• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Christoph Bumiller
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "tgsi/tgsi_build.h"
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 
28 #include <set>
29 
30 #include "nv50_ir.h"
31 #include "nv50_ir_from_common.h"
32 #include "nv50_ir_util.h"
33 
34 namespace tgsi {
35 
36 class Source;
37 
38 static nv50_ir::operation translateOpcode(uint opcode);
39 static nv50_ir::DataFile translateFile(uint file);
40 static nv50_ir::TexTarget translateTexture(uint texTarg);
41 static nv50_ir::SVSemantic translateSysVal(uint sysval);
42 static nv50_ir::CacheMode translateCacheMode(uint qualifier);
43 
44 class Instruction
45 {
46 public:
Instruction(const struct tgsi_full_instruction * inst)47    Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48 
49    class SrcRegister
50    {
51    public:
SrcRegister(const struct tgsi_full_src_register * src)52       SrcRegister(const struct tgsi_full_src_register *src)
53          : reg(src->Register),
54            fsr(src)
55       { }
56 
SrcRegister(const struct tgsi_src_register & src)57       SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58 
SrcRegister(const struct tgsi_ind_register & ind)59       SrcRegister(const struct tgsi_ind_register& ind)
60          : reg(tgsi_util_get_src_from_ind(&ind)),
61            fsr(NULL)
62       { }
63 
offsetToSrc(struct tgsi_texture_offset off)64       struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65       {
66          struct tgsi_src_register reg;
67          memset(&reg, 0, sizeof(reg));
68          reg.Index = off.Index;
69          reg.File = off.File;
70          reg.SwizzleX = off.SwizzleX;
71          reg.SwizzleY = off.SwizzleY;
72          reg.SwizzleZ = off.SwizzleZ;
73          return reg;
74       }
75 
SrcRegister(const struct tgsi_texture_offset & off)76       SrcRegister(const struct tgsi_texture_offset& off) :
77          reg(offsetToSrc(off)),
78          fsr(NULL)
79       { }
80 
getFile() const81       uint getFile() const { return reg.File; }
82 
is2D() const83       bool is2D() const { return reg.Dimension; }
84 
isIndirect(int dim) const85       bool isIndirect(int dim) const
86       {
87          return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88       }
89 
getIndex(int dim) const90       int getIndex(int dim) const
91       {
92          return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93       }
94 
getSwizzle(int chan) const95       int getSwizzle(int chan) const
96       {
97          return tgsi_util_get_src_register_swizzle(&reg, chan);
98       }
99 
getArrayId() const100       int getArrayId() const
101       {
102          if (isIndirect(0))
103             return fsr->Indirect.ArrayID;
104          return 0;
105       }
106 
107       nv50_ir::Modifier getMod(int chan) const;
108 
getIndirect(int dim) const109       SrcRegister getIndirect(int dim) const
110       {
111          assert(fsr && isIndirect(dim));
112          if (dim)
113             return SrcRegister(fsr->DimIndirect);
114          return SrcRegister(fsr->Indirect);
115       }
116 
getValueU32(int c,const uint32_t * data) const117       uint32_t getValueU32(int c, const uint32_t *data) const
118       {
119          assert(reg.File == TGSI_FILE_IMMEDIATE);
120          assert(!reg.Absolute);
121          assert(!reg.Negate);
122          return data[reg.Index * 4 + getSwizzle(c)];
123       }
124 
125    private:
126       const struct tgsi_src_register reg;
127       const struct tgsi_full_src_register *fsr;
128    };
129 
130    class DstRegister
131    {
132    public:
DstRegister(const struct tgsi_full_dst_register * dst)133       DstRegister(const struct tgsi_full_dst_register *dst)
134          : reg(dst->Register),
135            fdr(dst)
136       { }
137 
DstRegister(const struct tgsi_dst_register & dst)138       DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
139 
getFile() const140       uint getFile() const { return reg.File; }
141 
is2D() const142       bool is2D() const { return reg.Dimension; }
143 
isIndirect(int dim) const144       bool isIndirect(int dim) const
145       {
146          return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
147       }
148 
getIndex(int dim) const149       int getIndex(int dim) const
150       {
151          return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
152       }
153 
getMask() const154       unsigned int getMask() const { return reg.WriteMask; }
155 
isMasked(int chan) const156       bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
157 
getIndirect(int dim) const158       SrcRegister getIndirect(int dim) const
159       {
160          assert(fdr && isIndirect(dim));
161          if (dim)
162             return SrcRegister(fdr->DimIndirect);
163          return SrcRegister(fdr->Indirect);
164       }
165 
asSrc()166       struct tgsi_full_src_register asSrc()
167       {
168          assert(fdr);
169          return tgsi_full_src_register_from_dst(fdr);
170       }
171 
getArrayId() const172       int getArrayId() const
173       {
174          if (isIndirect(0))
175             return fdr->Indirect.ArrayID;
176          return 0;
177       }
178 
179    private:
180       const struct tgsi_dst_register reg;
181       const struct tgsi_full_dst_register *fdr;
182    };
183 
getOpcode() const184    inline uint getOpcode() const { return insn->Instruction.Opcode; }
185 
srcCount() const186    unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
dstCount() const187    unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
188 
189    // mask of used components of source s
190    unsigned int srcMask(unsigned int s) const;
191    unsigned int texOffsetMask() const;
192 
getSrc(unsigned int s) const193    SrcRegister getSrc(unsigned int s) const
194    {
195       assert(s < srcCount());
196       return SrcRegister(&insn->Src[s]);
197    }
198 
getDst(unsigned int d) const199    DstRegister getDst(unsigned int d) const
200    {
201       assert(d < dstCount());
202       return DstRegister(&insn->Dst[d]);
203    }
204 
getTexOffset(unsigned int i) const205    SrcRegister getTexOffset(unsigned int i) const
206    {
207       assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
208       return SrcRegister(insn->TexOffsets[i]);
209    }
210 
getNumTexOffsets() const211    unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
212 
213    bool checkDstSrcAliasing() const;
214 
getOP() const215    inline nv50_ir::operation getOP() const {
216       return translateOpcode(getOpcode()); }
217 
218    nv50_ir::DataType inferSrcType() const;
219    nv50_ir::DataType inferDstType() const;
220 
221    nv50_ir::CondCode getSetCond() const;
222 
223    nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
224 
getImageFormat() const225    const nv50_ir::TexInstruction::ImgFormatDesc *getImageFormat() const {
226       return nv50_ir::TexInstruction::translateImgFormat((enum pipe_format)insn->Memory.Format);
227    }
228 
getImageTarget() const229    nv50_ir::TexTarget getImageTarget() const {
230       return translateTexture(insn->Memory.Texture);
231    }
232 
getCacheMode() const233    nv50_ir::CacheMode getCacheMode() const {
234       if (!insn->Instruction.Memory)
235          return nv50_ir::CACHE_CA;
236       return translateCacheMode(insn->Memory.Qualifier);
237    }
238 
getLabel()239    inline uint getLabel() { return insn->Label.Label; }
240 
getSaturate() const241    unsigned getSaturate() const { return insn->Instruction.Saturate; }
242 
print() const243    void print() const
244    {
245       tgsi_dump_instruction(insn, 1);
246    }
247 
248 private:
249    const struct tgsi_full_instruction *insn;
250 };
251 
texOffsetMask() const252 unsigned int Instruction::texOffsetMask() const
253 {
254    const struct tgsi_instruction_texture *tex = &insn->Texture;
255    assert(insn->Instruction.Texture);
256 
257    switch (tex->Texture) {
258    case TGSI_TEXTURE_BUFFER:
259    case TGSI_TEXTURE_1D:
260    case TGSI_TEXTURE_SHADOW1D:
261    case TGSI_TEXTURE_1D_ARRAY:
262    case TGSI_TEXTURE_SHADOW1D_ARRAY:
263       return 0x1;
264    case TGSI_TEXTURE_2D:
265    case TGSI_TEXTURE_SHADOW2D:
266    case TGSI_TEXTURE_2D_ARRAY:
267    case TGSI_TEXTURE_SHADOW2D_ARRAY:
268    case TGSI_TEXTURE_RECT:
269    case TGSI_TEXTURE_SHADOWRECT:
270    case TGSI_TEXTURE_2D_MSAA:
271    case TGSI_TEXTURE_2D_ARRAY_MSAA:
272       return 0x3;
273    case TGSI_TEXTURE_3D:
274       return 0x7;
275    default:
276       assert(!"Unexpected texture target");
277       return 0xf;
278    }
279 }
280 
srcMask(unsigned int s) const281 unsigned int Instruction::srcMask(unsigned int s) const
282 {
283    unsigned int mask = insn->Dst[0].Register.WriteMask;
284 
285    switch (insn->Instruction.Opcode) {
286    case TGSI_OPCODE_COS:
287    case TGSI_OPCODE_SIN:
288       return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
289    case TGSI_OPCODE_DP2:
290       return 0x3;
291    case TGSI_OPCODE_DP3:
292       return 0x7;
293    case TGSI_OPCODE_DP4:
294    case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
295       return 0xf;
296    case TGSI_OPCODE_DST:
297       return mask & (s ? 0xa : 0x6);
298    case TGSI_OPCODE_EX2:
299    case TGSI_OPCODE_EXP:
300    case TGSI_OPCODE_LG2:
301    case TGSI_OPCODE_LOG:
302    case TGSI_OPCODE_POW:
303    case TGSI_OPCODE_RCP:
304    case TGSI_OPCODE_RSQ:
305       return 0x1;
306    case TGSI_OPCODE_IF:
307    case TGSI_OPCODE_UIF:
308       return 0x1;
309    case TGSI_OPCODE_LIT:
310       return 0xb;
311    case TGSI_OPCODE_TEX2:
312    case TGSI_OPCODE_TXB2:
313    case TGSI_OPCODE_TXL2:
314       return (s == 0) ? 0xf : 0x3;
315    case TGSI_OPCODE_TEX:
316    case TGSI_OPCODE_TXB:
317    case TGSI_OPCODE_TXD:
318    case TGSI_OPCODE_TXL:
319    case TGSI_OPCODE_TXP:
320    case TGSI_OPCODE_TXF:
321    case TGSI_OPCODE_TG4:
322    case TGSI_OPCODE_TEX_LZ:
323    case TGSI_OPCODE_TXF_LZ:
324    case TGSI_OPCODE_LODQ:
325    {
326       const struct tgsi_instruction_texture *tex = &insn->Texture;
327 
328       assert(insn->Instruction.Texture);
329 
330       mask = 0x7;
331       if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
332           insn->Instruction.Opcode != TGSI_OPCODE_TEX_LZ &&
333           insn->Instruction.Opcode != TGSI_OPCODE_TXF_LZ &&
334           insn->Instruction.Opcode != TGSI_OPCODE_TXD)
335          mask |= 0x8; /* bias, lod or proj */
336 
337       switch (tex->Texture) {
338       case TGSI_TEXTURE_1D:
339          mask &= 0x9;
340          break;
341       case TGSI_TEXTURE_SHADOW1D:
342          mask &= 0xd;
343          break;
344       case TGSI_TEXTURE_1D_ARRAY:
345       case TGSI_TEXTURE_2D:
346       case TGSI_TEXTURE_RECT:
347          mask &= 0xb;
348          break;
349       case TGSI_TEXTURE_CUBE_ARRAY:
350       case TGSI_TEXTURE_SHADOW2D_ARRAY:
351       case TGSI_TEXTURE_SHADOWCUBE:
352       case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
353          mask |= 0x8;
354          break;
355       default:
356          break;
357       }
358    }
359       return mask;
360    case TGSI_OPCODE_TXQ:
361       return 1;
362    case TGSI_OPCODE_D2I:
363    case TGSI_OPCODE_D2U:
364    case TGSI_OPCODE_D2F:
365    case TGSI_OPCODE_DSLT:
366    case TGSI_OPCODE_DSGE:
367    case TGSI_OPCODE_DSEQ:
368    case TGSI_OPCODE_DSNE:
369    case TGSI_OPCODE_U64SEQ:
370    case TGSI_OPCODE_U64SNE:
371    case TGSI_OPCODE_I64SLT:
372    case TGSI_OPCODE_U64SLT:
373    case TGSI_OPCODE_I64SGE:
374    case TGSI_OPCODE_U64SGE:
375    case TGSI_OPCODE_I642F:
376    case TGSI_OPCODE_U642F:
377       switch (util_bitcount(mask)) {
378       case 1: return 0x3;
379       case 2: return 0xf;
380       default:
381          assert(!"unexpected mask");
382          return 0xf;
383       }
384    case TGSI_OPCODE_I2D:
385    case TGSI_OPCODE_U2D:
386    case TGSI_OPCODE_F2D: {
387       unsigned int x = 0;
388       if ((mask & 0x3) == 0x3)
389          x |= 1;
390       if ((mask & 0xc) == 0xc)
391          x |= 2;
392       return x;
393    }
394    case TGSI_OPCODE_PK2H:
395       return 0x3;
396    case TGSI_OPCODE_UP2H:
397       return 0x1;
398    default:
399       break;
400    }
401 
402    return mask;
403 }
404 
getMod(int chan) const405 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
406 {
407    nv50_ir::Modifier m(0);
408 
409    if (reg.Absolute)
410       m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
411    if (reg.Negate)
412       m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
413    return m;
414 }
415 
translateFile(uint file)416 static nv50_ir::DataFile translateFile(uint file)
417 {
418    switch (file) {
419    case TGSI_FILE_CONSTANT:        return nv50_ir::FILE_MEMORY_CONST;
420    case TGSI_FILE_INPUT:           return nv50_ir::FILE_SHADER_INPUT;
421    case TGSI_FILE_OUTPUT:          return nv50_ir::FILE_SHADER_OUTPUT;
422    case TGSI_FILE_TEMPORARY:       return nv50_ir::FILE_GPR;
423    case TGSI_FILE_ADDRESS:         return nv50_ir::FILE_ADDRESS;
424    case TGSI_FILE_IMMEDIATE:       return nv50_ir::FILE_IMMEDIATE;
425    case TGSI_FILE_SYSTEM_VALUE:    return nv50_ir::FILE_SYSTEM_VALUE;
426    case TGSI_FILE_BUFFER:          return nv50_ir::FILE_MEMORY_BUFFER;
427    case TGSI_FILE_IMAGE:           return nv50_ir::FILE_MEMORY_GLOBAL;
428    case TGSI_FILE_MEMORY:          return nv50_ir::FILE_MEMORY_GLOBAL;
429    case TGSI_FILE_SAMPLER:
430    case TGSI_FILE_NULL:
431    default:
432       return nv50_ir::FILE_NULL;
433    }
434 }
435 
translateSysVal(uint sysval)436 static nv50_ir::SVSemantic translateSysVal(uint sysval)
437 {
438    switch (sysval) {
439    case TGSI_SEMANTIC_FACE:       return nv50_ir::SV_FACE;
440    case TGSI_SEMANTIC_PSIZE:      return nv50_ir::SV_POINT_SIZE;
441    case TGSI_SEMANTIC_PRIMID:     return nv50_ir::SV_PRIMITIVE_ID;
442    case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
443    case TGSI_SEMANTIC_VERTEXID:   return nv50_ir::SV_VERTEX_ID;
444    case TGSI_SEMANTIC_GRID_SIZE:  return nv50_ir::SV_NCTAID;
445    case TGSI_SEMANTIC_BLOCK_ID:   return nv50_ir::SV_CTAID;
446    case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
447    case TGSI_SEMANTIC_THREAD_ID:  return nv50_ir::SV_TID;
448    case TGSI_SEMANTIC_SAMPLEID:   return nv50_ir::SV_SAMPLE_INDEX;
449    case TGSI_SEMANTIC_SAMPLEPOS:  return nv50_ir::SV_SAMPLE_POS;
450    case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
451    case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
452    case TGSI_SEMANTIC_TESSCOORD:  return nv50_ir::SV_TESS_COORD;
453    case TGSI_SEMANTIC_TESSOUTER:  return nv50_ir::SV_TESS_OUTER;
454    case TGSI_SEMANTIC_TESSINNER:  return nv50_ir::SV_TESS_INNER;
455    case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
456    case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
457    case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
458    case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
459    case TGSI_SEMANTIC_DRAWID:     return nv50_ir::SV_DRAWID;
460    case TGSI_SEMANTIC_WORK_DIM:   return nv50_ir::SV_WORK_DIM;
461    case TGSI_SEMANTIC_SUBGROUP_INVOCATION: return nv50_ir::SV_LANEID;
462    case TGSI_SEMANTIC_SUBGROUP_EQ_MASK: return nv50_ir::SV_LANEMASK_EQ;
463    case TGSI_SEMANTIC_SUBGROUP_LT_MASK: return nv50_ir::SV_LANEMASK_LT;
464    case TGSI_SEMANTIC_SUBGROUP_LE_MASK: return nv50_ir::SV_LANEMASK_LE;
465    case TGSI_SEMANTIC_SUBGROUP_GT_MASK: return nv50_ir::SV_LANEMASK_GT;
466    case TGSI_SEMANTIC_SUBGROUP_GE_MASK: return nv50_ir::SV_LANEMASK_GE;
467    default:
468       assert(0);
469       return nv50_ir::SV_CLOCK;
470    }
471 }
472 
473 #define NV50_IR_TEX_TARG_CASE(a, b) \
474    case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
475 
translateTexture(uint tex)476 static nv50_ir::TexTarget translateTexture(uint tex)
477 {
478    switch (tex) {
479    NV50_IR_TEX_TARG_CASE(1D, 1D);
480    NV50_IR_TEX_TARG_CASE(2D, 2D);
481    NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
482    NV50_IR_TEX_TARG_CASE(3D, 3D);
483    NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
484    NV50_IR_TEX_TARG_CASE(RECT, RECT);
485    NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
486    NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
487    NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
488    NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
489    NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
490    NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
491    NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
492    NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
493    NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
494    NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
495    NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
496    NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
497 
498    case TGSI_TEXTURE_UNKNOWN:
499    default:
500       assert(!"invalid texture target");
501       return nv50_ir::TEX_TARGET_2D;
502    }
503 }
504 
translateCacheMode(uint qualifier)505 static nv50_ir::CacheMode translateCacheMode(uint qualifier)
506 {
507    if (qualifier & TGSI_MEMORY_VOLATILE)
508       return nv50_ir::CACHE_CV;
509    if (qualifier & TGSI_MEMORY_COHERENT)
510       return nv50_ir::CACHE_CG;
511    return nv50_ir::CACHE_CA;
512 }
513 
inferSrcType() const514 nv50_ir::DataType Instruction::inferSrcType() const
515 {
516    switch (getOpcode()) {
517    case TGSI_OPCODE_UIF:
518    case TGSI_OPCODE_AND:
519    case TGSI_OPCODE_OR:
520    case TGSI_OPCODE_XOR:
