• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "common/sid.h"
29 
30 #include "util/memstream.h"
31 
32 #include <algorithm>
33 #include <map>
34 #include <vector>
35 
36 namespace aco {
37 
38 struct constaddr_info {
39    unsigned getpc_end;
40    unsigned add_literal;
41 };
42 
43 struct asm_context {
44    Program* program;
45    enum amd_gfx_level gfx_level;
46    std::vector<std::pair<int, SOPP_instruction*>> branches;
47    std::map<unsigned, constaddr_info> constaddrs;
48    const int16_t* opcode;
49    // TODO: keep track of branch instructions referring blocks
50    // and, when emitting the block, correct the offset in instr
asm_contextaco::asm_context51    asm_context(Program* program_) : program(program_), gfx_level(program->gfx_level)
52    {
53       if (gfx_level <= GFX7)
54          opcode = &instr_info.opcode_gfx7[0];
55       else if (gfx_level <= GFX9)
56          opcode = &instr_info.opcode_gfx9[0];
57       else if (gfx_level >= GFX10)
58          opcode = &instr_info.opcode_gfx10[0];
59    }
60 
61    int subvector_begin_pos = -1;
62 };
63 
64 unsigned
get_mimg_nsa_dwords(const Instruction * instr)65 get_mimg_nsa_dwords(const Instruction* instr)
66 {
67    unsigned addr_dwords = instr->operands.size() - 3;
68    for (unsigned i = 1; i < addr_dwords; i++) {
69       if (instr->operands[3 + i].physReg() != instr->operands[3].physReg().advance(i * 4))
70          return DIV_ROUND_UP(addr_dwords - 1, 4);
71    }
72    return 0;
73 }
74 
75 void
emit_instruction(asm_context & ctx,std::vector<uint32_t> & out,Instruction * instr)76 emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
77 {
78    /* lower remaining pseudo-instructions */
79    if (instr->opcode == aco_opcode::p_constaddr_getpc) {
80       ctx.constaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1;
81 
82       instr->opcode = aco_opcode::s_getpc_b64;
83       instr->operands.pop_back();
84    } else if (instr->opcode == aco_opcode::p_constaddr_addlo) {
85       ctx.constaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1;
86 
87       instr->opcode = aco_opcode::s_add_u32;
88       instr->operands.pop_back();
89       assert(instr->operands[1].isConstant());
90       /* in case it's an inline constant, make it a literal */
91       instr->operands[1] = Operand::literal32(instr->operands[1].constantValue());
92    }
93 
94    uint32_t opcode = ctx.opcode[(int)instr->opcode];
95    if (opcode == (uint32_t)-1) {
96       char* outmem;
97       size_t outsize;
98       struct u_memstream mem;
99       u_memstream_open(&mem, &outmem, &outsize);
100       FILE* const memf = u_memstream_get(&mem);
101 
102       fprintf(memf, "Unsupported opcode: ");
103       aco_print_instr(instr, memf);
104       u_memstream_close(&mem);
105 
106       aco_err(ctx.program, outmem);
107       free(outmem);
108 
109       abort();
110    }
111 
112    switch (instr->format) {
113    case Format::SOP2: {
114       uint32_t encoding = (0b10 << 30);
115       encoding |= opcode << 23;
116       encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
117       encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
118       encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
119       out.push_back(encoding);
120       break;
121    }
122    case Format::SOPK: {
123       SOPK_instruction& sopk = instr->sopk();
124 
125       if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
126          assert(ctx.gfx_level >= GFX10);
127          assert(ctx.subvector_begin_pos == -1);
128          ctx.subvector_begin_pos = out.size();
129       } else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
130          assert(ctx.gfx_level >= GFX10);
131          assert(ctx.subvector_begin_pos != -1);
132          /* Adjust s_subvector_loop_begin instruction to the address after the end  */
133          out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
134          /* Adjust s_subvector_loop_end instruction to the address after the beginning  */
135          sopk.imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
136          ctx.subvector_begin_pos = -1;
137       }
138 
139       uint32_t encoding = (0b1011 << 28);
140       encoding |= opcode << 23;
141       encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc)
142                      ? instr->definitions[0].physReg() << 16
143                   : !instr->operands.empty() && instr->operands[0].physReg() <= 127
144                      ? instr->operands[0].physReg() << 16
145                      : 0;
146       encoding |= sopk.imm;
147       out.push_back(encoding);
148       break;
149    }
150    case Format::SOP1: {
151       uint32_t encoding = (0b101111101 << 23);
152       encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
153       encoding |= opcode << 8;
154       encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
155       out.push_back(encoding);
156       break;
157    }
158    case Format::SOPC: {
159       uint32_t encoding = (0b101111110 << 23);
160       encoding |= opcode << 16;
161       encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
162       encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
163       out.push_back(encoding);
164       break;
165    }
166    case Format::SOPP: {
167       SOPP_instruction& sopp = instr->sopp();
168       uint32_t encoding = (0b101111111 << 23);
169       encoding |= opcode << 16;
170       encoding |= (uint16_t)sopp.imm;
171       if (sopp.block != -1) {
