• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * \file ffvertex_prog.c
30  *
31  * Create a vertex program to execute the current fixed function T&L pipeline.
32  * \author Keith Whitwell
33  */
34 
35 
36 #include "main/errors.h"
37 #include "main/glheader.h"
38 #include "main/mtypes.h"
39 #include "main/macros.h"
40 #include "main/enums.h"
41 #include "main/context.h"
42 #include "main/ffvertex_prog.h"
43 #include "program/program.h"
44 #include "program/prog_cache.h"
45 #include "program/prog_instruction.h"
46 #include "program/prog_parameter.h"
47 #include "program/prog_print.h"
48 #include "program/prog_statevars.h"
49 #include "util/bitscan.h"
50 
51 #include "state_tracker/st_program.h"
52 
53 /** Max of number of lights and texture coord units */
54 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
55 
56 struct state_key {
57    GLbitfield varying_vp_inputs;
58 
59    unsigned fragprog_inputs_read:12;
60 
61    unsigned light_color_material_mask:12;
62    unsigned light_global_enabled:1;
63    unsigned light_local_viewer:1;
64    unsigned light_twoside:1;
65    unsigned material_shininess_is_zero:1;
66    unsigned need_eye_coords:1;
67    unsigned normalize:1;
68    unsigned rescale_normals:1;
69 
70    unsigned fog_distance_mode:2;
71    unsigned separate_specular:1;
72    unsigned point_attenuated:1;
73 
74    struct {
75       unsigned char light_enabled:1;
76       unsigned char light_eyepos3_is_zero:1;
77       unsigned char light_spotcutoff_is_180:1;
78       unsigned char light_attenuated:1;
79       unsigned char texmat_enabled:1;
80       unsigned char coord_replace:1;
81       unsigned char texgen_enabled:1;
82       unsigned char texgen_mode0:4;
83       unsigned char texgen_mode1:4;
84       unsigned char texgen_mode2:4;
85       unsigned char texgen_mode3:4;
86    } unit[NUM_UNITS];
87 };
88 
89 
90 #define TXG_NONE           0
91 #define TXG_OBJ_LINEAR     1
92 #define TXG_EYE_LINEAR     2
93 #define TXG_SPHERE_MAP     3
94 #define TXG_REFLECTION_MAP 4
95 #define TXG_NORMAL_MAP     5
96 
translate_texgen(GLboolean enabled,GLenum mode)97 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
98 {
99    if (!enabled)
100       return TXG_NONE;
101 
102    switch (mode) {
103    case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
104    case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
105    case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
106    case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
107    case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
108    default: return TXG_NONE;
109    }
110 }
111 
112 #define FDM_EYE_RADIAL    0
113 #define FDM_EYE_PLANE     1
114 #define FDM_EYE_PLANE_ABS 2
115 #define FDM_FROM_ARRAY    3
116 
translate_fog_distance_mode(GLenum source,GLenum mode)117 static GLuint translate_fog_distance_mode(GLenum source, GLenum mode)
118 {
119    if (source == GL_FRAGMENT_DEPTH_EXT) {
120       switch (mode) {
121       case GL_EYE_RADIAL_NV:
122          return FDM_EYE_RADIAL;
123       case GL_EYE_PLANE:
124          return FDM_EYE_PLANE;
125       default: /* shouldn't happen; fall through to a sensible default */
126       case GL_EYE_PLANE_ABSOLUTE_NV:
127          return FDM_EYE_PLANE_ABS;
128       }
129    } else {
130       return FDM_FROM_ARRAY;
131    }
132 }
133 
check_active_shininess(struct gl_context * ctx,const struct state_key * key,GLuint side)134 static GLboolean check_active_shininess( struct gl_context *ctx,
135                                          const struct state_key *key,
136                                          GLuint side )
137 {
138    GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
139 
140    if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
141        (key->light_color_material_mask & (1 << attr)))
142       return GL_TRUE;
143 
144    if (key->varying_vp_inputs & VERT_BIT_MAT(attr))
145       return GL_TRUE;
146 
147    if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
148       return GL_TRUE;
149 
150    return GL_FALSE;
151 }
152 
153 
make_state_key(struct gl_context * ctx,struct state_key * key)154 static void make_state_key( struct gl_context *ctx, struct state_key *key )
155 {
156    const struct gl_program *fp = ctx->FragmentProgram._Current;
157    GLbitfield mask;
158 
159    memset(key, 0, sizeof(struct state_key));
160 
161    if (_mesa_hw_select_enabled(ctx)) {
162       /* GL_SELECT mode only need position calculation.
163        * glBegin/End use VERT_BIT_SELECT_RESULT_OFFSET for multi name stack in one draw.
164        * glDrawArrays may also be called without user shader, fallback to FF one.
165        */
166       key->varying_vp_inputs = ctx->VertexProgram._VaryingInputs &
167          (VERT_BIT_POS | VERT_BIT_SELECT_RESULT_OFFSET);
168       return;
169    }
170 
171    /* This now relies on texenvprogram.c being active:
172     */
173    assert(fp);
174 
175    key->need_eye_coords = ctx->_NeedEyeCoords;
176 
177    key->fragprog_inputs_read = fp->info.inputs_read;
178    key->varying_vp_inputs = ctx->VertexProgram._VaryingInputs;
179 
180    if (ctx->RenderMode == GL_FEEDBACK) {
181       /* make sure the vertprog emits color and tex0 */
182       key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
183    }
184 
185    if (ctx->Light.Enabled) {
186       key->light_global_enabled = 1;
187 
188       if (ctx->Light.Model.LocalViewer)
189 	 key->light_local_viewer = 1;
190 
191       if (ctx->Light.Model.TwoSide)
192 	 key->light_twoside = 1;
193 
194       if (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
195          key->separate_specular = 1;
196 
197       if (ctx->Light.ColorMaterialEnabled) {
198 	 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
199       }
200 
201       mask = ctx->Light._EnabledLights;
202       while (mask) {
203          const int i = u_bit_scan(&mask);
204          struct gl_light_uniforms *lu = &ctx->Light.LightSource[i];
205 
206          key->unit[i].light_enabled = 1;
207 
208          if (lu->EyePosition[3] == 0.0F)
209             key->unit[i].light_eyepos3_is_zero = 1;
210 
211          if (lu->SpotCutoff == 180.0F)
212             key->unit[i].light_spotcutoff_is_180 = 1;
213 
214          if (lu->ConstantAttenuation != 1.0F ||
215              lu->LinearAttenuation != 0.0F ||
216              lu->QuadraticAttenuation != 0.0F)
217             key->unit[i].light_attenuated = 1;
218       }
219 
220       if (check_active_shininess(ctx, key, 0)) {
221          key->material_shininess_is_zero = 0;
222       }
223       else if (key->light_twoside &&
224                check_active_shininess(ctx, key, 1)) {
225          key->material_shininess_is_zero = 0;
226       }
227       else {
228          key->material_shininess_is_zero = 1;
229       }
230    }
231 
232    if (ctx->Transform.Normalize)
233       key->normalize = 1;
234 
235    if (ctx->Transform.RescaleNormals)
236       key->rescale_normals = 1;
237 
238    /* Only distinguish fog parameters if we actually need */
239    if (key->fragprog_inputs_read & VARYING_BIT_FOGC)
240       key->fog_distance_mode =
241          translate_fog_distance_mode(ctx->Fog.FogCoordinateSource,
242                                      ctx->Fog.FogDistanceMode);
243 
244    if (ctx->Point._Attenuated)
245       key->point_attenuated = 1;
246 
247    mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled
248       | ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace;
249    while (mask) {
250       const int i = u_bit_scan(&mask);
251       struct gl_fixedfunc_texture_unit *texUnit =
252          &ctx->Texture.FixedFuncUnit[i];
253 
254       if (ctx->Point.PointSprite)
255 	 if (ctx->Point.CoordReplace & (1u << i))
256 	    key->unit[i].coord_replace = 1;
257 
258       if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
259 	 key->unit[i].texmat_enabled = 1;
260 
261       if (texUnit->TexGenEnabled) {
262 	 key->unit[i].texgen_enabled = 1;
263 
264 	 key->unit[i].texgen_mode0 =
265 	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
266 			      texUnit->GenS.Mode );
267 	 key->unit[i].texgen_mode1 =
268 	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
269 			      texUnit->GenT.Mode );
270 	 key->unit[i].texgen_mode2 =
271 	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
272 			      texUnit->GenR.Mode );
273 	 key->unit[i].texgen_mode3 =
274 	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
275 			      texUnit->GenQ.Mode );
276       }
277    }
278 }
279 
280 
281 
282 /* Very useful debugging tool - produces annotated listing of
283  * generated program with line/function references for each
284  * instruction back into this file:
285  */
286 #define DISASSEM 0
287 
288 
289 /* Use uregs to represent registers internally, translate to Mesa's
290  * expected formats on emit.
