• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/bin/bash
2# Copyright 2022 Huawei Technologies Co., Ltd
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8# http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15# ============================================================================
16
17# Prepare and Install mindspore gpu by conda on Ubuntu 18.04.
18#
19# This file will:
20#   - change deb source to huaweicloud mirror
21#   - install mindspore dependencies via apt like gcc, libgmp
22#   - install conda and set up environment for mindspore
23#   - install mindspore-gpu by conda
24#   - compile and install Open MPI if OPENMPI is set to on.
25#
26# Augments:
27#   - PYTHON_VERSION: python version to install. [3.7(default), 3.8, 3.9]
28#   - MINDSPORE_VERSION: mindspore version to install, >=1.6.0
29#   - CUDA_VERSION: CUDA version to install. [10.1, 11.1 11.6(default)]
30#   - OPENMPI: whether to install optional package Open MPI for distributed training. [on, off(default)]
31#
32# Usage:
33#   Run script like `bash -i ./ubuntu-gpu-conda.sh`.
34#   To set augments, run it as `PYTHON_VERSION=3.9 CUDA_VERSION=10.1 OPENMPI=on bash -i ./ubuntu-gpu-conda.sh`.
35
36set -e
37
38PYTHON_VERSION=${PYTHON_VERSION:-3.7}
39MINDSPORE_VERSION=${MINDSPORE_VERSION:-EMPTY}
40CUDA_VERSION=${CUDA_VERSION:-11.1}
41OPENMPI=${OPENMPI:-off}
42release_info=$(lsb_release -a | grep Release)
43UBUNTU_VERSION=${release_info//[!0-9]/}
44
45[[ "$UBUNTU_VERSION" == "2004" &&  "$CUDA_VERSION" == "10.1" ]] && echo "CUDA 10.1 is not supported on Ubuntu 20.04" && exit 1
46
47version_less() {
48    test "$(echo "$@" | tr ' ' '\n' | sort -rV | head -n 1)" != "$1";
49}
50
51if version_less "${MINDSPORE_VERSION}" "1.6.0"; then
52    echo "MINDSPORE_VERSION should be >=1.6.0, please check available versions at https://www.mindspore.cn/versions."
53    exit 1
54fi
55
56available_py_version=(3.7 3.8 3.9)
57if [[ " ${available_py_version[*]} " != *" $PYTHON_VERSION "* ]]; then
58    echo "PYTHON_VERSION is '$PYTHON_VERSION', but available versions are [${available_py_version[*]}]."
59    exit 1
60fi
61
62if [[ "$PYTHON_VERSION" == "3.8" && ${MINDSPORE_VERSION:0:3} == "1.6" ]]; then
63    echo "PYTHON_VERSION==3.8 is not compatible with MINDSPORE_VERSION==1.6.x, please use PYTHON_VERSION==3.7 or 3.9 for MINDSPORE_VERSION==1.6.x."
64    exit 1
65fi
66
67available_cuda_version=(10.1 11.1 11.6)
68if [[ " ${available_cuda_version[*]} " != *" $CUDA_VERSION "* ]]; then
69    echo "CUDA_VERSION is '$CUDA_VERSION', but available versions are [${available_cuda_version[*]}]."
