1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <cassert>
16 #include <functional>
17 #include <iostream>
18 #include <map>
19 #include <string>
20 #include <tuple>
21 #include <unordered_map>
22 #include <unordered_set>
23 #include <utility>
24 #include <vector>
25
26 #include "source/cfa.h"
27 #include "source/opcode.h"
28 #include "source/spirv_constant.h"
29 #include "source/spirv_validator_options.h"
30 #include "source/val/basic_block.h"
31 #include "source/val/construct.h"
32 #include "source/val/function.h"
33 #include "source/val/validate.h"
34 #include "source/val/validation_state.h"
35
36 namespace spvtools {
37 namespace val {
38 namespace {
39
ValidatePhi(ValidationState_t & _,const Instruction * inst)40 spv_result_t ValidatePhi(ValidationState_t& _, const Instruction* inst) {
41 auto block = inst->block();
42 size_t num_in_ops = inst->words().size() - 3;
43 if (num_in_ops % 2 != 0) {
44 return _.diag(SPV_ERROR_INVALID_ID, inst)
45 << "OpPhi does not have an equal number of incoming values and "
46 "basic blocks.";
47 }
48
49 if (_.IsVoidType(inst->type_id())) {
50 return _.diag(SPV_ERROR_INVALID_DATA, inst)
51 << "OpPhi must not have void result type";
52 }
53 if (_.IsPointerType(inst->type_id()) &&
54 _.addressing_model() == spv::AddressingModel::Logical) {
55 if (!_.features().variable_pointers) {
56 return _.diag(SPV_ERROR_INVALID_DATA, inst)
57 << "Using pointers with OpPhi requires capability "
58 << "VariablePointers or VariablePointersStorageBuffer";
59 }
60 }
61
62 const Instruction* type_inst = _.FindDef(inst->type_id());
63 assert(type_inst);
64 const spv::Op type_opcode = type_inst->opcode();
65
66 if (!_.options()->before_hlsl_legalization &&
67 !_.HasCapability(spv::Capability::BindlessTextureNV)) {
68 if (type_opcode == spv::Op::OpTypeSampledImage ||
69 (_.HasCapability(spv::Capability::Shader) &&
70 (type_opcode == spv::Op::OpTypeImage ||
71 type_opcode == spv::Op::OpTypeSampler))) {
72 return _.diag(SPV_ERROR_INVALID_ID, inst)
73 << "Result type cannot be Op" << spvOpcodeString(type_opcode);
74 }
75 }
76
77 // Create a uniqued vector of predecessor ids for comparison against
78 // incoming values. OpBranchConditional %cond %label %label produces two
79 // predecessors in the CFG.
80 std::vector<uint32_t> pred_ids;
81 std::transform(block->predecessors()->begin(), block->predecessors()->end(),
82 std::back_inserter(pred_ids),
83 [](const BasicBlock* b) { return b->id(); });
84 std::sort(pred_ids.begin(), pred_ids.end());
85 pred_ids.erase(std::unique(pred_ids.begin(), pred_ids.end()), pred_ids.end());
86
87 size_t num_edges = num_in_ops / 2;
88 if (num_edges != pred_ids.size()) {
89 return _.diag(SPV_ERROR_INVALID_ID, inst)
90 << "OpPhi's number of incoming blocks (" << num_edges
91 << ") does not match block's predecessor count ("
92 << block->predecessors()->size() << ").";
93 }
94
95 std::unordered_set<uint32_t> observed_predecessors;
96
97 for (size_t i = 3; i < inst->words().size(); ++i) {
98 auto inc_id = inst->word(i);
99 if (i % 2 == 1) {
100 // Incoming value type must match the phi result type.
101 auto inc_type_id = _.GetTypeId(inc_id);
102 if (inst->type_id() != inc_type_id) {
103 return _.diag(SPV_ERROR_INVALID_ID, inst)
104 << "OpPhi's result type <id> " << _.getIdName(inst->type_id())
105 << " does not match incoming value <id> " << _.getIdName(inc_id)
106 << " type <id> " << _.getIdName(inc_type_id) << ".";
107 }
108 } else {
109 if (_.GetIdOpcode(inc_id) != spv::Op::OpLabel) {
110 return _.diag(SPV_ERROR_INVALID_ID, inst)
111 << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
112 << " is not an OpLabel.";
113 }
114
115 // Incoming basic block must be an immediate predecessor of the phi's
116 // block.
117 if (!std::binary_search(pred_ids.begin(), pred_ids.end(), inc_id)) {
118 return _.diag(SPV_ERROR_INVALID_ID, inst)
119 << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
120 << " is not a predecessor of <id> " << _.getIdName(block->id())
121 << ".";
122 }
123
124 // We must not have already seen this predecessor as one of the phi's
125 // operands.
126 if (observed_predecessors.count(inc_id) != 0) {
127 return _.diag(SPV_ERROR_INVALID_ID, inst)
128 << "OpPhi references incoming basic block <id> "
129 << _.getIdName(inc_id) << " multiple times.";
130 }
131
132 // Note the fact that we have now observed this predecessor.
