[level].func) &&
484 strm->total_in != 0) {
485 /* Flush the last buffer: */
486 err = deflate(strm, Z_BLOCK);
487 }
488 if (s->level != level) {
489 s->level = level;
490 s->max_lazy_match = configuration_table[level].max_lazy;
491 s->good_match = configuration_table[level].good_length;
492 s->nice_match = configuration_table[level].nice_length;
493 s->max_chain_length = configuration_table[level].max_chain;
494 }
495 s->strategy = strategy;
496 return err;
497 }
498
499 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)500 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
501 z_streamp strm;
502 int good_length;
503 int max_lazy;
504 int nice_length;
505 int max_chain;
506 {
507 deflate_state *s;
508
509 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
510 s = strm->state;
511 s->good_match = good_length;
512 s->max_lazy_match = max_lazy;
513 s->nice_match = nice_length;
514 s->max_chain_length = max_chain;
515 return Z_OK;
516 }
517
518 /* =========================================================================
519 * For the default windowBits of 15 and memLevel of 8, this function returns
520 * a close to exact, as well as small, upper bound on the compressed size.
521 * They are coded as constants here for a reason--if the #define's are
522 * changed, then this function needs to be changed as well. The return
523 * value for 15 and 8 only works for those exact settings.
524 *
525 * For any setting other than those defaults for windowBits and memLevel,
526 * the value returned is a conservative worst case for the maximum expansion
527 * resulting from using fixed blocks instead of stored blocks, which deflate
528 * can emit on compressed data for some combinations of the parameters.
529 *
530 * This function could be more sophisticated to provide closer upper bounds for
531 * every combination of windowBits and memLevel. But even the conservative
532 * upper bound of about 14% expansion does not seem onerous for output buffer
533 * allocation.
534 */
deflateBound(strm,sourceLen)535 uLong ZEXPORT deflateBound(strm, sourceLen)
536 z_streamp strm;
537 uLong sourceLen;
538 {
539 deflate_state *s;
540 uLong complen, wraplen;
541 Bytef *str;
542
543 /* conservative upper bound for compressed data */
544 complen = sourceLen +
545 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
546
547 /* if can't get parameters, return conservative bound plus zlib wrapper */
548 if (strm == Z_NULL || strm->state == Z_NULL)
549 return complen + 6;
550
551 /* compute wrapper length */
552 s = strm->state;
553 switch (s->wrap) {
554 case 0: /* raw deflate */
555 wraplen = 0;
556 break;
557 case 1: /* zlib wrapper */
558 wraplen = 6 + (s->strstart ? 4 : 0);
559 break;
560 case 2: /* gzip wrapper */
561 wraplen = 18;
562 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
563 if (s->gzhead->extra != Z_NULL)
564 wraplen += 2 + s->gzhead->extra_len;
565 str = s->gzhead->name;
566 if (str != Z_NULL)
567 do {
568 wraplen++;
569 } while (*str++);
570 str = s->gzhead->comment;
571 if (str != Z_NULL)
572 do {
573 wraplen++;
574 } while (*str++);
575 if (s->gzhead->hcrc)
576 wraplen += 2;
577 }
578 break;
579 default: /* for compiler happiness */
580 wraplen = 6;
581 }
582
583 /* if not default parameters, return conservative bound */
584 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
585 return complen + wraplen;
586
587 /* default settings: return tight bound for that case */
588 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
589 (sourceLen >> 25) + 13 - 6 + wraplen;
590 }
591
592 /* =========================================================================
593 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
594 * IN assertion: the stream state is correct and there is enough room in
595 * pending_buf.
596 */
putShortMSB(s,b)597 local void putShortMSB (s, b)
598 deflate_state *s;
599 uInt b;
600 {
601 put_byte(s, (Byte)(b >> 8));
602 put_byte(s, (Byte)(b & 0xff));
603 }
604
605 /* =========================================================================
606 * Flush as much pending output as possible. All deflate() output goes
607 * through this function so some applications may wish to modify it
608 * to avoid allocating a large strm->next_out buffer and copying into it.
609 * (See also read_buf()).
610 */
flush_pending(strm)611 local void flush_pending(strm)
612 z_streamp strm;
613 {
614 unsigned len = strm->state->pending;
615
616 if (len > strm->avail_out) len = strm->avail_out;
617 if (len == 0) return;
618
619 zmemcpy(strm->next_out, strm->state->pending_out, len);
620 strm->next_out += len;
621 strm->state->pending_out += len;
622 strm->total_out += len;
623 strm->avail_out -= len;
624 strm->state->pending -= len;
625 if (strm->state->pending == 0) {
626 strm->state->pending_out = strm->state->pending_buf;
627 }
628 }
629
630 /* ========================================================================= */
deflate(strm,flush)631 int ZEXPORT deflate (strm, flush)
632 z_streamp strm;
633 int flush;
634 {
635 int old_flush; /* value of flush param for previous deflate call */
636 deflate_state *s;
637
638 if (strm == Z_NULL || strm->state == Z_NULL ||
639 flush > Z_BLOCK || flush < 0) {
640 return Z_STREAM_ERROR;
641 }
642 s = strm->state;
643
644 if (strm->next_out == Z_NULL ||
645 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
646 (s->status == FINISH_STATE && flush != Z_FINISH)) {
647 ERR_RETURN(strm, Z_STREAM_ERROR);
648 }
649 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
650
651 s->strm = strm; /* just in case */
652 old_flush = s->last_flush;
653 s->last_flush = flush;
654
655 /* Write the header */