521    case TGSI_OPCODE_NOT:
522    case TGSI_OPCODE_SHL:
523    case TGSI_OPCODE_U2F:
524    case TGSI_OPCODE_U2D:
525    case TGSI_OPCODE_U2I64:
526    case TGSI_OPCODE_UADD:
527    case TGSI_OPCODE_UDIV:
528    case TGSI_OPCODE_UMOD:
529    case TGSI_OPCODE_UMAD:
530    case TGSI_OPCODE_UMUL:
531    case TGSI_OPCODE_UMUL_HI:
532    case TGSI_OPCODE_UMAX:
533    case TGSI_OPCODE_UMIN:
534    case TGSI_OPCODE_USEQ:
535    case TGSI_OPCODE_USGE:
536    case TGSI_OPCODE_USLT:
537    case TGSI_OPCODE_USNE:
538    case TGSI_OPCODE_USHR:
539    case TGSI_OPCODE_ATOMUADD:
540    case TGSI_OPCODE_ATOMXCHG:
541    case TGSI_OPCODE_ATOMCAS:
542    case TGSI_OPCODE_ATOMAND:
543    case TGSI_OPCODE_ATOMOR:
544    case TGSI_OPCODE_ATOMXOR:
545    case TGSI_OPCODE_ATOMUMIN:
546    case TGSI_OPCODE_ATOMUMAX:
547    case TGSI_OPCODE_ATOMDEC_WRAP:
548    case TGSI_OPCODE_ATOMINC_WRAP:
549    case TGSI_OPCODE_UBFE:
550    case TGSI_OPCODE_UMSB:
551    case TGSI_OPCODE_UP2H:
552    case TGSI_OPCODE_VOTE_ALL:
553    case TGSI_OPCODE_VOTE_ANY:
554    case TGSI_OPCODE_VOTE_EQ:
555       return nv50_ir::TYPE_U32;
556    case TGSI_OPCODE_I2F:
557    case TGSI_OPCODE_I2D:
558    case TGSI_OPCODE_I2I64:
559    case TGSI_OPCODE_IDIV:
560    case TGSI_OPCODE_IMUL_HI:
561    case TGSI_OPCODE_IMAX:
562    case TGSI_OPCODE_IMIN:
563    case TGSI_OPCODE_IABS:
564    case TGSI_OPCODE_INEG:
565    case TGSI_OPCODE_ISGE:
566    case TGSI_OPCODE_ISHR:
567    case TGSI_OPCODE_ISLT:
568    case TGSI_OPCODE_ISSG:
569    case TGSI_OPCODE_MOD:
570    case TGSI_OPCODE_UARL:
571    case TGSI_OPCODE_ATOMIMIN:
572    case TGSI_OPCODE_ATOMIMAX:
573    case TGSI_OPCODE_IBFE:
574    case TGSI_OPCODE_IMSB:
575       return nv50_ir::TYPE_S32;
576    case TGSI_OPCODE_D2F:
577    case TGSI_OPCODE_D2I:
578    case TGSI_OPCODE_D2U:
579    case TGSI_OPCODE_D2I64:
580    case TGSI_OPCODE_D2U64:
581    case TGSI_OPCODE_DABS:
582    case TGSI_OPCODE_DNEG:
583    case TGSI_OPCODE_DADD:
584    case TGSI_OPCODE_DMUL:
585    case TGSI_OPCODE_DDIV:
586    case TGSI_OPCODE_DMAX:
587    case TGSI_OPCODE_DMIN:
588    case TGSI_OPCODE_DSLT:
589    case TGSI_OPCODE_DSGE:
590    case TGSI_OPCODE_DSEQ:
591    case TGSI_OPCODE_DSNE:
592    case TGSI_OPCODE_DRCP:
593    case TGSI_OPCODE_DSQRT:
594    case TGSI_OPCODE_DMAD:
595    case TGSI_OPCODE_DFMA:
596    case TGSI_OPCODE_DFRAC:
597    case TGSI_OPCODE_DRSQ:
598    case TGSI_OPCODE_DTRUNC:
599    case TGSI_OPCODE_DCEIL:
600    case TGSI_OPCODE_DFLR:
601    case TGSI_OPCODE_DROUND:
602       return nv50_ir::TYPE_F64;
603    case TGSI_OPCODE_U64SEQ:
604    case TGSI_OPCODE_U64SNE:
605    case TGSI_OPCODE_U64SLT:
606    case TGSI_OPCODE_U64SGE:
607    case TGSI_OPCODE_U64MIN:
608    case TGSI_OPCODE_U64MAX:
609    case TGSI_OPCODE_U64ADD:
610    case TGSI_OPCODE_U64MUL:
611    case TGSI_OPCODE_U64SHL:
612    case TGSI_OPCODE_U64SHR:
613    case TGSI_OPCODE_U64DIV:
614    case TGSI_OPCODE_U64MOD:
615    case TGSI_OPCODE_U642F:
616    case TGSI_OPCODE_U642D:
617       return nv50_ir::TYPE_U64;
618    case TGSI_OPCODE_I64ABS:
619    case TGSI_OPCODE_I64SSG:
620    case TGSI_OPCODE_I64NEG:
621    case TGSI_OPCODE_I64SLT:
622    case TGSI_OPCODE_I64SGE:
623    case TGSI_OPCODE_I64MIN:
624    case TGSI_OPCODE_I64MAX:
625    case TGSI_OPCODE_I64SHR:
626    case TGSI_OPCODE_I64DIV:
627    case TGSI_OPCODE_I64MOD:
628    case TGSI_OPCODE_I642F:
629    case TGSI_OPCODE_I642D:
630       return nv50_ir::TYPE_S64;
631    default:
632       return nv50_ir::TYPE_F32;
633    }
634 }
635 
inferDstType() const636 nv50_ir::DataType Instruction::inferDstType() const
637 {
638    switch (getOpcode()) {
639    case TGSI_OPCODE_D2U:
640    case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
641    case TGSI_OPCODE_D2I:
642    case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
643    case TGSI_OPCODE_FSEQ:
644    case TGSI_OPCODE_FSGE:
645    case TGSI_OPCODE_FSLT:
646    case TGSI_OPCODE_FSNE:
647    case TGSI_OPCODE_DSEQ:
648    case TGSI_OPCODE_DSGE:
649    case TGSI_OPCODE_DSLT:
650    case TGSI_OPCODE_DSNE:
651    case TGSI_OPCODE_I64SLT:
652    case TGSI_OPCODE_I64SGE:
653    case TGSI_OPCODE_U64SEQ:
654    case TGSI_OPCODE_U64SNE:
655    case TGSI_OPCODE_U64SLT:
656    case TGSI_OPCODE_U64SGE:
657    case TGSI_OPCODE_PK2H:
658       return nv50_ir::TYPE_U32;
659    case TGSI_OPCODE_I2F:
660    case TGSI_OPCODE_U2F:
661    case TGSI_OPCODE_D2F:
662    case TGSI_OPCODE_I642F:
663    case TGSI_OPCODE_U642F:
664    case TGSI_OPCODE_UP2H:
665       return nv50_ir::TYPE_F32;
666    case TGSI_OPCODE_I2D:
667    case TGSI_OPCODE_U2D:
668    case TGSI_OPCODE_F2D:
669    case TGSI_OPCODE_I642D:
670    case TGSI_OPCODE_U642D:
671       return nv50_ir::TYPE_F64;
672    case TGSI_OPCODE_I2I64:
673    case TGSI_OPCODE_U2I64:
674    case TGSI_OPCODE_F2I64:
675    case TGSI_OPCODE_D2I64:
676       return nv50_ir::TYPE_S64;
677    case TGSI_OPCODE_F2U64:
678    case TGSI_OPCODE_D2U64:
679       return nv50_ir::TYPE_U64;
680    default:
681       return inferSrcType();
682    }
683 }
684 
getSetCond() const685 nv50_ir::CondCode Instruction::getSetCond() const
686 {
687    using namespace nv50_ir;
688 
689    switch (getOpcode()) {
690    case TGSI_OPCODE_SLT:
691    case TGSI_OPCODE_ISLT:
692    case TGSI_OPCODE_USLT:
693    case TGSI_OPCODE_FSLT:
694    case TGSI_OPCODE_DSLT:
695    case TGSI_OPCODE_I64SLT:
696    case TGSI_OPCODE_U64SLT:
697       return CC_LT;
698    case TGSI_OPCODE_SLE:
699       return CC_LE;
700    case TGSI_OPCODE_SGE:
701    case TGSI_OPCODE_ISGE:
702    case TGSI_OPCODE_USGE:
703    case TGSI_OPCODE_FSGE:
704    case TGSI_OPCODE_DSGE:
705    case TGSI_OPCODE_I64SGE:
706    case TGSI_OPCODE_U64SGE:
707       return CC_GE;
708    case TGSI_OPCODE_SGT:
709       return CC_GT;
710    case TGSI_OPCODE_SEQ:
711    case TGSI_OPCODE_USEQ:
712    case TGSI_OPCODE_FSEQ:
713    case TGSI_OPCODE_DSEQ:
714    case TGSI_OPCODE_U64SEQ:
715       return CC_EQ;
716    case TGSI_OPCODE_SNE:
717    case TGSI_OPCODE_FSNE:
718    case TGSI_OPCODE_DSNE:
719    case TGSI_OPCODE_U64SNE:
720       return CC_NEU;
721    case TGSI_OPCODE_USNE:
722       return CC_NE;
723    default:
724       return CC_ALWAYS;
725    }
726 }
727 
728 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
729 
translateOpcode(uint opcode)730 static nv50_ir::operation translateOpcode(uint opcode)
731 {
732    switch (opcode) {
733    NV50_IR_OPCODE_CASE(ARL, SHL);
734    NV50_IR_OPCODE_CASE(MOV, MOV);
735 
736    NV50_IR_OPCODE_CASE(RCP, RCP);
737    NV50_IR_OPCODE_CASE(RSQ, RSQ);
738    NV50_IR_OPCODE_CASE(SQRT, SQRT);
739 
740    NV50_IR_OPCODE_CASE(MUL, MUL);
741    NV50_IR_OPCODE_CASE(ADD, ADD);
742 
743    NV50_IR_OPCODE_CASE(MIN, MIN);
744    NV50_IR_OPCODE_CASE(MAX, MAX);
745    NV50_IR_OPCODE_CASE(SLT, SET);
746    NV50_IR_OPCODE_CASE(SGE, SET);
747    NV50_IR_OPCODE_CASE(MAD, MAD);
748    NV50_IR_OPCODE_CASE(FMA, FMA);
749 
750    NV50_IR_OPCODE_CASE(FLR, FLOOR);
751    NV50_IR_OPCODE_CASE(ROUND, CVT);
752    NV50_IR_OPCODE_CASE(EX2, EX2);
753    NV50_IR_OPCODE_CASE(LG2, LG2);
754    NV50_IR_OPCODE_CASE(POW, POW);
755 
756    NV50_IR_OPCODE_CASE(COS, COS);
757    NV50_IR_OPCODE_CASE(DDX, DFDX);
758    NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
759    NV50_IR_OPCODE_CASE(DDY, DFDY);
760    NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
761    NV50_IR_OPCODE_CASE(KILL, DISCARD);
762    NV50_IR_OPCODE_CASE(DEMOTE, DISCARD);
763 
764    NV50_IR_OPCODE_CASE(SEQ, SET);
765    NV50_IR_OPCODE_CASE(SGT, SET);
766    NV50_IR_OPCODE_CASE(SIN, SIN);
767    NV50_IR_OPCODE_CASE(SLE, SET);
768    NV50_IR_OPCODE_CASE(SNE, SET);
769    NV50_IR_OPCODE_CASE(TEX, TEX);
770    NV50_IR_OPCODE_CASE(TXD, TXD);
771    NV50_IR_OPCODE_CASE(TXP, TEX);
772 
773    NV50_IR_OPCODE_CASE(CAL, CALL);
774    NV50_IR_OPCODE_CASE(RET, RET);
775    NV50_IR_OPCODE_CASE(CMP, SLCT);
776 
777    NV50_IR_OPCODE_CASE(TXB, TXB);
778 
779    NV50_IR_OPCODE_CASE(DIV, DIV);
780 
781    NV50_IR_OPCODE_CASE(TXL, TXL);
782    NV50_IR_OPCODE_CASE(TEX_LZ, TXL);
783 
784    NV50_IR_OPCODE_CASE(CEIL, CEIL);
785    NV50_IR_OPCODE_CASE(I2F, CVT);
786    NV50_IR_OPCODE_CASE(NOT, NOT);
787    NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
788    NV50_IR_OPCODE_CASE(SHL, SHL);
789 
790    NV50_IR_OPCODE_CASE(AND, AND);
791    NV50_IR_OPCODE_CASE(OR, OR);
792    NV50_IR_OPCODE_CASE(MOD, MOD);
793    NV50_IR_OPCODE_CASE(XOR, XOR);
794    NV50_IR_OPCODE_CASE(TXF, TXF);
795    NV50_IR_OPCODE_CASE(TXF_LZ, TXF);
796    NV50_IR_OPCODE_CASE(TXQ, TXQ);
797    NV50_IR_OPCODE_CASE(TXQS, TXQ);
798    NV50_IR_OPCODE_CASE(TG4, TXG);
799    NV50_IR_OPCODE_CASE(LODQ, TXLQ);
800 
801    NV50_IR_OPCODE_CASE(EMIT, EMIT);
802    NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
803 
804    NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
805 
806    NV50_IR_OPCODE_CASE(F2I, CVT);
807    NV50_IR_OPCODE_CASE(FSEQ, SET);
808    NV50_IR_OPCODE_CASE(FSGE, SET);
809    NV50_IR_OPCODE_CASE(FSLT, SET);
810    NV50_IR_OPCODE_CASE(FSNE, SET);
811    NV50_IR_OPCODE_CASE(IDIV, DIV);
812    NV50_IR_OPCODE_CASE(IMAX, MAX);
813    NV50_IR_OPCODE_CASE(IMIN, MIN);
814    NV50_IR_OPCODE_CASE(IABS, ABS);
815    NV50_IR_OPCODE_CASE(INEG, NEG);
816    NV50_IR_OPCODE_CASE(ISGE, SET);
817    NV50_IR_OPCODE_CASE(ISHR, SHR);
818    NV50_IR_OPCODE_CASE(ISLT, SET);
819    NV50_IR_OPCODE_CASE(F2U, CVT);
820    NV50_IR_OPCODE_CASE(U2F, CVT);
821    NV50_IR_OPCODE_CASE(UADD, ADD);
822    NV50_IR_OPCODE_CASE(UDIV, DIV);
823    NV50_IR_OPCODE_CASE(UMAD, MAD);
824    NV50_IR_OPCODE_CASE(UMAX, MAX);
825    NV50_IR_OPCODE_CASE(UMIN, MIN);
826    NV50_IR_OPCODE_CASE(UMOD, MOD);
827    NV50_IR_OPCODE_CASE(UMUL, MUL);
828    NV50_IR_OPCODE_CASE(USEQ, SET);
829    NV50_IR_OPCODE_CASE(USGE, SET);
830    NV50_IR_OPCODE_CASE(USHR, SHR);
831    NV50_IR_OPCODE_CASE(USLT, SET);
832    NV50_IR_OPCODE_CASE(USNE, SET);
833 
834    NV50_IR_OPCODE_CASE(DABS, ABS);
835    NV50_IR_OPCODE_CASE(DNEG, NEG);
836    NV50_IR_OPCODE_CASE(DADD, ADD);
837    NV50_IR_OPCODE_CASE(DMUL, MUL);
838    NV50_IR_OPCODE_CASE(DDIV, DIV);
839    NV50_IR_OPCODE_CASE(DMAX, MAX);
840    NV50_IR_OPCODE_CASE(DMIN, MIN);
841    NV50_IR_OPCODE_CASE(DSLT, SET);
842    NV50_IR_OPCODE_CASE(DSGE, SET);
843    NV50_IR_OPCODE_CASE(DSEQ, SET);
844    NV50_IR_OPCODE_CASE(DSNE, SET);
845    NV50_IR_OPCODE_CASE(DRCP, RCP);
846    NV50_IR_OPCODE_CASE(DSQRT, SQRT);
847    NV50_IR_OPCODE_CASE(DMAD, MAD);
848    NV50_IR_OPCODE_CASE(DFMA, FMA);
849    NV50_IR_OPCODE_CASE(D2I, CVT);
850    NV50_IR_OPCODE_CASE(D2U, CVT);
851    NV50_IR_OPCODE_CASE(I2D, CVT);
852    NV50_IR_OPCODE_CASE(U2D, CVT);
853    NV50_IR_OPCODE_CASE(DRSQ, RSQ);
854    NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
855    NV50_IR_OPCODE_CASE(DCEIL, CEIL);
856    NV50_IR_OPCODE_CASE(DFLR, FLOOR);
857    NV50_IR_OPCODE_CASE(DROUND, CVT);
858 
859    NV50_IR_OPCODE_CASE(U64SEQ, SET);
860    NV50_IR_OPCODE_CASE(U64SNE, SET);
861    NV50_IR_OPCODE_CASE(U64SLT, SET);
862    NV50_IR_OPCODE_CASE(U64SGE, SET);
863    NV50_IR_OPCODE_CASE(I64SLT, SET);
864    NV50_IR_OPCODE_CASE(I64SGE, SET);
865    NV50_IR_OPCODE_CASE(I2I64, CVT);
866    NV50_IR_OPCODE_CASE(U2I64, CVT);
867    NV50_IR_OPCODE_CASE(F2I64, CVT);
868    NV50_IR_OPCODE_CASE(F2U64, CVT);
869    NV50_IR_OPCODE_CASE(D2I64, CVT);
870    NV50_IR_OPCODE_CASE(D2U64, CVT);
871    NV50_IR_OPCODE_CASE(I642F, CVT);
872    NV50_IR_OPCODE_CASE(U642F, CVT);
873    NV50_IR_OPCODE_CASE(I642D, CVT);
874    NV50_IR_OPCODE_CASE(U642D, CVT);
875 
876    NV50_IR_OPCODE_CASE(I64MIN, MIN);
877    NV50_IR_OPCODE_CASE(U64MIN, MIN);
878    NV50_IR_OPCODE_CASE(I64MAX, MAX);
879    NV50_IR_OPCODE_CASE(U64MAX, MAX);
880    NV50_IR_OPCODE_CASE(I64ABS, ABS);
881    NV50_IR_OPCODE_CASE(I64NEG, NEG);
882    NV50_IR_OPCODE_CASE(U64ADD, ADD);
883    NV50_IR_OPCODE_CASE(U64MUL, MUL);
884    NV50_IR_OPCODE_CASE(U64SHL, SHL);
885    NV50_IR_OPCODE_CASE(I64SHR, SHR);
886    NV50_IR_OPCODE_CASE(U64SHR, SHR);
887 
888    NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
889    NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
890 
891    NV50_IR_OPCODE_CASE(SAMPLE, TEX);
892    NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
893    NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
894    NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
895    NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
896    NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
897    NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
898    NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
899    NV50_IR_OPCODE_CASE(GATHER4, TXG);
900    NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
901 
902    NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
903    NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
904    NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
905    NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
906    NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
907    NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
908    NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
909    NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
910    NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
911    NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
912    NV50_IR_OPCODE_CASE(ATOMFADD, ATOM);
913    NV50_IR_OPCODE_CASE(ATOMDEC_WRAP, ATOM);
914    NV50_IR_OPCODE_CASE(ATOMINC_WRAP, ATOM);
915 
916    NV50_IR_OPCODE_CASE(TEX2, TEX);
917    NV50_IR_OPCODE_CASE(TXB2, TXB);
918    NV50_IR_OPCODE_CASE(TXL2, TXL);
919 
920    NV50_IR_OPCODE_CASE(IBFE, EXTBF);
921    NV50_IR_OPCODE_CASE(UBFE, EXTBF);
922    NV50_IR_OPCODE_CASE(BFI, INSBF);
923    NV50_IR_OPCODE_CASE(BREV, EXTBF);
924    NV50_IR_OPCODE_CASE(POPC, POPCNT);
925    NV50_IR_OPCODE_CASE(LSB, BFIND);
926    NV50_IR_OPCODE_CASE(IMSB, BFIND);
927    NV50_IR_OPCODE_CASE(UMSB, BFIND);
928 
929    NV50_IR_OPCODE_CASE(VOTE_ALL, VOTE);
930    NV50_IR_OPCODE_CASE(VOTE_ANY, VOTE);
931    NV50_IR_OPCODE_CASE(VOTE_EQ, VOTE);
932 
933    NV50_IR_OPCODE_CASE(BALLOT, VOTE);
934    NV50_IR_OPCODE_CASE(READ_INVOC, SHFL);
935    NV50_IR_OPCODE_CASE(READ_FIRST, SHFL);
936 
937    NV50_IR_OPCODE_CASE(END, EXIT);
938 
939    default:
940       return nv50_ir::OP_NOP;
941    }
942 }
943 
opcodeToSubOp(uint opcode)944 static uint16_t opcodeToSubOp(uint opcode)
945 {
946    switch (opcode) {
947    case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
948    case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
949    case TGSI_OPCODE_ATOMCAS:  return NV50_IR_SUBOP_ATOM_CAS;
950    case TGSI_OPCODE_ATOMAND:  return NV50_IR_SUBOP_ATOM_AND;
951    case TGSI_OPCODE_ATOMOR:   return NV50_IR_SUBOP_ATOM_OR;
952    case TGSI_OPCODE_ATOMXOR:  return NV50_IR_SUBOP_ATOM_XOR;
953    case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
954    case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
955    case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
956    case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
957    case TGSI_OPCODE_ATOMFADD: return NV50_IR_SUBOP_ATOM_ADD;
958    case TGSI_OPCODE_ATOMDEC_WRAP: return NV50_IR_SUBOP_ATOM_DEC;
959    case TGSI_OPCODE_ATOMINC_WRAP: return NV50_IR_SUBOP_ATOM_INC;
960    case TGSI_OPCODE_IMUL_HI:
961    case TGSI_OPCODE_UMUL_HI:
962       return NV50_IR_SUBOP_MUL_HIGH;
963    case TGSI_OPCODE_VOTE_ALL: return NV50_IR_SUBOP_VOTE_ALL;
964    case TGSI_OPCODE_VOTE_ANY: return NV50_IR_SUBOP_VOTE_ANY;
965    case TGSI_OPCODE_VOTE_EQ: return NV50_IR_SUBOP_VOTE_UNI;
966    default:
967       return 0;
968    }
969 }
970 
checkDstSrcAliasing() const971 bool Instruction::checkDstSrcAliasing() const
972 {
973    if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
974       return false;
975 
976    for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
977       if (insn->Src[s].Register.File == TGSI_FILE_NULL)
978          break;
979       if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
980           insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
981          return true;
982    }
983    return false;
984 }
985 
986 class Source
987 {
988 public:
989    Source(struct nv50_ir_prog_info *, struct nv50_ir_prog_info_out *, nv50_ir::Program *);
990    ~Source();
991 
992 public:
993    bool scanSource();
fileSize(unsigned file) const994    unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
995 
996 public:
997    struct tgsi_shader_info scan;
998    struct tgsi_full_instruction *insns;
999    const struct tgsi_token *tokens;
1000    struct nv50_ir_prog_info *info;
1001    struct nv50_ir_prog_info_out *info_out;
1002 
1003    nv50_ir::DynArray tempArrays;
1004    nv50_ir::DynArray immdArrays;
1005 
1006    typedef nv50_ir::BuildUtil::Location Location;
1007    // these registers are per-subroutine, cannot be used for parameter passing
1008    std::set<Location> locals;
1009 
1010    std::set<int> indirectTempArrays;
1011    std::map<int, int> indirectTempOffsets;
1012    std::map<int, std::pair<int, int> > tempArrayInfo;
1013    std::vector<int> tempArrayId;
1014 
1015    std::map<int, int> bufferIds;
1016    std::map<int, int> imageIds;
1017 
1018    int clipVertexOutput;
1019 
1020    struct TextureView {
1021       uint8_t target; // TGSI_TEXTURE_*
1022    };
1023    std::vector<TextureView> textureViews;
1024 
1025    /*
1026    struct Resource {
1027       uint8_t target; // TGSI_TEXTURE_*
1028       bool raw;
1029       uint8_t slot; // $surface index
1030    };
1031    std::vector<Resource> resources;
1032    */
1033 
1034    struct MemoryFile {
1035       uint8_t mem_type; // TGSI_MEMORY_TYPE_*
1036    };