70    exit 1
71fi
72
73# add value to environment variable if value is not in it
74add_env() {
75    local name=$1
76    if [[ ":${!name}:" != *":$2:"* ]]; then
77        echo -e "export $1=$2:\$$1" >> ~/.bashrc
78    fi
79}
80
81install_conda() {
82    echo "installing Miniconda3"
83    conda_file_name="Miniconda3-py3${PYTHON_VERSION##*.}_4.10.3-Linux-$(arch).sh"
84    cd /tmp
85    wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/$conda_file_name
86    bash $conda_file_name -b
87    cd -
88    . ~/miniconda3/etc/profile.d/conda.sh
89    conda init bash
90    # setting up conda mirror with tsinghua source
91    cat >~/.condarc <<END
92channels:
93  - defaults
94show_channel_urls: true
95default_channels:
96  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
97  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
98  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
99custom_channels:
100  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
101  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
102  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
103  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
104  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
105END
106}
107
108# use huaweicloud mirror in China
109sudo sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
110sudo sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
111sudo apt-get update
112
113sudo apt-get install curl gcc-7 libgmp-dev -y
114
115# optional openmpi for distributed training
116if [[ X"$OPENMPI" == "Xon" ]]; then
117    echo "installing openmpi"
118    cd /tmp
119    curl -O https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.4.tar.gz
120    tar xzf openmpi-4.1.4.tar.gz
121    cd openmpi-4.1.4
122    ./configure --prefix=/usr/local/openmpi-4.1.4
123    make
124    sudo make install
125    set +e && source ~/.bashrc
126    set -e
127    add_env PATH /usr/local/openmpi-4.1.4/bin
128    add_env LD_LIBRARY_PATH /usr/local/openmpi-4.1.4/lib
129fi
130
131# install conda
132set +e && type conda &>/dev/null
133if [[ $? -eq 0 ]]; then
134    echo "conda has been installed, skip."
135    source "$(conda info --base)"/etc/profile.d/conda.sh
136else
137    install_conda
138fi
139set -e
140
141# install cuda/cudnn
142echo "installing CUDA and cuDNN"
143cd /tmp
144declare -A cuda_url_map=()
145cuda_url_map["10.1"]=https://developer.download.nvidia.cn/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run
146cuda_url_map["11.1"]=https://developer.download.nvidia.cn/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
147cuda_url_map["11.6"]=https://developer.download.nvidia.cn/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
148cuda_url=${cuda_url_map[$CUDA_VERSION]}
149wget $cuda_url
150sudo sh ${cuda_url##*/} --silent --toolkit
151cd -
152sudo apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/7fa2af80.pub
153sudo add-apt-repository "deb https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /"
154sudo add-apt-repository "deb https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /"
155sudo apt-get update
156declare -A cudnn_name_map=()
157cudnn_name_map["10.1"]="libcudnn7=7.6.5.32-1+cuda10.1 libcudnn7-dev=7.6.5.32-1+cuda10.1"
158cudnn_name_map["11.1"]="libcudnn8=8.0.5.39-1+cuda11.1 libcudnn8-dev=8.0.5.39-1+cuda11.1"
159cudnn_name_map["11.6"]="libcudnn8=8.5.0.96-1+cuda11.6 libcudnn8-dev=8.5.0.96-1+cuda11.6"
160sudo apt-get install --no-install-recommends ${cudnn_name_map[$CUDA_VERSION]} -y
161
162# add cuda to path
163set +e && source ~/.bashrc
164set -e
165add_env PATH /usr/local/cuda/bin
166add_env LD_LIBRARY_PATH /usr/local/cuda/lib64
167add_env LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu
168set +e && source ~/.bashrc
169set -e
170
171# set up conda env and install mindspore-cpu
172env_name=mindspore_py3${PYTHON_VERSION##*.}
173conda create -n $env_name python=${PYTHON_VERSION} -c conda-forge -y
174conda activate $env_name
175install_name="mindspore"
176if [[ $MINDSPORE_VERSION != "EMPTY" ]]; then
177    install_name="${install_name}=${MINDSPORE_VERSION}"
178fi
179conda install ${install_name} -c mindspore -c conda-forge -y
180
181# check mindspore installation
182python -c "import mindspore;mindspore.run_check()"
183
184# check if it can be run with GPU
185cd /tmp
186cat > example.py <<END
187import numpy as np
188from mindspore import Tensor
189import mindspore.ops as ops
190import mindspore.context as context
191
192context.set_context(device_target="GPU")
193x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
194y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
195print(ops.add(x, y))
196END
197python example.py
198cd -
199