• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #ifndef MINDSPORE_INCLUDE_API_MODEL_H
17 #define MINDSPORE_INCLUDE_API_MODEL_H
18 
19 #include <string>
20 #include <vector>
21 #include <map>
22 #include <memory>
23 #include <utility>
24 #include "include/api/status.h"
25 #include "include/api/types.h"
26 #include "include/api/graph.h"
27 #include "include/api/context.h"
28 #include "include/api/callback/callback.h"
29 #include "include/api/cell.h"
30 #include "include/api/cfg.h"
31 #include "include/api/dual_abi_helper.h"
32 
33 namespace mindspore {
34 class ModelImpl;
35 class Metrics;
36 
37 namespace dataset {
38 class Dataset;
39 }  // namespace dataset
40 /// \brief The Model class is used to define a MindSpore model, facilitating computational graph management.
41 class MS_API Model {
42  public:
43   Model();
44   ~Model();
45 
46   /// \brief Build a model from model buffer so that it can run on a device.
47   ///
48   /// \param[in] model_data Define the buffer read from a model file.
49   /// \param[in] data_size Define bytes number of model buffer.
50   /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
51   /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
52   /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
53   /// iterations. \param[in] model_context Define the context used to store options during execution.
54   ///
55   /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
56   Status Build(const void *model_data, size_t data_size, ModelType model_type,
57                const std::shared_ptr<Context> &model_context = nullptr);
58 
59   /// \brief Load and build a model from model buffer so that it can run on a device.
60   ///
61   /// \param[in] model_path Define the model path.
62   /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
63   /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
64   /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
65   /// iterations. \param[in] model_context Define the context used to store options during execution.
66   ///
67   /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
68   inline Status Build(const std::string &model_path, ModelType model_type,
69                       const std::shared_ptr<Context> &model_context = nullptr);
70   /// \brief Build a model from model buffer so that it can run on a device.
71   ///
72   /// \param[in] model_data Define the buffer read from a model file.
73   /// \param[in] data_size Define bytes number of model buffer.
74   /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
75   /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
76   /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
77   /// iterations. \param[in] model_context Define the context used to store options during execution. \param[in] dec_key
78   /// Define the key used to decrypt the ciphertext model. The key length is 16. \param[in] dec_mode Define the
79   /// decryption mode. Options: AES-GCM. \param[in] cropto_lib_path Define the openssl library path.
80   ///
81   /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
82   inline Status Build(const void *model_data, size_t data_size, ModelType model_type,
83                       const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
84                       const std::string &cropto_lib_path);
85 
86   /// \brief Load and build a model from model buffer so that it can run on a device.
87   ///
88   /// \param[in] model_path Define the model path.
89   /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kMindIR_Lite. Only
90   /// ModelType::kMindIR_Lite is valid for Device-side Inference. Cloud-side Inference supports options
91   /// ModelType::kMindIR and ModelType::kMindIR_Lite, but option odelType::kMindIR_Lite will be removed in future
92   /// iterations. \param[in] model_context Define the context used to store options during execution. \param[in] dec_key
93   /// Define the key used to decrypt the ciphertext model. The key length is 16. \param[in] dec_mode Define the
94   /// decryption mode. Options: AES-GCM. \param[in] cropto_lib_path Define the openssl library path.
95   ///
96   /// \return Status. kSuccess: build success, kLiteModelRebuild: build model repeatedly, Other: other types of errors.
97   inline Status Build(const std::string &model_path, ModelType model_type,
98                       const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
99                       const std::string &cropto_lib_path);
100 
101   /// \brief Build a model
102   ///
103   /// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed
104   /// from Graph, for example, model.Build(GraphCell(graph), context).
105   /// \param[in] model_context A context used to store options during execution.
106   /// \param[in] train_cfg A config used by training.
107   ///
108   /// \return Status.
109   Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr,
110                const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
111 
112   /// \brief Build a Transfer Learning model where the backbone weights are fixed and the head weights are trainable
113   ///
114   /// \param[in] backbone The static, non-learnable part of the graph
115   /// \param[in] head The trainable part of the graph
116   /// \param[in] context A context used to store options during execution
117   /// \param[in] train_cfg A config used by training
118   ///
119   /// \return Status
120   Status BuildTransferLearning(GraphCell backbone, GraphCell head, const std::shared_ptr<Context> &context,
121                                const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
122 
123   /// \brief Resize the shapes of inputs.