1037    std::vector<MemoryFile> memoryFiles;
1038 
1039    std::vector<bool> bufferAtomics;
1040 
1041    struct {
1042       uint16_t count;   /* count of inline immediates */
1043       uint32_t *data;   /* inline immediate data */
1044    } immd;
1045 
1046 private:
1047    int gmemSlot;
1048    nv50_ir::Program *prog;
1049    int inferSysValDirection(unsigned sn) const;
1050    bool scanDeclaration(const struct tgsi_full_declaration *);
1051    bool scanInstruction(const struct tgsi_full_instruction *);
1052    void scanInstructionSrc(const Instruction& insn,
1053                            const Instruction::SrcRegister& src,
1054                            unsigned mask);
1055    void scanProperty(const struct tgsi_full_property *);
1056    void scanImmediate(const struct tgsi_full_immediate *);
1057 
1058    inline bool isEdgeFlagPassthrough(const Instruction&) const;
1059 };
1060 
Source(struct nv50_ir_prog_info * info,struct nv50_ir_prog_info_out * info_out,nv50_ir::Program * prog)1061 Source::Source(struct nv50_ir_prog_info *info, struct nv50_ir_prog_info_out *info_out,
1062                nv50_ir::Program *prog)
1063 :  insns(NULL), info(info), info_out(info_out), clipVertexOutput(-1),
1064    gmemSlot(0), prog(prog)
1065 {
1066    tokens = (const struct tgsi_token *)info->bin.source;
1067 
1068    if (info->dbgFlags & NV50_IR_DEBUG_BASIC)
1069       tgsi_dump(tokens, 0);
1070 
1071    tgsi_scan_shader(tokens, &scan);
1072 
1073    immd.count = 0;
1074    immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
1075 }
1076 
~Source()1077 Source::~Source()
1078 {
1079    if (insns)
1080       FREE(insns);
1081 
1082    if (immd.data)
1083       FREE(immd.data);
1084 }
1085 
scanSource()1086 bool Source::scanSource()
1087 {
1088    unsigned insnCount = 0;
1089    struct tgsi_parse_context parse;
1090 
1091    insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
1092                                                   sizeof(insns[0]));
1093    if (!insns)
1094       return false;
1095 
1096    textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
1097    //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
1098    tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
1099    memoryFiles.resize(scan.file_max[TGSI_FILE_MEMORY] + 1);
1100    bufferAtomics.resize(scan.file_max[TGSI_FILE_BUFFER] + 1);
1101 
1102    info_out->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
1103    info_out->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
1104    info_out->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
1105 
1106    if (info->type == PIPE_SHADER_FRAGMENT) {
1107       info_out->prop.fp.writesDepth = scan.writes_z;
1108       info_out->prop.fp.usesDiscard = scan.uses_kill || info->io.alphaRefBase;
1109    } else
1110    if (info->type == PIPE_SHADER_GEOMETRY) {
1111       info_out->prop.gp.instanceCount = 1; // default value
1112    }
1113 
1114    info->io.viewportId = -1;
1115 
1116    tgsi_parse_init(&parse, tokens);
1117    while (!tgsi_parse_end_of_tokens(&parse)) {
1118       tgsi_parse_token(&parse);
1119 
1120       switch (parse.FullToken.Token.Type) {
1121       case TGSI_TOKEN_TYPE_IMMEDIATE:
1122          scanImmediate(&parse.FullToken.FullImmediate);
1123          break;
1124       case TGSI_TOKEN_TYPE_DECLARATION:
1125          scanDeclaration(&parse.FullToken.FullDeclaration);
1126          break;
1127       case TGSI_TOKEN_TYPE_INSTRUCTION:
1128          insns[insnCount++] = parse.FullToken.FullInstruction;
1129          scanInstruction(&parse.FullToken.FullInstruction);
1130          break;
1131       case TGSI_TOKEN_TYPE_PROPERTY:
1132          scanProperty(&parse.FullToken.FullProperty);
1133          break;
1134       default:
1135          INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
1136          break;
1137       }
1138    }
1139    tgsi_parse_free(&parse);
1140 
1141    if (indirectTempArrays.size()) {
1142       int tempBase = 0;
1143       for (std::set<int>::const_iterator it = indirectTempArrays.begin();
1144            it != indirectTempArrays.end(); ++it) {
1145          std::pair<int, int>& info = tempArrayInfo[*it];
1146          indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first));
1147          tempBase += info.second;
1148       }
1149       info_out->bin.tlsSpace += tempBase * 16;
1150    }
1151 
1152    if (info_out->io.genUserClip > 0) {
1153       info_out->io.clipDistances = info_out->io.genUserClip;
1154 
1155       const unsigned int nOut = (info_out->io.genUserClip + 3) / 4;
1156 
1157       for (unsigned int n = 0; n < nOut; ++n) {
1158          unsigned int i = info_out->numOutputs++;
1159          info_out->out[i].id = i;
1160          info_out->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
1161          info_out->out[i].si = n;
1162          info_out->out[i].mask = ((1 << info_out->io.clipDistances) - 1) >> (n * 4);
1163       }
1164    }
1165 
1166    return info->assignSlots(info_out) == 0;
1167 }
1168 
scanProperty(const struct tgsi_full_property * prop)1169 void Source::scanProperty(const struct tgsi_full_property *prop)
1170 {
1171    switch (prop->Property.PropertyName) {
1172    case TGSI_PROPERTY_GS_OUTPUT_PRIM:
1173       info_out->prop.gp.outputPrim = prop->u[0].Data;
1174       break;
1175    case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
1176       info_out->prop.gp.maxVertices = prop->u[0].Data;
1177       break;
1178    case TGSI_PROPERTY_GS_INVOCATIONS:
1179       info_out->prop.gp.instanceCount = prop->u[0].Data;
1180       break;
1181    case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1182       info_out->prop.fp.separateFragData = true;
1183       break;
1184    case TGSI_PROPERTY_FS_COORD_ORIGIN:
1185    case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1186    case TGSI_PROPERTY_FS_DEPTH_LAYOUT:
1187    case TGSI_PROPERTY_GS_INPUT_PRIM:
1188    case TGSI_PROPERTY_FS_BLEND_EQUATION_ADVANCED:
1189       // we don't care
1190       break;
1191    case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
1192       info_out->io.genUserClip = -1;
1193       break;
1194    case TGSI_PROPERTY_TCS_VERTICES_OUT:
1195       info_out->prop.tp.outputPatchSize = prop->u[0].Data;
1196       break;
1197    case TGSI_PROPERTY_TES_PRIM_MODE:
1198       info_out->prop.tp.domain = prop->u[0].Data;
1199       break;
1200    case TGSI_PROPERTY_TES_SPACING:
1201       info_out->prop.tp.partitioning = prop->u[0].Data;
1202       break;
1203    case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
1204       info_out->prop.tp.winding = prop->u[0].Data;
1205       break;
1206    case TGSI_PROPERTY_TES_POINT_MODE:
1207       if (prop->u[0].Data)
1208          info_out->prop.tp.outputPrim = PIPE_PRIM_POINTS;
1209       else
1210          info_out->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
1211       break;
1212    case TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH:
1213       info->prop.cp.numThreads[0] = prop->u[0].Data;
1214       break;
1215    case TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT:
1216       info->prop.cp.numThreads[1] = prop->u[0].Data;
1217       break;
1218    case TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH:
1219       info->prop.cp.numThreads[2] = prop->u[0].Data;
1220       break;
1221    case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
1222       info_out->io.clipDistances = prop->u[0].Data;
1223       break;
1224    case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1225       info_out->io.cullDistances = prop->u[0].Data;
1226       break;
1227    case TGSI_PROPERTY_NEXT_SHADER:
1228       /* Do not need to know the next shader stage. */
1229       break;
1230    case TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL:
1231       info_out->prop.fp.earlyFragTests = prop->u[0].Data;
1232       break;
1233    case TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE:
1234       info_out->prop.fp.postDepthCoverage = prop->u[0].Data;
1235       break;
1236    case TGSI_PROPERTY_LEGACY_MATH_RULES:
1237       info->io.mul_zero_wins = prop->u[0].Data;
1238       break;
1239    case TGSI_PROPERTY_LAYER_VIEWPORT_RELATIVE:
1240       info_out->io.layer_viewport_relative = prop->u[0].Data;
1241       break;
1242    default:
1243       INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1244       break;
1245    }
1246 }
1247 
scanImmediate(const struct tgsi_full_immediate * imm)1248 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1249 {
1250    const unsigned n = immd.count++;
1251 
1252    assert(n < scan.immediate_count);
1253 
1254    for (int c = 0; c < 4; ++c)
1255       immd.data[n * 4 + c] = imm->u[c].Uint;
1256 }
1257 
inferSysValDirection(unsigned sn) const1258 int Source::inferSysValDirection(unsigned sn) const
1259 {
1260    switch (sn) {
1261    case TGSI_SEMANTIC_INSTANCEID:
1262    case TGSI_SEMANTIC_VERTEXID:
1263       return 1;
1264    case TGSI_SEMANTIC_LAYER:
1265 #if 0
1266    case TGSI_SEMANTIC_VIEWPORTINDEX:
1267       return 0;
1268 #endif
1269    case TGSI_SEMANTIC_PRIMID:
1270       return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1271    default:
1272       return 0;
1273    }
1274 }
1275 
scanDeclaration(const struct tgsi_full_declaration * decl)1276 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1277 {
1278    unsigned i, c;
1279    unsigned sn = TGSI_SEMANTIC_GENERIC;
1280    unsigned si = 0;
1281    const unsigned first = decl->Range.First, last = decl->Range.Last;
1282    const int arrayId = decl->Array.ArrayID;
1283 
1284    if (decl->Declaration.Semantic) {
1285       sn = decl->Semantic.Name;
1286       si = decl->Semantic.Index;
1287    }
1288 
1289    if (decl->Declaration.Local || decl->Declaration.File == TGSI_FILE_ADDRESS) {
1290       for (i = first; i <= last; ++i) {
1291          for (c = 0; c < 4; ++c) {
1292             locals.insert(
1293                Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1294          }
1295       }
1296    }
1297 
1298    switch (decl->Declaration.File) {
1299    case TGSI_FILE_INPUT:
1300       if (info->type == PIPE_SHADER_VERTEX) {
1301          // all vertex attributes are equal
1302          for (i = first; i <= last; ++i) {
1303             info_out->in[i].sn = TGSI_SEMANTIC_GENERIC;
1304             info_out->in[i].si = i;
1305          }
1306       } else {
1307          for (i = first; i <= last; ++i, ++si) {
1308             info_out->in[i].id = i;
1309             info_out->in[i].sn = sn;
1310             info_out->in[i].si = si;
1311             if (info->type == PIPE_SHADER_FRAGMENT) {
1312                // translate interpolation mode
1313                switch (decl->Interp.Interpolate) {
1314                case TGSI_INTERPOLATE_CONSTANT:
1315                   info_out->in[i].flat = 1;
1316                   break;
1317                case TGSI_INTERPOLATE_COLOR:
1318                   info_out->in[i].sc = 1;
1319                   break;
1320                case TGSI_INTERPOLATE_LINEAR:
1321                   info_out->in[i].linear = 1;
1322                   break;
1323                default:
1324                   break;
1325                }
1326                if (decl->Interp.Location)
1327                   info_out->in[i].centroid = 1;
1328             }
1329 
1330             if (sn == TGSI_SEMANTIC_PATCH)
1331                info_out->in[i].patch = 1;
1332             if (sn == TGSI_SEMANTIC_PATCH)
1333                info_out->numPatchConstants = MAX2(info_out->numPatchConstants, si + 1);
1334          }
1335       }
1336       break;
1337    case TGSI_FILE_OUTPUT:
1338       for (i = first; i <= last; ++i, ++si) {
1339          switch (sn) {
1340          case TGSI_SEMANTIC_POSITION:
1341             if (info->type == PIPE_SHADER_FRAGMENT)
1342                info_out->io.fragDepth = i;
1343             else
1344             if (clipVertexOutput < 0)
1345                clipVertexOutput = i;
1346             break;
1347          case TGSI_SEMANTIC_COLOR:
1348             if (info->type == PIPE_SHADER_FRAGMENT)
1349                info_out->prop.fp.numColourResults++;
1350             break;
1351          case TGSI_SEMANTIC_EDGEFLAG:
1352             info_out->io.edgeFlagOut = i;
1353             break;
1354          case TGSI_SEMANTIC_CLIPVERTEX:
1355             clipVertexOutput = i;
1356             break;
1357          case TGSI_SEMANTIC_CLIPDIST:
1358             info_out->io.genUserClip = -1;
1359             break;
1360          case TGSI_SEMANTIC_SAMPLEMASK:
1361             info_out->io.sampleMask = i;
1362             break;
1363          case TGSI_SEMANTIC_VIEWPORT_INDEX:
1364             info->io.viewportId = i;
1365             break;
1366          case TGSI_SEMANTIC_PATCH:
1367             info_out->numPatchConstants = MAX2(info_out->numPatchConstants, si + 1);
1368             FALLTHROUGH;
1369          case TGSI_SEMANTIC_TESSOUTER:
1370          case TGSI_SEMANTIC_TESSINNER:
1371             info_out->out[i].patch = 1;
1372             break;
1373          default:
1374             break;
1375          }
1376          info_out->out[i].id = i;
1377          info_out->out[i].sn = sn;
1378          info_out->out[i].si = si;
1379       }
1380       break;
1381    case TGSI_FILE_SYSTEM_VALUE:
1382       switch (sn) {
1383       case TGSI_SEMANTIC_INSTANCEID:
1384          info_out->io.instanceId = first;
1385          break;
1386       case TGSI_SEMANTIC_VERTEXID:
1387          info_out->io.vertexId = first;
1388          break;
1389       case TGSI_SEMANTIC_BASEVERTEX:
1390       case TGSI_SEMANTIC_BASEINSTANCE:
1391       case TGSI_SEMANTIC_DRAWID:
1392          info_out->prop.vp.usesDrawParameters = true;
1393          break;
1394       case TGSI_SEMANTIC_SAMPLEID:
1395       case TGSI_SEMANTIC_SAMPLEPOS:
1396          prog->persampleInvocation = true;
1397          break;
1398       case TGSI_SEMANTIC_SAMPLEMASK:
1399          info_out->prop.fp.usesSampleMaskIn = true;
1400          break;
1401       default:
1402          break;
1403       }
1404       for (i = first; i <= last; ++i, ++si) {
1405          info_out->sv[i].sn = sn;
1406          info_out->sv[i].si = si;
1407          info_out->sv[i].input = inferSysValDirection(sn);
1408 
1409          switch (sn) {
1410          case TGSI_SEMANTIC_TESSOUTER:
1411          case TGSI_SEMANTIC_TESSINNER:
1412             info_out->sv[i].patch = 1;
1413             break;
1414          }
1415       }
1416       break;
1417 /*
1418    case TGSI_FILE_RESOURCE:
1419       for (i = first; i <= last; ++i) {
1420          resources[i].target = decl->Resource.Resource;
1421          resources[i].raw = decl->Resource.Raw;
1422          resources[i].slot = i;
1423       }
1424       break;
1425 */
1426    case TGSI_FILE_SAMPLER_VIEW:
1427       for (i = first; i <= last; ++i)
1428          textureViews[i].target = decl->SamplerView.Resource;
1429       break;
1430    case TGSI_FILE_MEMORY:
1431       for (i = first; i <= last; ++i)
1432          memoryFiles[i].mem_type = decl->Declaration.MemType;
1433       break;
1434    case TGSI_FILE_NULL:
1435    case TGSI_FILE_TEMPORARY:
1436       for (i = first; i <= last; ++i)
1437          tempArrayId[i] = arrayId;
1438       if (arrayId)
1439          tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair(
1440                                                    first, last - first + 1)));
1441       break;
1442    case TGSI_FILE_BUFFER:
1443       for (i = first; i <= last; ++i)
1444          bufferAtomics[i] = decl->Declaration.Atomic;
1445       if (info->type == PIPE_SHADER_COMPUTE && info->target < NVISA_GF100_CHIPSET) {
1446          for (i = first; i <= last; i++) {
1447             bufferIds.insert(std::make_pair(i, gmemSlot));
1448             info_out->prop.cp.gmem[gmemSlot++] = {.valid = 1, .image = 0, .slot = i};
1449             assert(gmemSlot < 16);
1450          }
1451       }
1452       break;
1453    case TGSI_FILE_IMAGE:
1454       if (info->type == PIPE_SHADER_COMPUTE && info->target < NVISA_GF100_CHIPSET) {
1455          for (i = first; i <= last; i++) {
1456             imageIds.insert(std::make_pair(i, gmemSlot));
1457             info_out->prop.cp.gmem[gmemSlot++] = {.valid = 1, .image = 1, .slot = i};
1458             assert(gmemSlot < 16);
1459          }
1460       }
1461       break;
1462    case TGSI_FILE_ADDRESS:
1463    case TGSI_FILE_CONSTANT:
1464    case TGSI_FILE_IMMEDIATE:
1465    case TGSI_FILE_SAMPLER:
1466       break;
1467    default:
1468       ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1469       return false;
1470    }
1471    return true;
1472 }
1473 
isEdgeFlagPassthrough(const Instruction & insn) const1474 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1475 {
1476    return insn.getOpcode() == TGSI_OPCODE_MOV &&
1477       insn.getDst(0).getIndex(0) == info_out->io.edgeFlagOut &&
1478       insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1479 }
1480 
scanInstructionSrc(const Instruction & insn,const Instruction::SrcRegister & src,unsigned mask)1481 void Source::scanInstructionSrc(const Instruction& insn,
1482                                 const Instruction::SrcRegister& src,
1483                                 unsigned mask)
1484 {
1485    if (src.getFile() == TGSI_FILE_TEMPORARY) {
1486       if (src.isIndirect(0))
1487          indirectTempArrays.insert(src.getArrayId());
1488    } else
1489    if (src.getFile() == TGSI_FILE_OUTPUT) {
1490       if (src.isIndirect(0)) {
1491          // We don't know which one is accessed, just mark everything for
1492          // reading. This is an extremely unlikely occurrence.
