• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 typedef enum {
64     need_more,      /* block not completed, need more input or more output */
65     block_done,     /* block flush performed */
66     finish_started, /* finish started, need only more output at next deflate */
67     finish_done     /* finish done, accept no more input or output */
68 } block_state;
69 
70 typedef block_state (*compress_func)(deflate_state *s, int flush);
71 /* Compression function. Returns the block state after the call. */
72 
73 local block_state deflate_stored(deflate_state *s, int flush);
74 local block_state deflate_fast(deflate_state *s, int flush);
75 #ifndef FASTEST
76 local block_state deflate_slow(deflate_state *s, int flush);
77 #endif
78 local block_state deflate_rle(deflate_state *s, int flush);
79 local block_state deflate_huff(deflate_state *s, int flush);
80 
81 /* ===========================================================================
82  * Local data
83  */
84 
85 #define NIL 0
86 /* Tail of hash chains */
87 
88 #ifndef TOO_FAR
89 #  define TOO_FAR 4096
90 #endif
91 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92 
93 /* Values for max_lazy_match, good_match and max_chain_length, depending on
94  * the desired pack level (0..9). The values given below have been tuned to
95  * exclude worst case performance for pathological files. Better values may be
96  * found for specific files.
97  */
98 typedef struct config_s {
99    ush good_length; /* reduce lazy search above this match length */
100    ush max_lazy;    /* do not perform lazy search above this match length */
101    ush nice_length; /* quit search above this match length */
102    ush max_chain;
103    compress_func func;
104 } config;
105 
106 #ifdef FASTEST
107 local const config configuration_table[2] = {
108 /*      good lazy nice chain */
109 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111 #else
112 local const config configuration_table[10] = {
113 /*      good lazy nice chain */
114 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116 /* 2 */ {4,    5, 16,    8, deflate_fast},
117 /* 3 */ {4,    6, 32,   32, deflate_fast},
118 
119 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120 /* 5 */ {8,   16, 32,   32, deflate_slow},
121 /* 6 */ {8,   16, 128, 128, deflate_slow},
122 /* 7 */ {8,   32, 128, 256, deflate_slow},
123 /* 8 */ {32, 128, 258, 1024, deflate_slow},
124 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125 #endif
126 
127 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129  * meaning.
130  */
131 
132 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134 
135 /* ===========================================================================
136  * Update a hash value with the given input byte
137  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138  *    characters, so that a running hash key can be computed from the previous
139  *    key instead of complete recalculation each time.
140  */
141 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142 
143 
144 /* ===========================================================================
145  * Insert string str in the dictionary and set match_head to the previous head
146  * of the hash chain (the most recent string with same hash key). Return
147  * the previous length of the hash chain.
148  * If this file is compiled with -DFASTEST, the compression level is forced
149  * to 1, and no hash chains are maintained.
150  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151  *    characters and the first MIN_MATCH bytes of str are valid (except for
152  *    the last MIN_MATCH-1 bytes of the input file).
153  */
154 #ifdef FASTEST
155 #define INSERT_STRING(s, str, match_head) \
156    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157     match_head = s->head[s->ins_h], \
158     s->head[s->ins_h] = (Pos)(str))
159 #else
160 #define INSERT_STRING(s, str, match_head) \
161    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163     s->head[s->ins_h] = (Pos)(str))
164 #endif
165 
166 /* ===========================================================================
167  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168  * prev[] will be initialized on the fly.
169  */
170 #define CLEAR_HASH(s) \
171     do { \
172         s->head[s->hash_size - 1] = NIL; \
173         zmemzero((Bytef *)s->head, \
174                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175     } while (0)
176 
177 /* ===========================================================================
178  * Slide the hash table when sliding the window down (could be avoided with 32
179  * bit values at the expense of memory usage). We slide even when level == 0 to
180  * keep the hash table consistent if we switch back to level > 0 later.
181  */
182 #if defined(__has_feature)
183 #  if __has_feature(memory_sanitizer)
184      __attribute__((no_sanitize("memory")))
185 #  endif
186 #endif
slide_hash(deflate_state * s)187 local void slide_hash(deflate_state *s)
188 {
189     unsigned n, m;
190     Posf *p;
191     uInt wsize = s->w_size;
192 
193     n = s->hash_size;
194     p = &s->head[n];
195     do {
196         m = *--p;
197         *p = (Pos)(m >= wsize ? m - wsize : NIL);
198     } while (--n);
199     n = wsize;
200 #ifndef FASTEST
201     p = &s->prev[n];
202     do {
203         m = *--p;
204         *p = (Pos)(m >= wsize ? m - wsize : NIL);
205         /* If n is not on any hash chain, prev[n] is garbage but
206          * its value will never be used.