124   ///
125   /// \param[in] inputs A vector that includes all input tensors in order.
126   /// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs.
127   ///
128   /// \return Status.
129   Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims);
130 
131   /// \brief Change the size and or content of weight tensors
132   ///
133   /// \param[in] new_weights a vector of tensors with new shapes and data to use in the model
134   ///            If data pointer is null, the data of the original tensors will be copied to the new ones
135   ///
136   /// \return Status.
137   Status UpdateWeights(const std::vector<MSTensor> &new_weights);
138   /// \brief Change the size and or content of weight tensors
139   ///
140   /// \param[in] new_weights A vector where model constant are arranged in sequence
141   ///
142   /// \return Status.
143   Status UpdateWeights(const std::vector<std::vector<MSTensor>> &new_weights);
144   /// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
145   ///
146   /// \param[in] inputs A vector where model inputs are arranged in sequence.
147   /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
148   /// \param[in] before CallBack before predict.
149   /// \param[in] after CallBack after predict.
150   ///
151   /// \return Status.
152   Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
153                  const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
154 
155   /// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
156   ///
157   /// \param[in] before CallBack before predict.
158   /// \param[in] after CallBack after predict.
159   ///
160   /// \return Status.
161   Status Predict(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
162 
163   /// \brief Training API. Run model by step.
164   ///
165   /// \param[in] before CallBack before RunStep.
166   /// \param[in] after CallBack after RunStep.
167   ///
168   /// \return Status.
169   Status RunStep(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
170 
171   /// \brief Inference model with preprocess in model.
172   ///
173   /// \param[in] inputs A vector where model inputs are arranged in sequence.
174   /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
175   /// \param[in] before CallBack before predict.
176   /// \param[in] after CallBack after predict.
177   ///
178   /// \return Status.
179   Status PredictWithPreprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs,
180                                const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
181 
182   /// \brief Apply data preprocess if it exits in model.
183   ///
184   /// \param[in] inputs A vector where model inputs are arranged in sequence.
185   /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
186   ///
187   /// \return Status.
188   Status Preprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs);
189 
190   /// \brief Check if data preprocess exists in model.
191   /// \return true if data preprocess exists.
192   bool HasPreprocess();
193 
194   /// \brief Load config file.
195   ///
196   /// \param[in] config_path config file path.
197   ///
198   /// \return Status.
199   inline Status LoadConfig(const std::string &config_path);
200 
201   /// \brief Update config.
202   ///
203   /// \param[in] section define the config section.
204   /// \param[in] config define the config will be updated.
205   ///
206   /// \return Status.
207   inline Status UpdateConfig(const std::string &section, const std::pair<std::string, std::string> &config);
208 
209   /// \brief Obtains all input tensors of the model.
210   ///
211   /// \return The vector that includes all input tensors.
212   std::vector<MSTensor> GetInputs();
213 
214   /// \brief Obtains the input tensor of the model by name.
215   ///
216   /// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned.
217   inline MSTensor GetInputByTensorName(const std::string &tensor_name);
218 
219   /// \brief Obtain all gradient tensors of the model.
220   ///
221   /// \return The vector that includes all gradient tensors.
222   std::vector<MSTensor> GetGradients() const;
223 
224   /// \brief Update gradient tensors of the model.
225   ///
226   /// \param[in] gradients A vector new gradients.
227   ///
228   /// \return Status of operation
229   Status ApplyGradients(const std::vector<MSTensor> &gradients);
230 
231   /// \brief Obtain all weights tensors of the model.
232   ///
233   /// \return The vector that includes all weights tensors.
234   std::vector<MSTensor> GetFeatureMaps() const;
235 
236   /// \brief Obtain all trainable parameters of the model optimizers.
237   ///
238   /// \return The vector that includes all trainable parameters.
239   std::vector<MSTensor> GetTrainableParams() const;
240 
241   /// \brief Update weights tensors of the model.
242   ///
243   /// \param[in] new_weights A vector new weights.
244   ///
245   /// \return Status of operation
246   Status UpdateFeatureMaps(const std::vector<MSTensor> &new_weights);
247 
248   /// \brief Obtain optimizer params tensors of the model.