291  *
292  * NOTE: These are passed by value extensively in this file rather
293  * than as usual by pointer reference.  If this disturbs you, try
294  * remembering they are just 32bits in size.
295  *
296  * GCC is smart enough to deal with these dword-sized structures in
297  * much the same way as if I had defined them as dwords and was using
298  * macros to access and set the fields.  This is much nicer and easier
299  * to evolve.
300  */
301 struct ureg {
302    GLuint file:4;
303    GLint idx:9;      /* relative addressing may be negative */
304                      /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
305    GLuint negate:1;
306    GLuint swz:12;
307    GLuint pad:6;
308 };
309 
310 
311 struct tnl_program {
312    const struct state_key *state;
313    struct gl_program *program;
314    struct gl_program_parameter_list *state_params;
315    GLuint max_inst;  /** number of instructions allocated for program */
316    GLboolean mvp_with_dp4;
317 
318    GLuint temp_in_use;
319    GLuint temp_reserved;
320 
321    struct ureg eye_position;
322    struct ureg eye_position_z;
323    struct ureg eye_position_normalized;
324    struct ureg transformed_normal;
325    struct ureg identity;
326 
327    GLuint materials;
328    GLuint color_materials;
329 };
330 
331 
332 static const struct ureg undef = {
333    PROGRAM_UNDEFINED,
334    0,
335    0,
336    0,
337    0
338 };
339 
340 /* Local shorthand:
341  */
342 #define X    SWIZZLE_X
343 #define Y    SWIZZLE_Y
344 #define Z    SWIZZLE_Z
345 #define W    SWIZZLE_W
346 
347 
348 /* Construct a ureg:
349  */
make_ureg(GLuint file,GLint idx)350 static struct ureg make_ureg(GLuint file, GLint idx)
351 {
352    struct ureg reg;
353    reg.file = file;
354    reg.idx = idx;
355    reg.negate = 0;
356    reg.swz = SWIZZLE_NOOP;
357    reg.pad = 0;
358    return reg;
359 }
360 
361 
negate(struct ureg reg)362 static struct ureg negate( struct ureg reg )
363 {
364    reg.negate ^= 1;
365    return reg;
366 }
367 
368 
swizzle(struct ureg reg,int x,int y,int z,int w)369 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
370 {
371    reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
372 			   GET_SWZ(reg.swz, y),
373 			   GET_SWZ(reg.swz, z),
374 			   GET_SWZ(reg.swz, w));
375    return reg;
376 }
377 
378 
swizzle1(struct ureg reg,int x)379 static struct ureg swizzle1( struct ureg reg, int x )
380 {
381    return swizzle(reg, x, x, x, x);
382 }
383 
384 
get_temp(struct tnl_program * p)385 static struct ureg get_temp( struct tnl_program *p )
386 {
387    int bit = ffs( ~p->temp_in_use );
388    if (!bit) {
389       _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
390       exit(1);
391    }
392 
393    if ((GLuint) bit > p->program->arb.NumTemporaries)
394       p->program->arb.NumTemporaries = bit;
395 
396    p->temp_in_use |= 1<<(bit-1);
397    return make_ureg(PROGRAM_TEMPORARY, bit-1);
398 }
399 
400 
reserve_temp(struct tnl_program * p)401 static struct ureg reserve_temp( struct tnl_program *p )
402 {
403    struct ureg temp = get_temp( p );
404    p->temp_reserved |= 1<<temp.idx;
405    return temp;
406 }
407 
408 
release_temp(struct tnl_program * p,struct ureg reg)409 static void release_temp( struct tnl_program *p, struct ureg reg )
410 {
411    if (reg.file == PROGRAM_TEMPORARY) {
412       p->temp_in_use &= ~(1<<reg.idx);
413       p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
414    }
415 }
416 
release_temps(struct tnl_program * p)417 static void release_temps( struct tnl_program *p )
418 {
419    p->temp_in_use = p->temp_reserved;
420 }
421 
422 
register_param4(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3)423 static struct ureg register_param4(struct tnl_program *p,
424 				   GLint s0,
425 				   GLint s1,
426 				   GLint s2,
427 				   GLint s3)
428 {
429    gl_state_index16 tokens[STATE_LENGTH];
430    GLint idx;
431    tokens[0] = s0;
432    tokens[1] = s1;
433    tokens[2] = s2;
434    tokens[3] = s3;
435    idx = _mesa_add_state_reference(p->state_params, tokens);
436    return make_ureg(PROGRAM_STATE_VAR, idx);
437 }
438 
439 
440 #define register_param1(p,s0)          register_param4(p,s0,0,0,0)
441 #define register_param2(p,s0,s1)       register_param4(p,s0,s1,0,0)
442 #define register_param3(p,s0,s1,s2)    register_param4(p,s0,s1,s2,0)
443 
444 
445 
446 /**
447  * \param input  one of VERT_ATTRIB_x tokens.
448  */
register_input(struct tnl_program * p,GLuint input)449 static struct ureg register_input( struct tnl_program *p, GLuint input )
450 {
451    assert(input < VERT_ATTRIB_MAX);
452 
453    if (p->state->varying_vp_inputs & VERT_BIT(input)) {
454       p->program->info.inputs_read |= (uint64_t)VERT_BIT(input);
455       return make_ureg(PROGRAM_INPUT, input);
456    }
457    else {
458       return register_param2(p, STATE_CURRENT_ATTRIB, input);
459    }
460 }
461 
462 
463 /**
464  * \param input  one of VARYING_SLOT_x tokens.
