• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17import mindspore as ms
18import mindspore.nn as nn
19import mindspore.ops as ops
20from mindspore import Tensor
21
22
23class Roll(nn.Cell):
24    def construct(self, x):
25        return ops.roll(x, shifts=2, dims=0)
26
27
28@pytest.mark.level1
29@pytest.mark.platform_arm_ascend_training
30@pytest.mark.platform_x86_ascend_training
31@pytest.mark.env_onecard
32@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
33def test_tensor_roll(mode):
34    """
35    Feature: tensor.roll
36    Description: Verify the result of roll
37    Expectation: success
38    """
39    ms.set_context(mode=mode)
40    input_x = Tensor(np.array([0, 1, 2, 3, 4]).astype(np.float32))
41    net = Roll()
42    output = net(input_x)
43    expect_output = [3., 4., 0., 1., 2.]
44    assert np.allclose(output.asnumpy(), expect_output)
45