172          sopp.pass_flags = 0;
173          ctx.branches.emplace_back(out.size(), &sopp);
174       }
175       out.push_back(encoding);
176       break;
177    }
178    case Format::SMEM: {
179       SMEM_instruction& smem = instr->smem();
180       bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
181       bool is_load = !instr->definitions.empty();
182       uint32_t encoding = 0;
183 
184       if (ctx.gfx_level <= GFX7) {
185          encoding = (0b11000 << 27);
186          encoding |= opcode << 22;
187          encoding |= instr->definitions.size() ? instr->definitions[0].physReg() << 15 : 0;
188          encoding |= instr->operands.size() ? (instr->operands[0].physReg() >> 1) << 9 : 0;
189          if (instr->operands.size() >= 2) {
190             if (!instr->operands[1].isConstant()) {
191                encoding |= instr->operands[1].physReg().reg();
192             } else if (instr->operands[1].constantValue() >= 1024) {
193                encoding |= 255; /* SQ_SRC_LITERAL */
194             } else {
195                encoding |= instr->operands[1].constantValue() >> 2;
196                encoding |= 1 << 8;
197             }
198          }
199          out.push_back(encoding);
200          /* SMRD instructions can take a literal on GFX7 */
201          if (instr->operands.size() >= 2 && instr->operands[1].isConstant() &&
202              instr->operands[1].constantValue() >= 1024)
203             out.push_back(instr->operands[1].constantValue() >> 2);
204          return;
205       }
206 
207       if (ctx.gfx_level <= GFX9) {
208          encoding = (0b110000 << 26);
209          assert(!smem.dlc); /* Device-level coherent is not supported on GFX9 and lower */
210          encoding |= smem.nv ? 1 << 15 : 0;
211       } else {
212          encoding = (0b111101 << 26);
213          assert(!smem.nv); /* Non-volatile is not supported on GFX10 */
214          encoding |= smem.dlc ? 1 << 14 : 0;
215       }
216 
217       encoding |= opcode << 18;
218       encoding |= smem.glc ? 1 << 16 : 0;
219 
220       if (ctx.gfx_level <= GFX9) {
221          if (instr->operands.size() >= 2)
222             encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
223       }
224       if (ctx.gfx_level == GFX9) {
225          encoding |= soe ? 1 << 14 : 0;
226       }
227 
228       if (is_load || instr->operands.size() >= 3) { /* SDATA */
229          encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg())
230                      << 6;
231       }
232       if (instr->operands.size() >= 1) { /* SBASE */
233          encoding |= instr->operands[0].physReg() >> 1;
234       }
235 
236       out.push_back(encoding);
237       encoding = 0;
238 
239       int32_t offset = 0;
240       uint32_t soffset = ctx.gfx_level >= GFX10
241                             ? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */
242                             : 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on
243                                     GFX8 and below) */
244       if (instr->operands.size() >= 2) {
245          const Operand& op_off1 = instr->operands[1];
246          if (ctx.gfx_level <= GFX9) {
247             offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg();
248          } else {
249             /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an
250              * SGPR */
251             if (op_off1.isConstant()) {
252                offset = op_off1.constantValue();
253             } else {
254                soffset = op_off1.physReg();
255                assert(!soe); /* There is no place to put the other SGPR offset, if any */
256             }
257          }
258 
259          if (soe) {
260             const Operand& op_off2 = instr->operands.back();
261             assert(ctx.gfx_level >= GFX9); /* GFX8 and below don't support specifying a constant
262                                                and an SGPR at the same time */
263             assert(!op_off2.isConstant());
264             soffset = op_off2.physReg();
265          }
266       }
267       encoding |= offset;
268       encoding |= soffset << 25;
269 
270       out.push_back(encoding);
271       return;
272    }
273    case Format::VOP2: {
274       uint32_t encoding = 0;
275       encoding |= opcode << 25;
276       encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
277       encoding |= (0xFF & instr->operands[1].physReg()) << 9;
278       encoding |= instr->operands[0].physReg();
279       out.push_back(encoding);
280       break;
281    }
282    case Format::VOP1: {
283       uint32_t encoding = (0b0111111 << 25);
284       if (!instr->definitions.empty())
285          encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
286       encoding |= opcode << 9;
287       if (!instr->operands.empty())
288          encoding |= instr->operands[0].physReg();
289       out.push_back(encoding);
290       break;
291    }
292    case Format::VOPC: {
293       uint32_t encoding = (0b0111110 << 25);
294       encoding |= opcode << 17;
295       encoding |= (0xFF & instr->operands[1].physReg()) << 9;
296       encoding |= instr->operands[0].physReg();
297       out.push_back(encoding);
298       break;
299    }
300    case Format::VINTRP: {
301       Interp_instruction& interp = instr->vintrp();
302       uint32_t encoding = 0;
303 
304       if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
305           instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
