1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/errors.h"
37 #include "main/glheader.h"
38 #include "main/mtypes.h"
39 #include "main/macros.h"
40 #include "main/enums.h"
41 #include "main/context.h"
42 #include "main/ffvertex_prog.h"
43 #include "program/program.h"
44 #include "program/prog_cache.h"
45 #include "program/prog_instruction.h"
46 #include "program/prog_parameter.h"
47 #include "program/prog_print.h"
48 #include "program/prog_statevars.h"
49 #include "util/bitscan.h"
50
51 #include "state_tracker/st_program.h"
52
53 /** Max of number of lights and texture coord units */
54 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
55
56 struct state_key {
57 GLbitfield varying_vp_inputs;
58
59 unsigned fragprog_inputs_read:12;
60
61 unsigned light_color_material_mask:12;
62 unsigned light_global_enabled:1;
63 unsigned light_local_viewer:1;
64 unsigned light_twoside:1;
65 unsigned material_shininess_is_zero:1;
66 unsigned need_eye_coords:1;
67 unsigned normalize:1;
68 unsigned rescale_normals:1;
69
70 unsigned fog_distance_mode:2;
71 unsigned separate_specular:1;
72 unsigned point_attenuated:1;
73
74 struct {
75 unsigned char light_enabled:1;
76 unsigned char light_eyepos3_is_zero:1;
77 unsigned char light_spotcutoff_is_180:1;
78 unsigned char light_attenuated:1;
79 unsigned char texmat_enabled:1;
80 unsigned char coord_replace:1;
81 unsigned char texgen_enabled:1;
82 unsigned char texgen_mode0:4;
83 unsigned char texgen_mode1:4;
84 unsigned char texgen_mode2:4;
85 unsigned char texgen_mode3:4;
86 } unit[NUM_UNITS];
87 };
88
89
90 #define TXG_NONE 0
91 #define TXG_OBJ_LINEAR 1
92 #define TXG_EYE_LINEAR 2
93 #define TXG_SPHERE_MAP 3
94 #define TXG_REFLECTION_MAP 4
95 #define TXG_NORMAL_MAP 5
96
translate_texgen(GLboolean enabled,GLenum mode)97 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
98 {
99 if (!enabled)
100 return TXG_NONE;
101
102 switch (mode) {
103 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
104 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
105 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
106 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
107 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
108 default: return TXG_NONE;
109 }
110 }
111
112 #define FDM_EYE_RADIAL 0
113 #define FDM_EYE_PLANE 1
114 #define FDM_EYE_PLANE_ABS 2
115 #define FDM_FROM_ARRAY 3
116
translate_fog_distance_mode(GLenum source,GLenum mode)117 static GLuint translate_fog_distance_mode(GLenum source, GLenum mode)
118 {
119 if (source == GL_FRAGMENT_DEPTH_EXT) {
120 switch (mode) {
121 case GL_EYE_RADIAL_NV:
122 return FDM_EYE_RADIAL;
123 case GL_EYE_PLANE:
124 return FDM_EYE_PLANE;
125 default: /* shouldn't happen; fall through to a sensible default */
126 case GL_EYE_PLANE_ABSOLUTE_NV:
127 return FDM_EYE_PLANE_ABS;
128 }
129 } else {
130 return FDM_FROM_ARRAY;
131 }
132 }
133
check_active_shininess(struct gl_context * ctx,const struct state_key * key,GLuint side)134 static GLboolean check_active_shininess( struct gl_context *ctx,
135 const struct state_key *key,
136 GLuint side )
137 {
138 GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
139
140 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
141 (key->light_color_material_mask & (1 << attr)))
142 return GL_TRUE;
143
144 if (key->varying_vp_inputs & VERT_BIT_MAT(attr))
145 return GL_TRUE;
146
147 if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
148 return GL_TRUE;
149
150 return GL_FALSE;
151 }
152
153
make_state_key(struct gl_context * ctx,struct state_key * key)154 static void make_state_key( struct gl_context *ctx, struct state_key *key )
155 {
156 const struct gl_program *fp = ctx->FragmentProgram._Current;
157 GLbitfield mask;
158
159 memset(key, 0, sizeof(struct state_key));
160
161 if (_mesa_hw_select_enabled(ctx)) {
162 /* GL_SELECT mode only need position calculation.
163 * glBegin/End use VERT_BIT_SELECT_RESULT_OFFSET for multi name stack in one draw.
164 * glDrawArrays may also be called without user shader, fallback to FF one.
165 */
166 key->varying_vp_inputs = ctx->VertexProgram._VaryingInputs &
167 (VERT_BIT_POS | VERT_BIT_SELECT_RESULT_OFFSET);
168 return;
169 }
170
171 /* This now relies on texenvprogram.c being active:
172 */
173 assert(fp);
174
175 key->need_eye_coords = ctx->_NeedEyeCoords;
176
177 key->fragprog_inputs_read = fp->info.inputs_read;
178 key->varying_vp_inputs = ctx->VertexProgram._VaryingInputs;
179
180 if (ctx->RenderMode == GL_FEEDBACK) {
181 /* make sure the vertprog emits color and tex0 */
182 key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
183 }
184
185 if (ctx->Light.Enabled) {
186 key->light_global_enabled = 1;
187
188 if (ctx->Light.Model.LocalViewer)
189 key->light_local_viewer = 1;
190
191 if (ctx->Light.Model.TwoSide)
192 key->light_twoside = 1;
193
194 if (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
195 key->separate_specular = 1;
196
197 if (ctx->Light.ColorMaterialEnabled) {
198 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
199 }
200
201 mask = ctx->Light._EnabledLights;
202 while (mask) {
203 const int i = u_bit_scan(&mask);
204 struct gl_light_uniforms *lu = &ctx->Light.LightSource[i];
205
206 key->unit[i].light_enabled = 1;
207
208 if (lu->EyePosition[3] == 0.0F)
209 key->unit[i].light_eyepos3_is_zero = 1;
210
211 if (lu->SpotCutoff == 180.0F)
212 key->unit[i].light_spotcutoff_is_180 = 1;
213
214 if (lu->ConstantAttenuation != 1.0F ||
215 lu->LinearAttenuation != 0.0F ||
216 lu->QuadraticAttenuation != 0.0F)
217 key->unit[i].light_attenuated = 1;
218 }
219
220 if (check_active_shininess(ctx, key, 0)) {
221 key->material_shininess_is_zero = 0;
222 }
223 else if (key->light_twoside &&
224 check_active_shininess(ctx, key, 1)) {
225 key->material_shininess_is_zero = 0;
226 }
227 else {
228 key->material_shininess_is_zero = 1;
229 }
230 }
231
232 if (ctx->Transform.Normalize)
233 key->normalize = 1;
234
235 if (ctx->Transform.RescaleNormals)
236 key->rescale_normals = 1;
237
238 /* Only distinguish fog parameters if we actually need */
239 if (key->fragprog_inputs_read & VARYING_BIT_FOGC)
240 key->fog_distance_mode =
241 translate_fog_distance_mode(ctx->Fog.FogCoordinateSource,
242 ctx->Fog.FogDistanceMode);
243
244 if (ctx->Point._Attenuated)
245 key->point_attenuated = 1;
246
247 mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled
248 | ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace;
249 while (mask) {
250 const int i = u_bit_scan(&mask);
251 struct gl_fixedfunc_texture_unit *texUnit =
252 &ctx->Texture.FixedFuncUnit[i];
253
254 if (ctx->Point.PointSprite)
255 if (ctx->Point.CoordReplace & (1u << i))
256 key->unit[i].coord_replace = 1;
257
258 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
259 key->unit[i].texmat_enabled = 1;
260
261 if (texUnit->TexGenEnabled) {
262 key->unit[i].texgen_enabled = 1;
263
264 key->unit[i].texgen_mode0 =
265 translate_texgen( texUnit->TexGenEnabled & (1<<0),
266 texUnit->GenS.Mode );
267 key->unit[i].texgen_mode1 =
268 translate_texgen( texUnit->TexGenEnabled & (1<<1),
269 texUnit->GenT.Mode );
270 key->unit[i].texgen_mode2 =
271 translate_texgen( texUnit->TexGenEnabled & (1<<2),
272 texUnit->GenR.Mode );
273 key->unit[i].texgen_mode3 =
274 translate_texgen( texUnit->TexGenEnabled & (1<<3),
275 texUnit->GenQ.Mode );
276 }
277 }
278 }
279
280
281
282 /* Very useful debugging tool - produces annotated listing of
283 * generated program with line/function references for each
284 * instruction back into this file:
285 */
286 #define DISASSEM 0
287
288
289 /* Use uregs to represent registers internally, translate to Mesa's
290 * expected formats on emit.
