1 /**
2 * Copyright 2020 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #ifndef MINDSPORE_INCLUDE_API_MODEL_H
17 #define MINDSPORE_INCLUDE_API_MODEL_H
18
19 #include <string>
20 #include <vector>
21 #include <map>
22 #include <memory>
23 #include <utility>
24 #include "include/api/status.h"
25 #include "include/api/types.h"
26 #include "include/api/graph.h"
27 #include "include/api/context.h"
28 #include "include/api/callback/callback.h"
29 #include "include/api/cell.h"
30 #include "include/api/cfg.h"
31 #include "include/api/dual_abi_helper.h"
32
33 namespace mindspore {
34 class ModelImpl;
35 class Metrics;
36
37 namespace dataset {
38 class Dataset;
39 } // namespace dataset
40 /// \brief The Model class is used to define a MindSpore model, facilitating computational graph management.
41 class MS_API Model {
42 public:
43 Model();
44 ~Model();
45
46 /// \brief Build a model from model buffer so that it can run on a device.
47 ///
48 /// \param[in] model_data Define the buffer read from a model file.
49 /// \param[in] data_size Define bytes number of model buffer.
50 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
51 /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
52 /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
53 /// iterations. \param[in] model_context Define the context used to store options during execution.
54 ///
55 /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
56 Status Build(const void *model_data, size_t data_size, ModelType model_type,
57 const std::shared_ptr<Context> &model_context = nullptr);
58
59 /// \brief Load and build a model from model buffer so that it can run on a device.
60 ///
61 /// \param[in] model_path Define the model path.
62 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
63 /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
64 /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
65 /// iterations. \param[in] model_context Define the context used to store options during execution.
66 ///
67 /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
68 inline Status Build(const std::string &model_path, ModelType model_type,
69 const std::shared_ptr<Context> &model_context = nullptr);
70 /// \brief Build a model from model buffer so that it can run on a device.
71 ///
72 /// \param[in] model_data Define the buffer read from a model file.
73 /// \param[in] data_size Define bytes number of model buffer.
74 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
75 /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
76 /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
77 /// iterations. \param[in] model_context Define the context used to store options during execution. \param[in] dec_key
78 /// Define the key used to decrypt the ciphertext model. The key length is 16. \param[in] dec_mode Define the
79 /// decryption mode. Options: AES-GCM. \param[in] cropto_lib_path Define the openssl library path.
80 ///
81 /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
82 inline Status Build(const void *model_data, size_t data_size, ModelType model_type,
83 const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
84 const std::string &cropto_lib_path);
85
86 /// \brief Load and build a model from model buffer so that it can run on a device.
87 ///
88 /// \param[in] model_path Define the model path.
89 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
90 /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
91 /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
92 /// iterations. \param[in] model_context Define the context used to store options during execution. \param[in] dec_key
93 /// Define the key used to decrypt the ciphertext model. The key length is 16. \param[in] dec_mode Define the
94 /// decryption mode. Options: AES-GCM. \param[in] cropto_lib_path Define the openssl library path.
95 ///
96 /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
97 inline Status Build(const std::string &model_path, ModelType model_type,
98 const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
99 const std::string &cropto_lib_path);
100
101 /// \brief Build a model
102 ///
103 /// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed
104 /// from Graph, for example, model.Build(GraphCell(graph), context).
105 /// \param[in] model_context A context used to store options during execution.
106 /// \param[in] train_cfg A config used by training.
107 ///
108 /// \return Status.
109 Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr,
110 const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
111
112 /// \brief Build a Transfer Learning model where the backbone weights are fixed and the head weights are trainable
113 ///
114 /// \param[in] backbone The static, non-learnable part of the graph
115 /// \param[in] head The trainable part of the graph
116 /// \param[in] context A context used to store options during execution
117 /// \param[in] train_cfg A config used by training
118 ///
119 /// \return Status
120 Status BuildTransferLearning(GraphCell backbone, GraphCell head, const std::shared_ptr<Context> &context,
121 const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
122
123 /// \brief Resize the shapes of inputs.
124 ///
125 /// \param[in] inputs A vector that includes all input tensors in order.