306           instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
307           instr->opcode == aco_opcode::v_interp_p2_f16) {
308          if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
309             encoding = (0b110100 << 26);
310          } else if (ctx.gfx_level >= GFX10) {
311             encoding = (0b110101 << 26);
312          } else {
313             unreachable("Unknown gfx_level.");
314          }
315 
316          encoding |= opcode << 16;
317          encoding |= (0xFF & instr->definitions[0].physReg());
318          out.push_back(encoding);
319 
320          encoding = 0;
321          encoding |= interp.attribute;
322          encoding |= interp.component << 6;
323          encoding |= instr->operands[0].physReg() << 9;
324          if (instr->opcode == aco_opcode::v_interp_p2_f16 ||
325              instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
326              instr->opcode == aco_opcode::v_interp_p1lv_f16) {
327             encoding |= instr->operands[2].physReg() << 18;
328          }
329          out.push_back(encoding);
330       } else {
331          if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
332             encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
333          } else {
334             encoding = (0b110010 << 26);
335          }
336 
337          assert(encoding);
338          encoding |= (0xFF & instr->definitions[0].physReg()) << 18;
339          encoding |= opcode << 16;
340          encoding |= interp.attribute << 10;
341          encoding |= interp.component << 8;
342          if (instr->opcode == aco_opcode::v_interp_mov_f32)
343             encoding |= (0x3 & instr->operands[0].constantValue());
344          else
345             encoding |= (0xFF & instr->operands[0].physReg());
346          out.push_back(encoding);
347       }
348       break;
349    }
350    case Format::DS: {
351       DS_instruction& ds = instr->ds();
352       uint32_t encoding = (0b110110 << 26);
353       if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
354          encoding |= opcode << 17;
355          encoding |= (ds.gds ? 1 : 0) << 16;
356       } else {
357          encoding |= opcode << 18;
358          encoding |= (ds.gds ? 1 : 0) << 17;
359       }
360       encoding |= ((0xFF & ds.offset1) << 8);
361       encoding |= (0xFFFF & ds.offset0);
362       out.push_back(encoding);
363       encoding = 0;
364       unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
365       encoding |= (0xFF & reg) << 24;
366       reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0)
367                ? instr->operands[2].physReg()
368                : 0;
369       encoding |= (0xFF & reg) << 16;
370       reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0)
371                ? instr->operands[1].physReg()
372                : 0;
373       encoding |= (0xFF & reg) << 8;
374       encoding |= (0xFF & instr->operands[0].physReg());
375       out.push_back(encoding);
376       break;
377    }
378    case Format::MUBUF: {
379       MUBUF_instruction& mubuf = instr->mubuf();
380       uint32_t encoding = (0b111000 << 26);
381       encoding |= opcode << 18;
382       encoding |= (mubuf.lds ? 1 : 0) << 16;
383       encoding |= (mubuf.glc ? 1 : 0) << 14;
384       encoding |= (mubuf.idxen ? 1 : 0) << 13;
385       assert(!mubuf.addr64 || ctx.gfx_level <= GFX7);
386       if (ctx.gfx_level == GFX6 || ctx.gfx_level == GFX7)
387          encoding |= (mubuf.addr64 ? 1 : 0) << 15;
388       encoding |= (mubuf.offen ? 1 : 0) << 12;
389       if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
390          assert(!mubuf.dlc); /* Device-level coherent is not supported on GFX9 and lower */
391          encoding |= (mubuf.slc ? 1 : 0) << 17;
392       } else if (ctx.gfx_level >= GFX10) {
393          encoding |= (mubuf.dlc ? 1 : 0) << 15;
394       }
395       encoding |= 0x0FFF & mubuf.offset;
396       out.push_back(encoding);
397       encoding = 0;
398       if (ctx.gfx_level <= GFX7 || ctx.gfx_level >= GFX10) {
399          encoding |= (mubuf.slc ? 1 : 0) << 22;
400       }
401       encoding |= instr->operands[2].physReg() << 24;
402       encoding |= (mubuf.tfe ? 1 : 0) << 23;
403       encoding |= (instr->operands[0].physReg() >> 2) << 16;
404       unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg()
405                                                 : instr->definitions[0].physReg();
406       encoding |= (0xFF & reg) << 8;
407       encoding |= (0xFF & instr->operands[1].physReg());
408       out.push_back(encoding);
409       break;
410    }
411    case Format::MTBUF: {
412       MTBUF_instruction& mtbuf = instr->mtbuf();
413 
414       uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt);
415       uint32_t encoding = (0b111010 << 26);
416       assert(img_format <= 0x7F);
417       assert(!mtbuf.dlc || ctx.gfx_level >= GFX10);
418       encoding |= (mtbuf.dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */
419       encoding |= (mtbuf.glc ? 1 : 0) << 14;
420       encoding |= (mtbuf.idxen ? 1 : 0) << 13;
421       encoding |= (mtbuf.offen ? 1 : 0) << 12;
422       encoding |= 0x0FFF & mtbuf.offset;
423       encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */
424 
425       if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
426          encoding |= opcode << 15;
427       } else {
428          encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
429       }
430 