465  */
register_output(struct tnl_program * p,GLuint output)466 static struct ureg register_output( struct tnl_program *p, GLuint output )
467 {
468    p->program->info.outputs_written |= BITFIELD64_BIT(output);
469    return make_ureg(PROGRAM_OUTPUT, output);
470 }
471 
472 
register_const4f(struct tnl_program * p,GLfloat s0,GLfloat s1,GLfloat s2,GLfloat s3)473 static struct ureg register_const4f( struct tnl_program *p,
474 			      GLfloat s0,
475 			      GLfloat s1,
476 			      GLfloat s2,
477 			      GLfloat s3)
478 {
479    gl_constant_value values[4];
480    GLint idx;
481    GLuint swizzle;
482    values[0].f = s0;
483    values[1].f = s1;
484    values[2].f = s2;
485    values[3].f = s3;
486    idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4,
487                                     &swizzle );
488    assert(swizzle == SWIZZLE_NOOP);
489    return make_ureg(PROGRAM_CONSTANT, idx);
490 }
491 
492 #define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
493 #define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
494 #define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
495 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
496 
is_undef(struct ureg reg)497 static GLboolean is_undef( struct ureg reg )
498 {
499    return reg.file == PROGRAM_UNDEFINED;
500 }
501 
502 
get_identity_param(struct tnl_program * p)503 static struct ureg get_identity_param( struct tnl_program *p )
504 {
505    if (is_undef(p->identity))
506       p->identity = register_const4f(p, 0,0,0,1);
507 
508    return p->identity;
509 }
510 
register_matrix_param5(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3,struct ureg * matrix)511 static void register_matrix_param5( struct tnl_program *p,
512 				    GLint s0, /* modelview, projection, etc */
513 				    GLint s1, /* texture matrix number */
514 				    GLint s2, /* first row */
515 				    GLint s3, /* last row */
516 				    struct ureg *matrix )
517 {
518    GLint i;
519 
520    /* This is a bit sad as the support is there to pull the whole
521     * matrix out in one go:
522     */
523    for (i = 0; i <= s3 - s2; i++)
524       matrix[i] = register_param4(p, s0, s1, i, i);
525 }
526 
527 
emit_arg(struct prog_src_register * src,struct ureg reg)528 static void emit_arg( struct prog_src_register *src,
529 		      struct ureg reg )
530 {
531    src->File = reg.file;
532    src->Index = reg.idx;
533    src->Swizzle = reg.swz;
534    src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
535    src->RelAddr = 0;
536    /* Check that bitfield sizes aren't exceeded */
537    assert(src->Index == reg.idx);
538 }
539 
540 
emit_dst(struct prog_dst_register * dst,struct ureg reg,GLuint mask)541 static void emit_dst( struct prog_dst_register *dst,
542 		      struct ureg reg, GLuint mask )
543 {
544    dst->File = reg.file;
545    dst->Index = reg.idx;
546    /* allow zero as a shorthand for xyzw */
547    dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
548    /* Check that bitfield sizes aren't exceeded */
549    assert(dst->Index == reg.idx);
550 }
551 
552 
debug_insn(struct prog_instruction * inst,const char * fn,GLuint line)553 static void debug_insn( struct prog_instruction *inst, const char *fn,
554 			GLuint line )
555 {
556    if (DISASSEM) {
557       static const char *last_fn;
558 
559       if (fn != last_fn) {
560 	 last_fn = fn;
561 	 printf("%s:\n", fn);
562       }
563 
564       printf("%d:\t", line);
565       _mesa_print_instruction(inst);
566    }
567 }
568 
569 
emit_op3fn(struct tnl_program * p,enum prog_opcode op,struct ureg dest,GLuint mask,struct ureg src0,struct ureg src1,struct ureg src2,const char * fn,GLuint line)570 static void emit_op3fn(struct tnl_program *p,
571                        enum prog_opcode op,
572 		       struct ureg dest,
573 		       GLuint mask,
574 		       struct ureg src0,
575 		       struct ureg src1,
576 		       struct ureg src2,
577 		       const char *fn,
578 		       GLuint line)
579 {
580    GLuint nr;
581    struct prog_instruction *inst;
582 
583    assert(p->program->arb.NumInstructions <= p->max_inst);
584 
585    if (p->program->arb.NumInstructions == p->max_inst) {
586       /* need to extend the program's instruction array */
587       struct prog_instruction *newInst;
588 
589       /* double the size */
590       p->max_inst *= 2;
591 
592       newInst =
593          rzalloc_array(p->program, struct prog_instruction, p->max_inst);
594       if (!newInst) {
595          _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
596          return;
597       }
598 
599       _mesa_copy_instructions(newInst, p->program->arb.Instructions,
600                               p->program->arb.NumInstructions);
601 
602       ralloc_free(p->program->arb.Instructions);
603 
604       p->program->arb.Instructions = newInst;
605    }
606 
607    nr = p->program->arb.NumInstructions++;
608 
609    inst = &p->program->arb.Instructions[nr];
610    inst->Opcode = (enum prog_opcode) op;
611 
612    emit_arg( &inst->SrcReg[0], src0 );
613    emit_arg( &inst->SrcReg[1], src1 );
614    emit_arg( &inst->SrcReg[2], src2 );
615 
616    emit_dst( &inst->DstReg, dest, mask );
617 
618    debug_insn(inst, fn, line);
619 }
620 
621 
622 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
623    emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
624 
625 #define emit_op2(p, op, dst, mask, src0, src1) \
626     emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
627 
628 #define emit_op1(p, op, dst, mask, src0) \
629     emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
630 
631 
make_temp(struct tnl_program * p,struct ureg reg)632 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
633 {
634    if (reg.file == PROGRAM_TEMPORARY &&
635        !(p->temp_reserved & (1<<reg.idx)))
636       return reg;
637    else {
638       struct ureg temp = get_temp(p);
639       emit_op1(p, OPCODE_MOV, temp, 0, reg);
640       return temp;
641    }
642 }
643 
644 
645 /* Currently no tracking performed of input/output/register size or
646  * active elements.  Could be used to reduce these operations, as
647  * could the matrix type.
648  */
emit_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)649 static void emit_matrix_transform_vec4( struct tnl_program *p,
650 					struct ureg dest,
651 					const struct ureg *mat,
652 					struct ureg src)
653 {
654    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
655    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
656    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
657    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
658 }
659 
660 
661 /* This version is much easier to implement if writemasks are not
662  * supported natively on the target or (like SSE), the target doesn't
663  * have a clean/obvious dotproduct implementation.