207          */
208     } while (--n);
209 #endif
210 }
211 
212 /* ===========================================================================
213  * Read a new buffer from the current input stream, update the adler32
214  * and total number of bytes read.  All deflate() input goes through
215  * this function so some applications may wish to modify it to avoid
216  * allocating a large strm->next_in buffer and copying from it.
217  * (See also flush_pending()).
218  */
read_buf(z_streamp strm,Bytef * buf,unsigned size)219 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size)
220 {
221     unsigned len = strm->avail_in;
222 
223     if (len > size) len = size;
224     if (len == 0) return 0;
225 
226     strm->avail_in  -= len;
227 
228     zmemcpy(buf, strm->next_in, len);
229     if (strm->state->wrap == 1) {
230         strm->adler = adler32(strm->adler, buf, len);
231     }
232 #ifdef GZIP
233     else if (strm->state->wrap == 2) {
234         strm->adler = crc32(strm->adler, buf, len);
235     }
236 #endif
237     strm->next_in  += len;
238     strm->total_in += len;
239 
240     return len;
241 }
242 
243 /* ===========================================================================
244  * Fill the window when the lookahead becomes insufficient.
245  * Updates strstart and lookahead.
246  *
247  * IN assertion: lookahead < MIN_LOOKAHEAD
248  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249  *    At least one byte has been read, or avail_in == 0; reads are
250  *    performed for at least two bytes (required for the zip translate_eol
251  *    option -- not supported here).
252  */
fill_window(deflate_state * s)253 local void fill_window(deflate_state *s)
254 {
255     unsigned n;
256     unsigned more;    /* Amount of free space at the end of the window. */
257     uInt wsize = s->w_size;
258 
259     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
260 
261     do {
262         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
263 
264         /* Deal with !@#$% 64K limit: */
265         if (sizeof(int) <= 2) {
266             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
267                 more = wsize;
268 
269             } else if (more == (unsigned)(-1)) {
270                 /* Very unlikely, but possible on 16 bit machine if
271                  * strstart == 0 && lookahead == 1 (input done a byte at time)
272                  */
273                 more--;
274             }
275         }
276 
277         /* If the window is almost full and there is insufficient lookahead,
278          * move the upper half to the lower one to make room in the upper half.
279          */
280         if (s->strstart >= wsize + MAX_DIST(s)) {
281 
282             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
283             s->match_start -= wsize;
284             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
285             s->block_start -= (long) wsize;
286             if (s->insert > s->strstart)
287                 s->insert = s->strstart;
288             slide_hash(s);
289             more += wsize;
290         }
291         if (s->strm->avail_in == 0) break;
292 
293         /* If there was no sliding:
294          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
295          *    more == window_size - lookahead - strstart
296          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
297          * => more >= window_size - 2*WSIZE + 2
298          * In the BIG_MEM or MMAP case (not yet supported),
299          *   window_size == input_size + MIN_LOOKAHEAD  &&
300          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
301          * Otherwise, window_size == 2*WSIZE so more >= 2.
302          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
303          */
304         Assert(more >= 2, "more < 2");
305 
306         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
307         s->lookahead += n;
308 
309         /* Initialize the hash value now that we have some input: */
310         if (s->lookahead + s->insert >= MIN_MATCH) {
311             uInt str = s->strstart - s->insert;
312             s->ins_h = s->window[str];
313             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
314 #if MIN_MATCH != 3
315             Call UPDATE_HASH() MIN_MATCH-3 more times
316 #endif
317             while (s->insert) {
318                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
319 #ifndef FASTEST
320                 s->prev[str & s->w_mask] = s->head[s->ins_h];
321 #endif
322                 s->head[s->ins_h] = (Pos)str;
323                 str++;
324                 s->insert--;
325                 if (s->lookahead + s->insert < MIN_MATCH)
326                     break;
327             }
328         }
329         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
330          * but this is not important since only literal bytes will be emitted.
331          */
332 
333     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
334 
335     /* If the WIN_INIT bytes after the end of the current data have never been
336      * written, then zero those bytes in order to avoid memory check reports of
337      * the use of uninitialized (or uninitialised as Julian writes) bytes by
338      * the longest match routines.  Update the high water mark for the next
339      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
340      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
341      */
342     if (s->high_water < s->window_size) {
343         ulg curr = s->strstart + (ulg)(s->lookahead);
344         ulg init;
345 
346         if (s->high_water < curr) {
347             /* Previous high water mark below current data -- zero WIN_INIT
348              * bytes or up to end of window, whichever is less.