656 if (s->status == INIT_STATE) {
657 #ifdef GZIP
658 if (s->wrap == 2) {
659 strm->adler = crc32(0L, Z_NULL, 0);
660 put_byte(s, 31);
661 put_byte(s, 139);
662 put_byte(s, 8);
663 if (s->gzhead == Z_NULL) {
664 put_byte(s, 0);
665 put_byte(s, 0);
666 put_byte(s, 0);
667 put_byte(s, 0);
668 put_byte(s, 0);
669 put_byte(s, s->level == 9 ? 2 :
670 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
671 4 : 0));
672 put_byte(s, OS_CODE);
673 s->status = BUSY_STATE;
674 }
675 else {
676 put_byte(s, (s->gzhead->text ? 1 : 0) +
677 (s->gzhead->hcrc ? 2 : 0) +
678 (s->gzhead->extra == Z_NULL ? 0 : 4) +
679 (s->gzhead->name == Z_NULL ? 0 : 8) +
680 (s->gzhead->comment == Z_NULL ? 0 : 16)
681 );
682 put_byte(s, (Byte)(s->gzhead->time & 0xff));
683 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
684 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
685 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
686 put_byte(s, s->level == 9 ? 2 :
687 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
688 4 : 0));
689 put_byte(s, s->gzhead->os & 0xff);
690 if (s->gzhead->extra != Z_NULL) {
691 put_byte(s, s->gzhead->extra_len & 0xff);
692 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
693 }
694 if (s->gzhead->hcrc)
695 strm->adler = crc32(strm->adler, s->pending_buf,
696 s->pending);
697 s->gzindex = 0;
698 s->status = EXTRA_STATE;
699 }
700 }
701 else
702 #endif
703 {
704 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
705 uInt level_flags;
706
707 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
708 level_flags = 0;
709 else if (s->level < 6)
710 level_flags = 1;
711 else if (s->level == 6)
712 level_flags = 2;
713 else
714 level_flags = 3;
715 header |= (level_flags << 6);
716 if (s->strstart != 0) header |= PRESET_DICT;
717 header += 31 - (header % 31);
718
719 s->status = BUSY_STATE;
720 putShortMSB(s, header);
721
722 /* Save the adler32 of the preset dictionary: */
723 if (s->strstart != 0) {
724 putShortMSB(s, (uInt)(strm->adler >> 16));
725 putShortMSB(s, (uInt)(strm->adler & 0xffff));
726 }
727 strm->adler = adler32(0L, Z_NULL, 0);
728 }
729 }
730 #ifdef GZIP
731 if (s->status == EXTRA_STATE) {
732 if (s->gzhead->extra != Z_NULL) {
733 uInt beg = s->pending; /* start of bytes to update crc */
734
735 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
736 if (s->pending == s->pending_buf_size) {
737 if (s->gzhead->hcrc && s->pending > beg)
738 strm->adler = crc32(strm->adler, s->pending_buf + beg,
739 s->pending - beg);
740 flush_pending(strm);
741 beg = s->pending;
742 if (s->pending == s->pending_buf_size)
743 break;
744 }
745 put_byte(s, s->gzhead->extra[s->gzindex]);
746 s->gzindex++;
747 }
748 if (s->gzhead->hcrc && s->pending > beg)
749 strm->adler = crc32(strm->adler, s->pending_buf + beg,
750 s->pending - beg);
751 if (s->gzindex == s->gzhead->extra_len) {
752 s->gzindex = 0;
753 s->status = NAME_STATE;
754 }
755 }
756 else
757 s->status = NAME_STATE;
758 }
759 if (s->status == NAME_STATE) {
760 if (s->gzhead->name != Z_NULL) {
761 uInt beg = s->pending; /* start of bytes to update crc */
762 int val;
763
764 do {
765 if (s->pending == s->pending_buf_size) {
766 if (s->gzhead->hcrc && s->pending > beg)
767 strm->adler = crc32(strm->adler, s->pending_buf + beg,
768 s->pending - beg);
769 flush_pending(strm);
770 beg = s->pending;
771 if (s->pending == s->pending_buf_size) {
772 val = 1;
773 break;
774 }
775 }
776 val = s->gzhead->name[s->gzindex++];
777 put_byte(s, val);
778 } while (val != 0);
779 if (s->gzhead->hcrc && s->pending > beg)
780 strm->adler = crc32(strm->adler, s->pending_buf + beg,
781 s->pending - beg);
782 if (val == 0) {
783 s->gzindex = 0;
784 s->status = COMMENT_STATE;
785 }
786 }
787 else
788 s->status = COMMENT_STATE;
789 }
790 if (s->status == COMMENT_STATE) {
791 if (s->gzhead->comment != Z_NULL) {
792 uInt beg = s->pending; /* start of bytes to update crc */
793 int val;
794
795 do {
796 if (s->pending == s->pending_buf_size) {
797 if (s->gzhead->hcrc && s->pending > beg)
798 strm->adler = crc32(strm->adler, s->pending_buf + beg,
799 s->pending - beg);
800 flush_pending(strm);
801 beg = s->pending;
802 if (s->pending == s->pending_buf_size) {
803 val = 1;
804 break;
805 }
806 }
807 val = s->gzhead->comment[s->gzindex++];
808 put_byte(s, val);
809 } while (val != 0);
810 if (s->gzhead->hcrc && s->pending > beg)
811 strm->adler = crc32(strm->adler, s->pending_buf + beg,
812 s->pending - beg);
813 if (val == 0)
814 s->status = HCRC_STATE;
815 }
816 else
817 s->status = HCRC_STATE;
818 }
819 if (s->status == HCRC_STATE) {
820 if (s->gzhead->hcrc) {
821 if (s->pending + 2 > s->pending_buf_size)
822 flush_pending(strm);
823 if (s->pending + 2 <= s->pending_buf_size) {
824 put_byte(s, (Byte)(strm->adler & 0xff));
825 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
826 strm->adler = crc32(0L, Z_NULL, 0);
827 s->status = BUSY_STATE;
828 }
829 }
830 else
831 s->status = BUSY_STATE;
832 }
833 #endif
834
835 /* Flush as much pending output as possible */
836 if (s->pending != 0) {
837 flush_pending(strm);
838 if (strm->avail_out == 0) {
839 /* Since avail_out is 0, deflate will be called again with
840 * more output space, but possibly with both pending and
841 * avail_in equal to zero. There won't be anything to do,
842 * but this is not an error situation so make sure we
843 * return OK instead of BUF_ERROR at next call of deflate:
844 */
845 s->last_flush = -1;
846 return Z_OK;
847 }
848
849 /* Make sure there is something to do and avoid duplicate consecutive
850 * flushes. For repeated and useless calls with Z_FINISH, we keep
851 * returning Z_STREAM_END instead of Z_BUF_ERROR.