291 *
292 * NOTE: These are passed by value extensively in this file rather
293 * than as usual by pointer reference. If this disturbs you, try
294 * remembering they are just 32bits in size.
295 *
296 * GCC is smart enough to deal with these dword-sized structures in
297 * much the same way as if I had defined them as dwords and was using
298 * macros to access and set the fields. This is much nicer and easier
299 * to evolve.
300 */
301 struct ureg {
302 GLuint file:4;
303 GLint idx:9; /* relative addressing may be negative */
304 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
305 GLuint negate:1;
306 GLuint swz:12;
307 GLuint pad:6;
308 };
309
310
311 struct tnl_program {
312 const struct state_key *state;
313 struct gl_program *program;
314 struct gl_program_parameter_list *state_params;
315 GLuint max_inst; /** number of instructions allocated for program */
316 GLboolean mvp_with_dp4;
317
318 GLuint temp_in_use;
319 GLuint temp_reserved;
320
321 struct ureg eye_position;
322 struct ureg eye_position_z;
323 struct ureg eye_position_normalized;
324 struct ureg transformed_normal;
325 struct ureg identity;
326
327 GLuint materials;
328 GLuint color_materials;
329 };
330
331
332 static const struct ureg undef = {
333 PROGRAM_UNDEFINED,
334 0,
335 0,
336 0,
337 0
338 };
339
340 /* Local shorthand:
341 */
342 #define X SWIZZLE_X
343 #define Y SWIZZLE_Y
344 #define Z SWIZZLE_Z
345 #define W SWIZZLE_W
346
347
348 /* Construct a ureg:
349 */
make_ureg(GLuint file,GLint idx)350 static struct ureg make_ureg(GLuint file, GLint idx)
351 {
352 struct ureg reg;
353 reg.file = file;
354 reg.idx = idx;
355 reg.negate = 0;
356 reg.swz = SWIZZLE_NOOP;
357 reg.pad = 0;
358 return reg;
359 }
360
361
negate(struct ureg reg)362 static struct ureg negate( struct ureg reg )
363 {
364 reg.negate ^= 1;
365 return reg;
366 }
367
368
swizzle(struct ureg reg,int x,int y,int z,int w)369 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
370 {
371 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
372 GET_SWZ(reg.swz, y),
373 GET_SWZ(reg.swz, z),
374 GET_SWZ(reg.swz, w));
375 return reg;
376 }
377
378
swizzle1(struct ureg reg,int x)379 static struct ureg swizzle1( struct ureg reg, int x )
380 {
381 return swizzle(reg, x, x, x, x);
382 }
383
384
get_temp(struct tnl_program * p)385 static struct ureg get_temp( struct tnl_program *p )
386 {
387 int bit = ffs( ~p->temp_in_use );
388 if (!bit) {
389 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
390 exit(1);
391 }
392
393 if ((GLuint) bit > p->program->arb.NumTemporaries)
394 p->program->arb.NumTemporaries = bit;
395
396 p->temp_in_use |= 1<<(bit-1);
397 return make_ureg(PROGRAM_TEMPORARY, bit-1);
398 }
399
400
reserve_temp(struct tnl_program * p)401 static struct ureg reserve_temp( struct tnl_program *p )
402 {
403 struct ureg temp = get_temp( p );
404 p->temp_reserved |= 1<<temp.idx;
405 return temp;
406 }
407
408
release_temp(struct tnl_program * p,struct ureg reg)409 static void release_temp( struct tnl_program *p, struct ureg reg )
410 {
411 if (reg.file == PROGRAM_TEMPORARY) {
412 p->temp_in_use &= ~(1<<reg.idx);
413 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
414 }
415 }
416
release_temps(struct tnl_program * p)417 static void release_temps( struct tnl_program *p )
418 {
419 p->temp_in_use = p->temp_reserved;
420 }
421
422
register_param4(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3)423 static struct ureg register_param4(struct tnl_program *p,
424 GLint s0,
425 GLint s1,
426 GLint s2,
427 GLint s3)
428 {
429 gl_state_index16 tokens[STATE_LENGTH];
430 GLint idx;
431 tokens[0] = s0;
432 tokens[1] = s1;
433 tokens[2] = s2;
434 tokens[3] = s3;
435 idx = _mesa_add_state_reference(p->state_params, tokens);
436 return make_ureg(PROGRAM_STATE_VAR, idx);
437 }
438
439
440 #define register_param1(p,s0) register_param4(p,s0,0,0,0)
441 #define register_param2(p,s0,s1) register_param4(p,s0,s1,0,0)
442 #define register_param3(p,s0,s1,s2) register_param4(p,s0,s1,s2,0)
443
444
445
446 /**
447 * \param input one of VERT_ATTRIB_x tokens.
448 */
register_input(struct tnl_program * p,GLuint input)449 static struct ureg register_input( struct tnl_program *p, GLuint input )
450 {
451 assert(input < VERT_ATTRIB_MAX);
452
453 if (p->state->varying_vp_inputs & VERT_BIT(input)) {
454 p->program->info.inputs_read |= (uint64_t)VERT_BIT(input);
455 return make_ureg(PROGRAM_INPUT, input);
456 }
457 else {
458 return register_param2(p, STATE_CURRENT_ATTRIB, input);
459 }
460 }
461
462
463 /**
464 * \param input one of VARYING_SLOT_x tokens.