664  */
emit_transpose_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)665 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
666 						  struct ureg dest,
667 						  const struct ureg *mat,
668 						  struct ureg src)
669 {
670    struct ureg tmp;
671 
672    if (dest.file != PROGRAM_TEMPORARY)
673       tmp = get_temp(p);
674    else
675       tmp = dest;
676 
677    emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
678    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
679    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
680    emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
681 
682    if (dest.file != PROGRAM_TEMPORARY)
683       release_temp(p, tmp);
684 }
685 
686 
emit_matrix_transform_vec3(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)687 static void emit_matrix_transform_vec3( struct tnl_program *p,
688 					struct ureg dest,
689 					const struct ureg *mat,
690 					struct ureg src)
691 {
692    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
693    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
694    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
695 }
696 
697 
emit_normalize_vec3(struct tnl_program * p,struct ureg dest,struct ureg src)698 static void emit_normalize_vec3( struct tnl_program *p,
699 				 struct ureg dest,
700 				 struct ureg src )
701 {
702    struct ureg tmp = get_temp(p);
703    emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
704    emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
705    emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
706    release_temp(p, tmp);
707 }
708 
709 
emit_passthrough(struct tnl_program * p,GLuint input,GLuint output)710 static void emit_passthrough( struct tnl_program *p,
711 			      GLuint input,
712 			      GLuint output )
713 {
714    struct ureg out = register_output(p, output);
715    emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
716 }
717 
718 
get_eye_position(struct tnl_program * p)719 static struct ureg get_eye_position( struct tnl_program *p )
720 {
721    if (is_undef(p->eye_position)) {
722       struct ureg pos = register_input( p, VERT_ATTRIB_POS );
723       struct ureg modelview[4];
724 
725       p->eye_position = reserve_temp(p);
726 
727       if (p->mvp_with_dp4) {
728 	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
729                                  modelview );
730 
731 	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
732       }
733       else {
734 	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX_TRANSPOSE, 0, 0, 3,
735 				 modelview );
736 
737 	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
738       }
739    }
740 
741    return p->eye_position;
742 }
743 
744 
get_eye_position_z(struct tnl_program * p)745 static struct ureg get_eye_position_z( struct tnl_program *p )
746 {
747    if (!is_undef(p->eye_position))
748       return swizzle1(p->eye_position, Z);
749 
750    if (is_undef(p->eye_position_z)) {
751       struct ureg pos = register_input( p, VERT_ATTRIB_POS );
752       struct ureg modelview[4];
753 
754       p->eye_position_z = reserve_temp(p);
755 
756       register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
757                               modelview );
758 
759       emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
760    }
761 
762    return p->eye_position_z;
763 }
764 
765 
get_eye_position_normalized(struct tnl_program * p)766 static struct ureg get_eye_position_normalized( struct tnl_program *p )
767 {
768    if (is_undef(p->eye_position_normalized)) {
769       struct ureg eye = get_eye_position(p);
770       p->eye_position_normalized = reserve_temp(p);
771       emit_normalize_vec3(p, p->eye_position_normalized, eye);
772    }
773 
774    return p->eye_position_normalized;
775 }
776 
777 
get_transformed_normal(struct tnl_program * p)778 static struct ureg get_transformed_normal( struct tnl_program *p )
779 {
780    if (is_undef(p->transformed_normal) &&
781        !p->state->need_eye_coords &&
782        !p->state->normalize &&
783        !(p->state->need_eye_coords == p->state->rescale_normals))
784    {
785       p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
786    }
787    else if (is_undef(p->transformed_normal))
788    {
789       struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
790       struct ureg mvinv[3];
791       struct ureg transformed_normal = reserve_temp(p);
792 
793       if (p->state->need_eye_coords) {
794          register_matrix_param5( p, STATE_MODELVIEW_MATRIX_INVTRANS, 0, 0, 2,
795                                  mvinv );
796 
797          /* Transform to eye space:
798           */
799          emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
800          normal = transformed_normal;
801       }
802 
803       /* Normalize/Rescale:
804        */
805       if (p->state->normalize) {
806 	 emit_normalize_vec3( p, transformed_normal, normal );
807          normal = transformed_normal;
808       }
809       else if (p->state->need_eye_coords == p->state->rescale_normals) {
810          /* This is already adjusted for eye/non-eye rendering:
811           */
812 	 struct ureg rescale = register_param1(p, STATE_NORMAL_SCALE);
813 
814 	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
815          normal = transformed_normal;
816       }
817 
818       assert(normal.file == PROGRAM_TEMPORARY);
819       p->transformed_normal = normal;
820    }
821 
822    return p->transformed_normal;
823 }
824 
825 
build_hpos(struct tnl_program * p)826 static void build_hpos( struct tnl_program *p )
827 {
828    struct ureg pos = register_input( p, VERT_ATTRIB_POS );
829    struct ureg hpos = register_output( p, VARYING_SLOT_POS );
830    struct ureg mvp[4];
831 
832    if (p->mvp_with_dp4) {
833       register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
834 			      mvp );
835       emit_matrix_transform_vec4( p, hpos, mvp, pos );
836    }
837    else {
838       register_matrix_param5( p, STATE_MVP_MATRIX_TRANSPOSE, 0, 0, 3,
839 			      mvp );
840       emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
841    }
842 }
843 
844 
material_attrib(GLuint side,GLuint property)845 static GLuint material_attrib( GLuint side, GLuint property )
846 {
847    switch (property) {
848    case STATE_AMBIENT:
849       return MAT_ATTRIB_FRONT_AMBIENT + side;
850    case STATE_DIFFUSE:
851       return MAT_ATTRIB_FRONT_DIFFUSE + side;
852    case STATE_SPECULAR:
853       return MAT_ATTRIB_FRONT_SPECULAR + side;
854    case STATE_EMISSION:
855       return MAT_ATTRIB_FRONT_EMISSION + side;
856    case STATE_SHININESS:
857       return MAT_ATTRIB_FRONT_SHININESS + side;
858    default:
859       unreachable("invalid value");
860    }
861 }
862 
863 
864 /**
865  * Get a bitmask of which material values vary on a per-vertex basis.
866  */
set_material_flags(struct tnl_program * p)867 static void set_material_flags( struct tnl_program *p )
868 {
869    p->color_materials = 0;
870    p->materials = 0;
871 
872    if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
873       p->materials =
874 	 p->color_materials = p->state->light_color_material_mask;
875    }
876 
877    p->materials |= ((p->state->varying_vp_inputs & VERT_BIT_MAT_ALL)
878                     >> VERT_ATTRIB_MAT(0));
879 }
880 
881 
get_material(struct tnl_program * p,GLuint side,GLuint property)882 static struct ureg get_material( struct tnl_program *p, GLuint side,
883 				 GLuint property )
884 {
885    GLuint attrib = material_attrib(side, property);
886 
887    if (p->color_materials & (1<<attrib))
888       return register_input(p, VERT_ATTRIB_COLOR0);
889    else if (p->materials & (1<<attrib)) {
890       /* Put material values in the GENERIC slots -- they are not used
891        * for anything in fixed function mode.
892        */
893       return register_input( p, VERT_ATTRIB_MAT(attrib) );
894    }
895    else
896       return register_param2(p, STATE_MATERIAL, attrib);
897 }
898 
899 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
900 				   MAT_BIT_FRONT_AMBIENT | \
901 				   MAT_BIT_FRONT_DIFFUSE) << (side))
902 
903 
904 /**
905  * Either return a precalculated constant value or emit code to
906  * calculate these values dynamically in the case where material calls
907  * are present between begin/end pairs.
908  *
909  * Probably want to shift this to the program compilation phase - if
910  * we always emitted the calculation here, a smart compiler could
911  * detect that it was constant (given a certain set of inputs), and
912  * lift it out of the main loop.  That way the programs created here
913  * would be independent of the vertex_buffer details.