852 */
853 } else if (strm->avail_in == 0 && flush <= old_flush &&
854 flush != Z_FINISH) {
855 ERR_RETURN(strm, Z_BUF_ERROR);
856 }
857
858 /* User must not provide more input after the first FINISH: */
859 if (s->status == FINISH_STATE && strm->avail_in != 0) {
860 ERR_RETURN(strm, Z_BUF_ERROR);
861 }
862
863 /* Start a new block or continue the current one.
864 */
865 if (strm->avail_in != 0 || s->lookahead != 0 ||
866 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
867 block_state bstate;
868
869 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
870 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
871 (*(configuration_table[s->level].func))(s, flush));
872
873 if (bstate == finish_started || bstate == finish_done) {
874 s->status = FINISH_STATE;
875 }
876 if (bstate == need_more || bstate == finish_started) {
877 if (strm->avail_out == 0) {
878 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
879 }
880 return Z_OK;
881 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
882 * of deflate should use the same flush parameter to make sure
883 * that the flush is complete. So we don't have to output an
884 * empty block here, this will be done at next call. This also
885 * ensures that for a very small output buffer, we emit at most
886 * one empty block.
887 */
888 }
889 if (bstate == block_done) {
890 if (flush == Z_PARTIAL_FLUSH) {
891 _tr_align(s);
892 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
893 _tr_stored_block(s, (char*)0, 0L, 0);
894 /* For a full flush, this empty block will be recognized
895 * as a special marker by inflate_sync().
896 */
897 if (flush == Z_FULL_FLUSH) {
898 CLEAR_HASH(s); /* forget history */
899 if (s->lookahead == 0) {
900 s->strstart = 0;
901 s->block_start = 0L;
902 }
903 }
904 }
905 flush_pending(strm);
906 if (strm->avail_out == 0) {
907 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
908 return Z_OK;
909 }
910 }
911 }
912 Assert(strm->avail_out > 0, "bug2");
913
914 if (flush != Z_FINISH) return Z_OK;
915 if (s->wrap <= 0) return Z_STREAM_END;
916
917 /* Write the trailer */
918 #ifdef GZIP
919 if (s->wrap == 2) {
920 put_byte(s, (Byte)(strm->adler & 0xff));
921 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
922 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
923 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
924 put_byte(s, (Byte)(strm->total_in & 0xff));
925 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
926 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
927 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
928 }
929 else
930 #endif
931 {
932 putShortMSB(s, (uInt)(strm->adler >> 16));
933 putShortMSB(s, (uInt)(strm->adler & 0xffff));
934 }
935 flush_pending(strm);
936 /* If avail_out is zero, the application will call deflate again
937 * to flush the rest.
938 */
939 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
940 return s->pending != 0 ? Z_OK : Z_STREAM_END;
941 }
942
943 /* ========================================================================= */
deflateEnd(strm)944 int ZEXPORT deflateEnd (strm)
945 z_streamp strm;
946 {
947 int status;
948
949 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
950
951 status = strm->state->status;
952 if (status != INIT_STATE &&
953 status != EXTRA_STATE &&
954 status != NAME_STATE &&
955 status != COMMENT_STATE &&
956 status != HCRC_STATE &&
957 status != BUSY_STATE &&
958 status != FINISH_STATE) {
959 return Z_STREAM_ERROR;
960 }
961
962 /* Deallocate in reverse order of allocations: */
963 TRY_FREE(strm, strm->state->pending_buf);
964 TRY_FREE(strm, strm->state->head);
965 TRY_FREE(strm, strm->state->prev);
966 TRY_FREE(strm, strm->state->window);
967
968 ZFREE(strm, strm->state);
969 strm->state = Z_NULL;
970
971 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
972 }
973
974 /* =========================================================================
975 * Copy the source state to the destination state.
976 * To simplify the source, this is not supported for 16-bit MSDOS (which
977 * doesn't have enough memory anyway to duplicate compression states).
978 */
deflateCopy(dest,source)979 int ZEXPORT deflateCopy (dest, source)
980 z_streamp dest;
981 z_streamp source;
982 {
983 #ifdef MAXSEG_64K
984 return Z_STREAM_ERROR;
985 #else
986 deflate_state *ds;
987 deflate_state *ss;
988
989
990 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
991 return Z_STREAM_ERROR;
992 }
993
994 ss = source->state;
995
996 zmemcpy(dest, source, sizeof(z_stream));
997
998 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
999 if (ds == Z_NULL) return Z_MEM_ERROR;
1000 dest->state = (struct internal_state FAR *) ds;
1001 zmemcpy(ds, ss, sizeof(deflate_state));
1002 ds->strm = dest;
1003
1004 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1005 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1006 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1007 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1008
1009 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1010 ds->pending_buf == Z_NULL) {
1011 deflateEnd (dest);
1012 return Z_MEM_ERROR;
1013 }
1014 /* following zmemcpy do not work for 16-bit MSDOS */
1015 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1016 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1017 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1018 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1019
1020 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1021 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1022
1023 ds->l_desc.dyn_tree = ds->dyn_ltree;
1024 ds->d_desc.dyn_tree = ds->dyn_dtree;
1025 ds->bl_desc.dyn_tree = ds->bl_tree;
1026
1027 return Z_OK;
1028 #endif /* MAXSEG_64K */
1029 }
1030
1031 /* ===========================================================================
1032 * Read a new buffer from the current input stream, update the adler32
1033 * and total number of bytes read. All deflate() input goes through
1034 * this function so some applications may wish to modify it to avoid
1035 * allocating a large strm->next_in buffer and copying from it.
1036 * (See also flush_pending()).