465 */
register_output(struct tnl_program * p,GLuint output)466 static struct ureg register_output( struct tnl_program *p, GLuint output )
467 {
468 p->program->info.outputs_written |= BITFIELD64_BIT(output);
469 return make_ureg(PROGRAM_OUTPUT, output);
470 }
471
472
register_const4f(struct tnl_program * p,GLfloat s0,GLfloat s1,GLfloat s2,GLfloat s3)473 static struct ureg register_const4f( struct tnl_program *p,
474 GLfloat s0,
475 GLfloat s1,
476 GLfloat s2,
477 GLfloat s3)
478 {
479 gl_constant_value values[4];
480 GLint idx;
481 GLuint swizzle;
482 values[0].f = s0;
483 values[1].f = s1;
484 values[2].f = s2;
485 values[3].f = s3;
486 idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4,
487 &swizzle );
488 assert(swizzle == SWIZZLE_NOOP);
489 return make_ureg(PROGRAM_CONSTANT, idx);
490 }
491
492 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
493 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
494 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
495 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
496
is_undef(struct ureg reg)497 static GLboolean is_undef( struct ureg reg )
498 {
499 return reg.file == PROGRAM_UNDEFINED;
500 }
501
502
get_identity_param(struct tnl_program * p)503 static struct ureg get_identity_param( struct tnl_program *p )
504 {
505 if (is_undef(p->identity))
506 p->identity = register_const4f(p, 0,0,0,1);
507
508 return p->identity;
509 }
510
register_matrix_param5(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3,struct ureg * matrix)511 static void register_matrix_param5( struct tnl_program *p,
512 GLint s0, /* modelview, projection, etc */
513 GLint s1, /* texture matrix number */
514 GLint s2, /* first row */
515 GLint s3, /* last row */
516 struct ureg *matrix )
517 {
518 GLint i;
519
520 /* This is a bit sad as the support is there to pull the whole
521 * matrix out in one go:
522 */
523 for (i = 0; i <= s3 - s2; i++)
524 matrix[i] = register_param4(p, s0, s1, i, i);
525 }
526
527
emit_arg(struct prog_src_register * src,struct ureg reg)528 static void emit_arg( struct prog_src_register *src,
529 struct ureg reg )
530 {
531 src->File = reg.file;
532 src->Index = reg.idx;
533 src->Swizzle = reg.swz;
534 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
535 src->RelAddr = 0;
536 /* Check that bitfield sizes aren't exceeded */
537 assert(src->Index == reg.idx);
538 }
539
540
emit_dst(struct prog_dst_register * dst,struct ureg reg,GLuint mask)541 static void emit_dst( struct prog_dst_register *dst,
542 struct ureg reg, GLuint mask )
543 {
544 dst->File = reg.file;
545 dst->Index = reg.idx;
546 /* allow zero as a shorthand for xyzw */
547 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
548 /* Check that bitfield sizes aren't exceeded */
549 assert(dst->Index == reg.idx);
550 }
551
552
debug_insn(struct prog_instruction * inst,const char * fn,GLuint line)553 static void debug_insn( struct prog_instruction *inst, const char *fn,
554 GLuint line )
555 {
556 if (DISASSEM) {
557 static const char *last_fn;
558
559 if (fn != last_fn) {
560 last_fn = fn;
561 printf("%s:\n", fn);
562 }
563
564 printf("%d:\t", line);
565 _mesa_print_instruction(inst);
566 }
567 }
568
569
emit_op3fn(struct tnl_program * p,enum prog_opcode op,struct ureg dest,GLuint mask,struct ureg src0,struct ureg src1,struct ureg src2,const char * fn,GLuint line)570 static void emit_op3fn(struct tnl_program *p,
571 enum prog_opcode op,
572 struct ureg dest,
573 GLuint mask,
574 struct ureg src0,
575 struct ureg src1,
576 struct ureg src2,
577 const char *fn,
578 GLuint line)
579 {
580 GLuint nr;
581 struct prog_instruction *inst;
582
583 assert(p->program->arb.NumInstructions <= p->max_inst);
584
585 if (p->program->arb.NumInstructions == p->max_inst) {
586 /* need to extend the program's instruction array */
587 struct prog_instruction *newInst;
588
589 /* double the size */
590 p->max_inst *= 2;
591
592 newInst =
593 rzalloc_array(p->program, struct prog_instruction, p->max_inst);
594 if (!newInst) {
595 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
596 return;
597 }
598
599 _mesa_copy_instructions(newInst, p->program->arb.Instructions,
600 p->program->arb.NumInstructions);
601
602 ralloc_free(p->program->arb.Instructions);
603
604 p->program->arb.Instructions = newInst;
605 }
606
607 nr = p->program->arb.NumInstructions++;
608
609 inst = &p->program->arb.Instructions[nr];
610 inst->Opcode = (enum prog_opcode) op;
611
612 emit_arg( &inst->SrcReg[0], src0 );
613 emit_arg( &inst->SrcReg[1], src1 );
614 emit_arg( &inst->SrcReg[2], src2 );
615
616 emit_dst( &inst->DstReg, dest, mask );
617
618 debug_insn(inst, fn, line);
619 }
620
621
622 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
623 emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
624
625 #define emit_op2(p, op, dst, mask, src0, src1) \
626 emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
627
628 #define emit_op1(p, op, dst, mask, src0) \
629 emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
630
631
make_temp(struct tnl_program * p,struct ureg reg)632 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
633 {
634 if (reg.file == PROGRAM_TEMPORARY &&
635 !(p->temp_reserved & (1<<reg.idx)))
636 return reg;
637 else {
638 struct ureg temp = get_temp(p);
639 emit_op1(p, OPCODE_MOV, temp, 0, reg);
640 return temp;
641 }
642 }
643
644
645 /* Currently no tracking performed of input/output/register size or
646 * active elements. Could be used to reduce these operations, as
647 * could the matrix type.
648 */
emit_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)649 static void emit_matrix_transform_vec4( struct tnl_program *p,
650 struct ureg dest,
651 const struct ureg *mat,
652 struct ureg src)
653 {
654 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
655 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
656 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
657 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
658 }
659
660
661 /* This version is much easier to implement if writemasks are not
662 * supported natively on the target or (like SSE), the target doesn't
663 * have a clean/obvious dotproduct implementation.