1493          for (unsigned i = 0; i < info_out->numOutputs; ++i)
1494             info_out->out[i].oread = 1;
1495       } else {
1496          info_out->out[src.getIndex(0)].oread = 1;
1497       }
1498    }
1499    if (src.getFile() == TGSI_FILE_SYSTEM_VALUE) {
1500       if (info_out->sv[src.getIndex(0)].sn == TGSI_SEMANTIC_SAMPLEPOS)
1501          info_out->prop.fp.readsSampleLocations = true;
1502    }
1503    if (src.getFile() != TGSI_FILE_INPUT)
1504       return;
1505 
1506    if (src.isIndirect(0)) {
1507       for (unsigned i = 0; i < info_out->numInputs; ++i)
1508          info_out->in[i].mask = 0xf;
1509    } else {
1510       const int i = src.getIndex(0);
1511       for (unsigned c = 0; c < 4; ++c) {
1512          if (!(mask & (1 << c)))
1513             continue;
1514          int k = src.getSwizzle(c);
1515          if (k <= TGSI_SWIZZLE_W)
1516             info_out->in[i].mask |= 1 << k;
1517       }
1518       switch (info_out->in[i].sn) {
1519       case TGSI_SEMANTIC_PSIZE:
1520       case TGSI_SEMANTIC_PRIMID:
1521       case TGSI_SEMANTIC_FOG:
1522          info_out->in[i].mask &= 0x1;
1523          break;
1524       case TGSI_SEMANTIC_PCOORD:
1525          info_out->in[i].mask &= 0x3;
1526          break;
1527       default:
1528          break;
1529       }
1530    }
1531 }
1532 
scanInstruction(const struct tgsi_full_instruction * inst)1533 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1534 {
1535    Instruction insn(inst);
1536 
1537    if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1538       info_out->numBarriers = 1;
1539 
1540    if (insn.getOpcode() == TGSI_OPCODE_FBFETCH)
1541       info_out->prop.fp.readsFramebuffer = true;
1542 
1543    if (insn.getOpcode() == TGSI_OPCODE_INTERP_SAMPLE)
1544       info_out->prop.fp.readsSampleLocations = true;
1545 
1546    if (insn.getOpcode() == TGSI_OPCODE_DEMOTE)
1547       info_out->prop.fp.usesDiscard = true;
1548 
1549    if (insn.dstCount()) {
1550       Instruction::DstRegister dst = insn.getDst(0);
1551 
1552       if (insn.getOpcode() == TGSI_OPCODE_STORE &&
1553           dst.getFile() != TGSI_FILE_MEMORY) {
1554          info_out->io.globalAccess |= 0x2;
1555 
1556          if (dst.getFile() == TGSI_FILE_INPUT) {
1557             // TODO: Handle indirect somehow?
1558             const int i = dst.getIndex(0);
1559             info_out->in[i].mask |= 1;
1560          }
1561       }
1562 
1563       if (dst.getFile() == TGSI_FILE_OUTPUT) {
1564          if (dst.isIndirect(0))
1565             for (unsigned i = 0; i < info_out->numOutputs; ++i)
1566                info_out->out[i].mask = 0xf;
1567          else
1568             info_out->out[dst.getIndex(0)].mask |= dst.getMask();
1569 
1570          if (info_out->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1571              info_out->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1572              info_out->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1573              info_out->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1574              info_out->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1575             info_out->out[dst.getIndex(0)].mask &= 1;
1576 
1577          if (isEdgeFlagPassthrough(insn))
1578             info_out->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1579       } else
1580       if (dst.getFile() == TGSI_FILE_TEMPORARY) {
1581          if (dst.isIndirect(0))
1582             indirectTempArrays.insert(dst.getArrayId());
1583       } else
1584       if (dst.getFile() == TGSI_FILE_BUFFER ||
1585           dst.getFile() == TGSI_FILE_IMAGE ||
1586           (dst.getFile() == TGSI_FILE_MEMORY &&
1587            memoryFiles[dst.getIndex(0)].mem_type == TGSI_MEMORY_TYPE_GLOBAL)) {
1588          info_out->io.globalAccess |= 0x2;
1589       }
1590    }
1591 
1592    if (insn.srcCount() && (
1593              insn.getSrc(0).getFile() != TGSI_FILE_MEMORY ||
1594              memoryFiles[insn.getSrc(0).getIndex(0)].mem_type ==
1595              TGSI_MEMORY_TYPE_GLOBAL)) {
1596       switch (insn.getOpcode()) {
1597       case TGSI_OPCODE_ATOMUADD:
1598       case TGSI_OPCODE_ATOMXCHG:
1599       case TGSI_OPCODE_ATOMCAS:
1600       case TGSI_OPCODE_ATOMAND:
1601       case TGSI_OPCODE_ATOMOR:
1602       case TGSI_OPCODE_ATOMXOR:
1603       case TGSI_OPCODE_ATOMUMIN:
1604       case TGSI_OPCODE_ATOMIMIN:
1605       case TGSI_OPCODE_ATOMUMAX:
1606       case TGSI_OPCODE_ATOMIMAX:
1607       case TGSI_OPCODE_ATOMFADD:
1608       case TGSI_OPCODE_ATOMDEC_WRAP:
1609       case TGSI_OPCODE_ATOMINC_WRAP:
1610       case TGSI_OPCODE_LOAD:
1611          info_out->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1612             0x1 : 0x2;
1613          break;
1614       }
1615    }
1616 
1617 
1618    for (unsigned s = 0; s < insn.srcCount(); ++s)
1619       scanInstructionSrc(insn, insn.getSrc(s), insn.srcMask(s));
1620 
1621    for (unsigned s = 0; s < insn.getNumTexOffsets(); ++s)
1622       scanInstructionSrc(insn, insn.getTexOffset(s), insn.texOffsetMask());
1623 
1624    return true;
1625 }
1626 
1627 nv50_ir::TexInstruction::Target
getTexture(const tgsi::Source * code,int s) const1628 Instruction::getTexture(const tgsi::Source *code, int s) const
1629 {
1630    // XXX: indirect access
1631    unsigned int r;
1632 
1633    switch (getSrc(s).getFile()) {
1634 /*
1635    case TGSI_FILE_RESOURCE:
1636       r = getSrc(s).getIndex(0);
1637       return translateTexture(code->resources.at(r).target);
1638 */
1639    case TGSI_FILE_SAMPLER_VIEW:
1640       r = getSrc(s).getIndex(0);
1641       return translateTexture(code->textureViews.at(r).target);
1642    default:
1643       return translateTexture(insn->Texture.Texture);
1644    }
1645 }
1646 
1647 } // namespace tgsi
1648 
1649 namespace {
1650 
1651 using namespace nv50_ir;
1652 
1653 class Converter : public ConverterCommon
1654 {
1655 public:
1656    Converter(Program *, const tgsi::Source *, nv50_ir_prog_info_out *);
1657    ~Converter();
1658 
1659    bool run();
1660 
1661 private:
1662    Value *shiftAddress(Value *);
1663    Value *getVertexBase(int s);
1664    Value *getOutputBase(int s);
1665    DataArray *getArrayForFile(unsigned file, int idx);
1666    Value *fetchSrc(int s, int c);
1667    Value *fetchDst(int d, int c);
1668    Value *acquireDst(int d, int c);
1669    void storeDst(int d, int c, Value *);
1670 
1671    Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1672    void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1673                  Value *val, Value *ptr);
1674 
1675    void adjustTempIndex(int arrayId, int &idx, int &idx2d) const;
1676    Value *applySrcMod(Value *, int s, int c);
1677 
1678    Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1679    Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1680    Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1681 
1682    bool isSubGroupMask(uint8_t semantic);
1683 
1684    bool handleInstruction(const struct tgsi_full_instruction *);
1685    void exportOutputs();
1686    inline bool isEndOfSubroutine(uint ip);
1687 
1688    void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1689 
1690    // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1691    void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1692    void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1693    void handleTXF(Value *dst0[4], int R, int L_M);
1694    void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1695    void handleFBFETCH(Value *dst0[4]);
1696    void handleLIT(Value *dst0[4]);
1697 
1698    // Symbol *getResourceBase(int r);
1699    void getImageCoords(std::vector<Value *>&, int s);
1700    int remapImageId(int);
1701    int remapBufferId(int);
1702 
1703    void handleLOAD(Value *dst0[4]);
1704    void handleSTORE();
1705    void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1706 
1707    void handleINTERP(Value *dst0[4]);
1708 
1709    Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1710 
1711    void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1712 
1713    Value *buildDot(int dim);
1714 
1715    class BindArgumentsPass : public Pass {
1716    public:
BindArgumentsPass(Converter & conv)1717       BindArgumentsPass(Converter &conv) : conv(conv), sub(NULL) { }
1718 
1719    private:
1720       Converter &conv;
1721       Subroutine *sub;
1722 
1723       inline const Location *getValueLocation(Subroutine *, Value *);
1724 
1725       template<typename T> inline void
1726       updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1727                      T (Function::*proto));
1728 
1729       template<typename T> inline void
1730       updatePrototype(BitSet *set, void (Function::*updateSet)(),
1731                       T (Function::*proto));
1732 
1733    protected:
1734       bool visit(Function *);
visit(BasicBlock * bb)1735       bool visit(BasicBlock *bb) { return false; }
1736    };
1737 
1738 private:
1739    const tgsi::Source *code;
1740 
1741    uint ip; // instruction pointer
1742 
1743    tgsi::Instruction tgsi;
1744 
1745    DataType dstTy;
1746    DataType srcTy;
1747 
1748    DataArray tData; // TGSI_FILE_TEMPORARY
1749    DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1750    DataArray aData; // TGSI_FILE_ADDRESS
1751    DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1752 
1753    Value *zero;
1754 
1755    Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1756    uint8_t vtxBaseValid;
1757 
1758    Stack condBBs;  // fork BB, then else clause BB
1759    Stack joinBBs;  // fork BB, for inserting join ops on ENDIF
1760    Stack loopBBs;  // loop headers
1761    Stack breakBBs; // end of / after loop
1762 
1763    Value *viewport;
1764 };
1765 
1766 Symbol *
srcToSym(tgsi::Instruction::SrcRegister src,int c)1767 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1768 {
1769    const int swz = src.getSwizzle(c);
1770 
1771    /* TODO: Use Array ID when it's available for the index */
1772    return makeSym(src.getFile(),
1773                   src.is2D() ? src.getIndex(1) : 0,
1774                   src.getIndex(0), swz,
1775                   src.getIndex(0) * 16 + swz * 4);
1776 }
1777 
1778 Symbol *
dstToSym(tgsi::Instruction::DstRegister dst,int c)1779 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1780 {
1781    /* TODO: Use Array ID when it's available for the index */
1782    return makeSym(dst.getFile(),
1783                   dst.is2D() ? dst.getIndex(1) : 0,
1784                   dst.getIndex(0), c,
1785                   dst.getIndex(0) * 16 + c * 4);
1786 }
1787 
1788 Symbol *
makeSym(uint tgsiFile,int fileIdx,int idx,int c,uint32_t address)1789 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1790 {
1791    Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1792 
1793    sym->reg.fileIndex = fileIdx;
1794 
1795    if (tgsiFile == TGSI_FILE_MEMORY) {
1796       switch (code->memoryFiles[fileIdx].mem_type) {
1797       case TGSI_MEMORY_TYPE_GLOBAL:
1798          /* No-op this is the default for TGSI_FILE_MEMORY */
1799          sym->setFile(FILE_MEMORY_GLOBAL);
1800          break;
1801       case TGSI_MEMORY_TYPE_SHARED:
1802          sym->setFile(FILE_MEMORY_SHARED);
1803          address += info->prop.cp.inputOffset;
1804          break;
1805       case TGSI_MEMORY_TYPE_INPUT:
1806          assert(prog->getType() == Program::TYPE_COMPUTE);
1807          assert(idx == -1);
1808          sym->setFile(FILE_SHADER_INPUT);
1809          address += info->prop.cp.inputOffset;
1810          break;
1811       default:
1812          assert(0); /* TODO: Add support for global and private memory */
1813       }
1814    }
1815 
1816    if (idx >= 0) {
1817       if (sym->reg.file == FILE_SHADER_INPUT)
1818          sym->setOffset(info_out->in[idx].slot[c] * 4);
1819       else
1820       if (sym->reg.file == FILE_SHADER_OUTPUT)
1821          sym->setOffset(info_out->out[idx].slot[c] * 4);
1822       else
1823       if (sym->reg.file == FILE_SYSTEM_VALUE)
1824          sym->setSV(tgsi::translateSysVal(info_out->sv[idx].sn), c);
1825       else
1826          sym->setOffset(address);
1827    } else {
1828       sym->setOffset(address);
1829    }
1830    return sym;
1831 }
1832 
1833 Value *
interpolate(tgsi::Instruction::SrcRegister src,int c,Value * ptr)1834 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1835 {
1836    operation op;
1837 
1838    // XXX: no way to know interpolation mode if we don't know what's accessed
1839    const uint8_t mode = translateInterpMode(&info_out->in[ptr ? 0 :
1840                                                       src.getIndex(0)], op);
1841 
1842    Instruction *insn = new_Instruction(func, op, TYPE_F32);
1843 
1844    insn->setDef(0, getScratch());
1845    insn->setSrc(0, srcToSym(src, c));
1846    if (op == OP_PINTERP)
1847       insn->setSrc(1, fragCoord[3]);
1848    if (ptr)
1849       insn->setIndirect(0, 0, ptr);
1850 
1851    insn->setInterpolate(mode);
1852 
1853    bb->insertTail(insn);
1854    return insn->getDef(0);
1855 }
1856 
1857 Value *
applySrcMod(Value * val,int s,int c)1858 Converter::applySrcMod(Value *val, int s, int c)
1859 {
1860    Modifier m = tgsi.getSrc(s).getMod(c);
1861    DataType ty = tgsi.inferSrcType();
1862 
1863    if (m & Modifier(NV50_IR_MOD_ABS))
1864       val = mkOp1v(OP_ABS, ty, getScratch(), val);
1865 
1866    if (m & Modifier(NV50_IR_MOD_NEG))
1867       val = mkOp1v(OP_NEG, ty, getScratch(), val);
1868 
1869    return val;
1870 }
1871 
1872 Value *
getVertexBase(int s)1873 Converter::getVertexBase(int s)
1874 {
1875    assert(s < 5);
1876    if (!(vtxBaseValid & (1 << s))) {
1877       const int index = tgsi.getSrc(s).getIndex(1);
1878       Value *rel = NULL;
1879       if (tgsi.getSrc(s).isIndirect(1))
1880          rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1881       vtxBaseValid |= 1 << s;
1882       vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1883                           mkImm(index), rel);
1884    }
1885    return vtxBase[s];
1886 }
1887 
1888 Value *
getOutputBase(int s)1889 Converter::getOutputBase(int s)
1890 {
1891    assert(s < 5);
1892    if (!(vtxBaseValid & (1 << s))) {
1893       Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1894       if (tgsi.getSrc(s).isIndirect(1))
1895          offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1896                          fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1897                          offset);
1898       vtxBaseValid |= 1 << s;
1899       vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1900    }
1901    return vtxBase[s];
1902 }
1903 
1904 Value *
fetchSrc(int s,int c)1905 Converter::fetchSrc(int s, int c)
1906 {
1907    Value *res;
1908    Value *ptr = NULL, *dimRel = NULL;
1909 
1910    tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1911 
1912    if (src.isIndirect(0))
1913       ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1914 
1915    if (src.is2D()) {
1916       switch (src.getFile()) {
1917       case TGSI_FILE_OUTPUT:
1918          dimRel = getOutputBase(s);
1919          break;
1920       case TGSI_FILE_INPUT:
1921          dimRel = getVertexBase(s);
1922          break;
1923       case TGSI_FILE_CONSTANT:
1924          // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1925          if (src.isIndirect(1))
1926             dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1927          break;
1928       default:
1929          break;
1930       }
1931    }
1932 
1933    res = fetchSrc(src, c, ptr);
1934 
1935    if (dimRel)
1936       res->getInsn()->setIndirect(0, 1, dimRel);
1937 
1938    return applySrcMod(res, s, c);
1939 }
1940 
1941 Value *
fetchDst(int d,int c)1942 Converter::fetchDst(int d, int c)
1943 {
1944    Value *res;
1945    Value *ptr = NULL, *dimRel = NULL;
1946 
1947    tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1948 
1949    if (dst.isIndirect(0))
1950       ptr = fetchSrc(dst.getIndirect(0), 0, NULL);
1951 
1952    if (dst.is2D()) {
1953       switch (dst.getFile()) {
1954       case TGSI_FILE_OUTPUT:
1955          assert(0); // TODO
1956          dimRel = NULL;
1957          break;
1958       case TGSI_FILE_INPUT:
1959          assert(0); // TODO
1960          dimRel = NULL;
1961          break;
1962       case TGSI_FILE_CONSTANT:
1963          // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1964          if (dst.isIndirect(1))
1965             dimRel = fetchSrc(dst.getIndirect(1), 0, 0);
1966          break;
1967       default:
1968          break;
1969       }
1970    }
1971 
1972    struct tgsi_full_src_register fsr = dst.asSrc();
1973    tgsi::Instruction::SrcRegister src(&fsr);
1974    res = fetchSrc(src, c, ptr);
1975 
1976    if (dimRel)
1977       res->getInsn()->setIndirect(0, 1, dimRel);
1978 
1979    return res;
1980 }
1981 
1982 Converter::DataArray *
getArrayForFile(unsigned file,int idx)1983 Converter::getArrayForFile(unsigned file, int idx)
1984 {
1985    switch (file) {
1986    case TGSI_FILE_TEMPORARY:
1987       return idx == 0 ? &tData : &lData;
1988    case TGSI_FILE_ADDRESS:
1989       return &aData;
1990    case TGSI_FILE_OUTPUT:
1991       assert(prog->getType() == Program::TYPE_FRAGMENT);
1992       return &oData;
1993    default:
1994       assert(!"invalid/unhandled TGSI source file");
1995       return NULL;
1996    }
1997 }
1998 
1999 Value *
shiftAddress(Value * index)2000 Converter::shiftAddress(Value *index)
2001 {
2002    if (!index)
2003       return NULL;
2004    return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
2005 }
2006 
2007 void
adjustTempIndex(int arrayId,int & idx,int & idx2d) const2008 Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const
2009 {
2010    std::map<int, int>::const_iterator it =
2011       code->indirectTempOffsets.find(arrayId);
2012    if (it == code->indirectTempOffsets.end())
2013       return;
2014 
2015    idx2d = 1;
2016    idx += it->second;
2017 }
2018 
2019 bool
isSubGroupMask(uint8_t semantic)2020 Converter::isSubGroupMask(uint8_t semantic)
2021 {
2022    switch (semantic) {
2023       case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2024       case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2025       case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2026       case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2027       case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2028          return true;
2029       default:
2030          return false;
2031    }
2032 }
2033 
2034 Value *
fetchSrc(tgsi::Instruction::SrcRegister src,int c,Value * ptr)2035 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
2036 {
2037    int idx2d = src.is2D() ? src.getIndex(1) : 0;
2038    int idx = src.getIndex(0);
2039    const int swz = src.getSwizzle(c);
2040    Instruction *ld;
2041 
2042    switch (src.getFile()) {
2043    case TGSI_FILE_IMMEDIATE:
2044       assert(!ptr);
2045       return loadImm(NULL, code->immd.data[idx * 4 + swz]);
2046    case TGSI_FILE_CONSTANT:
2047       return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
2048    case TGSI_FILE_INPUT:
2049       if (prog->getType() == Program::TYPE_FRAGMENT) {
2050          // don't load masked inputs, won't be assigned a slot
2051          if (!ptr && !(info_out->in[idx].mask & (1 << swz)))
2052             return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
2053          return interpolate(src, c, shiftAddress(ptr));
2054       } else
2055       if (prog->getType() == Program::TYPE_GEOMETRY) {
2056          if (!ptr && info_out->in[idx].sn == TGSI_SEMANTIC_PRIMID)
2057             return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
2058          // XXX: This is going to be a problem with scalar arrays, i.e. when
2059          // we cannot assume that the address is given in units of vec4.