1037 */
read_buf(strm,buf,size)1038 local int read_buf(strm, buf, size)
1039 z_streamp strm;
1040 Bytef *buf;
1041 unsigned size;
1042 {
1043 unsigned len = strm->avail_in;
1044
1045 if (len > size) len = size;
1046 if (len == 0) return 0;
1047
1048 strm->avail_in -= len;
1049
1050 if (strm->state->wrap == 1) {
1051 strm->adler = adler32(strm->adler, strm->next_in, len);
1052 }
1053 #ifdef GZIP
1054 else if (strm->state->wrap == 2) {
1055 strm->adler = crc32(strm->adler, strm->next_in, len);
1056 }
1057 #endif
1058 zmemcpy(buf, strm->next_in, len);
1059 strm->next_in += len;
1060 strm->total_in += len;
1061
1062 return (int)len;
1063 }
1064
1065 /* ===========================================================================
1066 * Initialize the "longest match" routines for a new zlib stream
1067 */
lm_init(s)1068 local void lm_init (s)
1069 deflate_state *s;
1070 {
1071 s->window_size = (ulg)2L*s->w_size;
1072
1073 CLEAR_HASH(s);
1074
1075 /* Set the default configuration parameters:
1076 */
1077 s->max_lazy_match = configuration_table[s->level].max_lazy;
1078 s->good_match = configuration_table[s->level].good_length;
1079 s->nice_match = configuration_table[s->level].nice_length;
1080 s->max_chain_length = configuration_table[s->level].max_chain;
1081
1082 s->strstart = 0;
1083 s->block_start = 0L;
1084 s->lookahead = 0;
1085 s->match_length = s->prev_length = MIN_MATCH-1;
1086 s->match_available = 0;
1087 s->ins_h = 0;
1088 #ifndef FASTEST
1089 #ifdef ASMV
1090 match_init(); /* initialize the asm code */
1091 #endif
1092 #endif
1093 }
1094
1095 #ifndef FASTEST
1096 /* ===========================================================================
1097 * Set match_start to the longest match starting at the given string and
1098 * return its length. Matches shorter or equal to prev_length are discarded,
1099 * in which case the result is equal to prev_length and match_start is
1100 * garbage.
1101 * IN assertions: cur_match is the head of the hash chain for the current
1102 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1103 * OUT assertion: the match length is not greater than s->lookahead.
1104 */
1105 #ifndef ASMV
1106 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1107 * match.S. The code will be functionally equivalent.
1108 */
longest_match(s,cur_match)1109 local uInt longest_match(s, cur_match)
1110 deflate_state *s;
1111 IPos cur_match; /* current match */
1112 {
1113 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1114 register Bytef *scan = s->window + s->strstart; /* current string */
1115 register Bytef *match; /* matched string */
1116 register int len; /* length of current match */
1117 int best_len = s->prev_length; /* best match length so far */
1118 int nice_match = s->nice_match; /* stop if match long enough */
1119 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1120 s->strstart - (IPos)MAX_DIST(s) : NIL;
1121 /* Stop when cur_match becomes <= limit. To simplify the code,
1122 * we prevent matches with the string of window index 0.
1123 */
1124 Posf *prev = s->prev;
1125 uInt wmask = s->w_mask;
1126
1127 #ifdef UNALIGNED_OK
1128 /* Compare two bytes at a time. Note: this is not always beneficial.
1129 * Try with and without -DUNALIGNED_OK to check.
1130 */
1131 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1132 register ush scan_start = *(ushf*)scan;
1133 register ush scan_end = *(ushf*)(scan+best_len-1);
1134 #else
1135 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1136 register Byte scan_end1 = scan[best_len-1];
1137 register Byte scan_end = scan[best_len];
1138 #endif
1139
1140 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1141 * It is easy to get rid of this optimization if necessary.
1142 */
1143 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1144
1145 /* Do not waste too much time if we already have a good match: */
1146 if (s->prev_length >= s->good_match) {
1147 chain_length >>= 2;
1148 }
1149 /* Do not look for matches beyond the end of the input. This is necessary
1150 * to make deflate deterministic.
1151 */
1152 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1153
1154 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1155
1156 do {
1157 Assert(cur_match < s->strstart, "no future");
1158 match = s->window + cur_match;
1159
1160 /* Skip to next match if the match length cannot increase
1161 * or if the match length is less than 2. Note that the checks below
1162 * for insufficient lookahead only occur occasionally for performance
1163 * reasons. Therefore uninitialized memory will be accessed, and
1164 * conditional jumps will be made that depend on those values.
1165 * However the length of the match is limited to the lookahead, so
1166 * the output of deflate is not affected by the uninitialized values.
1167 */
1168 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1169 /* This code assumes sizeof(unsigned short) == 2. Do not use
1170 * UNALIGNED_OK if your compiler uses a different size.
1171 */
1172 if (*(ushf*)(match+best_len-1) != scan_end ||
1173 *(ushf*)match != scan_start) continue;
1174
1175 /* It is not necessary to compare scan[2] and match[2] since they are
1176 * always equal when the other bytes match, given that the hash keys
1177 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1178 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1179 * lookahead only every 4th comparison; the 128th check will be made
1180 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1181 * necessary to put more guard bytes at the end of the window, or
1182 * to check more often for insufficient lookahead.
1183 */
1184 Assert(scan[2] == match[2], "scan[2]?");
1185 scan++, match++;
1186 do {
1187 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1188 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1189 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1190 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1191 scan < strend);
1192 /* The funny "do {}" generates better code on most compilers */
1193
1194 /* Here, scan <= window+strstart+257 */
1195 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1196 if (*scan == *match) scan++;
1197
1198 len = (MAX_MATCH - 1) - (int)(strend-scan);
1199 scan = strend - (MAX_MATCH-1);
1200
1201 #else /* UNALIGNED_OK */
1202
1203 if (match[best_len] != scan_end ||
1204 match[best_len-1] != scan_end1 ||
1205 *match != *scan ||
1206 *++match != scan[1]) continue;
1207
1208 /* The check at best_len-1 can be removed because it will be made
1209 * again later. (This heuristic is not always a win.)