664 */
emit_transpose_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)665 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
666 struct ureg dest,
667 const struct ureg *mat,
668 struct ureg src)
669 {
670 struct ureg tmp;
671
672 if (dest.file != PROGRAM_TEMPORARY)
673 tmp = get_temp(p);
674 else
675 tmp = dest;
676
677 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
678 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
679 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
680 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
681
682 if (dest.file != PROGRAM_TEMPORARY)
683 release_temp(p, tmp);
684 }
685
686
emit_matrix_transform_vec3(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)687 static void emit_matrix_transform_vec3( struct tnl_program *p,
688 struct ureg dest,
689 const struct ureg *mat,
690 struct ureg src)
691 {
692 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
693 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
694 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
695 }
696
697
emit_normalize_vec3(struct tnl_program * p,struct ureg dest,struct ureg src)698 static void emit_normalize_vec3( struct tnl_program *p,
699 struct ureg dest,
700 struct ureg src )
701 {
702 struct ureg tmp = get_temp(p);
703 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
704 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
705 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
706 release_temp(p, tmp);
707 }
708
709
emit_passthrough(struct tnl_program * p,GLuint input,GLuint output)710 static void emit_passthrough( struct tnl_program *p,
711 GLuint input,
712 GLuint output )
713 {
714 struct ureg out = register_output(p, output);
715 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
716 }
717
718
get_eye_position(struct tnl_program * p)719 static struct ureg get_eye_position( struct tnl_program *p )
720 {
721 if (is_undef(p->eye_position)) {
722 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
723 struct ureg modelview[4];
724
725 p->eye_position = reserve_temp(p);
726
727 if (p->mvp_with_dp4) {
728 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
729 modelview );
730
731 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
732 }
733 else {
734 register_matrix_param5( p, STATE_MODELVIEW_MATRIX_TRANSPOSE, 0, 0, 3,
735 modelview );
736
737 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
738 }
739 }
740
741 return p->eye_position;
742 }
743
744
get_eye_position_z(struct tnl_program * p)745 static struct ureg get_eye_position_z( struct tnl_program *p )
746 {
747 if (!is_undef(p->eye_position))
748 return swizzle1(p->eye_position, Z);
749
750 if (is_undef(p->eye_position_z)) {
751 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
752 struct ureg modelview[4];
753
754 p->eye_position_z = reserve_temp(p);
755
756 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
757 modelview );
758
759 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
760 }
761
762 return p->eye_position_z;
763 }
764
765
get_eye_position_normalized(struct tnl_program * p)766 static struct ureg get_eye_position_normalized( struct tnl_program *p )
767 {
768 if (is_undef(p->eye_position_normalized)) {
769 struct ureg eye = get_eye_position(p);
770 p->eye_position_normalized = reserve_temp(p);
771 emit_normalize_vec3(p, p->eye_position_normalized, eye);
772 }
773
774 return p->eye_position_normalized;
775 }
776
777
get_transformed_normal(struct tnl_program * p)778 static struct ureg get_transformed_normal( struct tnl_program *p )
779 {
780 if (is_undef(p->transformed_normal) &&
781 !p->state->need_eye_coords &&
782 !p->state->normalize &&
783 !(p->state->need_eye_coords == p->state->rescale_normals))
784 {
785 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
786 }
787 else if (is_undef(p->transformed_normal))
788 {
789 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
790 struct ureg mvinv[3];
791 struct ureg transformed_normal = reserve_temp(p);
792
793 if (p->state->need_eye_coords) {
794 register_matrix_param5( p, STATE_MODELVIEW_MATRIX_INVTRANS, 0, 0, 2,
795 mvinv );
796
797 /* Transform to eye space:
798 */
799 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
800 normal = transformed_normal;
801 }
802
803 /* Normalize/Rescale:
804 */
805 if (p->state->normalize) {
806 emit_normalize_vec3( p, transformed_normal, normal );
807 normal = transformed_normal;
808 }
809 else if (p->state->need_eye_coords == p->state->rescale_normals) {
810 /* This is already adjusted for eye/non-eye rendering:
811 */
812 struct ureg rescale = register_param1(p, STATE_NORMAL_SCALE);
813
814 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
815 normal = transformed_normal;
816 }
817
818 assert(normal.file == PROGRAM_TEMPORARY);
819 p->transformed_normal = normal;
820 }
821
822 return p->transformed_normal;
823 }
824
825
build_hpos(struct tnl_program * p)826 static void build_hpos( struct tnl_program *p )
827 {
828 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
829 struct ureg hpos = register_output( p, VARYING_SLOT_POS );
830 struct ureg mvp[4];
831
832 if (p->mvp_with_dp4) {
833 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
834 mvp );
835 emit_matrix_transform_vec4( p, hpos, mvp, pos );
836 }
837 else {
838 register_matrix_param5( p, STATE_MVP_MATRIX_TRANSPOSE, 0, 0, 3,
839 mvp );
840 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
841 }
842 }
843
844
material_attrib(GLuint side,GLuint property)845 static GLuint material_attrib( GLuint side, GLuint property )
846 {
847 switch (property) {
848 case STATE_AMBIENT:
849 return MAT_ATTRIB_FRONT_AMBIENT + side;
850 case STATE_DIFFUSE:
851 return MAT_ATTRIB_FRONT_DIFFUSE + side;
852 case STATE_SPECULAR:
853 return MAT_ATTRIB_FRONT_SPECULAR + side;
854 case STATE_EMISSION:
855 return MAT_ATTRIB_FRONT_EMISSION + side;
856 case STATE_SHININESS:
857 return MAT_ATTRIB_FRONT_SHININESS + side;
858 default:
859 unreachable("invalid value");
860 }
861 }
862
863
864 /**
865 * Get a bitmask of which material values vary on a per-vertex basis.
866 */
set_material_flags(struct tnl_program * p)867 static void set_material_flags( struct tnl_program *p )
868 {
869 p->color_materials = 0;
870 p->materials = 0;
871
872 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
873 p->materials =
874 p->color_materials = p->state->light_color_material_mask;
875 }
876
877 p->materials |= ((p->state->varying_vp_inputs & VERT_BIT_MAT_ALL)
878 >> VERT_ATTRIB_MAT(0));
879 }
880
881
get_material(struct tnl_program * p,GLuint side,GLuint property)882 static struct ureg get_material( struct tnl_program *p, GLuint side,
883 GLuint property )
884 {
885 GLuint attrib = material_attrib(side, property);
886
887 if (p->color_materials & (1<<attrib))
888 return register_input(p, VERT_ATTRIB_COLOR0);
889 else if (p->materials & (1<<attrib)) {
890 /* Put material values in the GENERIC slots -- they are not used
891 * for anything in fixed function mode.
892 */
893 return register_input( p, VERT_ATTRIB_MAT(attrib) );
894 }
895 else
896 return register_param2(p, STATE_MATERIAL, attrib);
897 }
898
899 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
900 MAT_BIT_FRONT_AMBIENT | \
901 MAT_BIT_FRONT_DIFFUSE) << (side))
902
903
904 /**
905 * Either return a precalculated constant value or emit code to
906 * calculate these values dynamically in the case where material calls
907 * are present between begin/end pairs.