133 observed_predecessors.insert(inc_id);
134 }
135 }
136
137 return SPV_SUCCESS;
138 }
139
ValidateBranch(ValidationState_t & _,const Instruction * inst)140 spv_result_t ValidateBranch(ValidationState_t& _, const Instruction* inst) {
141 // target operands must be OpLabel
142 const auto id = inst->GetOperandAs<uint32_t>(0);
143 const auto target = _.FindDef(id);
144 if (!target || spv::Op::OpLabel != target->opcode()) {
145 return _.diag(SPV_ERROR_INVALID_ID, inst)
146 << "'Target Label' operands for OpBranch must be the ID "
147 "of an OpLabel instruction";
148 }
149
150 return SPV_SUCCESS;
151 }
152
ValidateBranchConditional(ValidationState_t & _,const Instruction * inst)153 spv_result_t ValidateBranchConditional(ValidationState_t& _,
154 const Instruction* inst) {
155 // num_operands is either 3 or 5 --- if 5, the last two need to be literal
156 // integers
157 const auto num_operands = inst->operands().size();
158 if (num_operands != 3 && num_operands != 5) {
159 return _.diag(SPV_ERROR_INVALID_ID, inst)
160 << "OpBranchConditional requires either 3 or 5 parameters";
161 }
162
163 // grab the condition operand and check that it is a bool
164 const auto cond_id = inst->GetOperandAs<uint32_t>(0);
165 const auto cond_op = _.FindDef(cond_id);
166 if (!cond_op || !cond_op->type_id() ||
167 !_.IsBoolScalarType(cond_op->type_id())) {
168 return _.diag(SPV_ERROR_INVALID_ID, inst) << "Condition operand for "
169 "OpBranchConditional must be "
170 "of boolean type";
171 }
172
173 // target operands must be OpLabel
174 // note that we don't need to check that the target labels are in the same
175 // function,
176 // PerformCfgChecks already checks for that
177 const auto true_id = inst->GetOperandAs<uint32_t>(1);
178 const auto true_target = _.FindDef(true_id);
179 if (!true_target || spv::Op::OpLabel != true_target->opcode()) {
180 return _.diag(SPV_ERROR_INVALID_ID, inst)
181 << "The 'True Label' operand for OpBranchConditional must be the "
182 "ID of an OpLabel instruction";
183 }
184
185 const auto false_id = inst->GetOperandAs<uint32_t>(2);
186 const auto false_target = _.FindDef(false_id);
187 if (!false_target || spv::Op::OpLabel != false_target->opcode()) {
188 return _.diag(SPV_ERROR_INVALID_ID, inst)
189 << "The 'False Label' operand for OpBranchConditional must be the "
190 "ID of an OpLabel instruction";
191 }
192
193 if (_.version() >= SPV_SPIRV_VERSION_WORD(1, 6) && true_id == false_id) {
194 return _.diag(SPV_ERROR_INVALID_ID, inst)
195 << "In SPIR-V 1.6 or later, True Label and False Label must be "
196 "different labels";
197 }
198
199 return SPV_SUCCESS;
200 }
201
ValidateSwitch(ValidationState_t & _,const Instruction * inst)202 spv_result_t ValidateSwitch(ValidationState_t& _, const Instruction* inst) {
203 const auto num_operands = inst->operands().size();
204 // At least two operands (selector, default), any more than that are
205 // literal/target.
206
207 const auto sel_type_id = _.GetOperandTypeId(inst, 0);
208 if (!_.IsIntScalarType(sel_type_id)) {
209 return _.diag(SPV_ERROR_INVALID_ID, inst)
210 << "Selector type must be OpTypeInt";
211 }
212
213 const auto default_label = _.FindDef(inst->GetOperandAs<uint32_t>(1));
214 if (default_label->opcode() != spv::Op::OpLabel) {
215 return _.diag(SPV_ERROR_INVALID_ID, inst)
216 << "Default must be an OpLabel instruction";
217 }
218
219 // target operands must be OpLabel
220 for (size_t i = 2; i < num_operands; i += 2) {
221 // literal, id
222 const auto id = inst->GetOperandAs<uint32_t>(i + 1);
223 const auto target = _.FindDef(id);
224 if (!target || spv::Op::OpLabel != target->opcode()) {
225 return _.diag(SPV_ERROR_INVALID_ID, inst)
226 << "'Target Label' operands for OpSwitch must be IDs of an "
227 "OpLabel instruction";
228 }
229 }
230
231 return SPV_SUCCESS;
232 }
233
ValidateReturnValue(ValidationState_t & _,const Instruction * inst)234 spv_result_t ValidateReturnValue(ValidationState_t& _,
235 const Instruction* inst) {
236 const auto value_id = inst->GetOperandAs<uint32_t>(0);
237 const auto value = _.FindDef(value_id);
238 if (!value || !value->type_id()) {
239 return _.diag(SPV_ERROR_INVALID_ID, inst)
240 << "OpReturnValue Value <id> " << _.getIdName(value_id)
241 << " does not represent a value.";
242 }
243 auto value_type = _.FindDef(value->type_id());
244 if (!value_type || spv::Op::OpTypeVoid == value_type->opcode()) {
245 return _.diag(SPV_ERROR_INVALID_ID, inst)
246 << "OpReturnValue value's type <id> "
247 << _.getIdName(value->type_id()) << " is missing or void.";
248 }
249
250 if (_.addressing_model() == spv::AddressingModel::Logical &&
251 spv::Op::OpTypePointer == value_type->opcode() &&
252 !_.features().variable_pointers && !_.options()->relax_logical_pointer) {
253 return _.diag(SPV_ERROR_INVALID_ID, inst)
254 << "OpReturnValue value's type <id> "
255 << _.getIdName(value->type_id())
256 << " is a pointer, which is invalid in the Logical addressing "
257 "model.";
258 }
259
260 const auto function = inst->function();
261 const auto return_type = _.FindDef(function->GetResultTypeId());
262 if (!return_type || return_type->id() != value_type->id()) {
263 return _.diag(SPV_ERROR_INVALID_ID, inst)
264 << "OpReturnValue Value <id> " << _.getIdName(value_id)
265 << "s type does not match OpFunction's return type.";
266 }
267
268 return SPV_SUCCESS;
269 }
270
operator >>(const spv::LoopControlShift & lhs,const spv::LoopControlShift & rhs)271 uint32_t operator>>(const spv::LoopControlShift& lhs,
272 const spv::LoopControlShift& rhs) {
273 return uint32_t(lhs) >> uint32_t(rhs);
274 }
275
ValidateLoopMerge(ValidationState_t & _,const Instruction * inst)276 spv_result_t ValidateLoopMerge(ValidationState_t& _, const Instruction* inst) {
277 const auto merge_id = inst->GetOperandAs<uint32_t>(0);
278 const auto merge = _.FindDef(merge_id);
279 if (!merge || merge->opcode() != spv::Op::OpLabel) {
280 return _.diag(SPV_ERROR_INVALID_ID, inst)
281 << "Merge Block " << _.getIdName(merge_id) << " must be an OpLabel";
282 }
283 if (merge_id == inst->block()->id()) {
284 return _.diag(SPV_ERROR_INVALID_ID, inst)
285 << "Merge Block may not be the block containing the OpLoopMerge\n";
286 }
287
288 const auto continue_id = inst->GetOperandAs<uint32_t>(1);
289 const auto continue_target = _.FindDef(continue_id);
290 if (!continue_target || continue_target->opcode() != spv::Op::OpLabel) {
291 return _.diag(SPV_ERROR_INVALID_ID, inst)
292 << "Continue Target " << _.getIdName(continue_id)
293 << " must be an OpLabel";
294 }
295
296 if (merge_id == continue_id) {
