• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import pytest
17import numpy as np
18
19import mindspore as ms
20import mindspore.nn as nn
21import mindspore.ops as ops
22
23
24class Net(nn.Cell):
25    def construct(self, x, values):
26        output = ops.heaviside(x, values)
27        return output
28
29
30@pytest.mark.level2
31@pytest.mark.platform_x86_cpu
32@pytest.mark.platform_arm_cpu
33@pytest.mark.platform_x86_gpu_training
34@pytest.mark.env_onecard
35@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
36def test_heaviside_normal(mode):
37    """
38    Feature: heaviside
39    Description: Verify the result of heaviside
40    Expectation: success
41    """
42    ms.set_context(mode=mode)
43    net = Net()
44    x = ms.Tensor([-1.5, 0., 2.], ms.float32)
45    values = ms.Tensor([0.5], ms.float32)
46    expect_output = np.array([0., 0.5, 1.], dtype=np.float32)
47    out = net(x, values)
48    assert np.allclose(out.asnumpy(), expect_output)
49