908 *
909 * Probably want to shift this to the program compilation phase - if
910 * we always emitted the calculation here, a smart compiler could
911 * detect that it was constant (given a certain set of inputs), and
912 * lift it out of the main loop. That way the programs created here
913 * would be independent of the vertex_buffer details.
914 */
get_scenecolor(struct tnl_program * p,GLuint side)915 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
916 {
917 if (p->materials & SCENE_COLOR_BITS(side)) {
918 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
919 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
920 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
921 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
922 struct ureg tmp = make_temp(p, material_diffuse);
923 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
924 material_ambient, material_emission);
925 return tmp;
926 }
927 else
928 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
929 }
930
931
get_lightprod(struct tnl_program * p,GLuint light,GLuint side,GLuint property,bool * is_state_light)932 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
933 GLuint side, GLuint property, bool *is_state_light )
934 {
935 GLuint attrib = material_attrib(side, property);
936 if (p->materials & (1<<attrib)) {
937 struct ureg light_value =
938 register_param3(p, STATE_LIGHT, light, property);
939 *is_state_light = true;
940 return light_value;
941 }
942 else {
943 *is_state_light = false;
944 return register_param3(p, STATE_LIGHTPROD, light, attrib);
945 }
946 }
947
948
calculate_light_attenuation(struct tnl_program * p,GLuint i,struct ureg VPpli,struct ureg dist)949 static struct ureg calculate_light_attenuation( struct tnl_program *p,
950 GLuint i,
951 struct ureg VPpli,
952 struct ureg dist )
953 {
954 struct ureg attenuation = undef;
955 struct ureg att = undef;
956
957 /* Calculate spot attenuation:
958 */
959 if (!p->state->unit[i].light_spotcutoff_is_180) {
960 struct ureg spot_dir_norm = register_param2(p, STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
961 struct ureg spot = get_temp(p);
962 struct ureg slt = get_temp(p);
963
964 attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
965 att = get_temp(p);
966
967 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
968 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
969 emit_op1(p, OPCODE_ABS, spot, 0, spot);
970 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
971 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
972
973 release_temp(p, spot);
974 release_temp(p, slt);
975 }
976
977 /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
978 *
979 * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
980 */
981 if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
982 if (is_undef(att))
983 att = get_temp(p);
984
985 if (is_undef(attenuation))
986 attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
987
988 /* 1/d,d,d,1/d */
989 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
990 /* 1,d,d*d,1/d */
991 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
992 /* 1/dist-atten */
993 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
994
995 if (!p->state->unit[i].light_spotcutoff_is_180) {
996 /* dist-atten */
997 emit_op1(p, OPCODE_RCP, dist, 0, dist);
998 /* spot-atten * dist-atten */
999 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1000 }
1001 else {
1002 /* dist-atten */
1003 emit_op1(p, OPCODE_RCP, att, 0, dist);
1004 }
1005 }
1006
1007 return att;
1008 }
1009
1010
1011 /**
1012 * Compute:
1013 * lit.y = MAX(0, dots.x)
1014 * lit.z = SLT(0, dots.x)
1015 */
emit_degenerate_lit(struct tnl_program * p,struct ureg lit,struct ureg dots)1016 static void emit_degenerate_lit( struct tnl_program *p,
1017 struct ureg lit,
1018 struct ureg dots )
1019 {
1020 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1021
1022 /* Note that lit.x & lit.w will not be examined. Note also that
1023 * dots.xyzw == dots.xxxx.
1024 */
1025
1026 /* MAX lit, id, dots;
1027 */
1028 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1029
1030 /* result[2] = (in > 0 ? 1 : 0)
1031 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1032 */
1033 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1034 }
1035
1036
1037 /* Need to add some addtional parameters to allow lighting in object
1038 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1039 * space lighting.
1040 */
build_lighting(struct tnl_program * p)1041 static void build_lighting( struct tnl_program *p )
1042 {
1043 const GLboolean twoside = p->state->light_twoside;
1044 const GLboolean separate = p->state->separate_specular;
1045 GLuint nr_lights = 0, count = 0;
1046 struct ureg normal = get_transformed_normal(p);
1047 struct ureg lit = get_temp(p);
1048 struct ureg dots = get_temp(p);
1049 struct ureg _col0 = undef, _col1 = undef;
1050 struct ureg _bfc0 = undef, _bfc1 = undef;
1051 GLuint i;
1052
1053 /*
1054 * NOTE:
1055 * dots.x = dot(normal, VPpli)
1056 * dots.y = dot(normal, halfAngle)
1057 * dots.z = back.shininess
1058 * dots.w = front.shininess
1059 */
1060
1061 for (i = 0; i < MAX_LIGHTS; i++)
1062 if (p->state->unit[i].light_enabled)
1063 nr_lights++;
1064
1065 set_material_flags(p);
1066
1067 {
1068 if (!p->state->material_shininess_is_zero) {
1069 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1070 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1071 release_temp(p, shininess);
1072 }
1073
1074 _col0 = make_temp(p, get_scenecolor(p, 0));
1075 if (separate)
1076 _col1 = make_temp(p, get_identity_param(p));
1077 else
1078 _col1 = _col0;
1079 }
1080
1081 if (twoside) {
1082 if (!p->state->material_shininess_is_zero) {
1083 /* Note that we negate the back-face specular exponent here.
1084 * The negation will be un-done later in the back-face code below.
1085 */
1086 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1087 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1088 negate(swizzle1(shininess,X)));
1089 release_temp(p, shininess);
1090 }
1091
1092 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1093 if (separate)
1094 _bfc1 = make_temp(p, get_identity_param(p));
1095 else
1096 _bfc1 = _bfc0;
1097 }
1098
1099 /* If no lights, still need to emit the scenecolor.
1100 */
1101 {
1102 struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1103 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1104 }
1105
1106 if (separate) {
1107 struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1108 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1109 }
1110
1111 if (twoside) {
1112 struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1113 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1114 }
1115
1116 if (twoside && separate) {
1117 struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1118 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1119 }
1120
1121 if (nr_lights == 0) {
1122 release_temps(p);
1123 return;
1124 }
1125
1126 /* Declare light products first to place them sequentially next to each
1127 * other for optimal constant uploads.