1210 * It is not necessary to compare scan[2] and match[2] since they
1211 * are always equal when the other bytes match, given that
1212 * the hash keys are equal and that HASH_BITS >= 8.
1213 */
1214 scan += 2, match++;
1215 Assert(*scan == *match, "match[2]?");
1216
1217 /* We check for insufficient lookahead only every 8th comparison;
1218 * the 256th check will be made at strstart+258.
1219 */
1220 do {
1221 } while (*++scan == *++match && *++scan == *++match &&
1222 *++scan == *++match && *++scan == *++match &&
1223 *++scan == *++match && *++scan == *++match &&
1224 *++scan == *++match && *++scan == *++match &&
1225 scan < strend);
1226
1227 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1228
1229 len = MAX_MATCH - (int)(strend - scan);
1230 scan = strend - MAX_MATCH;
1231
1232 #endif /* UNALIGNED_OK */
1233
1234 if (len > best_len) {
1235 s->match_start = cur_match;
1236 best_len = len;
1237 if (len >= nice_match) break;
1238 #ifdef UNALIGNED_OK
1239 scan_end = *(ushf*)(scan+best_len-1);
1240 #else
1241 scan_end1 = scan[best_len-1];
1242 scan_end = scan[best_len];
1243 #endif
1244 }
1245 } while ((cur_match = prev[cur_match & wmask]) > limit
1246 && --chain_length != 0);
1247
1248 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1249 return s->lookahead;
1250 }
1251 #endif /* ASMV */
1252
1253 #else /* FASTEST */
1254
1255 /* ---------------------------------------------------------------------------
1256 * Optimized version for FASTEST only
1257 */
longest_match(s,cur_match)1258 local uInt longest_match(s, cur_match)
1259 deflate_state *s;
1260 IPos cur_match; /* current match */
1261 {
1262 register Bytef *scan = s->window + s->strstart; /* current string */
1263 register Bytef *match; /* matched string */
1264 register int len; /* length of current match */
1265 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1266
1267 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1268 * It is easy to get rid of this optimization if necessary.
1269 */
1270 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1271
1272 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1273
1274 Assert(cur_match < s->strstart, "no future");
1275
1276 match = s->window + cur_match;
1277
1278 /* Return failure if the match length is less than 2:
1279 */
1280 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1281
1282 /* The check at best_len-1 can be removed because it will be made
1283 * again later. (This heuristic is not always a win.)
1284 * It is not necessary to compare scan[2] and match[2] since they
1285 * are always equal when the other bytes match, given that
1286 * the hash keys are equal and that HASH_BITS >= 8.
1287 */
1288 scan += 2, match += 2;
1289 Assert(*scan == *match, "match[2]?");
1290
1291 /* We check for insufficient lookahead only every 8th comparison;
1292 * the 256th check will be made at strstart+258.
1293 */
1294 do {
1295 } while (*++scan == *++match && *++scan == *++match &&
1296 *++scan == *++match && *++scan == *++match &&
1297 *++scan == *++match && *++scan == *++match &&
1298 *++scan == *++match && *++scan == *++match &&
1299 scan < strend);
1300
1301 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1302
1303 len = MAX_MATCH - (int)(strend - scan);
1304
1305 if (len < MIN_MATCH) return MIN_MATCH - 1;
1306
1307 s->match_start = cur_match;
1308 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1309 }
1310
1311 #endif /* FASTEST */
1312
1313 #ifdef DEBUG
1314 /* ===========================================================================
1315 * Check that the match at match_start is indeed a match.
1316 */
check_match(s,start,match,length)1317 local void check_match(s, start, match, length)
1318 deflate_state *s;
1319 IPos start, match;
1320 int length;
1321 {
1322 /* check that the match is indeed a match */
1323 if (zmemcmp(s->window + match,
1324 s->window + start, length) != EQUAL) {
1325 fprintf(stderr, " start %u, match %u, length %d\n",
1326 start, match, length);
1327 do {
1328 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1329 } while (--length != 0);
1330 z_error("invalid match");
1331 }
1332 if (z_verbose > 1) {
1333 fprintf(stderr,"\\[%d,%d]", start-match, length);
1334 do { putc(s->window[start++], stderr); } while (--length != 0);
1335 }
1336 }
1337 #else
1338 # define check_match(s, start, match, length)
1339 #endif /* DEBUG */
1340
1341 /* ===========================================================================
1342 * Fill the window when the lookahead becomes insufficient.
1343 * Updates strstart and lookahead.
1344 *
1345 * IN assertion: lookahead < MIN_LOOKAHEAD
1346 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1347 * At least one byte has been read, or avail_in == 0; reads are
1348 * performed for at least two bytes (required for the zip translate_eol
1349 * option -- not supported here).
1350 */
fill_window(s)1351 local void fill_window(s)
1352 deflate_state *s;
1353 {
1354 register unsigned n, m;
1355 register Posf *p;
1356 unsigned more; /* Amount of free space at the end of the window. */
1357 uInt wsize = s->w_size;
1358
1359 do {
1360 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1361
1362 /* Deal with !@#$% 64K limit: */
1363 if (sizeof(int) <= 2) {
1364 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1365 more = wsize;
1366
1367 } else if (more == (unsigned)(-1)) {
1368 /* Very unlikely, but possible on 16 bit machine if
1369 * strstart == 0 && lookahead == 1 (input done a byte at time)
1370 */
1371 more--;
1372 }
1373 }
1374
1375 /* If the window is almost full and there is insufficient lookahead,
1376 * move the upper half to the lower one to make room in the upper half.
1377 */
1378 if (s->strstart >= wsize+MAX_DIST(s)) {
1379
1380 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1381 s->match_start -= wsize;
1382 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1383 s->block_start -= (long) wsize;
1384
1385 /* Slide the hash table (could be avoided with 32 bit values
1386 at the expense of memory usage). We slide even when level == 0
1387 to keep the hash table consistent if we switch back to level > 0
1388 later. (Using level 0 permanently is not an optimal usage of
1389 zlib, so we don't care about this pathological case.)