914  */
get_scenecolor(struct tnl_program * p,GLuint side)915 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
916 {
917    if (p->materials & SCENE_COLOR_BITS(side)) {
918       struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
919       struct ureg material_emission = get_material(p, side, STATE_EMISSION);
920       struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
921       struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
922       struct ureg tmp = make_temp(p, material_diffuse);
923       emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
924 	       material_ambient, material_emission);
925       return tmp;
926    }
927    else
928       return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
929 }
930 
931 
get_lightprod(struct tnl_program * p,GLuint light,GLuint side,GLuint property,bool * is_state_light)932 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
933 				  GLuint side, GLuint property, bool *is_state_light )
934 {
935    GLuint attrib = material_attrib(side, property);
936    if (p->materials & (1<<attrib)) {
937       struct ureg light_value =
938 	 register_param3(p, STATE_LIGHT, light, property);
939     *is_state_light = true;
940     return light_value;
941    }
942    else {
943       *is_state_light = false;
944       return register_param3(p, STATE_LIGHTPROD, light, attrib);
945    }
946 }
947 
948 
calculate_light_attenuation(struct tnl_program * p,GLuint i,struct ureg VPpli,struct ureg dist)949 static struct ureg calculate_light_attenuation( struct tnl_program *p,
950 						GLuint i,
951 						struct ureg VPpli,
952 						struct ureg dist )
953 {
954    struct ureg attenuation = undef;
955    struct ureg att = undef;
956 
957    /* Calculate spot attenuation:
958     */
959    if (!p->state->unit[i].light_spotcutoff_is_180) {
960       struct ureg spot_dir_norm = register_param2(p, STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
961       struct ureg spot = get_temp(p);
962       struct ureg slt = get_temp(p);
963 
964       attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
965       att = get_temp(p);
966 
967       emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
968       emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
969       emit_op1(p, OPCODE_ABS, spot, 0, spot);
970       emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
971       emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
972 
973       release_temp(p, spot);
974       release_temp(p, slt);
975    }
976 
977    /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
978     *
979     * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
980     */
981    if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
982       if (is_undef(att))
983          att = get_temp(p);
984 
985       if (is_undef(attenuation))
986          attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
987 
988       /* 1/d,d,d,1/d */
989       emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
990       /* 1,d,d*d,1/d */
991       emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
992       /* 1/dist-atten */
993       emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
994 
995       if (!p->state->unit[i].light_spotcutoff_is_180) {
996 	 /* dist-atten */
997 	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
998 	 /* spot-atten * dist-atten */
999 	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1000       }
1001       else {
1002 	 /* dist-atten */
1003 	 emit_op1(p, OPCODE_RCP, att, 0, dist);
1004       }
1005    }
1006 
1007    return att;
1008 }
1009 
1010 
1011 /**
1012  * Compute:
1013  *   lit.y = MAX(0, dots.x)
1014  *   lit.z = SLT(0, dots.x)
1015  */
emit_degenerate_lit(struct tnl_program * p,struct ureg lit,struct ureg dots)1016 static void emit_degenerate_lit( struct tnl_program *p,
1017                                  struct ureg lit,
1018                                  struct ureg dots )
1019 {
1020    struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
1021 
1022    /* Note that lit.x & lit.w will not be examined.  Note also that
1023     * dots.xyzw == dots.xxxx.
1024     */
1025 
1026    /* MAX lit, id, dots;
1027     */
1028    emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1029 
1030    /* result[2] = (in > 0 ? 1 : 0)
1031     * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1032     */
1033    emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1034 }
1035 
1036 
1037 /* Need to add some addtional parameters to allow lighting in object
1038  * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1039  * space lighting.
1040  */
build_lighting(struct tnl_program * p)1041 static void build_lighting( struct tnl_program *p )
1042 {
1043    const GLboolean twoside = p->state->light_twoside;
1044    const GLboolean separate = p->state->separate_specular;
1045    GLuint nr_lights = 0, count = 0;
1046    struct ureg normal = get_transformed_normal(p);
1047    struct ureg lit = get_temp(p);
1048    struct ureg dots = get_temp(p);
1049    struct ureg _col0 = undef, _col1 = undef;
1050    struct ureg _bfc0 = undef, _bfc1 = undef;
1051    GLuint i;
1052 
1053    /*
1054     * NOTE:
1055     * dots.x = dot(normal, VPpli)
1056     * dots.y = dot(normal, halfAngle)
1057     * dots.z = back.shininess
1058     * dots.w = front.shininess
1059     */
1060 
1061    for (i = 0; i < MAX_LIGHTS; i++)
1062       if (p->state->unit[i].light_enabled)
1063 	 nr_lights++;
1064 
1065    set_material_flags(p);
1066 
1067    {
1068       if (!p->state->material_shininess_is_zero) {
1069          struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1070          emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1071          release_temp(p, shininess);
1072       }
1073 
1074       _col0 = make_temp(p, get_scenecolor(p, 0));
1075       if (separate)
1076 	 _col1 = make_temp(p, get_identity_param(p));
1077       else
1078 	 _col1 = _col0;
1079    }
1080 
1081    if (twoside) {
1082       if (!p->state->material_shininess_is_zero) {
1083          /* Note that we negate the back-face specular exponent here.
1084           * The negation will be un-done later in the back-face code below.
1085           */
1086          struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1087          emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1088                   negate(swizzle1(shininess,X)));
1089          release_temp(p, shininess);
1090       }
1091 
1092       _bfc0 = make_temp(p, get_scenecolor(p, 1));
1093       if (separate)
1094 	 _bfc1 = make_temp(p, get_identity_param(p));
1095       else
1096 	 _bfc1 = _bfc0;
1097    }
1098 
1099    /* If no lights, still need to emit the scenecolor.
1100     */
1101    {
1102       struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1103       emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1104    }
1105 
1106    if (separate) {
1107       struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1108       emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1109    }
1110 
1111    if (twoside) {
1112       struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1113       emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1114    }
1115 
1116    if (twoside && separate) {
1117       struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1118       emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1119    }
1120 
1121    if (nr_lights == 0) {
1122       release_temps(p);
1123       return;
1124    }
1125 
1126    /* Declare light products first to place them sequentially next to each
1127     * other for optimal constant uploads.
1128     */
1129    struct ureg lightprod_front[MAX_LIGHTS][3];
1130    struct ureg lightprod_back[MAX_LIGHTS][3];
1131    bool lightprod_front_is_state_light[MAX_LIGHTS][3];
1132    bool lightprod_back_is_state_light[MAX_LIGHTS][3];
1133 
1134    for (i = 0; i < MAX_LIGHTS; i++) {
1135       if (p->state->unit[i].light_enabled) {
1136          lightprod_front[i][0] = get_lightprod(p, i, 0, STATE_AMBIENT,
1137                                                &lightprod_front_is_state_light[i][0]);
1138          if (twoside)
1139             lightprod_back[i][0] = get_lightprod(p, i, 1, STATE_AMBIENT,
1140                                                  &lightprod_back_is_state_light[i][0]);
1141 
1142          lightprod_front[i][1] = get_lightprod(p, i, 0, STATE_DIFFUSE,
1143                                                &lightprod_front_is_state_light[i][1]);
1144          if (twoside)
1145             lightprod_back[i][1] = get_lightprod(p, i, 1, STATE_DIFFUSE,
1146                                                  &lightprod_back_is_state_light[i][1]);
1147 
1148          lightprod_front[i][2] = get_lightprod(p, i, 0, STATE_SPECULAR,
1149                                                &lightprod_front_is_state_light[i][2]);
1150          if (twoside)
1151             lightprod_back[i][2] = get_lightprod(p, i, 1, STATE_SPECULAR,
1152                                                  &lightprod_back_is_state_light[i][2]);
1153       }
1154    }
1155 
1156    /* Add more variables now that we'll use later, so that they are nicely
1157     * sorted in the parameter list.