249   ///
250   /// \return The vector that includes all params tensors.
251   std::vector<MSTensor> GetOptimizerParams() const;
252 
253   /// \brief Update the optimizer parameters.
254   ///
255   /// \param[in] params A vector new optimizer params.
256   ///
257   /// \return Status of operation.
258   Status SetOptimizerParams(const std::vector<MSTensor> &params);
259 
260   /// \brief Setup training with virtual batches.
261   ///
262   /// \param[in] virtual_batch_multiplier - virtual batch multiplier, use any number < 1 to disable.
263   /// \param[in] lr - learning rate to use for virtual batch, -1 for internal configuration.
264   /// \param[in] momentum - batch norm momentum to use for virtual batch, -1 for internal configuration.
265   ///
266   /// \return Status of operation.
267   Status SetupVirtualBatch(int virtual_batch_multiplier, float lr = -1.0f, float momentum = -1.0f);
268 
269   /// \brief Set the Learning Rate of the training.
270   ///
271   /// \param[in] learning_rate to set.
272   ///
273   /// \return Status of operation.
274   Status SetLearningRate(float learning_rate);
275 
276   /// \brief Get the Learning Rate of the optimizer.
277   ///
278   /// \return Learning rate. 0.0 if no optimizer was found.
279   float GetLearningRate();
280 
281   /// \brief Initialize object with metrics.
282   ///
283   /// \param[in] metrics A vector of metrics objects.
284   ///
285   /// \return 0 on success or -1 in case of error
286   Status InitMetrics(std::vector<Metrics *> metrics);
287 
288   /// \brief Accessor to TrainLoop metric objects
289   ///
290   /// \return A vector of metrics
291   std::vector<Metrics *> GetMetrics();
292 
293   /// \brief Obtains all output tensors of the model.
294   ///
295   /// \return The vector that includes all output tensors.
296   std::vector<MSTensor> GetOutputs();
297 
298   /// \brief Obtains names of all output tensors of the model.
299   ///
300   /// \return A vector that includes names of all output tensors.
301   inline std::vector<std::string> GetOutputTensorNames();
302 
303   /// \brief Obtains the output tensor of the model by name.
304   ///
305   /// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned.
306   inline MSTensor GetOutputByTensorName(const std::string &tensor_name);
307 
308   /// \brief Get output MSTensors of model by node name.
309   ///
310   /// \param[in] node_name Define node name.
311   ///
312   /// \note Deprecated, replace with GetOutputByTensorName
313   ///
314   /// \return The vector of output MSTensor.
315   inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name);
316 
317   /// \brief Bind GLTexture2D object to cl Memory.
318   ///
319   /// \param[in] inputGLTexture The input GLTexture id for Model.
320   /// \param[in] outputGLTexture The output GLTexture id for Model.
321   ///
322   /// \return Status of operation.
323 
324   Status BindGLTexture2DMemory(const std::map<std::string, unsigned int> &inputGLTexture,
325                                std::map<std::string, unsigned int> *outputGLTexture);
326 
327   /// \brief Inference model.
328   ///
329   /// \param[in] device_type Device type,options are kGPU, kAscend etc.
330   /// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM.
331   ///
332   /// \return Is supported or not.
333   static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type);
334 
335   /// \brief Set the model running mode.
336   ///
337   /// \param[in] train True means model runs in Train Mode, otherwise Eval Mode.
338   ///
339   /// \return Status of operation.
340   Status SetTrainMode(bool train);
341 
342   /// \brief Get the model running mode.
343   ///
344   /// \return Is Train Mode or not.
345   bool GetTrainMode() const;
346 
347   /// \brief Performs the training Loop in Train Mode.
348   ///
349   /// \param[in] epochs The number of epoch to run.
350   /// \param[in] ds A smart pointer to MindData Dataset object.
351   /// \param[in] cbs A vector of TrainLoopCallBack objects.
352   ///
353   /// \return Status of operation.
354   Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
355 
356   /// \brief Performs the training loop over all data in Eval Mode.
357   ///
358   /// \param[in] ds A smart pointer to MindData Dataset object.
359   /// \param[in] cbs A vector of TrainLoopCallBack objects.
360   ///
361   /// \return Status of operation.