1128 */
1129 struct ureg lightprod_front[MAX_LIGHTS][3];
1130 struct ureg lightprod_back[MAX_LIGHTS][3];
1131 bool lightprod_front_is_state_light[MAX_LIGHTS][3];
1132 bool lightprod_back_is_state_light[MAX_LIGHTS][3];
1133
1134 for (i = 0; i < MAX_LIGHTS; i++) {
1135 if (p->state->unit[i].light_enabled) {
1136 lightprod_front[i][0] = get_lightprod(p, i, 0, STATE_AMBIENT,
1137 &lightprod_front_is_state_light[i][0]);
1138 if (twoside)
1139 lightprod_back[i][0] = get_lightprod(p, i, 1, STATE_AMBIENT,
1140 &lightprod_back_is_state_light[i][0]);
1141
1142 lightprod_front[i][1] = get_lightprod(p, i, 0, STATE_DIFFUSE,
1143 &lightprod_front_is_state_light[i][1]);
1144 if (twoside)
1145 lightprod_back[i][1] = get_lightprod(p, i, 1, STATE_DIFFUSE,
1146 &lightprod_back_is_state_light[i][1]);
1147
1148 lightprod_front[i][2] = get_lightprod(p, i, 0, STATE_SPECULAR,
1149 &lightprod_front_is_state_light[i][2]);
1150 if (twoside)
1151 lightprod_back[i][2] = get_lightprod(p, i, 1, STATE_SPECULAR,
1152 &lightprod_back_is_state_light[i][2]);
1153 }
1154 }
1155
1156 /* Add more variables now that we'll use later, so that they are nicely
1157 * sorted in the parameter list.
1158 */
1159 for (i = 0; i < MAX_LIGHTS; i++) {
1160 if (p->state->unit[i].light_enabled) {
1161 if (p->state->unit[i].light_eyepos3_is_zero)
1162 register_param2(p, STATE_LIGHT_POSITION_NORMALIZED, i);
1163 else
1164 register_param2(p, STATE_LIGHT_POSITION, i);
1165 }
1166 }
1167 for (i = 0; i < MAX_LIGHTS; i++) {
1168 if (p->state->unit[i].light_enabled &&
1169 (!p->state->unit[i].light_spotcutoff_is_180 ||
1170 (p->state->unit[i].light_attenuated &&
1171 !p->state->unit[i].light_eyepos3_is_zero)))
1172 register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
1173 }
1174
1175 for (i = 0; i < MAX_LIGHTS; i++) {
1176 if (p->state->unit[i].light_enabled) {
1177 struct ureg half = undef;
1178 struct ureg att = undef, VPpli = undef;
1179 struct ureg dist = undef;
1180
1181 count++;
1182 if (p->state->unit[i].light_eyepos3_is_zero) {
1183 VPpli = register_param2(p, STATE_LIGHT_POSITION_NORMALIZED, i);
1184 } else {
1185 struct ureg Ppli = register_param2(p, STATE_LIGHT_POSITION, i);
1186 struct ureg V = get_eye_position(p);
1187
1188 VPpli = get_temp(p);
1189 dist = get_temp(p);
1190
1191 /* Calculate VPpli vector
1192 */
1193 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1194
1195 /* Normalize VPpli. The dist value also used in
1196 * attenuation below.
1197 */
1198 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1199 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1200 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1201 }
1202
1203 /* Calculate attenuation:
1204 */
1205 att = calculate_light_attenuation(p, i, VPpli, dist);
1206 release_temp(p, dist);
1207
1208 /* Calculate viewer direction, or use infinite viewer:
1209 */
1210 if (!p->state->material_shininess_is_zero) {
1211 if (p->state->light_local_viewer) {
1212 struct ureg eye_hat = get_eye_position_normalized(p);
1213 half = get_temp(p);
1214 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1215 emit_normalize_vec3(p, half, half);
1216 } else if (p->state->unit[i].light_eyepos3_is_zero) {
1217 half = register_param2(p, STATE_LIGHT_HALF_VECTOR, i);
1218 } else {
1219 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1220 half = get_temp(p);
1221 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1222 emit_normalize_vec3(p, half, half);
1223 }
1224 }
1225
1226 /* Calculate dot products:
1227 */
1228 if (p->state->material_shininess_is_zero) {
1229 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1230 }
1231 else {
1232 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1233 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1234 }
1235
1236 /* Front face lighting:
1237 */
1238 {
1239 /* Transform STATE_LIGHT into STATE_LIGHTPROD if needed. This isn't done in
1240 * get_lightprod to avoid using too many temps.
1241 */
1242 for (int j = 0; j < 3; j++) {
1243 if (lightprod_front_is_state_light[i][j]) {
1244 struct ureg material_value = get_material(p, 0, STATE_AMBIENT + j);
1245 struct ureg tmp = get_temp(p);
1246 emit_op2(p, OPCODE_MUL, tmp, 0, lightprod_front[i][j], material_value);
1247 lightprod_front[i][j] = tmp;
1248 }
1249 }
1250
1251 struct ureg ambient = lightprod_front[i][0];
1252 struct ureg diffuse = lightprod_front[i][1];
1253 struct ureg specular = lightprod_front[i][2];
1254 struct ureg res0, res1;
1255 GLuint mask0, mask1;
1256
1257 if (count == nr_lights) {
1258 if (separate) {
1259 mask0 = WRITEMASK_XYZ;
1260 mask1 = WRITEMASK_XYZ;
1261 res0 = register_output( p, VARYING_SLOT_COL0 );
1262 res1 = register_output( p, VARYING_SLOT_COL1 );
1263 }
1264 else {
1265 mask0 = 0;
1266 mask1 = WRITEMASK_XYZ;
1267 res0 = _col0;
1268 res1 = register_output( p, VARYING_SLOT_COL0 );
1269 }
1270 }
1271 else {
1272 mask0 = 0;
1273 mask1 = 0;
1274 res0 = _col0;
1275 res1 = _col1;
1276 }
1277
1278 if (!is_undef(att)) {
1279 /* light is attenuated by distance */
1280 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1281 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1282 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1283 }
1284 else if (!p->state->material_shininess_is_zero) {
1285 /* there's a non-zero specular term */
1286 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1287 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1288 }
1289 else {
1290 /* no attenutation, no specular */
1291 emit_degenerate_lit(p, lit, dots);
1292 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1293 }
1294
1295 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1296 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1297
1298 release_temp(p, ambient);
1299 release_temp(p, diffuse);
1300 release_temp(p, specular);
1301 }
1302
1303 /* Back face lighting:
1304 */
1305 if (twoside) {
1306 /* Transform STATE_LIGHT into STATE_LIGHTPROD if needed. This isn't done in
1307 * get_lightprod to avoid using too many temps.