431       out.push_back(encoding);
432       encoding = 0;
433 
434       encoding |= instr->operands[2].physReg() << 24;
435       encoding |= (mtbuf.tfe ? 1 : 0) << 23;
436       encoding |= (mtbuf.slc ? 1 : 0) << 22;
437       encoding |= (instr->operands[0].physReg() >> 2) << 16;
438       unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg()
439                                                 : instr->definitions[0].physReg();
440       encoding |= (0xFF & reg) << 8;
441       encoding |= (0xFF & instr->operands[1].physReg());
442 
443       if (ctx.gfx_level >= GFX10) {
444          encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */
445       }
446 
447       out.push_back(encoding);
448       break;
449    }
450    case Format::MIMG: {
451       unsigned nsa_dwords = get_mimg_nsa_dwords(instr);
452       assert(!nsa_dwords || ctx.gfx_level >= GFX10);
453 
454       MIMG_instruction& mimg = instr->mimg();
455       uint32_t encoding = (0b111100 << 26);
456       encoding |= mimg.slc ? 1 << 25 : 0;
457       encoding |= (opcode & 0x7f) << 18;
458       encoding |= (opcode >> 7) & 1;
459       encoding |= mimg.lwe ? 1 << 17 : 0;
460       encoding |= mimg.tfe ? 1 << 16 : 0;
461       encoding |= mimg.glc ? 1 << 13 : 0;
462       encoding |= mimg.unrm ? 1 << 12 : 0;
463       if (ctx.gfx_level <= GFX9) {
464          assert(!mimg.dlc); /* Device-level coherent is not supported on GFX9 and lower */
465          assert(!mimg.r128);
466          encoding |= mimg.a16 ? 1 << 15 : 0;
467          encoding |= mimg.da ? 1 << 14 : 0;
468       } else {
469          encoding |= mimg.r128 ? 1 << 15
470                                : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
471          encoding |= nsa_dwords << 1;
472          encoding |= mimg.dim << 3; /* GFX10: dimensionality instead of declare array */
473          encoding |= mimg.dlc ? 1 << 7 : 0;
474       }
475       encoding |= (0xF & mimg.dmask) << 8;
476       out.push_back(encoding);
477       encoding = (0xFF & instr->operands[3].physReg()); /* VADDR */
478       if (!instr->definitions.empty()) {
479          encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */
480       } else if (!instr->operands[2].isUndefined()) {
481          encoding |= (0xFF & instr->operands[2].physReg()) << 8; /* VDATA */
482       }
483       encoding |= (0x1F & (instr->operands[0].physReg() >> 2)) << 16; /* T# (resource) */
484       if (!instr->operands[1].isUndefined())
485          encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 21; /* sampler */
486 
487       assert(!mimg.d16 || ctx.gfx_level >= GFX9);
488       encoding |= mimg.d16 ? 1 << 31 : 0;
489       if (ctx.gfx_level >= GFX10) {
490          /* GFX10: A16 still exists, but is in a different place */
491          encoding |= mimg.a16 ? 1 << 30 : 0;
492       }
493 
494       out.push_back(encoding);
495 
496       if (nsa_dwords) {
497          out.resize(out.size() + nsa_dwords);
498          std::vector<uint32_t>::iterator nsa = std::prev(out.end(), nsa_dwords);
499          for (unsigned i = 0; i < instr->operands.size() - 4u; i++)
500             nsa[i / 4] |= (0xFF & instr->operands[4 + i].physReg().reg()) << (i % 4 * 8);
501       }
502       break;
503    }
504    case Format::FLAT:
505    case Format::SCRATCH:
506    case Format::GLOBAL: {
507       FLAT_instruction& flat = instr->flatlike();
508       uint32_t encoding = (0b110111 << 26);
509       encoding |= opcode << 18;
510       if (ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) {
511          if (instr->isFlat())
512             assert(flat.offset <= 0xfff);
513          else
514             assert(flat.offset >= -4096 && flat.offset < 4096);
515          encoding |= flat.offset & 0x1fff;
516       } else if (ctx.gfx_level <= GFX8 || instr->isFlat()) {
517          /* GFX10 has a 12-bit immediate OFFSET field,
518           * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug
519           */
520          assert(flat.offset == 0);
521       } else {
522          assert(flat.offset >= -2048 && flat.offset <= 2047);
523          encoding |= flat.offset & 0xfff;
524       }
525       if (instr->isScratch())
526          encoding |= 1 << 14;
527       else if (instr->isGlobal())
528          encoding |= 2 << 14;
529       encoding |= flat.lds ? 1 << 13 : 0;
530       encoding |= flat.glc ? 1 << 16 : 0;
531       encoding |= flat.slc ? 1 << 17 : 0;
532       if (ctx.gfx_level >= GFX10) {
533          assert(!flat.nv);
534          encoding |= flat.dlc ? 1 << 12 : 0;
535       } else {
536          assert(!flat.dlc);
537       }
538       out.push_back(encoding);
539       encoding = (0xFF & instr->operands[0].physReg());
540       if (!instr->definitions.empty())
541          encoding |= (0xFF & instr->definitions[0].physReg()) << 24;
542       if (instr->operands.size() >= 3)
543          encoding |= (0xFF & instr->operands[2].physReg()) << 8;
544       if (!instr->operands[1].isUndefined()) {
545          assert(ctx.gfx_level >= GFX10 || instr->operands[1].physReg() != 0x7F);
546          assert(instr->format != Format::FLAT);
547          encoding |= instr->operands[1].physReg() << 16;
548       } else if (instr->format != Format::FLAT ||
549                  ctx.gfx_level >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */
550          /* For GFX10.3 scratch, 0x7F disables both ADDR and SADDR, unlike sgpr_null, which only
551           * disables SADDR.
