• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2023 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21
22
23class Net(nn.Cell):
24    def __init__(self):
25        super(Net, self).__init__()
26        self.rnn = nn.RNN(10, 16, 2, has_bias=True, batch_first=True, bidirectional=False, dtype=ms.float16)
27
28    def construct(self, x, y):
29        out = self.rnn(x, y)
30        return out
31
32
33@pytest.mark.level1
34@pytest.mark.platform_x86_cpu
35@pytest.mark.platform_arm_cpu
36@pytest.mark.platform_x86_gpu_training
37@pytest.mark.platform_arm_ascend_training
38@pytest.mark.platform_x86_ascend_training
39@pytest.mark.env_onecard
40@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
41def test_rnn_para_customed_dtype(mode):
42    """
43    Feature: RNN
44    Description: Verify the result of RNN specifying customed para dtype.
45    Expectation: success
46    """
47    ms.set_context(mode=mode)
48    net = Net()
49    x = ms.Tensor(np.ones([3, 5, 10]).astype(np.float16))
50    h0 = ms.Tensor(np.ones([1 * 2, 3, 16]).astype(np.float16))
51    output, _ = net(x, h0)
52    expect_output_shape = (3, 5, 16)
53    assert np.allclose(expect_output_shape, output.shape)
54