1308 */
1309 for (int j = 0; j < 3; j++) {
1310 if (lightprod_back_is_state_light[i][j]) {
1311 struct ureg material_value = get_material(p, 1, STATE_AMBIENT + j);
1312 struct ureg tmp = get_temp(p);
1313 emit_op2(p, OPCODE_MUL, tmp, 1, lightprod_back[i][j], material_value);
1314 lightprod_back[i][j] = tmp;
1315 }
1316 }
1317
1318 struct ureg ambient = lightprod_back[i][0];
1319 struct ureg diffuse = lightprod_back[i][1];
1320 struct ureg specular = lightprod_back[i][2];
1321 struct ureg res0, res1;
1322 GLuint mask0, mask1;
1323
1324 if (count == nr_lights) {
1325 if (separate) {
1326 mask0 = WRITEMASK_XYZ;
1327 mask1 = WRITEMASK_XYZ;
1328 res0 = register_output( p, VARYING_SLOT_BFC0 );
1329 res1 = register_output( p, VARYING_SLOT_BFC1 );
1330 }
1331 else {
1332 mask0 = 0;
1333 mask1 = WRITEMASK_XYZ;
1334 res0 = _bfc0;
1335 res1 = register_output( p, VARYING_SLOT_BFC0 );
1336 }
1337 }
1338 else {
1339 res0 = _bfc0;
1340 res1 = _bfc1;
1341 mask0 = 0;
1342 mask1 = 0;
1343 }
1344
1345 /* For the back face we need to negate the X and Y component
1346 * dot products. dots.Z has the negated back-face specular
1347 * exponent. We swizzle that into the W position. This
1348 * negation makes the back-face specular term positive again.
1349 */
1350 dots = negate(swizzle(dots,X,Y,W,Z));
1351
1352 if (!is_undef(att)) {
1353 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1354 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1355 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1356 }
1357 else if (!p->state->material_shininess_is_zero) {
1358 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1359 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1360 }
1361 else {
1362 emit_degenerate_lit(p, lit, dots);
1363 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1364 }
1365
1366 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1367 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1368 /* restore dots to its original state for subsequent lights
1369 * by negating and swizzling again.
1370 */
1371 dots = negate(swizzle(dots,X,Y,W,Z));
1372
1373 release_temp(p, ambient);
1374 release_temp(p, diffuse);
1375 release_temp(p, specular);
1376 }
1377
1378 release_temp(p, half);
1379 release_temp(p, VPpli);
1380 release_temp(p, att);
1381 }
1382 }
1383
1384 release_temps( p );
1385 }
1386
1387
build_fog(struct tnl_program * p)1388 static void build_fog( struct tnl_program *p )
1389 {
1390 struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1391 struct ureg input;
1392
1393 switch (p->state->fog_distance_mode) {
1394 case FDM_EYE_RADIAL: { /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1395 struct ureg tmp = get_temp(p);
1396 input = get_eye_position(p);
1397 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, input, input);
1398 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
1399 emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, tmp);
1400 break;
1401 }
1402 case FDM_EYE_PLANE: /* Z = Ze */
1403 input = get_eye_position_z(p);
1404 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1405 break;
1406 case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1407 input = get_eye_position_z(p);
1408 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1409 break;
1410 case FDM_FROM_ARRAY:
1411 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1412 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1413 break;
1414 default:
1415 assert(!"Bad fog mode in build_fog()");
1416 break;
1417 }
1418
1419 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1420 }
1421
1422
build_reflect_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1423 static void build_reflect_texgen( struct tnl_program *p,
1424 struct ureg dest,
1425 GLuint writemask )
1426 {
1427 struct ureg normal = get_transformed_normal(p);
1428 struct ureg eye_hat = get_eye_position_normalized(p);
1429 struct ureg tmp = get_temp(p);
1430
1431 /* n.u */
1432 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1433 /* 2n.u */
1434 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1435 /* (-2n.u)n + u */
1436 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1437
1438 release_temp(p, tmp);
1439 }
1440
1441
build_sphere_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1442 static void build_sphere_texgen( struct tnl_program *p,
1443 struct ureg dest,
1444 GLuint writemask )
1445 {
1446 struct ureg normal = get_transformed_normal(p);
1447 struct ureg eye_hat = get_eye_position_normalized(p);
1448 struct ureg tmp = get_temp(p);
1449 struct ureg half = register_scalar_const(p, .5);
1450 struct ureg r = get_temp(p);
1451 struct ureg inv_m = get_temp(p);
1452 struct ureg id = get_identity_param(p);
1453
1454 /* Could share the above calculations, but it would be
1455 * a fairly odd state for someone to set (both sphere and
1456 * reflection active for different texture coordinate
1457 * components. Of course - if two texture units enable
1458 * reflect and/or sphere, things start to tilt in favour
1459 * of seperating this out:
1460 */
1461
1462 /* n.u */
1463 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1464 /* 2n.u */
1465 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1466 /* (-2n.u)n + u */
1467 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1468 /* r + 0,0,1 */
1469 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1470 /* rx^2 + ry^2 + (rz+1)^2 */
1471 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1472 /* 2/m */
1473 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1474 /* 1/m */
1475 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1476 /* r/m + 1/2 */
1477 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1478
1479 release_temp(p, tmp);
1480 release_temp(p, r);
1481 release_temp(p, inv_m);
1482 }
1483
1484
build_texture_transform(struct tnl_program * p)1485 static void build_texture_transform( struct tnl_program *p )
1486 {
1487 GLuint i, j;
1488
1489 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1490
1491 if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1492 continue;
1493
1494 if (p->state->unit[i].coord_replace)
1495 continue;
1496
1497 if (p->state->unit[i].texgen_enabled ||
1498 p->state->unit[i].texmat_enabled) {
1499
1500 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1501 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1502 struct ureg out_texgen = undef;
1503
1504 if (p->state->unit[i].texgen_enabled) {
1505 GLuint copy_mask = 0;
1506 GLuint sphere_mask = 0;
1507 GLuint reflect_mask = 0;
1508 GLuint normal_mask = 0;
1509 GLuint modes[4];
1510
1511 if (texmat_enabled)
1512 out_texgen = get_temp(p);
1513 else
1514 out_texgen = out;
1515
1516 modes[0] = p->state->unit[i].texgen_mode0;
1517 modes[1] = p->state->unit[i].texgen_mode1;
1518 modes[2] = p->state->unit[i].texgen_mode2;
1519 modes[3] = p->state->unit[i].texgen_mode3;
1520
1521 for (j = 0; j < 4; j++) {
1522 switch (modes[j]) {
1523 case TXG_OBJ_LINEAR: {
1524 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1525 struct ureg plane =
1526 register_param3(p, STATE_TEXGEN, i,
1527 STATE_TEXGEN_OBJECT_S + j);
1528
1529 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1530 obj, plane );
1531 break;
1532 }
1533 case TXG_EYE_LINEAR: {
1534 struct ureg eye = get_eye_position(p);
1535 struct ureg plane =
1536 register_param3(p, STATE_TEXGEN, i,
1537 STATE_TEXGEN_EYE_S + j);
1538
1539 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1540 eye, plane );
1541 break;
1542 }
1543 case TXG_SPHERE_MAP:
1544 sphere_mask |= WRITEMASK_X << j;
1545 break;
1546 case TXG_REFLECTION_MAP:
1547 reflect_mask |= WRITEMASK_X << j;
1548 break;
1549 case TXG_NORMAL_MAP:
1550 normal_mask |= WRITEMASK_X << j;
1551 break;
1552 case TXG_NONE:
1553 copy_mask |= WRITEMASK_X << j;
1554 }
1555 }
1556
1557 if (sphere_mask) {
1558 build_sphere_texgen(p, out_texgen, sphere_mask);
1559 }
1560
1561 if (reflect_mask) {
1562 build_reflect_texgen(p, out_texgen, reflect_mask);
1563 }
1564
1565 if (normal_mask) {
1566 struct ureg normal = get_transformed_normal(p);
1567 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1568 }
1569
1570 if (copy_mask) {
1571 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1572 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1573 }
1574 }
1575
1576 if (texmat_enabled) {
1577 struct ureg texmat[4];
1578 struct ureg in = (!is_undef(out_texgen) ?
