• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2023 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21from mindspore import Tensor
22
23
24class Net(nn.Cell):
25    def __init__(self):
26        super(Net, self).__init__()
27        self.multifieldembeddinglookup = nn.MultiFieldEmbeddingLookup(10, 2, field_size=2, operator='SUM',
28                                                                      target='DEVICE', dtype=ms.float16)
29
30    def construct(self, x, y, z):
31        out = self.multifieldembeddinglookup(x, y, z)
32        return out
33
34
35@pytest.mark.level1
36@pytest.mark.platform_x86_gpu_training
37@pytest.mark.platform_arm_ascend_training
38@pytest.mark.platform_x86_ascend_training
39@pytest.mark.env_onecard
40@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
41def test_multifieldembeddinglookup_para_customed_dtype(mode):
42    """
43    Feature: MultiFieldEmbeddingLookup
44    Description: Verify the result of MultiFieldEmbeddingLookup specifying customed para dtype.
45    Expectation: success
46    """
47    ms.set_context(mode=mode)
48    net = Net()
49    input_indices = Tensor([[2, 4, 6, 0, 0], [1, 3, 5, 0, 0]], ms.int32)
50    input_values = Tensor([[1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], ms.float32)
51    field_ids = Tensor([[0, 1, 1, 0, 0], [0, 0, 1, 0, 0]], ms.int32)
52    output = net(input_indices, input_values, field_ids)
53    expect_output_shape = (2, 2, 2)
54    assert np.allclose(expect_output_shape, output.shape)
55