552           */
553          if (ctx.gfx_level <= GFX9 ||
554              (instr->format == Format::SCRATCH && instr->operands[0].isUndefined()))
555             encoding |= 0x7F << 16;
556          else
557             encoding |= sgpr_null << 16;
558       }
559       encoding |= flat.nv ? 1 << 23 : 0;
560       out.push_back(encoding);
561       break;
562    }
563    case Format::EXP: {
564       Export_instruction& exp = instr->exp();
565       uint32_t encoding;
566       if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
567          encoding = (0b110001 << 26);
568       } else {
569          encoding = (0b111110 << 26);
570       }
571 
572       encoding |= exp.valid_mask ? 0b1 << 12 : 0;
573       encoding |= exp.done ? 0b1 << 11 : 0;
574       encoding |= exp.compressed ? 0b1 << 10 : 0;
575       encoding |= exp.dest << 4;
576       encoding |= exp.enabled_mask;
577       out.push_back(encoding);
578       encoding = 0xFF & exp.operands[0].physReg();
579       encoding |= (0xFF & exp.operands[1].physReg()) << 8;
580       encoding |= (0xFF & exp.operands[2].physReg()) << 16;
581       encoding |= (0xFF & exp.operands[3].physReg()) << 24;
582       out.push_back(encoding);
583       break;
584    }
585    case Format::PSEUDO:
586    case Format::PSEUDO_BARRIER:
587       if (instr->opcode != aco_opcode::p_unit_test)
588          unreachable("Pseudo instructions should be lowered before assembly.");
589       break;
590    default:
591       if (instr->isVOP3()) {
592          VOP3_instruction& vop3 = instr->vop3();
593 
594          if (instr->isVOP2()) {
595             opcode = opcode + 0x100;
596          } else if (instr->isVOP1()) {
597             if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9)
598                opcode = opcode + 0x140;
599             else
600                opcode = opcode + 0x180;
601          } else if (instr->isVOPC()) {
602             opcode = opcode + 0x0;
603          } else if (instr->isVINTRP()) {
604             opcode = opcode + 0x270;
605          }
606 
607          uint32_t encoding;
608          if (ctx.gfx_level <= GFX9) {
609             encoding = (0b110100 << 26);
610          } else if (ctx.gfx_level >= GFX10) {
611             encoding = (0b110101 << 26);
612          } else {
613             unreachable("Unknown gfx_level.");
614          }
615 
616          if (ctx.gfx_level <= GFX7) {
617             encoding |= opcode << 17;
618             encoding |= (vop3.clamp ? 1 : 0) << 11;
619          } else {
620             encoding |= opcode << 16;
621             encoding |= (vop3.clamp ? 1 : 0) << 15;
622          }
623          encoding |= vop3.opsel << 11;
624          for (unsigned i = 0; i < 3; i++)
625             encoding |= vop3.abs[i] << (8 + i);
626          if (instr->definitions.size() == 2)
627             encoding |= instr->definitions[1].physReg() << 8;
628          encoding |= (0xFF & instr->definitions[0].physReg());
629          out.push_back(encoding);
630          encoding = 0;
631          if (instr->opcode == aco_opcode::v_interp_mov_f32) {
632             encoding = 0x3 & instr->operands[0].constantValue();
633          } else if (instr->opcode == aco_opcode::v_writelane_b32_e64) {
634             encoding |= instr->operands[0].physReg() << 0;
635             encoding |= instr->operands[1].physReg() << 9;
636             /* Encoding src2 works fine with hardware but breaks some disassemblers. */
637          } else {
638             for (unsigned i = 0; i < instr->operands.size(); i++)
639                encoding |= instr->operands[i].physReg() << (i * 9);
640          }
641          encoding |= vop3.omod << 27;
642          for (unsigned i = 0; i < 3; i++)
643             encoding |= vop3.neg[i] << (29 + i);
644          out.push_back(encoding);
645 
646       } else if (instr->isVOP3P()) {
647          VOP3P_instruction& vop3 = instr->vop3p();
648 
649          uint32_t encoding;
650          if (ctx.gfx_level == GFX9) {
651             encoding = (0b110100111 << 23);
652          } else if (ctx.gfx_level >= GFX10) {
653             encoding = (0b110011 << 26);
654          } else {
655             unreachable("Unknown gfx_level.");
656          }
657 
658          encoding |= opcode << 16;
659          encoding |= (vop3.clamp ? 1 : 0) << 15;
660          encoding |= vop3.opsel_lo << 11;
661          encoding |= ((vop3.opsel_hi & 0x4) ? 1 : 0) << 14;
662          for (unsigned i = 0; i < 3; i++)