297 return _.diag(SPV_ERROR_INVALID_ID, inst)
298 << "Merge Block and Continue Target must be different ids";
299 }
300
301 const auto loop_control = inst->GetOperandAs<spv::LoopControlShift>(2);
302 if ((loop_control >> spv::LoopControlShift::Unroll) & 0x1 &&
303 (loop_control >> spv::LoopControlShift::DontUnroll) & 0x1) {
304 return _.diag(SPV_ERROR_INVALID_DATA, inst)
305 << "Unroll and DontUnroll loop controls must not both be specified";
306 }
307 if ((loop_control >> spv::LoopControlShift::DontUnroll) & 0x1 &&
308 (loop_control >> spv::LoopControlShift::PeelCount) & 0x1) {
309 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PeelCount and DontUnroll "
310 "loop controls must not "
311 "both be specified";
312 }
313 if ((loop_control >> spv::LoopControlShift::DontUnroll) & 0x1 &&
314 (loop_control >> spv::LoopControlShift::PartialCount) & 0x1) {
315 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PartialCount and "
316 "DontUnroll loop controls "
317 "must not both be specified";
318 }
319
320 uint32_t operand = 3;
321 if ((loop_control >> spv::LoopControlShift::DependencyLength) & 0x1) {
322 ++operand;
323 }
324 if ((loop_control >> spv::LoopControlShift::MinIterations) & 0x1) {
325 ++operand;
326 }
327 if ((loop_control >> spv::LoopControlShift::MaxIterations) & 0x1) {
328 ++operand;
329 }
330 if ((loop_control >> spv::LoopControlShift::IterationMultiple) & 0x1) {
331 if (inst->operands().size() < operand ||
332 inst->GetOperandAs<uint32_t>(operand) == 0) {
333 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "IterationMultiple loop "
334 "control operand must be "
335 "greater than zero";
336 }
337 ++operand;
338 }
339 if ((loop_control >> spv::LoopControlShift::PeelCount) & 0x1) {
340 ++operand;
341 }
342 if ((loop_control >> spv::LoopControlShift::PartialCount) & 0x1) {
343 ++operand;
344 }
345
346 // That the right number of operands is present is checked by the parser. The
347 // above code tracks operands for expanded validation checking in the future.
348
349 return SPV_SUCCESS;
350 }
351
352 } // namespace
353
printDominatorList(const BasicBlock & b)354 void printDominatorList(const BasicBlock& b) {
355 std::cout << b.id() << " is dominated by: ";
356 const BasicBlock* bb = &b;
357 while (bb->immediate_dominator() != bb) {
358 bb = bb->immediate_dominator();
359 std::cout << bb->id() << " ";
360 }
361 }
362
363 #define CFG_ASSERT(ASSERT_FUNC, TARGET) \
364 if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode
365
FirstBlockAssert(ValidationState_t & _,uint32_t target)366 spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
367 if (_.current_function().IsFirstBlock(target)) {
368 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
369 << "First block " << _.getIdName(target) << " of function "
370 << _.getIdName(_.current_function().id()) << " is targeted by block "
371 << _.getIdName(_.current_function().current_block()->id());
372 }
373 return SPV_SUCCESS;
374 }
375
MergeBlockAssert(ValidationState_t & _,uint32_t merge_block)376 spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
377 if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
378 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
379 << "Block " << _.getIdName(merge_block)
380 << " is already a merge block for another header";
381 }
382 return SPV_SUCCESS;
383 }
384
385 /// Update the continue construct's exit blocks once the backedge blocks are
386 /// identified in the CFG.
UpdateContinueConstructExitBlocks(Function & function,const std::vector<std::pair<uint32_t,uint32_t>> & back_edges)387 void UpdateContinueConstructExitBlocks(
388 Function& function,
389 const std::vector<std::pair<uint32_t, uint32_t>>& back_edges) {
390 auto& constructs = function.constructs();
391 // TODO(umar): Think of a faster way to do this
392 for (auto& edge : back_edges) {
393 uint32_t back_edge_block_id;
394 uint32_t loop_header_block_id;
395 std::tie(back_edge_block_id, loop_header_block_id) = edge;
396 auto is_this_header = [=](Construct& c) {
397 return c.type() == ConstructType::kLoop &&
398 c.entry_block()->id() == loop_header_block_id;
399 };
400
401 for (auto construct : constructs) {
402 if (is_this_header(construct)) {
403 Construct* continue_construct =
404 construct.corresponding_constructs().back();
405 assert(continue_construct->type() == ConstructType::kContinue);
406
407 BasicBlock* back_edge_block;
408 std::tie(back_edge_block, std::ignore) =
409 function.GetBlock(back_edge_block_id);
410 continue_construct->set_exit(back_edge_block);
411 }
412 }
413 }
414 }
415
ConstructNames(ConstructType type)416 std::tuple<std::string, std::string, std::string> ConstructNames(
417 ConstructType type) {
418 std::string construct_name, header_name, exit_name;
419
420 switch (type) {
421 case ConstructType::kSelection:
422 construct_name = "selection";
423 header_name = "selection header";
424 exit_name = "merge block";
425 break;
426 case ConstructType::kLoop:
427 construct_name = "loop";
428 header_name = "loop header";
429 exit_name = "merge block";
430 break;
431 case ConstructType::kContinue:
432 construct_name = "continue";
433 header_name = "continue target";
434 exit_name = "back-edge block";
435 break;
436 case ConstructType::kCase:
437 construct_name = "case";
438 header_name = "case entry block";
439 exit_name = "case exit block";
440 break;
441 default:
442 assert(1 == 0 && "Not defined type");
443 }
444
445 return std::make_tuple(construct_name, header_name, exit_name);
446 }
447
448 /// Constructs an error message for construct validation errors
ConstructErrorString(const Construct & construct,const std::string & header_string,const std::string & exit_string,const std::string & dominate_text)449 std::string ConstructErrorString(const Construct& construct,
450 const std::string& header_string,
451 const std::string& exit_string,
452 const std::string& dominate_text) {
453 std::string construct_name, header_name, exit_name;
454 std::tie(construct_name, header_name, exit_name) =
455 ConstructNames(construct.type());
456
457 // TODO(umar): Add header block for continue constructs to error message
458 return "The " + construct_name + " construct with the " + header_name + " " +
459 header_string + " " + dominate_text + " the " + exit_name + " " +
460 exit_string;
461 }
462
463 // Finds the fall through case construct of |target_block| and records it in
464 // |case_fall_through|. Returns SPV_ERROR_INVALID_CFG if the case construct
465 // headed by |target_block| branches to multiple case constructs.