1390 */
1391 n = s->hash_size;
1392 p = &s->head[n];
1393 do {
1394 m = *--p;
1395 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1396 } while (--n);
1397
1398 n = wsize;
1399 #ifndef FASTEST
1400 p = &s->prev[n];
1401 do {
1402 m = *--p;
1403 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1404 /* If n is not on any hash chain, prev[n] is garbage but
1405 * its value will never be used.
1406 */
1407 } while (--n);
1408 #endif
1409 more += wsize;
1410 }
1411 if (s->strm->avail_in == 0) return;
1412
1413 /* If there was no sliding:
1414 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1415 * more == window_size - lookahead - strstart
1416 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1417 * => more >= window_size - 2*WSIZE + 2
1418 * In the BIG_MEM or MMAP case (not yet supported),
1419 * window_size == input_size + MIN_LOOKAHEAD &&
1420 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1421 * Otherwise, window_size == 2*WSIZE so more >= 2.
1422 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1423 */
1424 Assert(more >= 2, "more < 2");
1425
1426 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1427 s->lookahead += n;
1428
1429 /* Initialize the hash value now that we have some input: */
1430 if (s->lookahead >= MIN_MATCH) {
1431 s->ins_h = s->window[s->strstart];
1432 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1433 #if MIN_MATCH != 3
1434 Call UPDATE_HASH() MIN_MATCH-3 more times
1435 #endif
1436 }
1437 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1438 * but this is not important since only literal bytes will be emitted.
1439 */
1440
1441 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1442
1443 /* If the WIN_INIT bytes after the end of the current data have never been
1444 * written, then zero those bytes in order to avoid memory check reports of
1445 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1446 * the longest match routines. Update the high water mark for the next
1447 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1448 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1449 */
1450 if (s->high_water < s->window_size) {
1451 ulg curr = s->strstart + (ulg)(s->lookahead);
1452 ulg init;
1453
1454 if (s->high_water < curr) {
1455 /* Previous high water mark below current data -- zero WIN_INIT
1456 * bytes or up to end of window, whichever is less.
1457 */
1458 init = s->window_size - curr;
1459 if (init > WIN_INIT)
1460 init = WIN_INIT;
1461 zmemzero(s->window + curr, (unsigned)init);
1462 s->high_water = curr + init;
1463 }
1464 else if (s->high_water < (ulg)curr + WIN_INIT) {
1465 /* High water mark at or above current data, but below current data
1466 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1467 * to end of window, whichever is less.
1468 */
1469 init = (ulg)curr + WIN_INIT - s->high_water;
1470 if (init > s->window_size - s->high_water)
1471 init = s->window_size - s->high_water;
1472 zmemzero(s->window + s->high_water, (unsigned)init);
1473 s->high_water += init;
1474 }
1475 }
1476 }
1477
1478 /* ===========================================================================
1479 * Flush the current block, with given end-of-file flag.
1480 * IN assertion: strstart is set to the end of the current match.
1481 */
1482 #define FLUSH_BLOCK_ONLY(s, last) { \
1483 _tr_flush_block(s, (s->block_start >= 0L ? \
1484 (charf *)&s->window[(unsigned)s->block_start] : \
1485 (charf *)Z_NULL), \
1486 (ulg)((long)s->strstart - s->block_start), \
1487 (last)); \
1488 s->block_start = s->strstart; \
1489 flush_pending(s->strm); \
1490 Tracev((stderr,"[FLUSH]")); \
1491 }
1492
1493 /* Same but force premature exit if necessary. */
1494 #define FLUSH_BLOCK(s, last) { \
1495 FLUSH_BLOCK_ONLY(s, last); \
1496 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1497 }
1498
1499 /* ===========================================================================
1500 * Copy without compression as much as possible from the input stream, return
1501 * the current block state.
1502 * This function does not insert new strings in the dictionary since
1503 * uncompressible data is probably not useful. This function is used
1504 * only for the level=0 compression option.
1505 * NOTE: this function should be optimized to avoid extra copying from
1506 * window to pending_buf.
1507 */
deflate_stored(s,flush)1508 local block_state deflate_stored(s, flush)
1509 deflate_state *s;
1510 int flush;
1511 {
1512 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1513 * to pending_buf_size, and each stored block has a 5 byte header:
1514 */
1515 ulg max_block_size = 0xffff;
1516 ulg max_start;
1517
1518 if (max_block_size > s->pending_buf_size - 5) {
1519 max_block_size = s->pending_buf_size - 5;
1520 }
1521
1522 /* Copy as much as possible from input to output: */
1523 for (;;) {
1524 /* Fill the window as much as possible: */
1525 if (s->lookahead <= 1) {
1526
1527 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1528 s->block_start >= (long)s->w_size, "slide too late");
1529
1530 fill_window(s);
1531 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1532
1533 if (s->lookahead == 0) break; /* flush the current block */
1534 }
1535 Assert(s->block_start >= 0L, "block gone");
1536
1537 s->strstart += s->lookahead;
1538 s->lookahead = 0;
1539
1540 /* Emit a stored block if pending_buf will be full: */
1541 max_start = s->block_start + max_block_size;
1542 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1543 /* strstart == 0 is possible when wraparound on 16-bit machine */
1544 s->lookahead = (uInt)(s->strstart - max_start);
1545 s->strstart = (uInt)max_start;
1546 FLUSH_BLOCK(s, 0);
1547 }
1548 /* Flush if we may have to slide, otherwise block_start may become
1549 * negative and the data will be gone:
1550 */
1551 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1552 FLUSH_BLOCK(s, 0);
1553 }
1554 }
1555 FLUSH_BLOCK(s, flush == Z_FINISH);
1556 return flush == Z_FINISH ? finish_done : block_done;
1557 }
1558
1559 /* ===========================================================================
1560 * Compress as much as possible from the input stream, return the current
1561 * block state.