663             encoding |= vop3.neg_hi[i] << (8 + i);
664          encoding |= (0xFF & instr->definitions[0].physReg());
665          out.push_back(encoding);
666          encoding = 0;
667          for (unsigned i = 0; i < instr->operands.size(); i++)
668             encoding |= instr->operands[i].physReg() << (i * 9);
669          encoding |= (vop3.opsel_hi & 0x3) << 27;
670          for (unsigned i = 0; i < 3; i++)
671             encoding |= vop3.neg_lo[i] << (29 + i);
672          out.push_back(encoding);
673 
674       } else if (instr->isDPP16()) {
675          assert(ctx.gfx_level >= GFX8);
676          DPP16_instruction& dpp = instr->dpp16();
677 
678          /* first emit the instruction without the DPP operand */
679          Operand dpp_op = instr->operands[0];
680          instr->operands[0] = Operand(PhysReg{250}, v1);
681          instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP16);
682          emit_instruction(ctx, out, instr);
683          uint32_t encoding = (0xF & dpp.row_mask) << 28;
684          encoding |= (0xF & dpp.bank_mask) << 24;
685          encoding |= dpp.abs[1] << 23;
686          encoding |= dpp.neg[1] << 22;
687          encoding |= dpp.abs[0] << 21;
688          encoding |= dpp.neg[0] << 20;
689          if (ctx.gfx_level >= GFX10)
690             encoding |= 1 << 18; /* set Fetch Inactive to match GFX9 behaviour */
691          encoding |= dpp.bound_ctrl << 19;
692          encoding |= dpp.dpp_ctrl << 8;
693          encoding |= (0xFF) & dpp_op.physReg();
694          out.push_back(encoding);
695          return;
696       } else if (instr->isDPP8()) {
697          assert(ctx.gfx_level >= GFX10);
698          DPP8_instruction& dpp = instr->dpp8();
699 
700          /* first emit the instruction without the DPP operand */
701          Operand dpp_op = instr->operands[0];
702          instr->operands[0] = Operand(PhysReg{234}, v1);
703          instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP8);
704          emit_instruction(ctx, out, instr);
705          uint32_t encoding = (0xFF) & dpp_op.physReg();
706          for (unsigned i = 0; i < 8; ++i)
707             encoding |= dpp.lane_sel[i] << (8 + i * 3);
708          out.push_back(encoding);
709          return;
710       } else if (instr->isSDWA()) {
711          assert(ctx.gfx_level >= GFX8 && ctx.gfx_level < GFX11);
712          SDWA_instruction& sdwa = instr->sdwa();
713 
714          /* first emit the instruction without the SDWA operand */
715          Operand sdwa_op = instr->operands[0];
716          instr->operands[0] = Operand(PhysReg{249}, v1);
717          instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::SDWA);
718          emit_instruction(ctx, out, instr);
719 
720          uint32_t encoding = 0;
721 
722          if (instr->isVOPC()) {
723             if (instr->definitions[0].physReg() != vcc) {
724                encoding |= instr->definitions[0].physReg() << 8;
725                encoding |= 1 << 15;
726             }
727             encoding |= (sdwa.clamp ? 1 : 0) << 13;
728          } else {
729             encoding |= sdwa.dst_sel.to_sdwa_sel(instr->definitions[0].physReg().byte()) << 8;
730             uint32_t dst_u = sdwa.dst_sel.sign_extend() ? 1 : 0;
731             if (instr->definitions[0].bytes() < 4) /* dst_preserve */
732                dst_u = 2;
733             encoding |= dst_u << 11;
734             encoding |= (sdwa.clamp ? 1 : 0) << 13;
735             encoding |= sdwa.omod << 14;
736          }
737 
738          encoding |= sdwa.sel[0].to_sdwa_sel(sdwa_op.physReg().byte()) << 16;
739          encoding |= sdwa.sel[0].sign_extend() ? 1 << 19 : 0;
740          encoding |= sdwa.abs[0] << 21;
741          encoding |= sdwa.neg[0] << 20;
742 
743          if (instr->operands.size() >= 2) {
744             encoding |= sdwa.sel[1].to_sdwa_sel(instr->operands[1].physReg().byte()) << 24;
745             encoding |= sdwa.sel[1].sign_extend() ? 1 << 27 : 0;
746             encoding |= sdwa.abs[1] << 29;
747             encoding |= sdwa.neg[1] << 28;
748          }
749 
750          encoding |= 0xFF & sdwa_op.physReg();
751          encoding |= (sdwa_op.physReg() < 256) << 23;
752          if (instr->operands.size() >= 2)
753             encoding |= (instr->operands[1].physReg() < 256) << 31;
754          out.push_back(encoding);
755       } else {
756          unreachable("unimplemented instruction format");
757       }
758       break;
759    }
760 