FindCaseFallThrough(ValidationState_t & _,BasicBlock * target_block,uint32_t * case_fall_through,const BasicBlock * merge,const std::unordered_set<uint32_t> & case_targets,Function * function)466 spv_result_t FindCaseFallThrough(
467 ValidationState_t& _, BasicBlock* target_block, uint32_t* case_fall_through,
468 const BasicBlock* merge, const std::unordered_set<uint32_t>& case_targets,
469 Function* function) {
470 std::vector<BasicBlock*> stack;
471 stack.push_back(target_block);
472 std::unordered_set<const BasicBlock*> visited;
473 bool target_reachable = target_block->structurally_reachable();
474 int target_depth = function->GetBlockDepth(target_block);
475 while (!stack.empty()) {
476 auto block = stack.back();
477 stack.pop_back();
478
479 if (block == merge) continue;
480
481 if (!visited.insert(block).second) continue;
482
483 if (target_reachable && block->structurally_reachable() &&
484 target_block->structurally_dominates(*block)) {
485 // Still in the case construct.
486 for (auto successor : *block->successors()) {
487 stack.push_back(successor);
488 }
489 } else {
490 // Exiting the case construct to non-merge block.
491 if (!case_targets.count(block->id())) {
492 int depth = function->GetBlockDepth(block);
493 if ((depth < target_depth) ||
494 (depth == target_depth && block->is_type(kBlockTypeContinue))) {
495 continue;
496 }
497
498 return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
499 << "Case construct that targets "
500 << _.getIdName(target_block->id())
501 << " has invalid branch to block " << _.getIdName(block->id())
502 << " (not another case construct, corresponding merge, outer "
503 "loop merge or outer loop continue)";
504 }
505
506 if (*case_fall_through == 0u) {
507 if (target_block != block) {
508 *case_fall_through = block->id();
509 }
510 } else if (*case_fall_through != block->id()) {
511 // Case construct has at most one branch to another case construct.
512 return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
513 << "Case construct that targets "
514 << _.getIdName(target_block->id())
515 << " has branches to multiple other case construct targets "
516 << _.getIdName(*case_fall_through) << " and "
517 << _.getIdName(block->id());
518 }
519 }
520 }
521
522 return SPV_SUCCESS;
523 }
524
StructuredSwitchChecks(ValidationState_t & _,Function * function,const Instruction * switch_inst,const BasicBlock * header,const BasicBlock * merge)525 spv_result_t StructuredSwitchChecks(ValidationState_t& _, Function* function,
526 const Instruction* switch_inst,
527 const BasicBlock* header,
528 const BasicBlock* merge) {
529 std::unordered_set<uint32_t> case_targets;
530 for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
531 uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
532 if (target != merge->id()) case_targets.insert(target);
533 }
534 // Tracks how many times each case construct is targeted by another case
535 // construct.
536 std::map<uint32_t, uint32_t> num_fall_through_targeted;
537 uint32_t default_case_fall_through = 0u;
538 uint32_t default_target = switch_inst->GetOperandAs<uint32_t>(1u);
539 bool default_appears_multiple_times = false;
540 for (uint32_t i = 3; i < switch_inst->operands().size(); i += 2) {
541 if (default_target == switch_inst->GetOperandAs<uint32_t>(i)) {
542 default_appears_multiple_times = true;
543 break;
544 }
545 }
546 std::unordered_map<uint32_t, uint32_t> seen_to_fall_through;
547 for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
548 uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
549 if (target == merge->id()) continue;
550
551 uint32_t case_fall_through = 0u;
552 auto seen_iter = seen_to_fall_through.find(target);
553 if (seen_iter == seen_to_fall_through.end()) {
554 const auto target_block = function->GetBlock(target).first;
555 // OpSwitch must dominate all its case constructs.
556 if (header->structurally_reachable() &&
557 target_block->structurally_reachable() &&
558 !header->structurally_dominates(*target_block)) {
559 return _.diag(SPV_ERROR_INVALID_CFG, header->label())
560 << "Switch header " << _.getIdName(header->id())
561 << " does not structurally dominate its case construct "
562 << _.getIdName(target);
563 }
564
565 if (auto error = FindCaseFallThrough(_, target_block, &case_fall_through,
566 merge, case_targets, function)) {
567 return error;
568 }
569
570 // Track how many time the fall through case has been targeted.
571 if (case_fall_through != 0u) {
572 auto where = num_fall_through_targeted.lower_bound(case_fall_through);
573 if (where == num_fall_through_targeted.end() ||
574 where->first != case_fall_through) {
575 num_fall_through_targeted.insert(
576 where, std::make_pair(case_fall_through, 1));
577 } else {
578 where->second++;
579 }
580 }
581 seen_to_fall_through.insert(std::make_pair(target, case_fall_through));
582 } else {
583 case_fall_through = seen_iter->second;
584 }
585
586 if (case_fall_through == default_target &&
587 !default_appears_multiple_times) {
588 case_fall_through = default_case_fall_through;
589 }
590 if (case_fall_through != 0u) {
591 bool is_default = i == 1;
592 if (is_default) {
593 default_case_fall_through = case_fall_through;
594 } else {
595 // Allow code like:
596 // case x:
597 // case y:
598 // ...