362   Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
363 
impl()364   const std::shared_ptr<ModelImpl> impl() const { return impl_; }
365 
366   /// \brief Get model info by key
367   ///
368   /// \param[in] key The key of model info key-value pair
369   ///
370   /// \return The value of the model info associated with the given key.
371   inline std::string GetModelInfo(const std::string &key);
372 
373   // release inference resourcec, only used for mindspore_lite's ascend backend now.
374   Status Finalize();
375 
376  private:
377   friend class Serialization;
378   // api without std::string
379   MSTensor GetInputByTensorName(const std::vector<char> &tensor_name);
380   std::vector<std::vector<char>> GetOutputTensorNamesChar();
381   MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name);
382   std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name);
383   Status LoadConfig(const std::vector<char> &config_path);
384   Status UpdateConfig(const std::vector<char> &section, const std::pair<std::vector<char>, std::vector<char>> &config);
385   Status Build(const std::vector<char> &model_path, ModelType model_type,
386                const std::shared_ptr<Context> &model_context);
387   Status Build(const void *model_data, size_t data_size, ModelType model_type,
388                const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::vector<char> &dec_mode,
389                const std::vector<char> &cropto_lib_path);
390   Status Build(const std::vector<char> &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
391                const Key &dec_key, const std::vector<char> &dec_mode, const std::vector<char> &cropto_lib_path);
392   std::vector<char> GetModelInfo(const std::vector<char> &key);
393   std::shared_ptr<ModelImpl> impl_;
394 };
395 
GetInputByTensorName(const std::string & tensor_name)396 MSTensor Model::GetInputByTensorName(const std::string &tensor_name) {
397   return GetInputByTensorName(StringToChar(tensor_name));
398 }
399 
GetOutputTensorNames()400 std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); }
401 
GetOutputByTensorName(const std::string & tensor_name)402 MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) {
403   return GetOutputByTensorName(StringToChar(tensor_name));
404 }
405 
GetOutputsByNodeName(const std::string & node_name)406 std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) {
407   return GetOutputsByNodeName(StringToChar(node_name));
408 }
409 
LoadConfig(const std::string & config_path)410 Status Model::LoadConfig(const std::string &config_path) { return LoadConfig(StringToChar(config_path)); }
411 
UpdateConfig(const std::string & section,const std::pair<std::string,std::string> & config)412 Status Model::UpdateConfig(const std::string &section, const std::pair<std::string, std::string> &config) {
413   std::pair<std::vector<char>, std::vector<char>> config_pair = {StringToChar(config.first),
414                                                                  StringToChar(config.second)};
415   return UpdateConfig(StringToChar(section), config_pair);
416 }
417 
Build(const void * model_data,size_t data_size,ModelType model_type,const std::shared_ptr<Context> & model_context,const Key & dec_key,const std::string & dec_mode,const std::string & cropto_lib_path)418 Status Model::Build(const void *model_data, size_t data_size, ModelType model_type,
419                     const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
420                     const std::string &cropto_lib_path) {
421   return Build(model_data, data_size, model_type, model_context, dec_key, StringToChar(dec_mode),
422                StringToChar(cropto_lib_path));
423 }
424 
Build(const std::string & model_path,ModelType model_type,const std::shared_ptr<Context> & model_context,const Key & dec_key,const std::string & dec_mode,const std::string & cropto_lib_path)425 Status Model::Build(const std::string &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
426                     const Key &dec_key, const std::string &dec_mode, const std::string &cropto_lib_path) {
427   return Build(StringToChar(model_path), model_type, model_context, dec_key, StringToChar(dec_mode),
428                StringToChar(cropto_lib_path));
429 }
430 
Build(const std::string & model_path,ModelType model_type,const std::shared_ptr<Context> & model_context)431 Status Model::Build(const std::string &model_path, ModelType model_type,
432                     const std::shared_ptr<Context> &model_context) {
433   return Build(StringToChar(model_path), model_type, model_context);
434 }
435 
GetModelInfo(const std::string & key)436 inline std::string Model::GetModelInfo(const std::string &key) { return CharToString(GetModelInfo(StringToChar(key))); }
437 }  // namespace mindspore
438 #endif  // MINDSPORE_INCLUDE_API_MODEL_H
439