126 /// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs.
127 ///
128 /// \return Status.
129 Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims);
130
131 /// \brief Change the size and or content of weight tensors
132 ///
133 /// \param[in] new_weights a vector of tensors with new shapes and data to use in the model
134 /// If data pointer is null, the data of the original tensors will be copied to the new ones
135 ///
136 /// \return Status.
137 Status UpdateWeights(const std::vector<MSTensor> &new_weights);
138 /// \brief Change the size and or content of weight tensors
139 ///
140 /// \param[in] new_weights A vector where model constant are arranged in sequence
141 ///
142 /// \return Status.
143 Status UpdateWeights(const std::vector<std::vector<MSTensor>> &new_weights);
144 /// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
145 ///
146 /// \param[in] inputs A vector where model inputs are arranged in sequence.
147 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
148 /// \param[in] before CallBack before predict.
149 /// \param[in] after CallBack after predict.
150 ///
151 /// \return Status.
152 Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
153 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
154
155 /// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
156 ///
157 /// \param[in] before CallBack before predict.
158 /// \param[in] after CallBack after predict.
159 ///
160 /// \return Status.
161 Status Predict(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
162
163 /// \brief Training API. Run model by step.
164 ///
165 /// \param[in] before CallBack before RunStep.
166 /// \param[in] after CallBack after RunStep.
167 ///
168 /// \return Status.
169 Status RunStep(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
170
171 /// \brief Inference model with preprocess in model.
172 ///
173 /// \param[in] inputs A vector where model inputs are arranged in sequence.
174 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
175 /// \param[in] before CallBack before predict.
176 /// \param[in] after CallBack after predict.
177 ///
178 /// \return Status.
179 Status PredictWithPreprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs,
180 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
181
182 /// \brief Apply data preprocess if it exits in model.
183 ///
184 /// \param[in] inputs A vector where model inputs are arranged in sequence.
185 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
186 ///
187 /// \return Status.
188 Status Preprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs);
189
190 /// \brief Check if data preprocess exists in model.
191 /// \return true if data preprocess exists.
192 bool HasPreprocess();
193
194 /// \brief Load config file.
195 ///
196 /// \param[in] config_path config file path.
197 ///
198 /// \return Status.
199 inline Status LoadConfig(const std::string &config_path);
200
201 /// \brief Update config.
202 ///
203 /// \param[in] section define the config section.
204 /// \param[in] config define the config will be updated.
205 ///
206 /// \return Status.
207 inline Status UpdateConfig(const std::string §ion, const std::pair<std::string, std::string> &config);
208
209 /// \brief Obtains all input tensors of the model.
210 ///
211 /// \return The vector that includes all input tensors.
212 std::vector<MSTensor> GetInputs();
213
214 /// \brief Obtains the input tensor of the model by name.
215 ///
216 /// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned.
217 inline MSTensor GetInputByTensorName(const std::string &tensor_name);
218
219 /// \brief Obtain all gradient tensors of the model.
220 ///
221 /// \return The vector that includes all gradient tensors.
222 std::vector<MSTensor> GetGradients() const;
223
224 /// \brief Update gradient tensors of the model.
225 ///
226 /// \param[in] gradients A vector new gradients.
227 ///
228 /// \return Status of operation
229 Status ApplyGradients(const std::vector<MSTensor> &gradients);
230
231 /// \brief Obtain all weights tensors of the model.
232 ///
233 /// \return The vector that includes all weights tensors.
234 std::vector<MSTensor> GetFeatureMaps() const;
235
236 /// \brief Obtain all trainable parameters of the model optimizers.
237 ///
238 /// \return The vector that includes all trainable parameters.
239 std::vector<MSTensor> GetTrainableParams() const;
240
241 /// \brief Update weights tensors of the model.
242 ///
243 /// \param[in] new_weights A vector new weights.
244 ///
245 /// \return Status of operation
246 Status UpdateFeatureMaps(const std::vector<MSTensor> &new_weights);
247
248 /// \brief Obtain optimizer params tensors of the model.
249 ///
250 /// \return The vector that includes all params tensors.