599 // case z:
600 //
601 // Where x and y target the same block and fall through to z.
602 uint32_t j = i;
603 while ((j + 2 < switch_inst->operands().size()) &&
604 target == switch_inst->GetOperandAs<uint32_t>(j + 2)) {
605 j += 2;
606 }
607 // If Target T1 branches to Target T2, or if Target T1 branches to the
608 // Default target and the Default target branches to Target T2, then T1
609 // must immediately precede T2 in the list of OpSwitch Target operands.
610 if ((switch_inst->operands().size() < j + 2) ||
611 (case_fall_through != switch_inst->GetOperandAs<uint32_t>(j + 2))) {
612 return _.diag(SPV_ERROR_INVALID_CFG, switch_inst)
613 << "Case construct that targets " << _.getIdName(target)
614 << " has branches to the case construct that targets "
615 << _.getIdName(case_fall_through)
616 << ", but does not immediately precede it in the "
617 "OpSwitch's target list";
618 }
619 }
620 }
621 }
622
623 // Each case construct must be branched to by at most one other case
624 // construct.
625 for (const auto& pair : num_fall_through_targeted) {
626 if (pair.second > 1) {
627 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pair.first))
628 << "Multiple case constructs have branches to the case construct "
629 "that targets "
630 << _.getIdName(pair.first);
631 }
632 }
633
634 return SPV_SUCCESS;
635 }
636
637 // Validates that all CFG divergences (i.e. conditional branch or switch) are
638 // structured correctly. Either divergence is preceded by a merge instruction
639 // or the divergence introduces at most one unseen label.
ValidateStructuredSelections(ValidationState_t & _,const std::vector<const BasicBlock * > & postorder)640 spv_result_t ValidateStructuredSelections(
641 ValidationState_t& _, const std::vector<const BasicBlock*>& postorder) {
642 std::unordered_set<uint32_t> seen;
643 for (auto iter = postorder.rbegin(); iter != postorder.rend(); ++iter) {
644 const auto* block = *iter;
645 const auto* terminator = block->terminator();
646 if (!terminator) continue;
647 const auto index = terminator - &_.ordered_instructions()[0];
648 auto* merge = &_.ordered_instructions()[index - 1];
649 // Marks merges and continues as seen.
650 if (merge->opcode() == spv::Op::OpSelectionMerge) {
651 seen.insert(merge->GetOperandAs<uint32_t>(0));
652 } else if (merge->opcode() == spv::Op::OpLoopMerge) {
653 seen.insert(merge->GetOperandAs<uint32_t>(0));
654 seen.insert(merge->GetOperandAs<uint32_t>(1));
655 } else {
656 // Only track the pointer if it is a merge instruction.
657 merge = nullptr;
658 }
659
660 // Skip unreachable blocks.
661 if (!block->structurally_reachable()) continue;
662
663 if (terminator->opcode() == spv::Op::OpBranchConditional) {
664 const auto true_label = terminator->GetOperandAs<uint32_t>(1);
665 const auto false_label = terminator->GetOperandAs<uint32_t>(2);
666 // Mark the upcoming blocks as seen now, but only error out if this block
667 // was missing a merge instruction and both labels hadn't been seen
668 // previously.
669 const bool true_label_unseen = seen.insert(true_label).second;
670 const bool false_label_unseen = seen.insert(false_label).second;
671 if ((!merge || merge->opcode() == spv::Op::OpLoopMerge) &&
672 true_label_unseen && false_label_unseen) {
673 return _.diag(SPV_ERROR_INVALID_CFG, terminator)
674 << "Selection must be structured";
675 }
676 } else if (terminator->opcode() == spv::Op::OpSwitch) {
677 if (!merge) {
678 return _.diag(SPV_ERROR_INVALID_CFG, terminator)
679 << "OpSwitch must be preceded by an OpSelectionMerge "
680 "instruction";
681 }
682 // Mark the targets as seen.
683 for (uint32_t i = 1; i < terminator->operands().size(); i += 2) {
684 const auto target = terminator->GetOperandAs<uint32_t>(i);
685 seen.insert(target);
686 }
687 }
688 }
689
690 return SPV_SUCCESS;
691 }
692
StructuredControlFlowChecks(ValidationState_t & _,Function * function,const std::vector<std::pair<uint32_t,uint32_t>> & back_edges,const std::vector<const BasicBlock * > & postorder)693 spv_result_t StructuredControlFlowChecks(
694 ValidationState_t& _, Function* function,
695 const std::vector<std::pair<uint32_t, uint32_t>>& back_edges,
696 const std::vector<const BasicBlock*>& postorder) {
697 /// Check all backedges target only loop headers and have exactly one
698 /// back-edge branching to it
699
700 // Map a loop header to blocks with back-edges to the loop header.
701 std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
702 for (auto back_edge : back_edges) {
703 uint32_t back_edge_block;
704 uint32_t header_block;
705 std::tie(back_edge_block, header_block) = back_edge;
706 if (!function->IsBlockType(header_block, kBlockTypeLoop)) {
707 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(back_edge_block))
708 << "Back-edges (" << _.getIdName(back_edge_block) << " -> "
709 << _.getIdName(header_block)
710 << ") can only be formed between a block and a loop header.";
711 }
712 loop_latch_blocks[header_block].insert(back_edge_block);
713 }
714
715 // Check the loop headers have exactly one back-edge branching to it
716 for (BasicBlock* loop_header : function->ordered_blocks()) {
717 if (!loop_header->structurally_reachable()) continue;
718 if (!loop_header->is_type(kBlockTypeLoop)) continue;
719 auto loop_header_id = loop_header->id();
720 auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
721 if (num_latch_blocks != 1) {
722 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(loop_header_id))
723 << "Loop header " << _.getIdName(loop_header_id)
724 << " is targeted by " << num_latch_blocks
725 << " back-edge blocks but the standard requires exactly one";
726 }
727 }
728
729 // Check construct rules
730 for (const Construct& construct : function->constructs()) {
731 auto header = construct.entry_block();
732 if (!header->structurally_reachable()) continue;
733 auto merge = construct.exit_block();
734
735 if (!merge) {
736 std::string construct_name, header_name, exit_name;
737 std::tie(construct_name, header_name, exit_name) =
738 ConstructNames(construct.type());
739 return _.diag(SPV_ERROR_INTERNAL, _.FindDef(header->id()))
740 << "Construct " + construct_name + " with " + header_name + " " +
741 _.getIdName(header->id()) + " does not have a " +
742 exit_name + ". This may be a bug in the validator.";
743 }
744
745 // If the header is reachable, the merge is guaranteed to be structurally
746 // reachable.