2060          //
2061          // nv50 and nvc0 need different things here, so let the lowering
2062          // passes decide what to do with the address
2063          if (ptr)
2064             return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
2065       }
2066       ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2067       ld->perPatch = info_out->in[idx].patch;
2068       return ld->getDef(0);
2069    case TGSI_FILE_OUTPUT:
2070       assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2071       ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2072       ld->perPatch = info_out->out[idx].patch;
2073       return ld->getDef(0);
2074    case TGSI_FILE_SYSTEM_VALUE:
2075       assert(!ptr);
2076       if (info_out->sv[idx].sn == TGSI_SEMANTIC_THREAD_ID &&
2077           info->prop.cp.numThreads[swz] == 1)
2078          return loadImm(NULL, 0u);
2079       if (isSubGroupMask(info_out->sv[idx].sn) && swz > 0)
2080          return loadImm(NULL, 0u);
2081       if (info_out->sv[idx].sn == TGSI_SEMANTIC_SUBGROUP_SIZE)
2082          return loadImm(NULL, 32u);
2083       ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
2084       ld->perPatch = info_out->sv[idx].patch;
2085       return ld->getDef(0);
2086    case TGSI_FILE_TEMPORARY: {
2087       int arrayid = src.getArrayId();
2088       if (!arrayid)
2089          arrayid = code->tempArrayId[idx];
2090       adjustTempIndex(arrayid, idx, idx2d);
2091    }
2092       FALLTHROUGH;
2093    default:
2094       return getArrayForFile(src.getFile(), idx2d)->load(
2095          sub.cur->values, idx, swz, shiftAddress(ptr));
2096    }
2097 }
2098 
2099 Value *
acquireDst(int d,int c)2100 Converter::acquireDst(int d, int c)
2101 {
2102    const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2103    const unsigned f = dst.getFile();
2104    int idx = dst.getIndex(0);
2105    int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2106 
2107    if (dst.isMasked(c) || f == TGSI_FILE_BUFFER || f == TGSI_FILE_MEMORY ||
2108        f == TGSI_FILE_IMAGE)
2109       return NULL;
2110 
2111    if (dst.isIndirect(0) ||
2112        f == TGSI_FILE_SYSTEM_VALUE ||
2113        (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
2114       return getScratch();
2115 
2116    if (f == TGSI_FILE_TEMPORARY) {
2117       int arrayid = dst.getArrayId();
2118       if (!arrayid)
2119          arrayid = code->tempArrayId[idx];
2120       adjustTempIndex(arrayid, idx, idx2d);
2121    }
2122 
2123    return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
2124 }
2125 
2126 void
storeDst(int d,int c,Value * val)2127 Converter::storeDst(int d, int c, Value *val)
2128 {
2129    const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2130 
2131    if (tgsi.getSaturate()) {
2132       mkOp1(OP_SAT, dstTy, val, val);
2133    }
2134 
2135    Value *ptr = NULL;
2136    if (dst.isIndirect(0))
2137       ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
2138 
2139    if (info_out->io.genUserClip > 0 &&
2140        dst.getFile() == TGSI_FILE_OUTPUT &&
2141        !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
2142       mkMov(clipVtx[c], val);
2143       val = clipVtx[c];
2144    }
2145 
2146    storeDst(dst, c, val, ptr);
2147 }
2148 
2149 void
storeDst(const tgsi::Instruction::DstRegister dst,int c,Value * val,Value * ptr)2150 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
2151                     Value *val, Value *ptr)
2152 {
2153    const unsigned f = dst.getFile();
2154    int idx = dst.getIndex(0);
2155    int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2156 
2157    if (f == TGSI_FILE_SYSTEM_VALUE) {
2158       assert(!ptr);
2159       mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
2160    } else
2161    if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
2162 
2163       if (ptr || (info_out->out[idx].mask & (1 << c))) {
2164          /* Save the viewport index into a scratch register so that it can be
2165             exported at EMIT time */
2166          if (info_out->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
2167              prog->getType() == Program::TYPE_GEOMETRY &&
2168              viewport != NULL)
2169             mkOp1(OP_MOV, TYPE_U32, viewport, val);
2170          else
2171             mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
2172                info_out->out[idx].patch;
2173       }
2174    } else
2175    if (f == TGSI_FILE_TEMPORARY ||
2176        f == TGSI_FILE_ADDRESS ||
2177        f == TGSI_FILE_OUTPUT) {
2178       if (f == TGSI_FILE_TEMPORARY) {
2179          int arrayid = dst.getArrayId();
2180          if (!arrayid)
2181             arrayid = code->tempArrayId[idx];
2182          adjustTempIndex(arrayid, idx, idx2d);
2183       }
2184 
2185       getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
2186    } else {
2187       assert(!"invalid dst file");
2188    }
2189 }
2190 
2191 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
2192    for (chan = 0; chan < 4; ++chan)                 \
2193       if (!inst.getDst(d).isMasked(chan))
2194 
2195 Value *
buildDot(int dim)2196 Converter::buildDot(int dim)
2197 {
2198    assert(dim > 0);
2199 
2200    Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
2201    Value *dotp = getScratch();
2202 
2203    mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1)
2204       ->dnz = info->io.mul_zero_wins;
2205 
2206    for (int c = 1; c < dim; ++c) {
2207       src0 = fetchSrc(0, c);
2208       src1 = fetchSrc(1, c);
2209       mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp)
2210          ->dnz = info->io.mul_zero_wins;
2211    }
2212    return dotp;
2213 }
2214 
2215 void
insertConvergenceOps(BasicBlock * conv,BasicBlock * fork)2216 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
2217 {
2218    FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
2219    join->fixed = 1;
2220    conv->insertHead(join);
2221 
2222    assert(!fork->joinAt);
2223    fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
2224    fork->insertBefore(fork->getExit(), fork->joinAt);
2225 }
2226 
2227 void
setTexRS(TexInstruction * tex,unsigned int & s,int R,int S)2228 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
2229 {
2230    unsigned rIdx = 0, sIdx = 0;
2231 
2232    if (R >= 0 && tgsi.getSrc(R).getFile() != TGSI_FILE_SAMPLER) {
2233       // This is the bindless case. We have to get the actual value and pass
2234       // it in. This will be the complete handle.
2235       tex->tex.rIndirectSrc = s;
2236       tex->setSrc(s++, fetchSrc(R, 0));
2237       tex->setTexture(tgsi.getTexture(code, R), 0xff, 0x1f);
2238       tex->tex.bindless = true;
2239       return;
2240    }
2241 
2242    if (R >= 0)
2243       rIdx = tgsi.getSrc(R).getIndex(0);
2244    if (S >= 0)
2245       sIdx = tgsi.getSrc(S).getIndex(0);
2246 
2247    tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
2248 
2249    if (tgsi.getSrc(R).isIndirect(0)) {
2250       tex->tex.rIndirectSrc = s;
2251       tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
2252    }
2253    if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
2254       tex->tex.sIndirectSrc = s;
2255       tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
2256    }
2257 }
2258 
2259 void
handleTXQ(Value * dst0[4],enum TexQuery query,int R)2260 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
2261 {
2262    TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
2263    tex->tex.query = query;
2264    unsigned int c, d;
2265 
2266    for (d = 0, c = 0; c < 4; ++c) {
2267       if (!dst0[c])
2268          continue;
2269       tex->tex.mask |= 1 << c;
2270       tex->setDef(d++, dst0[c]);
2271    }
2272    if (query == TXQ_DIMS)
2273       tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
2274    else
2275       tex->setSrc((c = 0), zero);
2276 
2277    setTexRS(tex, ++c, R, -1);
2278 
2279    bb->insertTail(tex);
2280 }
2281 
2282 void
loadProjTexCoords(Value * dst[4],Value * src[4],unsigned int mask)2283 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
2284 {
2285    Value *proj = fetchSrc(0, 3);
2286    Instruction *insn = proj->getUniqueInsn();
2287    int c;
2288 
2289    if (insn->op == OP_PINTERP) {
2290       bb->insertTail(insn = cloneForward(func, insn));
2291       insn->op = OP_LINTERP;
2292       insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
2293       insn->setSrc(1, NULL);
2294       proj = insn->getDef(0);
2295    }
2296    proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
2297 
2298    for (c = 0; c < 4; ++c) {
2299       if (!(mask & (1 << c)))
2300          continue;
2301       if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
2302          continue;
2303       mask &= ~(1 << c);
2304 
2305       bb->insertTail(insn = cloneForward(func, insn));
2306       insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
2307       insn->setSrc(1, proj);
2308       dst[c] = insn->getDef(0);
2309    }
2310    if (!mask)
2311       return;
2312 
2313    proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
2314 
2315    for (c = 0; c < 4; ++c)
2316       if (mask & (1 << c))
2317          dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
2318 }
2319 
2320 // order of nv50 ir sources: x y z layer lod/bias shadow
2321 // order of TGSI TEX sources: x y z layer shadow lod/bias
2322 //  lowering will finally set the hw specific order (like array first on nvc0)
2323 void
handleTEX(Value * dst[4],int R,int S,int L,int C,int Dx,int Dy)2324 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
2325 {
2326    Value *arg[4], *src[8];
2327    Value *lod = NULL, *shd = NULL;
2328    unsigned int s, c, d;
2329    TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2330 
2331    TexInstruction::Target tgt = tgsi.getTexture(code, R);
2332 
2333    for (s = 0; s < tgt.getArgCount(); ++s)
2334       arg[s] = src[s] = fetchSrc(0, s);
2335 
2336    if (tgsi.getOpcode() == TGSI_OPCODE_TEX_LZ)
2337       lod = loadImm(NULL, 0);
2338    else if (texi->op == OP_TXL || texi->op == OP_TXB)
2339       lod = fetchSrc(L >> 4, L & 3);
2340 
2341    if (C == 0x0f)
2342       C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
2343 
2344    if (tgt == TEX_TARGET_CUBE_ARRAY_SHADOW) {
2345       switch (tgsi.getOpcode()) {
2346       case TGSI_OPCODE_TG4: shd = fetchSrc(1, 0); break;
2347       case TGSI_OPCODE_TEX2: shd = fetchSrc(1, 0); break;
2348       case TGSI_OPCODE_TXB2: shd = fetchSrc(1, 1); break;
2349       case TGSI_OPCODE_TXL2: shd = fetchSrc(1, 1); break;
2350       default: assert(!"unexpected opcode with cube array shadow"); break;
2351       }
2352    }
2353    else if (tgt.isShadow())
2354       shd = fetchSrc(C >> 4, C & 3);
2355 
2356    if (texi->op == OP_TXD) {
2357       for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
2358          texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
2359          texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
2360       }
2361    }
2362 
2363    // cube textures don't care about projection value, it's divided out
2364    if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
2365       unsigned int n = tgt.getDim();
2366       if (shd) {
2367          arg[n] = shd;
2368          ++n;
2369          assert(tgt.getDim() == tgt.getArgCount());
2370       }
2371       loadProjTexCoords(src, arg, (1 << n) - 1);
2372       if (shd)
2373          shd = src[n - 1];
2374    }
2375 
2376    for (c = 0, d = 0; c < 4; ++c) {
2377       if (dst[c]) {
2378          texi->setDef(d++, dst[c]);
2379          texi->tex.mask |= 1 << c;
2380       } else {
2381          // NOTE: maybe hook up def too, for CSE
2382       }
2383    }
2384    for (s = 0; s < tgt.getArgCount(); ++s)
2385       texi->setSrc(s, src[s]);
2386    if (lod)
2387       texi->setSrc(s++, lod);
2388    if (shd)
2389       texi->setSrc(s++, shd);
2390 
2391    setTexRS(texi, s, R, S);
2392 
2393    if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2394       texi->tex.levelZero = true;
2395    if (prog->getType() != Program::TYPE_FRAGMENT &&
2396        (tgsi.getOpcode() == TGSI_OPCODE_TEX ||
2397         tgsi.getOpcode() == TGSI_OPCODE_TEX2 ||
2398         tgsi.getOpcode() == TGSI_OPCODE_TXP))
2399       texi->tex.levelZero = true;
2400    if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2401       texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, code->immd.data);
2402 
2403    texi->tex.useOffsets = tgsi.getNumTexOffsets();
2404    for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2405       for (c = 0; c < 3; ++c) {
2406          texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2407          texi->offset[s][c].setInsn(texi);
2408       }
2409    }
2410 
2411    bb->insertTail(texi);
2412 }
2413 
2414 // 1st source: xyz = coordinates, w = lod/sample
2415 // 2nd source: offset
2416 void
handleTXF(Value * dst[4],int R,int L_M)2417 Converter::handleTXF(Value *dst[4], int R, int L_M)
2418 {
2419    TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2420    int ms;
2421    unsigned int c, d, s;
2422 
2423    texi->tex.target = tgsi.getTexture(code, R);
2424 
2425    ms = texi->tex.target.isMS() ? 1 : 0;
2426    texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2427 
2428    for (c = 0, d = 0; c < 4; ++c) {
2429       if (dst[c]) {
2430          texi->setDef(d++, dst[c]);
2431          texi->tex.mask |= 1 << c;
2432       }
2433    }
2434    for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2435       texi->setSrc(c, fetchSrc(0, c));
2436    if (!ms && tgsi.getOpcode() == TGSI_OPCODE_TXF_LZ)
2437       texi->setSrc(c++, loadImm(NULL, 0));
2438    else
2439       texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2440 
2441    setTexRS(texi, c, R, -1);
2442 
2443    texi->tex.useOffsets = tgsi.getNumTexOffsets();
2444    for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2445       for (c = 0; c < 3; ++c) {
2446          texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2447          texi->offset[s][c].setInsn(texi);
2448       }
2449    }
2450 
2451    bb->insertTail(texi);
2452 }
2453 
2454 void
handleFBFETCH(Value * dst[4])2455 Converter::handleFBFETCH(Value *dst[4])
2456 {
2457    TexInstruction *texi = new_TexInstruction(func, OP_TXF);
2458    unsigned int c, d;
2459 
2460    texi->tex.target = TEX_TARGET_2D_MS_ARRAY;
2461    texi->tex.levelZero = true;
2462    texi->tex.useOffsets = 0;
2463 
2464    for (c = 0, d = 0; c < 4; ++c) {
2465       if (dst[c]) {
2466          texi->setDef(d++, dst[c]);
2467          texi->tex.mask |= 1 << c;
2468       }
2469    }
2470 
2471    Value *x = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 0));
2472    Value *y = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 1));
2473    Value *z = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_LAYER, 0));
2474    Value *ms = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_SAMPLE_INDEX, 0));
2475 
2476    mkCvt(OP_CVT, TYPE_U32, x, TYPE_F32, x)->rnd = ROUND_Z;
2477    mkCvt(OP_CVT, TYPE_U32, y, TYPE_F32, y)->rnd = ROUND_Z;
2478    texi->setSrc(0, x);
2479    texi->setSrc(1, y);
2480    texi->setSrc(2, z);
2481    texi->setSrc(3, ms);
2482 
2483    texi->tex.r = texi->tex.s = -1;
2484 
2485    bb->insertTail(texi);
2486 }
2487 
2488 void
handleLIT(Value * dst0[4])2489 Converter::handleLIT(Value *dst0[4])
2490 {
2491    Value *val0 = NULL;
2492    unsigned int mask = tgsi.getDst(0).getMask();
2493 
2494    if (mask & (1 << 0))
2495       loadImm(dst0[0], 1.0f);
2496 
2497    if (mask & (1 << 3))
2498       loadImm(dst0[3], 1.0f);
2499 
2500    if (mask & (3 << 1)) {
2501       val0 = getScratch();
2502       mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2503       if (mask & (1 << 1))
2504          mkMov(dst0[1], val0);
2505    }
2506 
2507    if (mask & (1 << 2)) {
2508       Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2509       Value *val1 = getScratch(), *val3 = getScratch();
2510 
2511       Value *pos128 = loadImm(NULL, +127.999999f);
2512       Value *neg128 = loadImm(NULL, -127.999999f);
2513 
2514       mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2515       mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2516       mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2517       mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2518 
2519       mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2520    }
2521 }
2522 
2523 /* Keep this around for now as reference when adding img support
2524 static inline bool
2525 isResourceSpecial(const int r)
2526 {
2527    return (r == TGSI_RESOURCE_GLOBAL ||
2528            r == TGSI_RESOURCE_LOCAL ||
2529            r == TGSI_RESOURCE_PRIVATE ||
2530            r == TGSI_RESOURCE_INPUT);
2531 }
2532 
2533 static inline bool
2534 isResourceRaw(const tgsi::Source *code, const int r)
2535 {
2536    return isResourceSpecial(r) || code->resources[r].raw;
2537 }
2538 
2539 static inline nv50_ir::TexTarget
2540 getResourceTarget(const tgsi::Source *code, int r)
2541 {
2542    if (isResourceSpecial(r))
2543       return nv50_ir::TEX_TARGET_BUFFER;
2544    return tgsi::translateTexture(code->resources.at(r).target);
2545 }
2546 
2547 Symbol *
2548 Converter::getResourceBase(const int r)
2549 {
2550    Symbol *sym = NULL;
2551 
2552    switch (r) {
2553    case TGSI_RESOURCE_GLOBAL:
2554       sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL,
2555                        info->io.auxCBSlot);
2556       break;
2557    case TGSI_RESOURCE_LOCAL:
2558       assert(prog->getType() == Program::TYPE_COMPUTE);
2559       sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2560                      info->prop.cp.sharedOffset);
2561       break;
2562    case TGSI_RESOURCE_PRIVATE:
2563       sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2564                      info->bin.tlsSpace);
2565       break;
2566    case TGSI_RESOURCE_INPUT:
2567       assert(prog->getType() == Program::TYPE_COMPUTE);
2568       sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2569                      info->prop.cp.inputOffset);
2570       break;
2571    default:
2572       sym = new_Symbol(prog,
2573                        nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2574       break;
2575    }
2576    return sym;
2577 }
2578 
2579 void
2580 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2581 {
2582    const int arg =
2583       TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2584 
2585    for (int c = 0; c < arg; ++c)
2586       coords.push_back(fetchSrc(s, c));
2587 
2588    // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2589    if (r == TGSI_RESOURCE_LOCAL ||
2590        r == TGSI_RESOURCE_PRIVATE ||
2591        r == TGSI_RESOURCE_INPUT)
2592       coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2593                          coords[0]);
2594 }
2595 
2596 static inline int
2597 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2598 {
2599    int n = 0;
2600 
2601    while (mask) {
2602       if (mask & 1) {
2603          size[n]++;
2604       } else {
2605          if (size[n])
2606             comp[n = 1] = size[0] + 1;
2607          else
2608             comp[n]++;
2609       }
2610       mask >>= 1;
2611    }
2612    if (size[0] == 3) {
2613       n = 1;
2614       size[0] = (comp[0] == 1) ? 1 : 2;
2615       size[1] = 3 - size[0];
2616       comp[1] = comp[0] + size[0];
2617    }
2618    return n + 1;
2619 }
2620 */
2621 void
getImageCoords(std::vector<Value * > & coords,int s)2622 Converter::getImageCoords(std::vector<Value *> &coords, int s)
2623 {
2624    TexInstruction::Target t =
2625       TexInstruction::Target(tgsi.getImageTarget());
2626    const int arg = t.getDim() + (t.isArray() || t.isCube());
2627 
2628    for (int c = 0; c < arg; ++c)
2629       coords.push_back(fetchSrc(s, c));
2630 
2631    if (t.isMS())
2632       coords.push_back(fetchSrc(s, 3));
2633 }
2634 
2635 int
remapBufferId(int id)2636 Converter::remapBufferId(int id)
2637 {
2638    std::map<int, int>::const_iterator it = code->bufferIds.find(id);
2639    if (it != code->bufferIds.end())
2640       return it->second;
2641    return id;
2642 }
2643 
2644 int
remapImageId(int id)2645 Converter::remapImageId(int id)
2646 {
2647    std::map<int, int>::const_iterator it = code->imageIds.find(id);
2648    if (it != code->imageIds.end())
2649       return it->second;
2650    return id;
2651 }
2652 
2653 // For raw loads, granularity is 4 byte.
2654 // Usage of the texture read mask on OP_SULDP is not allowed.
