• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21import mindspore.ops as ops
22
23
24class Net(nn.Cell):
25    def construct(self, x):
26        out = ops.lp_pool2d(x, norm_type=1, kernel_size=3, stride=1)
27        return out
28
29
30@pytest.mark.level2
31@pytest.mark.platform_x86_cpu
32@pytest.mark.platform_arm_cpu
33@pytest.mark.platform_x86_gpu_training
34@pytest.mark.env_onecard
35@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
36def test_lppool2d_normal(mode):
37    """
38    Feature: LPPool2d
39    Description: Verify the result of LPPool2d
40    Expectation: success
41    """
42    ms.set_context(mode=mode)
43    net = Net()
44    x = ms.Tensor(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5)), dtype=ms.float32)
45    out = net(x)
46    expect_out = np.array([[[[54., 63., 72.],
47                             [99., 108., 117.]],
48                            [[234., 243., 252.],
49                             [279., 288., 297.]],
50                            [[414., 423., 432.],
51                             [459., 468., 477.]]],
52                           [[[594., 603., 612.],
53                             [639., 648., 657.]],
54                            [[774., 783., 792.],
55                             [819., 828., 837.]],
56                            [[954., 963., 972.],
57                             [999., 1008., 1017.]]]])
58    assert np.allclose(out.asnumpy(), expect_out)
59