349              */
350             init = s->window_size - curr;
351             if (init > WIN_INIT)
352                 init = WIN_INIT;
353             zmemzero(s->window + curr, (unsigned)init);
354             s->high_water = curr + init;
355         }
356         else if (s->high_water < (ulg)curr + WIN_INIT) {
357             /* High water mark at or above current data, but below current data
358              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
359              * to end of window, whichever is less.
360              */
361             init = (ulg)curr + WIN_INIT - s->high_water;
362             if (init > s->window_size - s->high_water)
363                 init = s->window_size - s->high_water;
364             zmemzero(s->window + s->high_water, (unsigned)init);
365             s->high_water += init;
366         }
367     }
368 
369     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
370            "not enough room for search");
371 }
372 
373 /* ========================================================================= */
deflateInit_(z_streamp strm,int level,const char * version,int stream_size)374 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
375                          int stream_size) {
376     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
377                          Z_DEFAULT_STRATEGY, version, stream_size);
378     /* To do: ignore strm->next_in if we use it as window */
379 }
380 
381 /* ========================================================================= */
deflateInit2_(z_streamp strm,int level,int method,int windowBits,int memLevel,int strategy,const char * version,int stream_size)382 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
383                           int windowBits, int memLevel, int strategy,
384                           const char *version, int stream_size) {
385     deflate_state *s;
386     int wrap = 1;
387     static const char my_version[] = ZLIB_VERSION;
388 
389     if (version == Z_NULL || version[0] != my_version[0] ||
390         stream_size != sizeof(z_stream)) {
391         return Z_VERSION_ERROR;
392     }
393     if (strm == Z_NULL) return Z_STREAM_ERROR;
394 
395     strm->msg = Z_NULL;
396     if (strm->zalloc == (alloc_func)0) {
397 #ifdef Z_SOLO
398         return Z_STREAM_ERROR;
399 #else
400         strm->zalloc = zcalloc;
401         strm->opaque = (voidpf)0;
402 #endif
403     }
404     if (strm->zfree == (free_func)0)
405 #ifdef Z_SOLO
406         return Z_STREAM_ERROR;
407 #else
408         strm->zfree = zcfree;
409 #endif
410 
411 #ifdef FASTEST
412     if (level != 0) level = 1;
413 #else
414     if (level == Z_DEFAULT_COMPRESSION) level = 6;
415 #endif
416 
417     if (windowBits < 0) { /* suppress zlib wrapper */
418         wrap = 0;
419         if (windowBits < -15)
420             return Z_STREAM_ERROR;
421         windowBits = -windowBits;
422     }
423 #ifdef GZIP
424     else if (windowBits > 15) {
425         wrap = 2;       /* write gzip wrapper instead */
426         windowBits -= 16;
427     }
428 #endif
429     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
430         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
431         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
432         return Z_STREAM_ERROR;
433     }
434     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
435     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
436     if (s == Z_NULL) return Z_MEM_ERROR;
437     strm->state = (struct internal_state FAR *)s;
438     s->strm = strm;
439     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
440 
441     s->wrap = wrap;
442     s->gzhead = Z_NULL;
443     s->w_bits = (uInt)windowBits;
444     s->w_size = 1 << s->w_bits;
445     s->w_mask = s->w_size - 1;
446 
447     s->hash_bits = (uInt)memLevel + 7;
448     s->hash_size = 1 << s->hash_bits;
449     s->hash_mask = s->hash_size - 1;
450     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
451 
452     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
453     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
454     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
455 
456     s->high_water = 0;      /* nothing written to s->window yet */
457 
458     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
459 
460     /* We overlay pending_buf and sym_buf. This works since the average size
461      * for length/distance pairs over any compressed block is assured to be 31
462      * bits or less.
463      *
464      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
465      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
466      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
467      * possible fixed-codes length/distance pair is then 31 bits total.
468      *
469      * sym_buf starts one-fourth of the way into pending_buf. So there are
470      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
471      * in sym_buf is three bytes -- two for the distance and one for the
472      * literal/length. As each symbol is consumed, the pointer to the next
473      * sym_buf value to read moves forward three bytes. From that symbol, up to
474      * 31 bits are written to pending_buf. The closest the written pending_buf
475      * bits gets to the next sym_buf symbol to read is just before the last
476      * code is written. At that time, 31*(n - 2) bits have been written, just
477      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
478      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
479      * symbols are written.) The closest the writing gets to what is unread is
480      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
481      * can range from 128 to 32768.