2655 void
handleLOAD(Value * dst0[4])2656 Converter::handleLOAD(Value *dst0[4])
2657 {
2658    int r = tgsi.getSrc(0).getIndex(0);
2659    int c;
2660    std::vector<Value *> off, src, ldv, def;
2661    Value *ind = NULL;
2662 
2663    if (tgsi.getSrc(0).isIndirect(0))
2664       ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2665 
2666    switch (tgsi.getSrc(0).getFile()) {
2667    case TGSI_FILE_BUFFER:
2668       r = remapBufferId(r);
2669       /* fallthrough */
2670    case TGSI_FILE_MEMORY:
2671       for (c = 0; c < 4; ++c) {
2672          if (!dst0[c])
2673             continue;
2674 
2675          Value *off;
2676          Symbol *sym;
2677          uint32_t src0_component_offset = tgsi.getSrc(0).getSwizzle(c) * 4;
2678 
2679          if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) {
2680             off = NULL;
2681             sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2682                           tgsi.getSrc(1).getValueU32(0, code->immd.data) +
2683                           src0_component_offset);
2684          } else {
2685             // yzw are ignored for buffers
2686             off = fetchSrc(1, 0);
2687             sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2688                           src0_component_offset);
2689          }
2690 
2691          Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off);
2692          if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER &&
2693              code->bufferAtomics[tgsi.getSrc(0).getIndex(0)])
2694             ld->cache = nv50_ir::CACHE_CG;
2695          else
2696             ld->cache = tgsi.getCacheMode();
2697          if (ind)
2698             ld->setIndirect(0, 1, ind);
2699       }
2700       break;
2701    default: {
2702       r = remapImageId(r);
2703       getImageCoords(off, 1);
2704       def.resize(4);
2705 
2706       for (c = 0; c < 4; ++c) {
2707          if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2708             def[c] = getScratch();
2709          else
2710             def[c] = dst0[c];
2711       }
2712 
2713       bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2714       if (bindless)
2715          ind = fetchSrc(0, 0);
2716 
2717       TexInstruction *ld =
2718          mkTex(OP_SULDP, tgsi.getImageTarget(), 0, 0, def, off);
2719       ld->tex.mask = tgsi.getDst(0).getMask();
2720       ld->tex.format = tgsi.getImageFormat();
2721       ld->cache = tgsi.getCacheMode();
2722       ld->tex.bindless = bindless;
2723       if (!bindless)
2724          ld->tex.r = r;
2725       if (ind)
2726          ld->setIndirectR(ind);
2727 
2728       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2729          if (dst0[c] != def[c])
2730             mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2731       break;
2732    }
2733    }
2734 
2735 
2736 /* Keep this around for now as reference when adding img support
2737    getResourceCoords(off, r, 1);
2738 
2739    if (isResourceRaw(code, r)) {
2740       uint8_t mask = 0;
2741       uint8_t comp[2] = { 0, 0 };
2742       uint8_t size[2] = { 0, 0 };
2743 
2744       Symbol *base = getResourceBase(r);
2745 
2746       // determine the base and size of the at most 2 load ops
2747       for (c = 0; c < 4; ++c)
2748          if (!tgsi.getDst(0).isMasked(c))
2749             mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2750 
2751       int n = partitionLoadStore(comp, size, mask);
2752 
2753       src = off;
2754 
2755       def.resize(4); // index by component, the ones we need will be non-NULL
2756       for (c = 0; c < 4; ++c) {
2757          if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2758             def[c] = dst0[c];
2759          else
2760          if (mask & (1 << c))
2761             def[c] = getScratch();
2762       }
2763 
2764       const bool useLd = isResourceSpecial(r) ||
2765          (info->io.nv50styleSurfaces &&
2766           code->resources[r].target == TGSI_TEXTURE_BUFFER);
2767 
2768       for (int i = 0; i < n; ++i) {
2769          ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2770 
2771          if (comp[i]) // adjust x component of source address if necessary
2772             src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2773                             off[0], mkImm(comp[i] * 4));
2774          else
2775             src[0] = off[0];
2776 
2777          if (useLd) {
2778             Instruction *ld =
2779                mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2780             for (size_t c = 1; c < ldv.size(); ++c)
2781                ld->setDef(c, ldv[c]);
2782          } else {
2783             mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2784                   0, ldv, src)->dType = typeOfSize(size[i] * 4);
2785          }
2786       }
2787    } else {
2788       def.resize(4);
2789       for (c = 0; c < 4; ++c) {
2790          if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2791             def[c] = getScratch();
2792          else
2793             def[c] = dst0[c];
2794       }
2795 
2796       mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2797             def, off);
2798    }
2799    FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2800       if (dst0[c] != def[c])
2801          mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2802 */
2803 }
2804 
2805 // For formatted stores, the write mask on OP_SUSTP can be used.
2806 // Raw stores have to be split.
2807 void
handleSTORE()2808 Converter::handleSTORE()
2809 {
2810    int r = tgsi.getDst(0).getIndex(0);
2811    int c;
2812    std::vector<Value *> off, src, dummy;
2813    Value *ind = NULL;
2814 
2815    if (tgsi.getDst(0).isIndirect(0))
2816       ind = fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0);
2817 
2818    switch (tgsi.getDst(0).getFile()) {
2819    case TGSI_FILE_BUFFER:
2820       r = remapBufferId(r);
2821       /* fallthrough */
2822    case TGSI_FILE_MEMORY:
2823       for (c = 0; c < 4; ++c) {
2824          if (!(tgsi.getDst(0).getMask() & (1 << c)))
2825             continue;
2826 
2827          Symbol *sym;
2828          Value *off;
2829          if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) {
2830             off = NULL;
2831             sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c,
2832                           tgsi.getSrc(0).getValueU32(0, code->immd.data) + 4 * c);
2833          } else {
2834             // yzw are ignored for buffers
2835             off = fetchSrc(0, 0);
2836             sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, 4 * c);
2837          }
2838 
2839          Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c));
2840          st->cache = tgsi.getCacheMode();
2841          if (ind)
2842             st->setIndirect(0, 1, ind);
2843       }
2844       break;
2845    default: {
2846       r = remapImageId(r);
2847       getImageCoords(off, 0);
2848       src = off;
2849 
2850       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2851          src.push_back(fetchSrc(1, c));
2852 
2853       bool bindless = tgsi.getDst(0).getFile() != TGSI_FILE_IMAGE;
2854       if (bindless)
2855          ind = fetchDst(0, 0);
2856 
2857       TexInstruction *st =
2858          mkTex(OP_SUSTP, tgsi.getImageTarget(), 0, 0, dummy, src);
2859       st->tex.mask = tgsi.getDst(0).getMask();
2860       st->tex.format = tgsi.getImageFormat();
2861       st->cache = tgsi.getCacheMode();
2862       st->tex.bindless = bindless;
2863       if (!bindless)
2864          st->tex.r = r;
2865       if (ind)
2866          st->setIndirectR(ind);
2867 
2868       break;
2869    }
2870    }
2871 
2872 /* Keep this around for now as reference when adding img support
2873    getResourceCoords(off, r, 0);
2874    src = off;
2875    const int s = src.size();
2876 
2877    if (isResourceRaw(code, r)) {
2878       uint8_t comp[2] = { 0, 0 };
2879       uint8_t size[2] = { 0, 0 };
2880 
2881       int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2882 
2883       Symbol *base = getResourceBase(r);
2884 
2885       const bool useSt = isResourceSpecial(r) ||
2886          (info->io.nv50styleSurfaces &&
2887           code->resources[r].target == TGSI_TEXTURE_BUFFER);
2888 
2889       for (int i = 0; i < n; ++i) {
2890          if (comp[i]) // adjust x component of source address if necessary
2891             src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2892                             off[0], mkImm(comp[i] * 4));
2893          else
2894             src[0] = off[0];
2895 
2896          const DataType stTy = typeOfSize(size[i] * 4);
2897 
2898          if (useSt) {
2899             Instruction *st =
2900                mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2901             for (c = 1; c < size[i]; ++c)
2902                st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2903             st->setIndirect(0, 0, src[0]);
2904          } else {
2905             // attach values to be stored
2906             src.resize(s + size[i]);
2907             for (c = 0; c < size[i]; ++c)
2908                src[s + c] = fetchSrc(1, comp[i] + c);
2909             mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2910                   0, dummy, src)->setType(stTy);
2911          }
2912       }
2913    } else {
2914       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2915          src.push_back(fetchSrc(1, c));
2916 
2917       mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2918             dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2919    }
2920 */
2921 }
2922 
2923 // XXX: These only work on resources with the single-component u32/s32 formats.
2924 // Therefore the result is replicated. This might not be intended by TGSI, but
2925 // operating on more than 1 component would produce undefined results because
2926 // they do not exist.
2927 void
handleATOM(Value * dst0[4],DataType ty,uint16_t subOp)2928 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2929 {
2930    int r = tgsi.getSrc(0).getIndex(0);
2931    std::vector<Value *> srcv;
2932    std::vector<Value *> defv;
2933    LValue *dst = getScratch();
2934    Value *ind = NULL;
2935 
2936    if (tgsi.getSrc(0).isIndirect(0))
2937       ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2938 
2939    switch (tgsi.getSrc(0).getFile()) {
2940    case TGSI_FILE_BUFFER:
2941       r = remapBufferId(r);
2942       /* fallthrough */
2943    case TGSI_FILE_MEMORY:
2944       for (int c = 0; c < 4; ++c) {
2945          if (!dst0[c])
2946             continue;
2947 
2948          Instruction *insn;
2949          Value *off = fetchSrc(1, c);
2950          Value *sym;
2951          if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE)
2952             sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2953                           tgsi.getSrc(1).getValueU32(c, code->immd.data));
2954          else
2955             sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 0);
2956          if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2957             insn = mkOp3(OP_ATOM, ty, dst, sym, fetchSrc(2, c), fetchSrc(3, c));
2958          else
2959             insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c));
2960          if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE)
2961             insn->setIndirect(0, 0, off);
2962          if (ind)
2963             insn->setIndirect(0, 1, ind);
2964          insn->subOp = subOp;
2965 
2966          if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER &&
2967              code->bufferAtomics[tgsi.getSrc(0).getIndex(0)])
2968             insn->cache = nv50_ir::CACHE_CG;
2969       }
2970       for (int c = 0; c < 4; ++c)
2971          if (dst0[c])
2972             dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2973       break;
2974    default: {
2975       r = remapImageId(r);
2976       getImageCoords(srcv, 1);
2977       defv.push_back(dst);
2978       srcv.push_back(fetchSrc(2, 0));
2979 
2980       if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2981          srcv.push_back(fetchSrc(3, 0));
2982 
2983       bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2984       if (bindless)
2985          ind = fetchSrc(0, 0);
2986 
2987       TexInstruction *tex = mkTex(OP_SUREDP, tgsi.getImageTarget(),
2988                                   0, 0, defv, srcv);
2989       tex->subOp = subOp;
2990       tex->tex.mask = 1;
2991       tex->tex.format = tgsi.getImageFormat();
2992       tex->setType(ty);
2993       tex->tex.bindless = bindless;
2994       if (!bindless)
2995          tex->tex.r = r;
2996       if (ind)
2997          tex->setIndirectR(ind);
2998 
2999       for (int c = 0; c < 4; ++c)
3000          if (dst0[c])
3001             dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
3002       break;
3003    }
3004    }
3005 
3006 /* Keep this around for now as reference when adding img support
3007    getResourceCoords(srcv, r, 1);
3008 
3009    if (isResourceSpecial(r)) {
3010       assert(r != TGSI_RESOURCE_INPUT);
3011       Instruction *insn;
3012       insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
3013       insn->subOp = subOp;
3014       if (subOp == NV50_IR_SUBOP_ATOM_CAS)
3015          insn->setSrc(2, fetchSrc(3, 0));
3016       insn->setIndirect(0, 0, srcv.at(0));
3017    } else {
3018       operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
3019       TexTarget targ = getResourceTarget(code, r);
3020       int idx = code->resources[r].slot;
3021       defv.push_back(dst);
3022       srcv.push_back(fetchSrc(2, 0));
3023       if (subOp == NV50_IR_SUBOP_ATOM_CAS)
3024          srcv.push_back(fetchSrc(3, 0));
3025       TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
3026       tex->subOp = subOp;
3027       tex->tex.mask = 1;
3028       tex->setType(ty);
3029    }
3030 
3031    for (int c = 0; c < 4; ++c)
3032       if (dst0[c])
3033          dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
3034 */
3035 }
3036 
3037 void
handleINTERP(Value * dst[4])3038 Converter::handleINTERP(Value *dst[4])
3039 {
3040    // Check whether the input is linear. All other attributes ignored.
3041    Instruction *insn;
3042    Value *offset = NULL, *ptr = NULL, *w = NULL;
3043    Symbol *sym[4] = { NULL };
3044    bool linear;
3045    operation op = OP_NOP;
3046    int c, mode = 0;
3047 
3048    tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
3049 
3050    // In some odd cases, in large part due to varying packing, the source
3051    // might not actually be an input. This is illegal TGSI, but it's easier to
3052    // account for it here than it is to fix it where the TGSI is being
3053    // generated. In that case, it's going to be a straight up mov (or sequence
3054    // of mov's) from the input in question. We follow the mov chain to see
3055    // which input we need to use.
3056    if (src.getFile() != TGSI_FILE_INPUT) {
3057       if (src.isIndirect(0)) {
3058          ERROR("Ignoring indirect input interpolation\n");
3059          return;
3060       }
3061       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3062          Value *val = fetchSrc(0, c);
3063          assert(val->defs.size() == 1);
3064          insn = val->getInsn();
3065          while (insn->op == OP_MOV) {
3066             assert(insn->getSrc(0)->defs.size() == 1);
3067             insn = insn->getSrc(0)->getInsn();
3068             if (!insn) {
3069                ERROR("Miscompiling shader due to unhandled INTERP\n");
3070                return;
3071             }
3072          }
3073          if (insn->op != OP_LINTERP && insn->op != OP_PINTERP) {
3074             ERROR("Trying to interpolate non-input, this is not allowed.\n");
3075             return;
3076          }
3077          sym[c] = insn->getSrc(0)->asSym();
3078          assert(sym[c]);
3079          op = insn->op;
3080          mode = insn->ipa;
3081          ptr = insn->getIndirect(0, 0);
3082       }
3083    } else {
3084       if (src.isIndirect(0))
3085          ptr = shiftAddress(fetchSrc(src.getIndirect(0), 0, NULL));
3086 
3087       // We can assume that the fixed index will point to an input of the same
3088       // interpolation type in case of an indirect.
3089       // TODO: Make use of ArrayID.
3090       linear = info_out->in[src.getIndex(0)].linear;
3091       if (linear) {
3092          op = OP_LINTERP;
3093          mode = NV50_IR_INTERP_LINEAR;
3094       } else {
3095          op = OP_PINTERP;
3096          mode = NV50_IR_INTERP_PERSPECTIVE;
3097       }
3098    }
3099 
3100    switch (tgsi.getOpcode()) {
3101    case TGSI_OPCODE_INTERP_CENTROID:
3102       mode |= NV50_IR_INTERP_CENTROID;
3103       break;
3104    case TGSI_OPCODE_INTERP_SAMPLE: {
3105       // When using a non-MS buffer, we're supposed to always use the center
3106       // (i.e. sample 0). This adds a SELP which will be always true or false
3107       // based on a data fixup.
3108       Value *sample = getScratch();
3109       mkOp3(OP_SELP, TYPE_U32, sample, mkImm(0), fetchSrc(1, 0), mkImm(0))
3110          ->subOp = 2;
3111 
3112       insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), sample);
3113       insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
3114       mode |= NV50_IR_INTERP_OFFSET;
3115       break;
3116    }
3117    case TGSI_OPCODE_INTERP_OFFSET: {
3118       // The input in src1.xy is float, but we need a single 32-bit value
3119       // where the upper and lower 16 bits are encoded in S0.12 format. We need
3120       // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
3121       // and then convert to s32.
3122       Value *offs[2];
3123       for (c = 0; c < 2; c++) {
3124          offs[c] = getScratch();
3125          mkOp2(OP_MIN, TYPE_F32, offs[c], fetchSrc(1, c), loadImm(NULL, 0.4375f));
3126          mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
3127          mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
3128          mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
3129       }
3130       offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
3131                       offs[1], mkImm(0x1010), offs[0]);
3132       mode |= NV50_IR_INTERP_OFFSET;
3133       break;
3134    }
3135    }
3136 
3137    if (op == OP_PINTERP) {
3138       if (offset) {
3139          w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
3140          mkOp1(OP_RCP, TYPE_F32, w, w);
3141       } else {
3142          w = fragCoord[3];
3143       }
3144    }
3145 
3146 
3147    FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3148       insn = mkOp1(op, TYPE_F32, dst[c], sym[c] ? sym[c] : srcToSym(src, c));
3149       if (op == OP_PINTERP)
3150          insn->setSrc(1, w);
3151       if (offset)
3152          insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
3153       if (ptr)
3154          insn->setIndirect(0, 0, ptr);
3155 
3156       insn->setInterpolate(mode);
3157    }
3158 }
3159 
3160 bool
isEndOfSubroutine(uint ip)3161 Converter::isEndOfSubroutine(uint ip)
3162 {
3163    assert(ip < code->scan.num_instructions);
3164    tgsi::Instruction insn(&code->insns[ip]);
3165    return (insn.getOpcode() == TGSI_OPCODE_END ||
3166            insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
3167            // does END occur at end of main or the very end ?