1158     */
1159    for (i = 0; i < MAX_LIGHTS; i++) {
1160       if (p->state->unit[i].light_enabled) {
1161          if (p->state->unit[i].light_eyepos3_is_zero)
1162             register_param2(p, STATE_LIGHT_POSITION_NORMALIZED, i);
1163          else
1164             register_param2(p, STATE_LIGHT_POSITION, i);
1165       }
1166    }
1167    for (i = 0; i < MAX_LIGHTS; i++) {
1168       if (p->state->unit[i].light_enabled &&
1169           (!p->state->unit[i].light_spotcutoff_is_180 ||
1170            (p->state->unit[i].light_attenuated &&
1171             !p->state->unit[i].light_eyepos3_is_zero)))
1172          register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION);
1173    }
1174 
1175    for (i = 0; i < MAX_LIGHTS; i++) {
1176       if (p->state->unit[i].light_enabled) {
1177 	 struct ureg half = undef;
1178 	 struct ureg att = undef, VPpli = undef;
1179 	 struct ureg dist = undef;
1180 
1181 	 count++;
1182          if (p->state->unit[i].light_eyepos3_is_zero) {
1183              VPpli = register_param2(p, STATE_LIGHT_POSITION_NORMALIZED, i);
1184          } else {
1185             struct ureg Ppli = register_param2(p, STATE_LIGHT_POSITION, i);
1186             struct ureg V = get_eye_position(p);
1187 
1188             VPpli = get_temp(p);
1189             dist = get_temp(p);
1190 
1191             /* Calculate VPpli vector
1192              */
1193             emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1194 
1195             /* Normalize VPpli.  The dist value also used in
1196              * attenuation below.
1197              */
1198             emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1199             emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1200             emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1201          }
1202 
1203          /* Calculate attenuation:
1204           */
1205          att = calculate_light_attenuation(p, i, VPpli, dist);
1206          release_temp(p, dist);
1207 
1208 	 /* Calculate viewer direction, or use infinite viewer:
1209 	  */
1210          if (!p->state->material_shininess_is_zero) {
1211             if (p->state->light_local_viewer) {
1212                struct ureg eye_hat = get_eye_position_normalized(p);
1213                half = get_temp(p);
1214                emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1215                emit_normalize_vec3(p, half, half);
1216             } else if (p->state->unit[i].light_eyepos3_is_zero) {
1217                half = register_param2(p, STATE_LIGHT_HALF_VECTOR, i);
1218             } else {
1219                struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1220                half = get_temp(p);
1221                emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1222                emit_normalize_vec3(p, half, half);
1223             }
1224 	 }
1225 
1226 	 /* Calculate dot products:
1227 	  */
1228          if (p->state->material_shininess_is_zero) {
1229             emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1230          }
1231          else {
1232             emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1233             emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1234          }
1235 
1236 	 /* Front face lighting:
1237 	  */
1238 	 {
1239       /* Transform STATE_LIGHT into STATE_LIGHTPROD if needed. This isn't done in
1240        * get_lightprod to avoid using too many temps.
1241        */
1242       for (int j = 0; j < 3; j++) {
1243          if (lightprod_front_is_state_light[i][j]) {
1244             struct ureg material_value = get_material(p, 0, STATE_AMBIENT + j);
1245             struct ureg tmp = get_temp(p);
1246             emit_op2(p, OPCODE_MUL, tmp, 0, lightprod_front[i][j], material_value);
1247             lightprod_front[i][j] = tmp;
1248          }
1249       }
1250 
1251 	    struct ureg ambient = lightprod_front[i][0];
1252 	    struct ureg diffuse = lightprod_front[i][1];
1253 	    struct ureg specular = lightprod_front[i][2];
1254 	    struct ureg res0, res1;
1255 	    GLuint mask0, mask1;
1256 
1257 	    if (count == nr_lights) {
1258 	       if (separate) {
1259 		  mask0 = WRITEMASK_XYZ;
1260 		  mask1 = WRITEMASK_XYZ;
1261 		  res0 = register_output( p, VARYING_SLOT_COL0 );
1262 		  res1 = register_output( p, VARYING_SLOT_COL1 );
1263 	       }
1264 	       else {
1265 		  mask0 = 0;
1266 		  mask1 = WRITEMASK_XYZ;
1267 		  res0 = _col0;
1268 		  res1 = register_output( p, VARYING_SLOT_COL0 );
1269 	       }
1270 	    }
1271             else {
1272 	       mask0 = 0;
1273 	       mask1 = 0;
1274 	       res0 = _col0;
1275 	       res1 = _col1;
1276 	    }
1277 
1278 	    if (!is_undef(att)) {
1279                /* light is attenuated by distance */
1280                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1281                emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1282                emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1283             }
1284             else if (!p->state->material_shininess_is_zero) {
1285                /* there's a non-zero specular term */
1286                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1287                emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1288             }
1289             else {
1290                /* no attenutation, no specular */
1291                emit_degenerate_lit(p, lit, dots);
1292                emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1293             }
1294 
1295 	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1296 	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1297 
1298 	    release_temp(p, ambient);
1299 	    release_temp(p, diffuse);
1300 	    release_temp(p, specular);
1301 	 }
1302 
1303 	 /* Back face lighting:
1304 	  */
1305 	 if (twoside) {
1306       /* Transform STATE_LIGHT into STATE_LIGHTPROD if needed. This isn't done in
1307        * get_lightprod to avoid using too many temps.
1308        */
1309       for (int j = 0; j < 3; j++) {
1310          if (lightprod_back_is_state_light[i][j]) {
1311             struct ureg material_value = get_material(p, 1, STATE_AMBIENT + j);
1312             struct ureg tmp = get_temp(p);
1313             emit_op2(p, OPCODE_MUL, tmp, 1, lightprod_back[i][j], material_value);
1314             lightprod_back[i][j] = tmp;
1315          }
1316       }
1317 
1318 	    struct ureg ambient = lightprod_back[i][0];
1319 	    struct ureg diffuse = lightprod_back[i][1];
1320 	    struct ureg specular = lightprod_back[i][2];
1321 	    struct ureg res0, res1;
1322 	    GLuint mask0, mask1;
1323 
1324 	    if (count == nr_lights) {
1325 	       if (separate) {
1326 		  mask0 = WRITEMASK_XYZ;
1327 		  mask1 = WRITEMASK_XYZ;
1328 		  res0 = register_output( p, VARYING_SLOT_BFC0 );
1329 		  res1 = register_output( p, VARYING_SLOT_BFC1 );
1330 	       }
1331 	       else {
1332 		  mask0 = 0;
1333 		  mask1 = WRITEMASK_XYZ;
1334 		  res0 = _bfc0;
1335 		  res1 = register_output( p, VARYING_SLOT_BFC0 );
1336 	       }
1337 	    }
1338             else {
1339 	       res0 = _bfc0;
1340 	       res1 = _bfc1;
1341 	       mask0 = 0;
1342 	       mask1 = 0;
1343 	    }
1344 
1345             /* For the back face we need to negate the X and Y component
1346              * dot products.  dots.Z has the negated back-face specular
1347              * exponent.  We swizzle that into the W position.  This
1348              * negation makes the back-face specular term positive again.