251 std::vector<MSTensor> GetOptimizerParams() const;
252
253 /// \brief Update the optimizer parameters.
254 ///
255 /// \param[in] params A vector new optimizer params.
256 ///
257 /// \return Status of operation.
258 Status SetOptimizerParams(const std::vector<MSTensor> ¶ms);
259
260 /// \brief Setup training with virtual batches.
261 ///
262 /// \param[in] virtual_batch_multiplier - virtual batch multiplier, use any number < 1 to disable.
263 /// \param[in] lr - learning rate to use for virtual batch, -1 for internal configuration.
264 /// \param[in] momentum - batch norm momentum to use for virtual batch, -1 for internal configuration.
265 ///
266 /// \return Status of operation.
267 Status SetupVirtualBatch(int virtual_batch_multiplier, float lr = -1.0f, float momentum = -1.0f);
268
269 /// \brief Set the Learning Rate of the training.
270 ///
271 /// \param[in] learning_rate to set.
272 ///
273 /// \return Status of operation.
274 Status SetLearningRate(float learning_rate);
275
276 /// \brief Get the Learning Rate of the optimizer.
277 ///
278 /// \return Learning rate. 0.0 if no optimizer was found.
279 float GetLearningRate();
280
281 /// \brief Initialize object with metrics.
282 ///
283 /// \param[in] metrics A vector of metrics objects.
284 ///
285 /// \return 0 on success or -1 in case of error
286 Status InitMetrics(std::vector<Metrics *> metrics);
287
288 /// \brief Accessor to TrainLoop metric objects
289 ///
290 /// \return A vector of metrics
291 std::vector<Metrics *> GetMetrics();
292
293 /// \brief Obtains all output tensors of the model.
294 ///
295 /// \return The vector that includes all output tensors.
296 std::vector<MSTensor> GetOutputs();
297
298 /// \brief Obtains names of all output tensors of the model.
299 ///
300 /// \return A vector that includes names of all output tensors.
301 inline std::vector<std::string> GetOutputTensorNames();
302
303 /// \brief Obtains the output tensor of the model by name.
304 ///
305 /// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned.
306 inline MSTensor GetOutputByTensorName(const std::string &tensor_name);
307
308 /// \brief Get output MSTensors of model by node name.
309 ///
310 /// \param[in] node_name Define node name.
311 ///
312 /// \note Deprecated, replace with GetOutputByTensorName
313 ///
314 /// \return The vector of output MSTensor.
315 inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name);
316
317 /// \brief Bind GLTexture2D object to cl Memory.
318 ///
319 /// \param[in] inputGLTexture The input GLTexture id for Model.
320 /// \param[in] outputGLTexture The output GLTexture id for Model.
321 ///
322 /// \return Status of operation.
323
324 Status BindGLTexture2DMemory(const std::map<std::string, unsigned int> &inputGLTexture,
325 std::map<std::string, unsigned int> *outputGLTexture);
326
327 /// \brief Inference model.
328 ///
329 /// \param[in] device_type Device type,options are kGPU, kAscend etc.
330 /// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM.
331 ///
332 /// \return Is supported or not.
333 static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type);
334
335 /// \brief Set the model running mode.
336 ///
337 /// \param[in] train True means model runs in Train Mode, otherwise Eval Mode.
338 ///
339 /// \return Status of operation.
340 Status SetTrainMode(bool train);
341
342 /// \brief Get the model running mode.
343 ///
344 /// \return Is Train Mode or not.
345 bool GetTrainMode() const;
346
347 /// \brief Performs the training Loop in Train Mode.
348 ///
349 /// \param[in] epochs The number of epoch to run.
350 /// \param[in] ds A smart pointer to MindData Dataset object.
351 /// \param[in] cbs A vector of TrainLoopCallBack objects.
352 ///
353 /// \return Status of operation.
354 Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
355
356 /// \brief Performs the training loop over all data in Eval Mode.
357 ///
358 /// \param[in] ds A smart pointer to MindData Dataset object.
359 /// \param[in] cbs A vector of TrainLoopCallBack objects.
360 ///
361 /// \return Status of operation.