747 if (!header->structurally_dominates(*merge)) {
748 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
749 << ConstructErrorString(construct, _.getIdName(header->id()),
750 _.getIdName(merge->id()),
751 "does not structurally dominate");
752 }
753
754 // If it's really a merge block for a selection or loop, then it must be
755 // *strictly* structrually dominated by the header.
756 if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
757 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
758 << ConstructErrorString(construct, _.getIdName(header->id()),
759 _.getIdName(merge->id()),
760 "does not strictly structurally dominate");
761 }
762
763 // Check post-dominance for continue constructs. But dominance and
764 // post-dominance only make sense when the construct is reachable.
765 if (construct.type() == ConstructType::kContinue) {
766 if (!merge->structurally_postdominates(*header)) {
767 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
768 << ConstructErrorString(construct, _.getIdName(header->id()),
769 _.getIdName(merge->id()),
770 "is not structurally post dominated by");
771 }
772 }
773
774 Construct::ConstructBlockSet construct_blocks = construct.blocks(function);
775 std::string construct_name, header_name, exit_name;
776 std::tie(construct_name, header_name, exit_name) =
777 ConstructNames(construct.type());
778 for (auto block : construct_blocks) {
779 // Check that all exits from the construct are via structured exits.
780 for (auto succ : *block->successors()) {
781 if (!construct_blocks.count(succ) &&
782 !construct.IsStructuredExit(_, succ)) {
783 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
784 << "block <ID> " << _.getIdName(block->id()) << " exits the "
785 << construct_name << " headed by <ID> "
786 << _.getIdName(header->id())
787 << ", but not via a structured exit";
788 }
789 }
790 if (block == header) continue;
791 // Check that for all non-header blocks, all predecessors are within this
792 // construct.
793 for (auto pred : *block->predecessors()) {
794 if (pred->structurally_reachable() && !construct_blocks.count(pred)) {
795 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pred->id()))
796 << "block <ID> " << pred->id() << " branches to the "
797 << construct_name << " construct, but not to the "
798 << header_name << " <ID> " << header->id();
799 }
800 }
801
802 if (block->is_type(BlockType::kBlockTypeSelection) ||
803 block->is_type(BlockType::kBlockTypeLoop)) {
804 size_t index = (block->terminator() - &_.ordered_instructions()[0]) - 1;
805 const auto& merge_inst = _.ordered_instructions()[index];
806 if (merge_inst.opcode() == spv::Op::OpSelectionMerge ||
807 merge_inst.opcode() == spv::Op::OpLoopMerge) {
808 uint32_t merge_id = merge_inst.GetOperandAs<uint32_t>(0);
809 auto merge_block = function->GetBlock(merge_id).first;
810 if (merge_block->structurally_reachable() &&
811 !construct_blocks.count(merge_block)) {
812 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
813 << "Header block " << _.getIdName(block->id())
814 << " is contained in the " << construct_name
815 << " construct headed by " << _.getIdName(header->id())
816 << ", but its merge block " << _.getIdName(merge_id)
817 << " is not";
818 }
819 }
820 }
821 }
822
823 if (construct.type() == ConstructType::kLoop) {
824 // If the continue target differs from the loop header, then check that
825 // all edges into the continue construct come from within the loop.
826 const auto index = header->terminator() - &_.ordered_instructions()[0];
827 const auto& merge_inst = _.ordered_instructions()[index - 1];
828 const auto continue_id = merge_inst.GetOperandAs<uint32_t>(1);
829 const auto* continue_inst = _.FindDef(continue_id);
830 // OpLabel instructions aren't stored as part of the basic block for
831 // legacy reaasons. Grab the next instruction and use it's block pointer
832 // instead.
833 const auto next_index =
834 (continue_inst - &_.ordered_instructions()[0]) + 1;
835 const auto& next_inst = _.ordered_instructions()[next_index];
836 const auto* continue_target = next_inst.block();
837 if (header->id() != continue_id) {
838 for (auto pred : *continue_target->predecessors()) {
839 // Ignore back-edges from within the continue construct.
840 bool is_back_edge = false;
841 for (auto back_edge : back_edges) {
842 uint32_t back_edge_block;
843 uint32_t header_block;
844 std::tie(back_edge_block, header_block) = back_edge;
845 if (header_block == continue_id && back_edge_block == pred->id())
846 is_back_edge = true;
847 }
848 if (!construct_blocks.count(pred) && !is_back_edge) {
849 return _.diag(SPV_ERROR_INVALID_CFG, pred->terminator())
850 << "Block " << _.getIdName(pred->id())
851 << " branches to the loop continue target "
852 << _.getIdName(continue_id)
853 << ", but is not contained in the associated loop construct "
854 << _.getIdName(header->id());
855 }
856 }
857 }
858 }
859
860 // Checks rules for case constructs.