1349              */
1350             dots = negate(swizzle(dots,X,Y,W,Z));
1351 
1352 	    if (!is_undef(att)) {
1353                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1354 	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1355                emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1356             }
1357             else if (!p->state->material_shininess_is_zero) {
1358                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1359                emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1360             }
1361             else {
1362                emit_degenerate_lit(p, lit, dots);
1363                emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1364             }
1365 
1366 	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1367 	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1368             /* restore dots to its original state for subsequent lights
1369              * by negating and swizzling again.
1370              */
1371             dots = negate(swizzle(dots,X,Y,W,Z));
1372 
1373 	    release_temp(p, ambient);
1374 	    release_temp(p, diffuse);
1375 	    release_temp(p, specular);
1376 	 }
1377 
1378 	 release_temp(p, half);
1379 	 release_temp(p, VPpli);
1380 	 release_temp(p, att);
1381       }
1382    }
1383 
1384    release_temps( p );
1385 }
1386 
1387 
build_fog(struct tnl_program * p)1388 static void build_fog( struct tnl_program *p )
1389 {
1390    struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1391    struct ureg input;
1392 
1393    switch (p->state->fog_distance_mode) {
1394    case FDM_EYE_RADIAL: { /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1395       struct ureg tmp = get_temp(p);
1396       input = get_eye_position(p);
1397       emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, input, input);
1398       emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
1399       emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, tmp);
1400       break;
1401    }
1402    case FDM_EYE_PLANE: /* Z = Ze */
1403       input = get_eye_position_z(p);
1404       emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1405       break;
1406    case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1407       input = get_eye_position_z(p);
1408       emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1409       break;
1410    case FDM_FROM_ARRAY:
1411       input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1412       emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1413       break;
1414    default:
1415       assert(!"Bad fog mode in build_fog()");
1416       break;
1417    }
1418 
1419    emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1420 }
1421 
1422 
build_reflect_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1423 static void build_reflect_texgen( struct tnl_program *p,
1424 				  struct ureg dest,
1425 				  GLuint writemask )
1426 {
1427    struct ureg normal = get_transformed_normal(p);
1428    struct ureg eye_hat = get_eye_position_normalized(p);
1429    struct ureg tmp = get_temp(p);
1430 
1431    /* n.u */
1432    emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1433    /* 2n.u */
1434    emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1435    /* (-2n.u)n + u */
1436    emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1437 
1438    release_temp(p, tmp);
1439 }
1440 
1441 
build_sphere_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1442 static void build_sphere_texgen( struct tnl_program *p,
1443 				 struct ureg dest,
1444 				 GLuint writemask )
1445 {
1446    struct ureg normal = get_transformed_normal(p);
1447    struct ureg eye_hat = get_eye_position_normalized(p);
1448    struct ureg tmp = get_temp(p);
1449    struct ureg half = register_scalar_const(p, .5);
1450    struct ureg r = get_temp(p);
1451    struct ureg inv_m = get_temp(p);
1452    struct ureg id = get_identity_param(p);
1453 
1454    /* Could share the above calculations, but it would be
1455     * a fairly odd state for someone to set (both sphere and
1456     * reflection active for different texture coordinate
1457     * components.  Of course - if two texture units enable
1458     * reflect and/or sphere, things start to tilt in favour
1459     * of seperating this out:
1460     */
1461 
1462    /* n.u */
1463    emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1464    /* 2n.u */
1465    emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1466    /* (-2n.u)n + u */
1467    emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1468    /* r + 0,0,1 */
1469    emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1470    /* rx^2 + ry^2 + (rz+1)^2 */
1471    emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1472    /* 2/m */
1473    emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1474    /* 1/m */
1475    emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1476    /* r/m + 1/2 */
1477    emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1478 
1479    release_temp(p, tmp);
1480    release_temp(p, r);
1481    release_temp(p, inv_m);
1482 }
1483 
1484 
build_texture_transform(struct tnl_program * p)1485 static void build_texture_transform( struct tnl_program *p )
1486 {
1487    GLuint i, j;
1488 
1489    for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1490 
1491       if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1492 	 continue;
1493 
1494       if (p->state->unit[i].coord_replace)
1495   	 continue;
1496 
1497       if (p->state->unit[i].texgen_enabled ||
1498 	  p->state->unit[i].texmat_enabled) {
1499 
1500 	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1501 	 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1502 	 struct ureg out_texgen = undef;
1503 
1504 	 if (p->state->unit[i].texgen_enabled) {
1505 	    GLuint copy_mask = 0;
1506 	    GLuint sphere_mask = 0;
1507 	    GLuint reflect_mask = 0;
1508 	    GLuint normal_mask = 0;
1509 	    GLuint modes[4];
1510 
1511 	    if (texmat_enabled)
1512 	       out_texgen = get_temp(p);
1513 	    else
1514 	       out_texgen = out;
1515 
1516 	    modes[0] = p->state->unit[i].texgen_mode0;
1517 	    modes[1] = p->state->unit[i].texgen_mode1;
1518 	    modes[2] = p->state->unit[i].texgen_mode2;
1519 	    modes[3] = p->state->unit[i].texgen_mode3;
1520 
1521 	    for (j = 0; j < 4; j++) {
1522 	       switch (modes[j]) {
1523 	       case TXG_OBJ_LINEAR: {
1524 		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1525 		  struct ureg plane =
1526 		     register_param3(p, STATE_TEXGEN, i,
1527 				     STATE_TEXGEN_OBJECT_S + j);
1528 
1529 		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1530 			   obj, plane );
1531 		  break;
1532 	       }
1533 	       case TXG_EYE_LINEAR: {
1534 		  struct ureg eye = get_eye_position(p);
1535 		  struct ureg plane =
1536 		     register_param3(p, STATE_TEXGEN, i,
1537 				     STATE_TEXGEN_EYE_S + j);
1538 
1539 		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1540 			   eye, plane );
1541 		  break;
1542 	       }
1543 	       case TXG_SPHERE_MAP:
1544 		  sphere_mask |= WRITEMASK_X << j;
1545 		  break;
1546 	       case TXG_REFLECTION_MAP:
1547 		  reflect_mask |= WRITEMASK_X << j;
1548 		  break;
1549 	       case TXG_NORMAL_MAP:
1550 		  normal_mask |= WRITEMASK_X << j;
1551 		  break;
1552 	       case TXG_NONE:
1553 		  copy_mask |= WRITEMASK_X << j;
1554 	       }
1555 	    }
1556 
1557 	    if (sphere_mask) {
1558 	       build_sphere_texgen(p, out_texgen, sphere_mask);
1559 	    }
1560 
1561 	    if (reflect_mask) {
1562 	       build_reflect_texgen(p, out_texgen, reflect_mask);
1563 	    }
1564 
1565 	    if (normal_mask) {
1566 	       struct ureg normal = get_transformed_normal(p);
1567 	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1568 	    }
1569 
1570 	    if (copy_mask) {
1571 	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1572 	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1573 	    }
1574 	 }
1575 
1576 	 if (texmat_enabled) {
1577 	    struct ureg texmat[4];
1578 	    struct ureg in = (!is_undef(out_texgen) ?