761    /* append literal dword */
762    for (const Operand& op : instr->operands) {
763       if (op.isLiteral()) {
764          out.push_back(op.constantValue());
765          break;
766       }
767    }
768 }
769 
770 void
emit_block(asm_context & ctx,std::vector<uint32_t> & out,Block & block)771 emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
772 {
773    for (aco_ptr<Instruction>& instr : block.instructions) {
774 #if 0
775       int start_idx = out.size();
776       std::cerr << "Encoding:\t" << std::endl;
777       aco_print_instr(&*instr, stderr);
778       std::cerr << std::endl;
779 #endif
780       emit_instruction(ctx, out, instr.get());
781 #if 0
782       for (int i = start_idx; i < out.size(); i++)
783          std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
784 #endif
785    }
786 }
787 
788 void
fix_exports(asm_context & ctx,std::vector<uint32_t> & out,Program * program)789 fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
790 {
791    bool exported = false;
792    for (Block& block : program->blocks) {
793       if (!(block.kind & block_kind_export_end))
794          continue;
795       std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
796       while (it != block.instructions.rend()) {
797          if ((*it)->isEXP()) {
798             Export_instruction& exp = (*it)->exp();
799             if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG) {
800                if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= (V_008DFC_SQ_EXP_POS + 3)) {
801                   exp.done = true;
802                   exported = true;
803                   break;
804                }
805             } else {
806                if (!program->info.ps.has_epilog) {
807                   exp.done = true;
808                   exp.valid_mask = true;
809                }
810                exported = true;
811                break;
812             }
813          } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) {
814             break;
815          } else if ((*it)->opcode == aco_opcode::s_setpc_b64) {
816             /* Do not abort if the main FS has an epilog because it only
817              * exports MRTZ (if present) and the epilog exports colors.
818              */
819             exported |= program->stage.hw == HWStage::FS && program->info.ps.has_epilog;
820          }
821          ++it;
822       }
823    }
824 
825    if (!exported) {
826       /* Abort in order to avoid a GPU hang. */
827       bool is_vertex_or_ngg =
828          (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG);
829       aco_err(program,
830               "Missing export in %s shader:", is_vertex_or_ngg ? "vertex or NGG" : "fragment");
831       aco_print_program(program, stderr);
832       abort();
833    }
834 }
835 
836 static void
insert_code(asm_context & ctx,std::vector<uint32_t> & out,unsigned insert_before,unsigned insert_count,const uint32_t * insert_data)837 insert_code(asm_context& ctx, std::vector<uint32_t>& out, unsigned insert_before,
838             unsigned insert_count, const uint32_t* insert_data)
839 {
840    out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count);
841 
842    /* Update the offset of each affected block */
843    for (Block& block : ctx.program->blocks) {
844       if (block.offset >= insert_before)
845          block.offset += insert_count;
846    }
847 
848    /* Find first branch after the inserted code */
849    auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(),
850                                  [insert_before](const auto& branch) -> bool
851                                  { return (unsigned)branch.first >= insert_before; });
852 
853    /* Update the locations of branches */
854    for (; branch_it != ctx.branches.end(); ++branch_it)
855       branch_it->first += insert_count;
856 
857    /* Update the locations of p_constaddr instructions */
858    for (auto& constaddr : ctx.constaddrs) {
859       constaddr_info& info = constaddr.second;
860       if (info.getpc_end >= insert_before)
861          info.getpc_end += insert_count;
862       if (info.add_literal >= insert_before)
863          info.add_literal += insert_count;
864    }
865 }
866 
867 static void
fix_branches_gfx10(asm_context & ctx,std::vector<uint32_t> & out)868 fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
869 {
870    /* Branches with an offset of 0x3f are buggy on GFX10,
871     * we workaround by inserting NOPs if needed.