861 if (construct.type() == ConstructType::kSelection &&
862 header->terminator()->opcode() == spv::Op::OpSwitch) {
863 const auto terminator = header->terminator();
864 if (auto error =
865 StructuredSwitchChecks(_, function, terminator, header, merge)) {
866 return error;
867 }
868 }
869 }
870
871 if (auto error = ValidateStructuredSelections(_, postorder)) {
872 return error;
873 }
874
875 return SPV_SUCCESS;
876 }
877
PerformCfgChecks(ValidationState_t & _)878 spv_result_t PerformCfgChecks(ValidationState_t& _) {
879 for (auto& function : _.functions()) {
880 // Check all referenced blocks are defined within a function
881 if (function.undefined_block_count() != 0) {
882 std::string undef_blocks("{");
883 bool first = true;
884 for (auto undefined_block : function.undefined_blocks()) {
885 undef_blocks += _.getIdName(undefined_block);
886 if (!first) {
887 undef_blocks += " ";
888 }
889 first = false;
890 }
891 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(function.id()))
892 << "Block(s) " << undef_blocks << "}"
893 << " are referenced but not defined in function "
894 << _.getIdName(function.id());
895 }
896
897 // Set each block's immediate dominator.
898 //
899 // We want to analyze all the blocks in the function, even in degenerate
900 // control flow cases including unreachable blocks. So use the augmented
901 // CFG to ensure we cover all the blocks.
902 std::vector<const BasicBlock*> postorder;
903 auto ignore_block = [](const BasicBlock*) {};
904 auto no_terminal_blocks = [](const BasicBlock*) { return false; };
905 if (!function.ordered_blocks().empty()) {
906 /// calculate dominators
907 CFA<BasicBlock>::DepthFirstTraversal(
908 function.first_block(), function.AugmentedCFGSuccessorsFunction(),
909 ignore_block, [&](const BasicBlock* b) { postorder.push_back(b); },
910 no_terminal_blocks);
911 auto edges = CFA<BasicBlock>::CalculateDominators(
912 postorder, function.AugmentedCFGPredecessorsFunction());
913 for (auto edge : edges) {
914 if (edge.first != edge.second)
915 edge.first->SetImmediateDominator(edge.second);
916 }
917 }
918
919 auto& blocks = function.ordered_blocks();
920 if (!blocks.empty()) {
921 // Check if the order of blocks in the binary appear before the blocks
922 // they dominate
923 for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
924 if (auto idom = (*block)->immediate_dominator()) {
925 if (idom != function.pseudo_entry_block() &&
926 block == std::find(begin(blocks), block, idom)) {
927 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(idom->id()))
928 << "Block " << _.getIdName((*block)->id())
929 << " appears in the binary before its dominator "
930 << _.getIdName(idom->id());
931 }
932 }
933 }
934 // If we have structured control flow, check that no block has a control
935 // flow nesting depth larger than the limit.
936 if (_.HasCapability(spv::Capability::Shader)) {
937 const int control_flow_nesting_depth_limit =
938 _.options()->universal_limits_.max_control_flow_nesting_depth;
939 for (auto block = begin(blocks); block != end(blocks); ++block) {
940 if (function.GetBlockDepth(*block) >
941 control_flow_nesting_depth_limit) {
942 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef((*block)->id()))
943 << "Maximum Control Flow nesting depth exceeded.";
944 }
945 }
946 }
947 }
948
949 /// Structured control flow checks are only required for shader capabilities
950 if (_.HasCapability(spv::Capability::Shader)) {
951 // Calculate structural dominance.
952 postorder.clear();
953 std::vector<const BasicBlock*> postdom_postorder;
954 std::vector<std::pair<uint32_t, uint32_t>> back_edges;
955 if (!function.ordered_blocks().empty()) {
956 /// calculate dominators
957 CFA<BasicBlock>::DepthFirstTraversal(
958 function.first_block(),
959 function.AugmentedStructuralCFGSuccessorsFunction(), ignore_block,
960 [&](const BasicBlock* b) { postorder.push_back(b); },
961 no_terminal_blocks);
962 auto edges = CFA<BasicBlock>::CalculateDominators(
963 postorder, function.AugmentedStructuralCFGPredecessorsFunction());
964 for (auto edge : edges) {
965 if (edge.first != edge.second)
966 edge.first->SetImmediateStructuralDominator(edge.second);
967 }
968
969 /// calculate post dominators
970 CFA<BasicBlock>::DepthFirstTraversal(
971 function.pseudo_exit_block(),
972 function.AugmentedStructuralCFGPredecessorsFunction(), ignore_block,
973 [&](const BasicBlock* b) { postdom_postorder.push_back(b); },
974 no_terminal_blocks);
975 auto postdom_edges = CFA<BasicBlock>::CalculateDominators(
976 postdom_postorder,
977 function.AugmentedStructuralCFGSuccessorsFunction());
978 for (auto edge : postdom_edges) {
979 edge.first->SetImmediateStructuralPostDominator(edge.second);
980 }
981 /// calculate back edges.
982 CFA<BasicBlock>::DepthFirstTraversal(
983 function.pseudo_entry_block(),
984 function.AugmentedStructuralCFGSuccessorsFunction(), ignore_block,
985 ignore_block,
986 [&](const BasicBlock* from, const BasicBlock* to) {
987 // A back edge must be a real edge. Since the augmented successors
988 // contain structural edges, filter those from consideration.
989 for (const auto* succ : *(from->successors())) {
990 if (succ == to) back_edges.emplace_back(from->id(), to->id());
991 }
992 },
993 no_terminal_blocks);
994 }
995 UpdateContinueConstructExitBlocks(function, back_edges);
996
997 if (auto error =
998 StructuredControlFlowChecks(_, &function, back_edges, postorder))
999 return error;
1000 }
1001 }
1002 return SPV_SUCCESS;
1003 }
1004
CfgPass(ValidationState_t & _,const Instruction * inst)1005 spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst) {
1006 spv::Op opcode = inst->opcode();
1007 switch (opcode) {
1008 case spv::Op::OpLabel:
1009 if (auto error = _.current_function().RegisterBlock(inst->id()))
1010 return error;
1011
1012 // TODO(github:1661) This should be done in the
1013 // ValidationState::RegisterInstruction method but because of the order of
1014 // passes the OpLabel ends up not being part of the basic block it starts.