1579 			      out_texgen :
1580 			      register_input(p, VERT_ATTRIB_TEX0+i));
1581 	    if (p->mvp_with_dp4) {
1582 	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1583 				       texmat );
1584 	       emit_matrix_transform_vec4( p, out, texmat, in );
1585 	    }
1586 	    else {
1587 	       register_matrix_param5( p, STATE_TEXTURE_MATRIX_TRANSPOSE, i, 0, 3,
1588 				       texmat );
1589 	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1590 	    }
1591 	 }
1592 
1593 	 release_temps(p);
1594       }
1595       else {
1596 	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1597       }
1598    }
1599 }
1600 
1601 
1602 /**
1603  * Point size attenuation computation.
1604  */
build_atten_pointsize(struct tnl_program * p)1605 static void build_atten_pointsize( struct tnl_program *p )
1606 {
1607    struct ureg eye = get_eye_position_z(p);
1608    struct ureg state_size = register_param1(p, STATE_POINT_SIZE_CLAMPED);
1609    struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1610    struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1611    struct ureg ut = get_temp(p);
1612 
1613    /* dist = |eyez| */
1614    emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1615    /* p1 + dist * (p2 + dist * p3); */
1616    emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1617 		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1618    emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1619 		ut, swizzle1(state_attenuation, X));
1620 
1621    /* 1 / sqrt(factor) */
1622    emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1623 
1624 #if 0
1625    /* out = pointSize / sqrt(factor) */
1626    emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1627 #else
1628    /* this is a good place to clamp the point size since there's likely
1629     * no hardware registers to clamp point size at rasterization time.
1630     */
1631    emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1632    emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1633    emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1634 #endif
1635 
1636    release_temp(p, ut);
1637 }
1638 
1639 
1640 /**
1641  * Pass-though per-vertex point size, from user's point size array.
1642  */
build_array_pointsize(struct tnl_program * p)1643 static void build_array_pointsize( struct tnl_program *p )
1644 {
1645    struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1646    struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1647    emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1648 }
1649 
1650 
build_tnl_program(struct tnl_program * p)1651 static void build_tnl_program( struct tnl_program *p )
1652 {
1653    /* Emit the program, starting with the modelview, projection transforms:
1654     */
1655    build_hpos(p);
1656 
1657    /* Lighting calculations:
1658     */
1659    if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1660       if (p->state->light_global_enabled)
1661 	 build_lighting(p);
1662       else {
1663 	 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1664 	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1665 
1666 	 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1667 	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1668       }
1669    }
1670 
1671    if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1672       build_fog(p);
1673 
1674    if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1675       build_texture_transform(p);
1676 
1677    if (p->state->point_attenuated)
1678       build_atten_pointsize(p);
1679    else if (p->state->varying_vp_inputs & VERT_BIT_POINT_SIZE)
1680       build_array_pointsize(p);
1681 
1682    if (p->state->varying_vp_inputs & VERT_BIT_SELECT_RESULT_OFFSET)
1683       emit_passthrough(p, VERT_ATTRIB_SELECT_RESULT_OFFSET, VARYING_SLOT_VAR0);
1684 
1685    /* Finish up:
1686     */
1687    emit_op1(p, OPCODE_END, undef, 0, undef);
1688 
1689    /* Disassemble:
1690     */
1691    if (DISASSEM) {
1692       printf ("\n");
1693    }
1694 }
1695 
1696 
1697 static void
create_new_program(const struct state_key * key,struct gl_program * program,GLboolean mvp_with_dp4,GLuint max_temps)1698 create_new_program( const struct state_key *key,
1699                     struct gl_program *program,
1700                     GLboolean mvp_with_dp4,
1701                     GLuint max_temps)
1702 {
1703    struct tnl_program p;
1704 
1705    memset(&p, 0, sizeof(p));
1706    p.state = key;
1707    p.program = program;
1708    p.eye_position = undef;
1709    p.eye_position_z = undef;
1710    p.eye_position_normalized = undef;
1711    p.transformed_normal = undef;
1712    p.identity = undef;
1713    p.temp_in_use = 0;
1714    p.mvp_with_dp4 = mvp_with_dp4;
1715 
1716    if (max_temps >= sizeof(int) * 8)
1717       p.temp_reserved = 0;
1718    else
1719       p.temp_reserved = ~((1<<max_temps)-1);
1720 
1721    /* Start by allocating 32 instructions.
1722     * If we need more, we'll grow the instruction array as needed.
1723     */
1724    p.max_inst = 32;
1725    p.program->arb.Instructions =
1726       rzalloc_array(program, struct prog_instruction, p.max_inst);
1727    p.program->String = NULL;
1728    p.program->arb.NumInstructions =
1729    p.program->arb.NumTemporaries =
1730    p.program->arb.NumParameters =
1731    p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0;
1732    p.program->Parameters = _mesa_new_parameter_list();
1733    p.program->info.inputs_read = 0;
1734    p.program->info.outputs_written = 0;
1735    p.state_params = _mesa_new_parameter_list();
1736 
1737    build_tnl_program( &p );
1738 
1739    _mesa_add_separate_state_parameters(p.program, p.state_params);
1740    _mesa_free_parameter_list(p.state_params);
1741 }
1742 
1743 
1744 /**
1745  * Return a vertex program which implements the current fixed-function
1746  * transform/lighting/texgen operations.
1747  */
1748 struct gl_program *
_mesa_get_fixed_func_vertex_program(struct gl_context * ctx)1749 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1750 {
1751    struct gl_program *prog;
1752    struct state_key key;
1753 
1754    /* We only update ctx->VertexProgram._VaryingInputs when in VP_MODE_FF _VPMode */
1755    assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
1756 
1757    /* Grab all the relevant state and put it in a single structure:
1758     */
1759    make_state_key(ctx, &key);
1760 
1761    /* Look for an already-prepared program for this state:
1762     */
1763    prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key,
1764                                      sizeof(key));
1765 
1766    if (!prog) {
1767       /* OK, we'll have to build a new one */
1768       if (0)
1769          printf("Build new TNL program\n");
1770 
1771       prog = ctx->Driver.NewProgram(ctx, MESA_SHADER_VERTEX, 0, true);
1772       if (!prog)
1773          return NULL;
1774 
1775       create_new_program( &key, prog,
1776                           ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1777                           ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1778 
1779       st_program_string_notify(ctx, GL_VERTEX_PROGRAM_ARB, prog);
1780 
1781       _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key,
1782                                  sizeof(key), prog);
1783    }
1784 
1785    return prog;
1786 }
1787