1562 * This function does not perform lazy evaluation of matches and inserts
1563 * new strings in the dictionary only for unmatched strings or for short
1564 * matches. It is used only for the fast compression options.
1565 */
deflate_fast(s,flush)1566 local block_state deflate_fast(s, flush)
1567 deflate_state *s;
1568 int flush;
1569 {
1570 IPos hash_head; /* head of the hash chain */
1571 int bflush; /* set if current block must be flushed */
1572
1573 for (;;) {
1574 /* Make sure that we always have enough lookahead, except
1575 * at the end of the input file. We need MAX_MATCH bytes
1576 * for the next match, plus MIN_MATCH bytes to insert the
1577 * string following the next match.
1578 */
1579 if (s->lookahead < MIN_LOOKAHEAD) {
1580 fill_window(s);
1581 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1582 return need_more;
1583 }
1584 if (s->lookahead == 0) break; /* flush the current block */
1585 }
1586
1587 /* Insert the string window[strstart .. strstart+2] in the
1588 * dictionary, and set hash_head to the head of the hash chain:
1589 */
1590 hash_head = NIL;
1591 if (s->lookahead >= MIN_MATCH) {
1592 INSERT_STRING(s, s->strstart, hash_head);
1593 }
1594
1595 /* Find the longest match, discarding those <= prev_length.
1596 * At this point we have always match_length < MIN_MATCH
1597 */
1598 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1599 /* To simplify the code, we prevent matches with the string
1600 * of window index 0 (in particular we have to avoid a match
1601 * of the string with itself at the start of the input file).
1602 */
1603 s->match_length = longest_match (s, hash_head);
1604 /* longest_match() sets match_start */
1605 }
1606 if (s->match_length >= MIN_MATCH) {
1607 check_match(s, s->strstart, s->match_start, s->match_length);
1608
1609 _tr_tally_dist(s, s->strstart - s->match_start,
1610 s->match_length - MIN_MATCH, bflush);
1611
1612 s->lookahead -= s->match_length;
1613
1614 /* Insert new strings in the hash table only if the match length
1615 * is not too large. This saves time but degrades compression.
1616 */
1617 #ifndef FASTEST
1618 if (s->match_length <= s->max_insert_length &&
1619 s->lookahead >= MIN_MATCH) {
1620 s->match_length--; /* string at strstart already in table */
1621 do {
1622 s->strstart++;
1623 INSERT_STRING(s, s->strstart, hash_head);
1624 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1625 * always MIN_MATCH bytes ahead.
1626 */
1627 } while (--s->match_length != 0);
1628 s->strstart++;
1629 } else
1630 #endif
1631 {
1632 s->strstart += s->match_length;
1633 s->match_length = 0;
1634 s->ins_h = s->window[s->strstart];
1635 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1636 #if MIN_MATCH != 3
1637 Call UPDATE_HASH() MIN_MATCH-3 more times
1638 #endif
1639 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1640 * matter since it will be recomputed at next deflate call.
1641 */
1642 }
1643 } else {
1644 /* No match, output a literal byte */
1645 Tracevv((stderr,"%c", s->window[s->strstart]));
1646 _tr_tally_lit (s, s->window[s->strstart], bflush);
1647 s->lookahead--;
1648 s->strstart++;
1649 }
1650 if (bflush) FLUSH_BLOCK(s, 0);
1651 }
1652 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1653 if (flush == Z_FINISH) {
1654 FLUSH_BLOCK(s, 1);
1655 return finish_done;
1656 }
1657 if (s->sym_next)
1658 FLUSH_BLOCK(s, 0);
1659 return block_done;
1660 }
1661
1662 #ifndef FASTEST
1663 /* ===========================================================================
1664 * Same as above, but achieves better compression. We use a lazy
1665 * evaluation for matches: a match is finally adopted only if there is
1666 * no better match at the next window position.
1667 */
deflate_slow(s,flush)1668 local block_state deflate_slow(s, flush)
1669 deflate_state *s;
1670 int flush;
1671 {
1672 IPos hash_head; /* head of hash chain */
1673 int bflush; /* set if current block must be flushed */
1674
1675 /* Process the input block. */
1676 for (;;) {
1677 /* Make sure that we always have enough lookahead, except
1678 * at the end of the input file. We need MAX_MATCH bytes
1679 * for the next match, plus MIN_MATCH bytes to insert the
1680 * string following the next match.
1681 */
1682 if (s->lookahead < MIN_LOOKAHEAD) {
1683 fill_window(s);
1684 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1685 return need_more;
1686 }
1687 if (s->lookahead == 0) break; /* flush the current block */
1688 }
1689
1690 /* Insert the string window[strstart .. strstart+2] in the
1691 * dictionary, and set hash_head to the head of the hash chain:
1692 */
1693 hash_head = NIL;
1694 if (s->lookahead >= MIN_MATCH) {
1695 INSERT_STRING(s, s->strstart, hash_head);
1696 }
1697
1698 /* Find the longest match, discarding those <= prev_length.
1699 */
1700 s->prev_length = s->match_length, s->prev_match = s->match_start;
1701 s->match_length = MIN_MATCH-1;
1702
1703 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1704 s->strstart - hash_head <= MAX_DIST(s)) {
1705 /* To simplify the code, we prevent matches with the string
1706 * of window index 0 (in particular we have to avoid a match
1707 * of the string with itself at the start of the input file).
1708 */
1709 s->match_length = longest_match (s, hash_head);
1710 /* longest_match() sets match_start */
1711
1712 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1713 #if TOO_FAR <= 32767
1714 || (s->match_length == MIN_MATCH &&
1715 s->strstart - s->match_start > TOO_FAR)
1716 #endif
1717 )) {
1718
1719 /* If prev_match is also MIN_MATCH, match_start is garbage
1720 * but we will ignore the current match anyway.