1015 _.current_function().current_block()->set_label(inst);
1016 break;
1017 case spv::Op::OpLoopMerge: {
1018 uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
1019 uint32_t continue_block = inst->GetOperandAs<uint32_t>(1);
1020 CFG_ASSERT(MergeBlockAssert, merge_block);
1021
1022 if (auto error = _.current_function().RegisterLoopMerge(merge_block,
1023 continue_block))
1024 return error;
1025 } break;
1026 case spv::Op::OpSelectionMerge: {
1027 uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
1028 CFG_ASSERT(MergeBlockAssert, merge_block);
1029
1030 if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
1031 return error;
1032 } break;
1033 case spv::Op::OpBranch: {
1034 uint32_t target = inst->GetOperandAs<uint32_t>(0);
1035 CFG_ASSERT(FirstBlockAssert, target);
1036
1037 _.current_function().RegisterBlockEnd({target});
1038 } break;
1039 case spv::Op::OpBranchConditional: {
1040 uint32_t tlabel = inst->GetOperandAs<uint32_t>(1);
1041 uint32_t flabel = inst->GetOperandAs<uint32_t>(2);
1042 CFG_ASSERT(FirstBlockAssert, tlabel);
1043 CFG_ASSERT(FirstBlockAssert, flabel);
1044
1045 _.current_function().RegisterBlockEnd({tlabel, flabel});
1046 } break;
1047
1048 case spv::Op::OpSwitch: {
1049 std::vector<uint32_t> cases;
1050 for (size_t i = 1; i < inst->operands().size(); i += 2) {
1051 uint32_t target = inst->GetOperandAs<uint32_t>(i);
1052 CFG_ASSERT(FirstBlockAssert, target);
1053 cases.push_back(target);
1054 }
1055 _.current_function().RegisterBlockEnd({cases});
1056 } break;
1057 case spv::Op::OpReturn: {
1058 const uint32_t return_type = _.current_function().GetResultTypeId();
1059 const Instruction* return_type_inst = _.FindDef(return_type);
1060 assert(return_type_inst);
1061 if (return_type_inst->opcode() != spv::Op::OpTypeVoid)
1062 return _.diag(SPV_ERROR_INVALID_CFG, inst)
1063 << "OpReturn can only be called from a function with void "
1064 << "return type.";
1065 _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
1066 break;
1067 }
1068 case spv::Op::OpKill:
1069 case spv::Op::OpReturnValue:
1070 case spv::Op::OpUnreachable:
1071 case spv::Op::OpTerminateInvocation:
1072 case spv::Op::OpIgnoreIntersectionKHR:
1073 case spv::Op::OpTerminateRayKHR:
1074 case spv::Op::OpEmitMeshTasksEXT:
1075 _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
1076 // Ops with dedicated passes check for the Execution Model there
1077 if (opcode == spv::Op::OpKill) {
1078 _.current_function().RegisterExecutionModelLimitation(
1079 spv::ExecutionModel::Fragment,
1080 "OpKill requires Fragment execution model");
1081 }
1082 if (opcode == spv::Op::OpTerminateInvocation) {
1083 _.current_function().RegisterExecutionModelLimitation(
1084 spv::ExecutionModel::Fragment,
1085 "OpTerminateInvocation requires Fragment execution model");
1086 }
1087 if (opcode == spv::Op::OpIgnoreIntersectionKHR) {
1088 _.current_function().RegisterExecutionModelLimitation(
1089 spv::ExecutionModel::AnyHitKHR,
1090 "OpIgnoreIntersectionKHR requires AnyHitKHR execution model");
1091 }
1092 if (opcode == spv::Op::OpTerminateRayKHR) {
1093 _.current_function().RegisterExecutionModelLimitation(
1094 spv::ExecutionModel::AnyHitKHR,
1095 "OpTerminateRayKHR requires AnyHitKHR execution model");
1096 }
1097
1098 break;
1099 default:
1100 break;
1101 }
1102 return SPV_SUCCESS;
1103 }
1104
ReachabilityPass(ValidationState_t & _)1105 void ReachabilityPass(ValidationState_t& _) {
1106 for (auto& f : _.functions()) {
1107 std::vector<BasicBlock*> stack;
1108 auto entry = f.first_block();
1109 // Skip function declarations.
1110 if (entry) stack.push_back(entry);
1111
1112 while (!stack.empty()) {
1113 auto block = stack.back();
1114 stack.pop_back();
1115
1116 if (block->reachable()) continue;
1117
1118 block->set_reachable(true);
1119 for (auto succ : *block->successors()) {
1120 stack.push_back(succ);
1121 }
1122 }
1123 }
1124
1125 // Repeat for structural reachability.
1126 for (auto& f : _.functions()) {
1127 std::vector<BasicBlock*> stack;
1128 auto entry = f.first_block();
1129 // Skip function declarations.
1130 if (entry) stack.push_back(entry);
1131
1132 while (!stack.empty()) {
1133 auto block = stack.back();
1134 stack.pop_back();
1135
1136 if (block->structurally_reachable()) continue;
1137
1138 block->set_structurally_reachable(true);
1139 for (auto succ : *block->structural_successors()) {
1140 stack.push_back(succ);
1141 }
1142 }
1143 }
1144 }
1145
ControlFlowPass(ValidationState_t & _,const Instruction * inst)1146 spv_result_t ControlFlowPass(ValidationState_t& _, const Instruction* inst) {
1147 switch (inst->opcode()) {
1148 case spv::Op::OpPhi:
1149 if (auto error = ValidatePhi(_, inst)) return error;
1150 break;
1151 case spv::Op::OpBranch:
1152 if (auto error = ValidateBranch(_, inst)) return error;
1153 break;
1154 case spv::Op::OpBranchConditional:
1155 if (auto error = ValidateBranchConditional(_, inst)) return error;
1156 break;
1157 case spv::Op::OpReturnValue:
1158 if (auto error = ValidateReturnValue(_, inst)) return error;
1159 break;
1160 case spv::Op::OpSwitch:
1161 if (auto error = ValidateSwitch(_, inst)) return error;
1162 break;
1163 case spv::Op::OpLoopMerge:
1164 if (auto error = ValidateLoopMerge(_, inst)) return error;
1165 break;
1166 default:
1167 break;
1168 }
1169
1170 return SPV_SUCCESS;
1171 }
1172
1173 } // namespace val
1174 } // namespace spvtools
1175