1579 out_texgen :
1580 register_input(p, VERT_ATTRIB_TEX0+i));
1581 if (p->mvp_with_dp4) {
1582 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1583 texmat );
1584 emit_matrix_transform_vec4( p, out, texmat, in );
1585 }
1586 else {
1587 register_matrix_param5( p, STATE_TEXTURE_MATRIX_TRANSPOSE, i, 0, 3,
1588 texmat );
1589 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1590 }
1591 }
1592
1593 release_temps(p);
1594 }
1595 else {
1596 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1597 }
1598 }
1599 }
1600
1601
1602 /**
1603 * Point size attenuation computation.
1604 */
build_atten_pointsize(struct tnl_program * p)1605 static void build_atten_pointsize( struct tnl_program *p )
1606 {
1607 struct ureg eye = get_eye_position_z(p);
1608 struct ureg state_size = register_param1(p, STATE_POINT_SIZE_CLAMPED);
1609 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1610 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1611 struct ureg ut = get_temp(p);
1612
1613 /* dist = |eyez| */
1614 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1615 /* p1 + dist * (p2 + dist * p3); */
1616 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1617 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1618 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1619 ut, swizzle1(state_attenuation, X));
1620
1621 /* 1 / sqrt(factor) */
1622 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1623
1624 #if 0
1625 /* out = pointSize / sqrt(factor) */
1626 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1627 #else
1628 /* this is a good place to clamp the point size since there's likely
1629 * no hardware registers to clamp point size at rasterization time.
1630 */
1631 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1632 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1633 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1634 #endif
1635
1636 release_temp(p, ut);
1637 }
1638
1639
1640 /**
1641 * Pass-though per-vertex point size, from user's point size array.
1642 */
build_array_pointsize(struct tnl_program * p)1643 static void build_array_pointsize( struct tnl_program *p )
1644 {
1645 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1646 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1647 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1648 }
1649
1650
build_tnl_program(struct tnl_program * p)1651 static void build_tnl_program( struct tnl_program *p )
1652 {
1653 /* Emit the program, starting with the modelview, projection transforms:
1654 */
1655 build_hpos(p);
1656
1657 /* Lighting calculations:
1658 */
1659 if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1660 if (p->state->light_global_enabled)
1661 build_lighting(p);
1662 else {
1663 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1664 emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1665
1666 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1667 emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1668 }
1669 }
1670
1671 if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1672 build_fog(p);
1673
1674 if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1675 build_texture_transform(p);
1676
1677 if (p->state->point_attenuated)
1678 build_atten_pointsize(p);
1679 else if (p->state->varying_vp_inputs & VERT_BIT_POINT_SIZE)
1680 build_array_pointsize(p);
1681
1682 if (p->state->varying_vp_inputs & VERT_BIT_SELECT_RESULT_OFFSET)
1683 emit_passthrough(p, VERT_ATTRIB_SELECT_RESULT_OFFSET, VARYING_SLOT_VAR0);
1684
1685 /* Finish up:
1686 */
1687 emit_op1(p, OPCODE_END, undef, 0, undef);
1688
1689 /* Disassemble:
1690 */
1691 if (DISASSEM) {
1692 printf ("\n");
1693 }
1694 }
1695
1696
1697 static void
create_new_program(const struct state_key * key,struct gl_program * program,GLboolean mvp_with_dp4,GLuint max_temps)1698 create_new_program( const struct state_key *key,
1699 struct gl_program *program,
1700 GLboolean mvp_with_dp4,
1701 GLuint max_temps)
1702 {
1703 struct tnl_program p;
1704
1705 memset(&p, 0, sizeof(p));
1706 p.state = key;
1707 p.program = program;
1708 p.eye_position = undef;
1709 p.eye_position_z = undef;
1710 p.eye_position_normalized = undef;
1711 p.transformed_normal = undef;
1712 p.identity = undef;
1713 p.temp_in_use = 0;
1714 p.mvp_with_dp4 = mvp_with_dp4;
1715
1716 if (max_temps >= sizeof(int) * 8)
1717 p.temp_reserved = 0;
1718 else
1719 p.temp_reserved = ~((1<<max_temps)-1);
1720
1721 /* Start by allocating 32 instructions.
1722 * If we need more, we'll grow the instruction array as needed.
1723 */
1724 p.max_inst = 32;
1725 p.program->arb.Instructions =
1726 rzalloc_array(program, struct prog_instruction, p.max_inst);
1727 p.program->String = NULL;
1728 p.program->arb.NumInstructions =
1729 p.program->arb.NumTemporaries =
1730 p.program->arb.NumParameters =
1731 p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0;
1732 p.program->Parameters = _mesa_new_parameter_list();
1733 p.program->info.inputs_read = 0;
1734 p.program->info.outputs_written = 0;
1735 p.state_params = _mesa_new_parameter_list();
1736
1737 build_tnl_program( &p );
1738
1739 _mesa_add_separate_state_parameters(p.program, p.state_params);
1740 _mesa_free_parameter_list(p.state_params);
1741 }
1742
1743
1744 /**
1745 * Return a vertex program which implements the current fixed-function
1746 * transform/lighting/texgen operations.
1747 */
1748 struct gl_program *
_mesa_get_fixed_func_vertex_program(struct gl_context * ctx)1749 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1750 {
1751 struct gl_program *prog;
1752 struct state_key key;
1753
1754 /* We only update ctx->VertexProgram._VaryingInputs when in VP_MODE_FF _VPMode */
1755 assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
1756
1757 /* Grab all the relevant state and put it in a single structure:
1758 */
1759 make_state_key(ctx, &key);
1760
1761 /* Look for an already-prepared program for this state:
1762 */
1763 prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key,
1764 sizeof(key));
1765
1766 if (!prog) {
1767 /* OK, we'll have to build a new one */
1768 if (0)
1769 printf("Build new TNL program\n");
1770
1771 prog = ctx->Driver.NewProgram(ctx, MESA_SHADER_VERTEX, 0, true);
1772 if (!prog)
1773 return NULL;
1774
1775 create_new_program( &key, prog,
1776 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1777 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1778
1779 st_program_string_notify(ctx, GL_VERTEX_PROGRAM_ARB, prog);
1780
1781 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key,
1782 sizeof(key), prog);
1783 }
1784
1785 return prog;
1786 }
1787