1721 */
1722 s->match_length = MIN_MATCH-1;
1723 }
1724 }
1725 /* If there was a match at the previous step and the current
1726 * match is not better, output the previous match:
1727 */
1728 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1729 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1730 /* Do not insert strings in hash table beyond this. */
1731
1732 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1733
1734 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1735 s->prev_length - MIN_MATCH, bflush);
1736
1737 /* Insert in hash table all strings up to the end of the match.
1738 * strstart-1 and strstart are already inserted. If there is not
1739 * enough lookahead, the last two strings are not inserted in
1740 * the hash table.
1741 */
1742 s->lookahead -= s->prev_length-1;
1743 s->prev_length -= 2;
1744 do {
1745 if (++s->strstart <= max_insert) {
1746 INSERT_STRING(s, s->strstart, hash_head);
1747 }
1748 } while (--s->prev_length != 0);
1749 s->match_available = 0;
1750 s->match_length = MIN_MATCH-1;
1751 s->strstart++;
1752
1753 if (bflush) FLUSH_BLOCK(s, 0);
1754
1755 } else if (s->match_available) {
1756 /* If there was no match at the previous position, output a
1757 * single literal. If there was a match but the current match
1758 * is longer, truncate the previous match to a single literal.
1759 */
1760 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1761 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1762 if (bflush) {
1763 FLUSH_BLOCK_ONLY(s, 0);
1764 }
1765 s->strstart++;
1766 s->lookahead--;
1767 if (s->strm->avail_out == 0) return need_more;
1768 } else {
1769 /* There is no previous match to compare with, wait for
1770 * the next step to decide.
1771 */
1772 s->match_available = 1;
1773 s->strstart++;
1774 s->lookahead--;
1775 }
1776 }
1777 Assert (flush != Z_NO_FLUSH, "no flush?");
1778 if (s->match_available) {
1779 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1780 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1781 s->match_available = 0;
1782 }
1783 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1784 if (flush == Z_FINISH) {
1785 FLUSH_BLOCK(s, 1);
1786 return finish_done;
1787 }
1788 if (s->sym_next)
1789 FLUSH_BLOCK(s, 0);
1790 return block_done;
1791 }
1792 #endif /* FASTEST */
1793
1794 /* ===========================================================================
1795 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1796 * one. Do not maintain a hash table. (It will be regenerated if this run of
1797 * deflate switches away from Z_RLE.)
1798 */
deflate_rle(s,flush)1799 local block_state deflate_rle(s, flush)
1800 deflate_state *s;
1801 int flush;
1802 {
1803 int bflush; /* set if current block must be flushed */
1804 uInt prev; /* byte at distance one to match */
1805 Bytef *scan, *strend; /* scan goes up to strend for length of run */
1806
1807 for (;;) {
1808 /* Make sure that we always have enough lookahead, except
1809 * at the end of the input file. We need MAX_MATCH bytes
1810 * for the longest encodable run.
1811 */
1812 if (s->lookahead < MAX_MATCH) {
1813 fill_window(s);
1814 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1815 return need_more;
1816 }
1817 if (s->lookahead == 0) break; /* flush the current block */
1818 }
1819
1820 /* See how many times the previous byte repeats */
1821 s->match_length = 0;
1822 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1823 scan = s->window + s->strstart - 1;
1824 prev = *scan;
1825 if (prev == *++scan && prev == *++scan && prev == *++scan) {
1826 strend = s->window + s->strstart + MAX_MATCH;
1827 do {
1828 } while (prev == *++scan && prev == *++scan &&
1829 prev == *++scan && prev == *++scan &&
1830 prev == *++scan && prev == *++scan &&
1831 prev == *++scan && prev == *++scan &&
1832 scan < strend);
1833 s->match_length = MAX_MATCH - (int)(strend - scan);
1834 if (s->match_length > s->lookahead)
1835 s->match_length = s->lookahead;
1836 }
1837 }
1838
1839 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1840 if (s->match_length >= MIN_MATCH) {
1841 check_match(s, s->strstart, s->strstart - 1, s->match_length);
1842
1843 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1844
1845 s->lookahead -= s->match_length;
1846 s->strstart += s->match_length;
1847 s->match_length = 0;
1848 } else {
1849 /* No match, output a literal byte */
1850 Tracevv((stderr,"%c", s->window[s->strstart]));
1851 _tr_tally_lit (s, s->window[s->strstart], bflush);
1852 s->lookahead--;
1853 s->strstart++;
1854 }
1855 if (bflush) FLUSH_BLOCK(s, 0);
1856 }
1857 s->insert = 0;
1858 if (flush == Z_FINISH) {
1859 FLUSH_BLOCK(s, 1);
1860 return finish_done;
1861 }
1862 if (s->sym_next)
1863 FLUSH_BLOCK(s, 0);
1864 return block_done;
1865 }
1866
1867 /* ===========================================================================
1868 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
1869 * (It will be regenerated if this run of deflate switches away from Huffman.)
1870 */
deflate_huff(s,flush)1871 local block_state deflate_huff(s, flush)
1872 deflate_state *s;
1873 int flush;
1874 {
1875 int bflush; /* set if current block must be flushed */
1876
1877 for (;;) {
1878 /* Make sure that we have a literal to write. */
1879 if (s->lookahead == 0) {
1880 fill_window(s);
1881 if (s->lookahead == 0) {
1882 if (flush == Z_NO_FLUSH)
1883 return need_more;
1884 break; /* flush the current block */
1885 }
1886 }
1887
1888 /* Output a literal byte */
1889 s->match_length = 0;
1890 Tracevv((stderr,"%c", s->window[s->strstart]));
1891 _tr_tally_lit (s, s->window[s->strstart], bflush);
1892 s->lookahead--;
1893 s->strstart++;
1894 if (bflush) FLUSH_BLOCK(s, 0);
1895 }
1896 s->insert = 0;
1897 if (flush == Z_FINISH) {
1898 FLUSH_BLOCK(s, 1);
1899 return finish_done;
1900 }
1901 if (s->sym_next)
1902 FLUSH_BLOCK(s, 0);
1903 return block_done;
1904 }
1905