872     */
873    bool gfx10_3f_bug = false;
874 
875    do {
876       auto buggy_branch_it = std::find_if(
877          ctx.branches.begin(), ctx.branches.end(),
878          [&ctx](const auto& branch) -> bool {
879             return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) ==
880                    0x3f;
881          });
882 
883       gfx10_3f_bug = buggy_branch_it != ctx.branches.end();
884 
885       if (gfx10_3f_bug) {
886          /* Insert an s_nop after the branch */
887          constexpr uint32_t s_nop_0 = 0xbf800000u;
888          insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0);
889       }
890    } while (gfx10_3f_bug);
891 }
892 
893 void
emit_long_jump(asm_context & ctx,SOPP_instruction * branch,bool backwards,std::vector<uint32_t> & out)894 emit_long_jump(asm_context& ctx, SOPP_instruction* branch, bool backwards,
895                std::vector<uint32_t>& out)
896 {
897    Builder bld(ctx.program);
898 
899    Definition def_tmp_lo(branch->definitions[0].physReg(), s1);
900    Operand op_tmp_lo(branch->definitions[0].physReg(), s1);
901    Definition def_tmp_hi(branch->definitions[0].physReg().advance(4), s1);
902    Operand op_tmp_hi(branch->definitions[0].physReg().advance(4), s1);
903 
904    aco_ptr<Instruction> instr;
905 
906    if (branch->opcode != aco_opcode::s_branch) {
907       /* for conditional branches, skip the long jump if the condition is false */
908       aco_opcode inv;
909       switch (branch->opcode) {
910       case aco_opcode::s_cbranch_scc0: inv = aco_opcode::s_cbranch_scc1; break;
911       case aco_opcode::s_cbranch_scc1: inv = aco_opcode::s_cbranch_scc0; break;
912       case aco_opcode::s_cbranch_vccz: inv = aco_opcode::s_cbranch_vccnz; break;
913       case aco_opcode::s_cbranch_vccnz: inv = aco_opcode::s_cbranch_vccz; break;
914       case aco_opcode::s_cbranch_execz: inv = aco_opcode::s_cbranch_execnz; break;
915       case aco_opcode::s_cbranch_execnz: inv = aco_opcode::s_cbranch_execz; break;
916       default: unreachable("Unhandled long jump.");
917       }
918       instr.reset(bld.sopp(inv, -1, 6));
919       emit_instruction(ctx, out, instr.get());
920    }
921 
922    /* create the new PC and stash SCC in the LSB */
923    instr.reset(bld.sop1(aco_opcode::s_getpc_b64, branch->definitions[0]).instr);
924    emit_instruction(ctx, out, instr.get());
925 
926    instr.reset(
927       bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand::literal32(0)).instr);
928    emit_instruction(ctx, out, instr.get());
929    branch->pass_flags = out.size();
930 
931    /* s_addc_u32 for high 32 bits not needed because the program is in a 32-bit VA range */
932 
933    /* restore SCC and clear the LSB of the new PC */
934    instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr);
935    emit_instruction(ctx, out, instr.get());
936    instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand::zero()).instr);
937    emit_instruction(ctx, out, instr.get());
938 
939    /* create the s_setpc_b64 to jump */
940    instr.reset(
941       bld.sop1(aco_opcode::s_setpc_b64, Operand(branch->definitions[0].physReg(), s2)).instr);
942    emit_instruction(ctx, out, instr.get());
943 }
944 
945 void
fix_branches(asm_context & ctx,std::vector<uint32_t> & out)946 fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
947 {
948    bool repeat = false;
949    do {
950       repeat = false;
951 
952       if (ctx.gfx_level == GFX10)
953          fix_branches_gfx10(ctx, out);
954 
955       for (std::pair<int, SOPP_instruction*>& branch : ctx.branches) {
956          int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
957          if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) {
958             std::vector<uint32_t> long_jump;
959             bool backwards =
960                ctx.program->blocks[branch.second->block].offset < (unsigned)branch.first;
961             emit_long_jump(ctx, branch.second, backwards, long_jump);
962 
963             out[branch.first] = long_jump[0];
964             insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1);
965 
966             repeat = true;
967             break;
968          }
969 
970          if (branch.second->pass_flags) {
971             int after_getpc = branch.first + branch.second->pass_flags - 2;
972             offset = (int)ctx.program->blocks[branch.second->block].offset - after_getpc;
973             out[branch.first + branch.second->pass_flags - 1] = offset * 4;
974          } else {
975             out[branch.first] &= 0xffff0000u;
976             out[branch.first] |= (uint16_t)offset;
977          }
978       }
979    } while (repeat);
980 }
981 
982 void
fix_constaddrs(asm_context & ctx,std::vector<uint32_t> & out)983 fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
984 {
985    for (auto& constaddr : ctx.constaddrs) {
986       constaddr_info& info = constaddr.second;
987       out[info.add_literal] += (out.size() - info.getpc_end) * 4u;
988    }
989 }
990 
991 unsigned
emit_program(Program * program,std::vector<uint32_t> & code)992 emit_program(Program* program, std::vector<uint32_t>& code)
993 {
994    asm_context ctx(program);
995 
996    if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::FS ||
997        program->stage.hw == HWStage::NGG)
998       fix_exports(ctx, code, program);
999 
1000    for (Block& block : program->blocks) {
1001       block.offset = code.size();
1002       emit_block(ctx, code, block);
1003    }
1004 
1005    fix_branches(ctx, code);
1006 
1007    unsigned exec_size = code.size() * sizeof(uint32_t);
1008 
1009    if (program->gfx_level >= GFX10) {
1010       /* Pad output with s_code_end so instruction prefetching doesn't cause
1011        * page faults */
1012       unsigned final_size = align(code.size() + 3 * 16, 16);
1013       while (code.size() < final_size)
1014          code.push_back(0xbf9f0000u);
1015    }
1016 
1017    fix_constaddrs(ctx, code);
1018 
1019    while (program->constant_data.size() % 4u)
1020       program->constant_data.push_back(0);
1021    /* Copy constant data */
1022    code.insert(code.end(), (uint32_t*)program->constant_data.data(),
1023                (uint32_t*)(program->constant_data.data() + program->constant_data.size()));
1024 
1025    return exec_size;
1026 }
1027 
1028 } // namespace aco
1029