3168            insn.getOpcode() == TGSI_OPCODE_BGNSUB);
3169 }
3170 
3171 bool
handleInstruction(const struct tgsi_full_instruction * insn)3172 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
3173 {
3174    Instruction *geni;
3175 
3176    Value *dst0[4], *rDst0[4];
3177    Value *src0, *src1, *src2, *src3;
3178    Value *val0 = NULL, *val1 = NULL;
3179    int c;
3180 
3181    tgsi = tgsi::Instruction(insn);
3182 
3183    bool useScratchDst = tgsi.checkDstSrcAliasing();
3184 
3185    operation op = tgsi.getOP();
3186    dstTy = tgsi.inferDstType();
3187    srcTy = tgsi.inferSrcType();
3188 
3189    unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
3190 
3191    if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
3192       for (c = 0; c < 4; ++c) {
3193          rDst0[c] = acquireDst(0, c);
3194          dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
3195       }
3196    }
3197 
3198    switch (tgsi.getOpcode()) {
3199    case TGSI_OPCODE_ADD:
3200    case TGSI_OPCODE_UADD:
3201    case TGSI_OPCODE_AND:
3202    case TGSI_OPCODE_DIV:
3203    case TGSI_OPCODE_IDIV:
3204    case TGSI_OPCODE_UDIV:
3205    case TGSI_OPCODE_MAX:
3206    case TGSI_OPCODE_MIN:
3207    case TGSI_OPCODE_IMAX:
3208    case TGSI_OPCODE_IMIN:
3209    case TGSI_OPCODE_UMAX:
3210    case TGSI_OPCODE_UMIN:
3211    case TGSI_OPCODE_MOD:
3212    case TGSI_OPCODE_UMOD:
3213    case TGSI_OPCODE_MUL:
3214    case TGSI_OPCODE_UMUL:
3215    case TGSI_OPCODE_IMUL_HI:
3216    case TGSI_OPCODE_UMUL_HI:
3217    case TGSI_OPCODE_OR:
3218    case TGSI_OPCODE_SHL:
3219    case TGSI_OPCODE_ISHR:
3220    case TGSI_OPCODE_USHR:
3221    case TGSI_OPCODE_XOR:
3222       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3223          src0 = fetchSrc(0, c);
3224          src1 = fetchSrc(1, c);
3225          geni = mkOp2(op, dstTy, dst0[c], src0, src1);
3226          geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3227          if (op == OP_MUL && dstTy == TYPE_F32)
3228             geni->dnz = info->io.mul_zero_wins;
3229          geni->precise = insn->Instruction.Precise;
3230       }
3231       break;
3232    case TGSI_OPCODE_MAD:
3233    case TGSI_OPCODE_UMAD:
3234    case TGSI_OPCODE_FMA:
3235       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3236          src0 = fetchSrc(0, c);
3237          src1 = fetchSrc(1, c);
3238          src2 = fetchSrc(2, c);
3239          geni = mkOp3(op, dstTy, dst0[c], src0, src1, src2);
3240          if (dstTy == TYPE_F32)
3241             geni->dnz = info->io.mul_zero_wins;
3242          geni->precise = insn->Instruction.Precise;
3243       }
3244       break;
3245    case TGSI_OPCODE_MOV:
3246    case TGSI_OPCODE_CEIL:
3247    case TGSI_OPCODE_FLR:
3248    case TGSI_OPCODE_TRUNC:
3249    case TGSI_OPCODE_RCP:
3250    case TGSI_OPCODE_SQRT:
3251    case TGSI_OPCODE_IABS:
3252    case TGSI_OPCODE_INEG:
3253    case TGSI_OPCODE_NOT:
3254    case TGSI_OPCODE_DDX:
3255    case TGSI_OPCODE_DDY:
3256    case TGSI_OPCODE_DDX_FINE:
3257    case TGSI_OPCODE_DDY_FINE:
3258       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3259          mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
3260       break;
3261    case TGSI_OPCODE_RSQ:
3262       src0 = fetchSrc(0, 0);
3263       val0 = getScratch();
3264       mkOp1(OP_ABS, TYPE_F32, val0, src0);
3265       mkOp1(OP_RSQ, TYPE_F32, val0, val0);
3266       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3267          mkMov(dst0[c], val0);
3268       break;
3269    case TGSI_OPCODE_ARL:
3270    case TGSI_OPCODE_ARR:
3271       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3272          const RoundMode rnd =
3273             tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
3274          src0 = fetchSrc(0, c);
3275          mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
3276       }
3277       break;
3278    case TGSI_OPCODE_UARL:
3279       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3280          mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
3281       break;
3282    case TGSI_OPCODE_POW:
3283       val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
3284       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3285          mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3286       break;
3287    case TGSI_OPCODE_EX2:
3288    case TGSI_OPCODE_LG2:
3289       val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
3290       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3291          mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3292       break;
3293    case TGSI_OPCODE_COS:
3294    case TGSI_OPCODE_SIN:
3295       val0 = getScratch();
3296       if (mask & 7) {
3297          mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
3298          mkOp1(op, TYPE_F32, val0, val0);
3299          for (c = 0; c < 3; ++c)
3300             if (dst0[c])
3301                mkMov(dst0[c], val0);
3302       }
3303       if (dst0[3]) {
3304          mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
3305          mkOp1(op, TYPE_F32, dst0[3], val0);
3306       }
3307       break;
3308    case TGSI_OPCODE_EXP:
3309       src0 = fetchSrc(0, 0);
3310       val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
3311       if (dst0[1])
3312          mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
3313       if (dst0[0])
3314          mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
3315       if (dst0[2])
3316          mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
3317       if (dst0[3])
3318          loadImm(dst0[3], 1.0f);
3319       break;
3320    case TGSI_OPCODE_LOG:
3321       src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
3322       val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
3323       if (dst0[0] || dst0[1])
3324          val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
3325       if (dst0[1]) {
3326          mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
3327          mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
3328          mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0)
3329             ->dnz = info->io.mul_zero_wins;
3330       }
3331       if (dst0[3])
3332          loadImm(dst0[3], 1.0f);
3333       break;
3334    case TGSI_OPCODE_DP2:
3335       val0 = buildDot(2);
3336       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3337          mkMov(dst0[c], val0);
3338       break;
3339    case TGSI_OPCODE_DP3:
3340       val0 = buildDot(3);
3341       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3342          mkMov(dst0[c], val0);
3343       break;
3344    case TGSI_OPCODE_DP4:
3345       val0 = buildDot(4);
3346       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3347          mkMov(dst0[c], val0);
3348       break;
3349    case TGSI_OPCODE_DST:
3350       if (dst0[0])
3351          loadImm(dst0[0], 1.0f);
3352       if (dst0[1]) {
3353          src0 = fetchSrc(0, 1);
3354          src1 = fetchSrc(1, 1);
3355          mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1)
3356             ->dnz = info->io.mul_zero_wins;
3357       }
3358       if (dst0[2])
3359          mkMov(dst0[2], fetchSrc(0, 2));
3360       if (dst0[3])
3361          mkMov(dst0[3], fetchSrc(1, 3));
3362       break;
3363    case TGSI_OPCODE_LRP:
3364       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3365          src0 = fetchSrc(0, c);
3366          src1 = fetchSrc(1, c);
3367          src2 = fetchSrc(2, c);
3368          mkOp3(OP_MAD, TYPE_F32, dst0[c],
3369                mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2)
3370             ->dnz = info->io.mul_zero_wins;
3371       }
3372       break;
3373    case TGSI_OPCODE_LIT:
3374       handleLIT(dst0);
3375       break;
3376    case TGSI_OPCODE_ISSG:
3377    case TGSI_OPCODE_SSG:
3378       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3379          src0 = fetchSrc(0, c);
3380          val0 = getScratch();
3381          val1 = getScratch();
3382          mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
3383          mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
3384          if (srcTy == TYPE_F32)
3385             mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
3386          else
3387             mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
3388       }
3389       break;
3390    case TGSI_OPCODE_UCMP:
3391       srcTy = TYPE_U32;
3392       FALLTHROUGH;
3393    case TGSI_OPCODE_CMP:
3394       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3395          src0 = fetchSrc(0, c);
3396          src1 = fetchSrc(1, c);
3397          src2 = fetchSrc(2, c);
3398          if (src1 == src2)
3399             mkMov(dst0[c], src1);
3400          else
3401             mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
3402                   srcTy, dst0[c], srcTy, src1, src2, src0);
3403       }
3404       break;
3405    case TGSI_OPCODE_FRC:
3406       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3407          src0 = fetchSrc(0, c);
3408          val0 = getScratch();
3409          mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
3410          mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
3411       }
3412       break;
3413    case TGSI_OPCODE_ROUND:
3414       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3415          mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
3416          ->rnd = ROUND_NI;
3417       break;
3418    case TGSI_OPCODE_SLT:
3419    case TGSI_OPCODE_SGE:
3420    case TGSI_OPCODE_SEQ:
3421    case TGSI_OPCODE_SGT:
3422    case TGSI_OPCODE_SLE:
3423    case TGSI_OPCODE_SNE:
3424    case TGSI_OPCODE_FSEQ:
3425    case TGSI_OPCODE_FSGE:
3426    case TGSI_OPCODE_FSLT:
3427    case TGSI_OPCODE_FSNE:
3428    case TGSI_OPCODE_ISGE:
3429    case TGSI_OPCODE_ISLT:
3430    case TGSI_OPCODE_USEQ:
3431    case TGSI_OPCODE_USGE:
3432    case TGSI_OPCODE_USLT:
3433    case TGSI_OPCODE_USNE:
3434       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3435          src0 = fetchSrc(0, c);
3436          src1 = fetchSrc(1, c);
3437          mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3438       }
3439       break;
3440    case TGSI_OPCODE_VOTE_ALL:
3441    case TGSI_OPCODE_VOTE_ANY:
3442    case TGSI_OPCODE_VOTE_EQ:
3443       val0 = new_LValue(func, FILE_PREDICATE);
3444       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3445          mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, c), zero);
3446          mkOp1(op, dstTy, val0, val0)
3447             ->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3448          mkCvt(OP_CVT, TYPE_U32, dst0[c], TYPE_U8, val0);
3449       }
3450       break;
3451    case TGSI_OPCODE_BALLOT:
3452       if (!tgsi.getDst(0).isMasked(0)) {
3453          val0 = new_LValue(func, FILE_PREDICATE);
3454          mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, 0), zero);
3455          mkOp1(op, TYPE_U32, dst0[0], val0)->subOp = NV50_IR_SUBOP_VOTE_ANY;
3456       }
3457       if (!tgsi.getDst(0).isMasked(1))
3458          mkMov(dst0[1], zero, TYPE_U32);
3459       break;
3460    case TGSI_OPCODE_READ_FIRST:
3461       // ReadFirstInvocationARB(src) is implemented as
3462       // ReadInvocationARB(src, findLSB(ballot(true)))
3463       val0 = getScratch();
3464       mkOp1(OP_VOTE, TYPE_U32, val0, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY;
3465       mkOp1(OP_BREV, TYPE_U32, val0, val0);
3466       mkOp1(OP_BFIND, TYPE_U32, val0, val0)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3467       src1 = val0;
3468       FALLTHROUGH;
3469    case TGSI_OPCODE_READ_INVOC:
3470       if (tgsi.getOpcode() == TGSI_OPCODE_READ_INVOC)
3471          src1 = fetchSrc(1, 0);
3472       else
3473          src1 = val0;
3474       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3475          geni = mkOp3(op, dstTy, dst0[c], fetchSrc(0, c), src1, mkImm(0x1f));
3476          geni->subOp = NV50_IR_SUBOP_SHFL_IDX;
3477       }
3478       break;
3479    case TGSI_OPCODE_CLOCK:
3480       // Stick the 32-bit clock into the high dword of the logical result.
3481       if (!tgsi.getDst(0).isMasked(0))
3482          mkOp1(OP_MOV, TYPE_U32, dst0[0], zero);
3483       if (!tgsi.getDst(0).isMasked(1))
3484          mkOp1(OP_RDSV, TYPE_U32, dst0[1], mkSysVal(SV_CLOCK, 0))->fixed = 1;
3485       break;
3486    case TGSI_OPCODE_READ_HELPER:
3487       if (!tgsi.getDst(0).isMasked(0))
3488          mkOp1(OP_RDSV, TYPE_U32, dst0[0], mkSysVal(SV_THREAD_KILL, 0))
3489             ->fixed = 1;
3490       break;
3491    case TGSI_OPCODE_KILL_IF:
3492       val0 = new_LValue(func, FILE_PREDICATE);
3493       mask = 0;
3494       for (c = 0; c < 4; ++c) {
3495          const int s = tgsi.getSrc(0).getSwizzle(c);
3496          if (mask & (1 << s))
3497             continue;
3498          mask |= 1 << s;
3499          mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
3500          mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
3501       }
3502       break;
3503    case TGSI_OPCODE_KILL:
3504    case TGSI_OPCODE_DEMOTE:
3505       // TODO: Should we make KILL exit that invocation? Some old shaders
3506       // don't like that.
3507       mkOp(OP_DISCARD, TYPE_NONE, NULL);
3508       break;
3509    case TGSI_OPCODE_TEX:
3510    case TGSI_OPCODE_TEX_LZ:
3511    case TGSI_OPCODE_TXB:
3512    case TGSI_OPCODE_TXL:
3513    case TGSI_OPCODE_TXP:
3514    case TGSI_OPCODE_LODQ:
3515       //              R  S     L     C    Dx    Dy
3516       handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
3517       break;
3518    case TGSI_OPCODE_TXD:
3519       handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
3520       break;
3521    case TGSI_OPCODE_TG4:
3522       handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
3523       break;
3524    case TGSI_OPCODE_TEX2:
3525       handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
3526       break;
3527    case TGSI_OPCODE_TXB2:
3528    case TGSI_OPCODE_TXL2:
3529       handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
3530       break;
3531    case TGSI_OPCODE_SAMPLE:
3532    case TGSI_OPCODE_SAMPLE_B:
3533    case TGSI_OPCODE_SAMPLE_D:
3534    case TGSI_OPCODE_SAMPLE_L:
3535    case TGSI_OPCODE_SAMPLE_C:
3536    case TGSI_OPCODE_SAMPLE_C_LZ:
3537       handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
3538       break;
3539    case TGSI_OPCODE_TXF_LZ:
3540    case TGSI_OPCODE_TXF:
3541       handleTXF(dst0, 1, 0x03);
3542       break;
3543    case TGSI_OPCODE_SAMPLE_I:
3544       handleTXF(dst0, 1, 0x03);
3545       break;
3546    case TGSI_OPCODE_SAMPLE_I_MS:
3547       handleTXF(dst0, 1, 0x20);
3548       break;
3549    case TGSI_OPCODE_TXQ:
3550    case TGSI_OPCODE_SVIEWINFO:
3551       handleTXQ(dst0, TXQ_DIMS, 1);
3552       break;
3553    case TGSI_OPCODE_TXQS:
3554       // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
3555       // be in .x
3556       dst0[1] = dst0[2] = dst0[3] = NULL;
3557       std::swap(dst0[0], dst0[2]);
3558       handleTXQ(dst0, TXQ_TYPE, 0);
3559       std::swap(dst0[0], dst0[2]);
3560       break;
3561    case TGSI_OPCODE_FBFETCH:
3562       handleFBFETCH(dst0);
3563       break;
3564    case TGSI_OPCODE_F2I:
3565    case TGSI_OPCODE_F2U:
3566       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3567          mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
3568       break;
3569    case TGSI_OPCODE_I2F:
3570    case TGSI_OPCODE_U2F:
3571       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3572          mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
3573       break;
3574    case TGSI_OPCODE_PK2H:
3575       val0 = getScratch();
3576       val1 = getScratch();
3577       mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
3578       mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
3579       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3580          mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
3581       break;
3582    case TGSI_OPCODE_UP2H:
3583       src0 = fetchSrc(0, 0);
3584       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3585          geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
3586          geni->subOp = c & 1;
3587       }
3588       break;
3589    case TGSI_OPCODE_EMIT:
3590       /* export the saved viewport index */
3591       if (viewport != NULL) {
3592          Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
3593                                   info_out->out[info->io.viewportId].slot[0] * 4);
3594          mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
3595       }
3596       /* handle user clip planes for each emitted vertex */
3597       if (info_out->io.genUserClip > 0)
3598          handleUserClipPlanes();
3599       FALLTHROUGH;
3600    case TGSI_OPCODE_ENDPRIM:
3601    {
3602       // get vertex stream (must be immediate)
3603       unsigned int stream = tgsi.getSrc(0).getValueU32(0, code->immd.data);
3604       if (stream && op == OP_RESTART)
3605          break;
3606       if (info_out->prop.gp.maxVertices == 0)
3607          break;
3608       src0 = mkImm(stream);
3609       mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
3610       break;
3611    }
3612    case TGSI_OPCODE_IF:
3613    case TGSI_OPCODE_UIF:
3614    {
3615       BasicBlock *ifBB = new BasicBlock(func);
3616 
3617       bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
3618       condBBs.push(bb);
3619       joinBBs.push(bb);
3620 
3621       mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
3622 
3623       setPosition(ifBB, true);
3624    }
3625       break;
3626    case TGSI_OPCODE_ELSE:
3627    {
3628       BasicBlock *elseBB = new BasicBlock(func);
3629       BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3630 
3631       forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
3632       condBBs.push(bb);
3633 
3634       forkBB->getExit()->asFlow()->target.bb = elseBB;
3635       if (!bb->isTerminated())
3636          mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
3637 
3638       setPosition(elseBB, true);
3639    }
3640       break;
3641    case TGSI_OPCODE_ENDIF:
3642    {
3643       BasicBlock *convBB = new BasicBlock(func);
3644       BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3645       BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
3646 
3647       if (!bb->isTerminated()) {
3648          // we only want join if none of the clauses ended with CONT/BREAK/RET
3649          if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
3650             insertConvergenceOps(convBB, forkBB);
3651          mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
3652          bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3653       }
3654 
3655       if (prevBB->getExit()->op == OP_BRA) {
3656          prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3657          prevBB->getExit()->asFlow()->target.bb = convBB;
3658       }
3659       setPosition(convBB, true);
3660    }
3661       break;
3662    case TGSI_OPCODE_BGNLOOP:
3663    {
3664       BasicBlock *lbgnBB = new BasicBlock(func);
3665       BasicBlock *lbrkBB = new BasicBlock(func);
3666 
3667       loopBBs.push(lbgnBB);
3668       breakBBs.push(lbrkBB);
3669       if (loopBBs.getSize() > func->loopNestingBound)
3670          func->loopNestingBound++;
3671 
3672       mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
3673 
3674       bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
3675       setPosition(lbgnBB, true);
3676       mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
3677 
3678       info_out->loops++;
3679    }
3680       break;
3681    case TGSI_OPCODE_ENDLOOP:
3682    {
3683       BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
3684 
3685       if (!bb->isTerminated()) {
3686          mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
3687          bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
3688       }
3689       setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
3690 
3691       // If the loop never breaks (e.g. only has RET's inside), then there
3692       // will be no way to get to the break bb. However BGNLOOP will have
3693       // already made a PREBREAK to it, so it must be in the CFG.