362 Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
363
impl()364 const std::shared_ptr<ModelImpl> impl() const { return impl_; }
365
366 /// \brief Get model info by key
367 ///
368 /// \param[in] key The key of model info key-value pair
369 ///
370 /// \return The value of the model info associated with the given key.
371 inline std::string GetModelInfo(const std::string &key);
372
373 // release inference resourcec, only used for mindspore_lite's ascend backend now.
374 Status Finalize();
375
376 private:
377 friend class Serialization;
378 // api without std::string
379 MSTensor GetInputByTensorName(const std::vector<char> &tensor_name);
380 std::vector<std::vector<char>> GetOutputTensorNamesChar();
381 MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name);
382 std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name);
383 Status LoadConfig(const std::vector<char> &config_path);
384 Status UpdateConfig(const std::vector<char> §ion, const std::pair<std::vector<char>, std::vector<char>> &config);
385 Status Build(const std::vector<char> &model_path, ModelType model_type,
386 const std::shared_ptr<Context> &model_context);
387 Status Build(const void *model_data, size_t data_size, ModelType model_type,
388 const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::vector<char> &dec_mode,
389 const std::vector<char> &cropto_lib_path);
390 Status Build(const std::vector<char> &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
391 const Key &dec_key, const std::vector<char> &dec_mode, const std::vector<char> &cropto_lib_path);
392 std::vector<char> GetModelInfo(const std::vector<char> &key);
393 std::shared_ptr<ModelImpl> impl_;
394 };
395
GetInputByTensorName(const std::string & tensor_name)396 MSTensor Model::GetInputByTensorName(const std::string &tensor_name) {
397 return GetInputByTensorName(StringToChar(tensor_name));
398 }
399
GetOutputTensorNames()400 std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); }
401
GetOutputByTensorName(const std::string & tensor_name)402 MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) {
403 return GetOutputByTensorName(StringToChar(tensor_name));
404 }
405
GetOutputsByNodeName(const std::string & node_name)406 std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) {
407 return GetOutputsByNodeName(StringToChar(node_name));
408 }
409
LoadConfig(const std::string & config_path)410 Status Model::LoadConfig(const std::string &config_path) { return LoadConfig(StringToChar(config_path)); }
411
UpdateConfig(const std::string & section,const std::pair<std::string,std::string> & config)412 Status Model::UpdateConfig(const std::string §ion, const std::pair<std::string, std::string> &config) {
413 std::pair<std::vector<char>, std::vector<char>> config_pair = {StringToChar(config.first),
414 StringToChar(config.second)};
415 return UpdateConfig(StringToChar(section), config_pair);
416 }
417
Build(const void * model_data,size_t data_size,ModelType model_type,const std::shared_ptr<Context> & model_context,const Key & dec_key,const std::string & dec_mode,const std::string & cropto_lib_path)418 Status Model::Build(const void *model_data, size_t data_size, ModelType model_type,
419 const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
420 const std::string &cropto_lib_path) {
421 return Build(model_data, data_size, model_type, model_context, dec_key, StringToChar(dec_mode),
422 StringToChar(cropto_lib_path));
423 }
424
Build(const std::string & model_path,ModelType model_type,const std::shared_ptr<Context> & model_context,const Key & dec_key,const std::string & dec_mode,const std::string & cropto_lib_path)425 Status Model::Build(const std::string &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
426 const Key &dec_key, const std::string &dec_mode, const std::string &cropto_lib_path) {
427 return Build(StringToChar(model_path), model_type, model_context, dec_key, StringToChar(dec_mode),
428 StringToChar(cropto_lib_path));
429 }
430
Build(const std::string & model_path,ModelType model_type,const std::shared_ptr<Context> & model_context)431 Status Model::Build(const std::string &model_path, ModelType model_type,
432 const std::shared_ptr<Context> &model_context) {
433 return Build(StringToChar(model_path), model_type, model_context);
434 }
435
GetModelInfo(const std::string & key)436 inline std::string Model::GetModelInfo(const std::string &key) { return CharToString(GetModelInfo(StringToChar(key))); }
437 } // namespace mindspore
438 #endif // MINDSPORE_INCLUDE_API_MODEL_H
439