3694       if (getBB()->cfg.incidentCount() == 0)
3695          loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
3696    }
3697       break;
3698    case TGSI_OPCODE_BRK:
3699    {
3700       if (bb->isTerminated())
3701          break;
3702       BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
3703       mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
3704       bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
3705    }
3706       break;
3707    case TGSI_OPCODE_CONT:
3708    {
3709       if (bb->isTerminated())
3710          break;
3711       BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
3712       mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
3713       contBB->explicitCont = true;
3714       bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
3715    }
3716       break;
3717    case TGSI_OPCODE_BGNSUB:
3718    {
3719       Subroutine *s = getSubroutine(ip);
3720       BasicBlock *entry = new BasicBlock(s->f);
3721       BasicBlock *leave = new BasicBlock(s->f);
3722 
3723       // multiple entrypoints possible, keep the graph connected
3724       if (prog->getType() == Program::TYPE_COMPUTE)
3725          prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3726 
3727       sub.cur = s;
3728       s->f->setEntry(entry);
3729       s->f->setExit(leave);
3730       setPosition(entry, true);
3731       return true;
3732    }
3733    case TGSI_OPCODE_ENDSUB:
3734    {
3735       sub.cur = getSubroutine(prog->main);
3736       setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3737       return true;
3738    }
3739    case TGSI_OPCODE_CAL:
3740    {
3741       Subroutine *s = getSubroutine(tgsi.getLabel());
3742       mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3743       func->call.attach(&s->f->call, Graph::Edge::TREE);
3744       return true;
3745    }
3746    case TGSI_OPCODE_RET:
3747    {
3748       if (bb->isTerminated())
3749          return true;
3750       BasicBlock *leave = BasicBlock::get(func->cfgExit);
3751 
3752       if (!isEndOfSubroutine(ip + 1)) {
3753          // insert a PRERET at the entry if this is an early return
3754          // (only needed for sharing code in the epilogue)
3755          BasicBlock *root = BasicBlock::get(func->cfg.getRoot());
3756          if (root->getEntry() == NULL || root->getEntry()->op != OP_PRERET) {
3757             BasicBlock *pos = getBB();
3758             setPosition(root, false);
3759             mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3760             setPosition(pos, true);
3761          }
3762       }
3763       mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3764       bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3765    }
3766       break;
3767    case TGSI_OPCODE_END:
3768    {
3769       // attach and generate epilogue code
3770       BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3771       bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3772       setPosition(epilogue, true);
3773       if (prog->getType() == Program::TYPE_FRAGMENT)
3774          exportOutputs();
3775       if ((prog->getType() == Program::TYPE_VERTEX ||
3776            prog->getType() == Program::TYPE_TESSELLATION_EVAL
3777           ) && info_out->io.genUserClip > 0)
3778          handleUserClipPlanes();
3779       mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3780    }
3781       break;
3782    case TGSI_OPCODE_SWITCH:
3783    case TGSI_OPCODE_CASE:
3784       ERROR("switch/case opcode encountered, should have been lowered\n");
3785       abort();
3786       break;
3787    case TGSI_OPCODE_LOAD:
3788       handleLOAD(dst0);
3789       break;
3790    case TGSI_OPCODE_STORE:
3791       handleSTORE();
3792       break;
3793    case TGSI_OPCODE_BARRIER:
3794       geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3795       geni->fixed = 1;
3796       geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3797       break;
3798    case TGSI_OPCODE_MEMBAR:
3799    {
3800       uint32_t level = tgsi.getSrc(0).getValueU32(0, code->immd.data);
3801       geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3802       geni->fixed = 1;
3803       if (!(level & ~(TGSI_MEMBAR_THREAD_GROUP | TGSI_MEMBAR_SHARED)))
3804          geni->subOp = NV50_IR_SUBOP_MEMBAR(M, CTA);
3805       else
3806          geni->subOp = NV50_IR_SUBOP_MEMBAR(M, GL);
3807    }
3808       break;
3809    case TGSI_OPCODE_ATOMUADD:
3810    case TGSI_OPCODE_ATOMXCHG:
3811    case TGSI_OPCODE_ATOMCAS:
3812    case TGSI_OPCODE_ATOMAND:
3813    case TGSI_OPCODE_ATOMOR:
3814    case TGSI_OPCODE_ATOMXOR:
3815    case TGSI_OPCODE_ATOMUMIN:
3816    case TGSI_OPCODE_ATOMIMIN:
3817    case TGSI_OPCODE_ATOMUMAX:
3818    case TGSI_OPCODE_ATOMIMAX:
3819    case TGSI_OPCODE_ATOMFADD:
3820    case TGSI_OPCODE_ATOMDEC_WRAP:
3821    case TGSI_OPCODE_ATOMINC_WRAP:
3822       handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3823       break;
3824    case TGSI_OPCODE_RESQ:
3825       if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) {
3826          Value *ind = NULL;
3827          if (tgsi.getSrc(0).isIndirect(0))
3828             ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
3829          geni = mkOp1(OP_BUFQ, TYPE_U32, dst0[0],
3830                       makeSym(tgsi.getSrc(0).getFile(),
3831                               tgsi.getSrc(0).getIndex(0), -1, 0, 0));
3832          if (ind)
3833             geni->setIndirect(0, 1, ind);
3834       } else {
3835          TexInstruction *texi = new_TexInstruction(func, OP_SUQ);
3836          for (int c = 0, d = 0; c < 4; ++c) {
3837             if (dst0[c]) {
3838                texi->setDef(d++, dst0[c]);
3839                texi->tex.mask |= 1 << c;
3840             }
3841          }
3842          if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMAGE) {
3843             texi->tex.r = tgsi.getSrc(0).getIndex(0);
3844             if (tgsi.getSrc(0).isIndirect(0))
3845                texi->setIndirectR(fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, NULL));
3846          } else {
3847             texi->tex.bindless = true;
3848             texi->setIndirectR(fetchSrc(0, 0));
3849          }
3850          texi->tex.target = tgsi.getImageTarget();
3851 
3852          bb->insertTail(texi);
3853       }
3854       break;
3855    case TGSI_OPCODE_IBFE:
3856    case TGSI_OPCODE_UBFE:
3857       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3858          src0 = fetchSrc(0, c);
3859          val0 = getScratch();
3860          if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3861              tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3862             loadImm(val0, (tgsi.getSrc(2).getValueU32(c, code->immd.data) << 8) |
3863                     tgsi.getSrc(1).getValueU32(c, code->immd.data));
3864          } else {
3865             src1 = fetchSrc(1, c);
3866             src2 = fetchSrc(2, c);
3867             mkOp3(OP_INSBF, TYPE_U32, val0, src2, mkImm(0x808), src1);
3868          }
3869          mkOp2(OP_EXTBF, dstTy, dst0[c], src0, val0);
3870       }
3871       break;
3872    case TGSI_OPCODE_BFI:
3873       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3874          src0 = fetchSrc(0, c);
3875          src1 = fetchSrc(1, c);
3876          src2 = fetchSrc(2, c);
3877          src3 = fetchSrc(3, c);
3878          val0 = getScratch();
3879          mkOp3(OP_INSBF, TYPE_U32, val0, src3, mkImm(0x808), src2);
3880          mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, val0, src0);
3881       }
3882       break;
3883    case TGSI_OPCODE_LSB:
3884       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3885          src0 = fetchSrc(0, c);
3886          val0 = getScratch();
3887          mkOp1(OP_BREV, TYPE_U32, val0, src0);
3888          geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], val0);
3889          geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3890       }
3891       break;
3892    case TGSI_OPCODE_IMSB:
3893    case TGSI_OPCODE_UMSB:
3894       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3895          src0 = fetchSrc(0, c);
3896          mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3897       }
3898       break;
3899    case TGSI_OPCODE_BREV:
3900       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3901          src0 = fetchSrc(0, c);
3902          mkOp1(OP_BREV, TYPE_U32, dst0[c], src0);
3903       }
3904       break;
3905    case TGSI_OPCODE_POPC:
3906       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3907          src0 = fetchSrc(0, c);
3908          mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3909       }
3910       break;
3911    case TGSI_OPCODE_INTERP_CENTROID:
3912    case TGSI_OPCODE_INTERP_SAMPLE:
3913    case TGSI_OPCODE_INTERP_OFFSET:
3914       handleINTERP(dst0);
3915       break;
3916    case TGSI_OPCODE_I642F:
3917    case TGSI_OPCODE_U642F:
3918    case TGSI_OPCODE_D2I:
3919    case TGSI_OPCODE_D2U:
3920    case TGSI_OPCODE_D2F: {
3921       int pos = 0;
3922       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3923          Value *dreg = getSSA(8);
3924          src0 = fetchSrc(0, pos);
3925          src1 = fetchSrc(0, pos + 1);
3926          mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3927          Instruction *cvt = mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3928          if (!isFloatType(dstTy))
3929             cvt->rnd = ROUND_Z;
3930          pos += 2;
3931       }
3932       break;
3933    }
3934    case TGSI_OPCODE_I2I64:
3935       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3936          dst0[c] = fetchSrc(0, c / 2);
3937          mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(NULL, 31));
3938          c++;
3939       }
3940       break;
3941    case TGSI_OPCODE_U2I64:
3942       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3943          dst0[c] = fetchSrc(0, c / 2);
3944          dst0[c + 1] = zero;
3945          c++;
3946       }
3947       break;
3948    case TGSI_OPCODE_F2I64:
3949    case TGSI_OPCODE_F2U64:
3950    case TGSI_OPCODE_I2D:
3951    case TGSI_OPCODE_U2D:
3952    case TGSI_OPCODE_F2D:
3953       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3954          Value *dreg = getSSA(8);
3955          Instruction *cvt = mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3956          if (!isFloatType(dstTy))
3957             cvt->rnd = ROUND_Z;
3958          mkSplit(&dst0[c], 4, dreg);
3959          c++;
3960       }
3961       break;
3962    case TGSI_OPCODE_D2I64:
3963    case TGSI_OPCODE_D2U64:
3964    case TGSI_OPCODE_I642D:
3965    case TGSI_OPCODE_U642D:
3966       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3967          src0 = getSSA(8);
3968          Value *dst = getSSA(8), *tmp[2];
3969          tmp[0] = fetchSrc(0, c);
3970          tmp[1] = fetchSrc(0, c + 1);
3971          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3972          Instruction *cvt = mkCvt(OP_CVT, dstTy, dst, srcTy, src0);
3973          if (!isFloatType(dstTy))
3974             cvt->rnd = ROUND_Z;
3975          mkSplit(&dst0[c], 4, dst);
3976          c++;
3977       }
3978       break;
3979    case TGSI_OPCODE_I64NEG:
3980       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3981          src0 = getSSA(8);
3982          Value *dst = getSSA(8), *tmp[2];
3983          tmp[0] = fetchSrc(0, c);
3984          tmp[1] = fetchSrc(0, c + 1);
3985          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3986          mkOp2(OP_SUB, dstTy, dst, zero, src0);
3987          mkSplit(&dst0[c], 4, dst);
3988          c++;
3989       }
3990       break;
3991    case TGSI_OPCODE_I64ABS:
3992       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3993          src0 = getSSA(8);
3994          Value *neg = getSSA(8), *srcComp[2], *negComp[2];
3995          srcComp[0] = fetchSrc(0, c);
3996          srcComp[1] = fetchSrc(0, c + 1);
3997          mkOp2(OP_MERGE, TYPE_U64, src0, srcComp[0], srcComp[1]);
3998          mkOp2(OP_SUB, dstTy, neg, zero, src0);
3999          mkSplit(negComp, 4, neg);
4000          mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c], TYPE_S32,
4001                negComp[0], srcComp[0], srcComp[1]);
4002          mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c + 1], TYPE_S32,
4003                negComp[1], srcComp[1], srcComp[1]);
4004          c++;
4005       }
4006       break;
4007    case TGSI_OPCODE_DABS:
4008    case TGSI_OPCODE_DNEG:
4009    case TGSI_OPCODE_DRCP:
4010    case TGSI_OPCODE_DSQRT:
4011    case TGSI_OPCODE_DRSQ:
4012    case TGSI_OPCODE_DTRUNC:
4013    case TGSI_OPCODE_DCEIL:
4014    case TGSI_OPCODE_DFLR:
4015       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4016          src0 = getSSA(8);
4017          Value *dst = getSSA(8), *tmp[2];
4018          tmp[0] = fetchSrc(0, c);
4019          tmp[1] = fetchSrc(0, c + 1);
4020          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4021          mkOp1(op, dstTy, dst, src0);
4022          mkSplit(&dst0[c], 4, dst);
4023          c++;
4024       }
4025       break;
4026    case TGSI_OPCODE_DFRAC:
4027       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4028          src0 = getSSA(8);
4029          Value *dst = getSSA(8), *tmp[2];
4030          tmp[0] = fetchSrc(0, c);
4031          tmp[1] = fetchSrc(0, c + 1);
4032          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4033          mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
4034          mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
4035          mkSplit(&dst0[c], 4, dst);
4036          c++;
4037       }
4038       break;
4039    case TGSI_OPCODE_U64SEQ:
4040    case TGSI_OPCODE_U64SNE:
4041    case TGSI_OPCODE_U64SLT:
4042    case TGSI_OPCODE_U64SGE:
4043    case TGSI_OPCODE_I64SLT:
4044    case TGSI_OPCODE_I64SGE:
4045    case TGSI_OPCODE_DSLT:
4046    case TGSI_OPCODE_DSGE:
4047    case TGSI_OPCODE_DSEQ:
4048    case TGSI_OPCODE_DSNE: {
4049       int pos = 0;
4050       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4051          Value *tmp[2];
4052 
4053          src0 = getSSA(8);
4054          src1 = getSSA(8);
4055          tmp[0] = fetchSrc(0, pos);
4056          tmp[1] = fetchSrc(0, pos + 1);
4057          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4058          tmp[0] = fetchSrc(1, pos);
4059          tmp[1] = fetchSrc(1, pos + 1);
4060          mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4061          mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
4062          pos += 2;
4063       }
4064       break;
4065    }
4066    case TGSI_OPCODE_U64MIN:
4067    case TGSI_OPCODE_U64MAX:
4068    case TGSI_OPCODE_I64MIN:
4069    case TGSI_OPCODE_I64MAX: {
4070       dstTy = isSignedIntType(dstTy) ? TYPE_S32 : TYPE_U32;
4071       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4072          Value *flag = getSSA(1, FILE_FLAGS);
4073          src0 = fetchSrc(0, c + 1);
4074          src1 = fetchSrc(1, c + 1);
4075          geni = mkOp2(op, dstTy, dst0[c + 1], src0, src1);
4076          geni->subOp = NV50_IR_SUBOP_MINMAX_HIGH;
4077          geni->setFlagsDef(1, flag);
4078 
4079          src0 = fetchSrc(0, c);
4080          src1 = fetchSrc(1, c);
4081          geni = mkOp2(op, TYPE_U32, dst0[c], src0, src1);
4082          geni->subOp = NV50_IR_SUBOP_MINMAX_LOW;
4083          geni->setFlagsSrc(2, flag);
4084 
4085          c++;
4086       }
4087       break;
4088    }
4089    case TGSI_OPCODE_U64SHL:
4090    case TGSI_OPCODE_I64SHR:
4091    case TGSI_OPCODE_U64SHR:
4092       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4093          src0 = getSSA(8);
4094          Value *dst = getSSA(8), *tmp[2];
4095          tmp[0] = fetchSrc(0, c);
4096          tmp[1] = fetchSrc(0, c + 1);
4097          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4098          // Theoretically src1 is a 64-bit value but in practice only the low
4099          // bits matter. The IR expects this to be a 32-bit value.
4100          src1 = fetchSrc(1, c);
4101          mkOp2(op, dstTy, dst, src0, src1);
4102          mkSplit(&dst0[c], 4, dst);
4103          c++;
4104       }
4105       break;
4106    case TGSI_OPCODE_U64ADD:
4107    case TGSI_OPCODE_U64MUL:
4108    case TGSI_OPCODE_DADD:
4109    case TGSI_OPCODE_DMUL:
4110    case TGSI_OPCODE_DDIV:
4111    case TGSI_OPCODE_DMAX:
4112    case TGSI_OPCODE_DMIN:
4113       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4114          src0 = getSSA(8);
4115          src1 = getSSA(8);
4116          Value *dst = getSSA(8), *tmp[2];
4117          tmp[0] = fetchSrc(0, c);
4118          tmp[1] = fetchSrc(0, c + 1);
4119          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4120          tmp[0] = fetchSrc(1, c);
4121          tmp[1] = fetchSrc(1, c + 1);
4122          mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4123          mkOp2(op, dstTy, dst, src0, src1);
4124          mkSplit(&dst0[c], 4, dst);
4125          c++;
4126       }
4127       break;
4128    case TGSI_OPCODE_DMAD:
4129    case TGSI_OPCODE_DFMA:
4130       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4131          src0 = getSSA(8);
4132          src1 = getSSA(8);
4133          src2 = getSSA(8);
4134          Value *dst = getSSA(8), *tmp[2];
4135          tmp[0] = fetchSrc(0, c);
4136          tmp[1] = fetchSrc(0, c + 1);
4137          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4138          tmp[0] = fetchSrc(1, c);
4139          tmp[1] = fetchSrc(1, c + 1);
4140          mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4141          tmp[0] = fetchSrc(2, c);
4142          tmp[1] = fetchSrc(2, c + 1);
4143          mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
4144          mkOp3(op, dstTy, dst, src0, src1, src2);
4145          mkSplit(&dst0[c], 4, dst);
4146          c++;
4147       }
4148       break;
4149    case TGSI_OPCODE_DROUND:
4150       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4151          src0 = getSSA(8);
4152          Value *dst = getSSA(8), *tmp[2];
4153          tmp[0] = fetchSrc(0, c);
4154          tmp[1] = fetchSrc(0, c + 1);
4155          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4156          mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
4157          ->rnd = ROUND_NI;
4158          mkSplit(&dst0[c], 4, dst);
4159          c++;
4160       }
4161       break;
4162    case TGSI_OPCODE_DSSG:
4163       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4164          src0 = getSSA(8);
4165          Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
4166          tmp[0] = fetchSrc(0, c);
4167          tmp[1] = fetchSrc(0, c + 1);
4168          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4169 
4170          val0 = getScratch();
4171          val1 = getScratch();
4172          // The zero is wrong here since it's only 32-bit, but it works out in
4173          // the end since it gets replaced with $r63.
4174          mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
4175          mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
4176          mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
4177          mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
4178          mkSplit(&dst0[c], 4, dst);
4179          c++;
4180       }
4181       break;
4182    case TGSI_OPCODE_I64SSG:
4183       FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4184          src0 = getSSA(8);
4185          Value *tmp[2];
4186          tmp[0] = fetchSrc(0, c);
4187          tmp[1] = fetchSrc(0, c + 1);
4188          mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4189 
4190          val0 = getScratch();
4191          val1 = getScratch();
4192          mkCmp(OP_SET, CC_GT, TYPE_U32, val0, TYPE_S64, src0, zero);
4193          mkCmp(OP_SET, CC_LT, TYPE_U32, val1, TYPE_S64, src0, zero);
4194          mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
4195          mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(0, 31));
4196          c++;
4197       }
4198       break;
4199    default:
4200       ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
4201       assert(0);
4202       break;
4203    }
4204 
4205    if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
4206       for (c = 0; c < 4; ++c) {
4207          if (!dst0[c])
4208             continue;
4209          if (dst0[c] != rDst0[c])
4210             mkMov(rDst0[c], dst0[c]);
4211          storeDst(0, c, rDst0[c]);
4212       }
4213    }
4214    vtxBaseValid = 0;
4215 
4216    return true;
4217 }
4218 
4219 void
exportOutputs()4220 Converter::exportOutputs()
4221 {
4222    if (info->io.alphaRefBase) {
4223       for (unsigned int i = 0; i < info_out->numOutputs; ++i) {
4224          if (info_out->out[i].sn != TGSI_SEMANTIC_COLOR ||
4225              info_out->out[i].si != 0)
4226             continue;
4227          const unsigned int c = 3;
4228          if (!oData.exists(sub.cur->values, i, c))
4229             continue;
4230          Value *val = oData.load(sub.cur->values, i, c, NULL);
4231          if (!val)
4232             continue;
4233 
4234          Symbol *ref = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
4235                                 TYPE_U32, info->io.alphaRefBase);
4236          Value *pred = new_LValue(func, FILE_PREDICATE);
4237          mkCmp(OP_SET, CC_TR, TYPE_U32, pred, TYPE_F32, val,
4238                mkLoadv(TYPE_U32, ref, NULL))
4239             ->subOp = 1;
4240          mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_NOT_P, pred);
4241       }
4242    }
4243 
4244    for (unsigned int i = 0; i < info_out->numOutputs; ++i) {
4245       for (unsigned int c = 0; c < 4; ++c) {
4246          if (!oData.exists(sub.cur->values, i, c))
4247             continue;
4248          Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
4249                                 info_out->out[i].slot[c] * 4);
4250          Value *val = oData.load(sub.cur->values, i, c, NULL);
4251          if (val) {
4252             if (info_out->out[i].sn == TGSI_SEMANTIC_POSITION)
4253                mkOp1(OP_SAT, TYPE_F32, val, val);
4254             mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
4255          }
4256       }
4257    }
4258 }
4259 
Converter(Program * ir,const tgsi::Source * code,nv50_ir_prog_info_out * info_out)4260 Converter::Converter(Program *ir, const tgsi::Source *code, nv50_ir_prog_info_out *info_out)
4261 :    ConverterCommon(ir, code->info, info_out),
4262      code(code),
4263      tgsi(NULL),
4264      tData(this), lData(this), aData(this), oData(this)
4265 {
4266    const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
4267    const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
4268    const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
4269 
4270    tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
4271    lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
4272    aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
4273    oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
4274 
4275    zero = mkImm((uint32_t)0);
4276 
4277    vtxBaseValid = 0;
4278 }
4279 
~Converter()4280 Converter::~Converter()
4281 {
4282 }
4283 
4284 inline const Converter::Location *
getValueLocation(Subroutine * s,Value * v)4285 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
4286 {
4287    ValueMap::l_iterator it = s->values.l.find(v);
4288    return it == s->values.l.end() ? NULL : &it->second;
4289 }
4290 
4291 template<typename T> inline void
updateCallArgs(Instruction * i,void (Instruction::* setArg)(int,Value *),T (Function::* proto))4292 Converter::BindArgumentsPass::updateCallArgs(
4293    Instruction *i, void (Instruction::*setArg)(int, Value *),
4294    T (Function::*proto))
4295 {
4296    Function *g = i->asFlow()->target.fn;
4297    Subroutine *subg = conv.getSubroutine(g);
4298 
4299    for (unsigned a = 0; a < (g->*proto).size(); ++a) {
4300       Value *v = (g->*proto)[a].get();
4301       const Converter::Location &l = *getValueLocation(subg, v);
4302       Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
4303 
4304       (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
4305    }
4306 }
4307 
4308 template<typename T> inline void
updatePrototype(BitSet * set,void (Function::* updateSet)(),T (Function::* proto))4309 Converter::BindArgumentsPass::updatePrototype(
4310    BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
4311 {
4312    (func->*updateSet)();
4313 
4314    for (unsigned i = 0; i < set->getSize(); ++i) {
4315       Value *v = func->getLValue(i);
4316       const Converter::Location *l = getValueLocation(sub, v);
4317 
4318       // only include values with a matching TGSI register
4319       if (set->test(i) && l && !conv.code->locals.count(*l))
4320          (func->*proto).push_back(v);
4321    }
4322 }
4323 
4324 bool
visit(Function * f)4325 Converter::BindArgumentsPass::visit(Function *f)
4326 {
4327    sub = conv.getSubroutine(f);
4328 
4329    for (ArrayList::Iterator bi = f->allBBlocks.iterator();
4330         !bi.end(); bi.next()) {
4331       for (Instruction *i = BasicBlock::get(bi)->getFirst();
4332            i; i = i->next) {
4333          if (i->op == OP_CALL && !i->asFlow()->builtin) {
4334             updateCallArgs(i, &Instruction::setSrc, &Function::ins);
4335             updateCallArgs(i, &Instruction::setDef, &Function::outs);
4336          }
4337       }
4338    }
4339 
4340    if (func == prog->main /* && prog->getType() != Program::TYPE_COMPUTE */)
4341       return true;
4342    updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
4343                    &Function::buildLiveSets, &Function::ins);
4344    updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
4345                    &Function::buildDefSets, &Function::outs);
4346 
4347    return true;
4348 }
4349 
4350 bool
run()4351 Converter::run()
4352 {
4353    BasicBlock *entry = new BasicBlock(prog->main);
4354    BasicBlock *leave = new BasicBlock(prog->main);
4355 
4356    prog->main->setEntry(entry);
4357    prog->main->setExit(leave);
4358 
4359    setPosition(entry, true);
4360    sub.cur = getSubroutine(prog->main);
4361 
4362    if (info_out->io.genUserClip > 0) {
4363       for (int c = 0; c < 4; ++c)
4364          clipVtx[c] = getScratch();
4365    }
4366 
4367    switch (prog->getType()) {
4368    case Program::TYPE_TESSELLATION_CONTROL:
4369       outBase = mkOp2v(
4370          OP_SUB, TYPE_U32, getSSA(),
4371          mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
4372          mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
4373       break;
4374    case Program::TYPE_FRAGMENT: {
4375       Symbol *sv = mkSysVal(SV_POSITION, 3);
4376       fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
4377       mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
4378       break;
4379    }
4380    default:
4381       break;
4382    }
4383 
4384    if (info->io.viewportId >= 0)
4385       viewport = getScratch();
4386    else
4387       viewport = NULL;
4388 
4389    for (ip = 0; ip < code->scan.num_instructions; ++ip) {
4390       if (!handleInstruction(&code->insns[ip]))
4391          return false;
4392    }
4393 
4394    if (!BindArgumentsPass(*this).run(prog))
4395       return false;
4396 
4397    return true;
4398 }
4399 
4400 } // unnamed namespace
4401 
4402 namespace nv50_ir {
4403 
4404 bool
makeFromTGSI(struct nv50_ir_prog_info * info,struct nv50_ir_prog_info_out * info_out)4405 Program::makeFromTGSI(struct nv50_ir_prog_info *info,
4406                       struct nv50_ir_prog_info_out *info_out)
4407 {
4408    tgsi::Source src(info, info_out, this);
4409    if (!src.scanSource())
4410       return false;
4411    tlsSize = info_out->bin.tlsSpace;
4412 
4413    Converter builder(this, &src, info_out);
4414    return builder.run();
4415 }
4416 
4417 } // namespace nv50_ir
4418