482      *
483      * Therefore, at a minimum, there are 142 bits of space between what is
484      * written and what is read in the overlain buffers, so the symbols cannot
485      * be overwritten by the compressed data. That space is actually 139 bits,
486      * due to the three-bit fixed-code block header.
487      *
488      * That covers the case where either Z_FIXED is specified, forcing fixed
489      * codes, or when the use of fixed codes is chosen, because that choice
490      * results in a smaller compressed block than dynamic codes. That latter
491      * condition then assures that the above analysis also covers all dynamic
492      * blocks. A dynamic-code block will only be chosen to be emitted if it has
493      * fewer bits than a fixed-code block would for the same set of symbols.
494      * Therefore its average symbol length is assured to be less than 31. So
495      * the compressed data for a dynamic block also cannot overwrite the
496      * symbols from which it is being constructed.
497      */
498 
499     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
500     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
501 
502     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
503         s->pending_buf == Z_NULL) {
504         s->status = FINISH_STATE;
505         strm->msg = ERR_MSG(Z_MEM_ERROR);
506         deflateEnd (strm);
507         return Z_MEM_ERROR;
508     }
509 #ifdef LIT_MEM
510     s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
511     s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
512     s->sym_end = s->lit_bufsize - 1;
513 #else
514     s->sym_buf = s->pending_buf + s->lit_bufsize;
515     s->sym_end = (s->lit_bufsize - 1) * 3;
516 #endif
517     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
518      * on 16 bit machines and because stored blocks are restricted to
519      * 64K-1 bytes.
520      */
521 
522     s->level = level;
523     s->strategy = strategy;
524     s->method = (Byte)method;
525 
526     return deflateReset(strm);
527 }
528 
529 /* =========================================================================
530  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
531  */
deflateStateCheck(z_streamp strm)532 local int deflateStateCheck(z_streamp strm)
533 {
534     deflate_state *s;
535     if (strm == Z_NULL ||
536         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
537         return 1;
538     s = strm->state;
539     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
540 #ifdef GZIP
541                                            s->status != GZIP_STATE &&
542 #endif
543                                            s->status != EXTRA_STATE &&
544                                            s->status != NAME_STATE &&
545                                            s->status != COMMENT_STATE &&
546                                            s->status != HCRC_STATE &&
547                                            s->status != BUSY_STATE &&
548                                            s->status != FINISH_STATE))
549         return 1;
550     return 0;
551 }
552 
553 /* ========================================================================= */
deflateSetDictionary(z_streamp strm,const Bytef * dictionary,uInt dictLength)554 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
555                                  uInt  dictLength) {
556     deflate_state *s;
557     uInt str, n;
558     int wrap;
559     unsigned avail;
560     z_const unsigned char *next;
561 
562     if (deflateStateCheck(strm) || dictionary == Z_NULL)
563         return Z_STREAM_ERROR;
564     s = strm->state;
565     wrap = s->wrap;
566     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
567         return Z_STREAM_ERROR;
568 
569     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
570     if (wrap == 1)
571         strm->adler = adler32(strm->adler, dictionary, dictLength);
572     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
573 
574     /* if dictionary would fill window, just replace the history */
575     if (dictLength >= s->w_size) {
576         if (wrap == 0) {            /* already empty otherwise */
577             CLEAR_HASH(s);
578             s->strstart = 0;
579             s->block_start = 0L;
580             s->insert = 0;
581         }
582         dictionary += dictLength - s->w_size;  /* use the tail */
583         dictLength = s->w_size;
584     }
585 
586     /* insert dictionary into window and hash */
587     avail = strm->avail_in;
588     next = strm->next_in;
589     strm->avail_in = dictLength;
590     strm->next_in = (z_const Bytef *)dictionary;
591     fill_window(s);
592     while (s->lookahead >= MIN_MATCH) {
593         str = s->strstart;
594         n = s->lookahead - (MIN_MATCH-1);
595         do {
596             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
597 #ifndef FASTEST
598             s->prev[str & s->w_mask] = s->head[s->ins_h];
599 #endif
600             s->head[s->ins_h] = (Pos)str;
601             str++;
602         } while (--n);
603         s->strstart = str;
604         s->lookahead = MIN_MATCH-1;
605         fill_window(s);
606     }
607     s->strstart += s->lookahead;
608     s->block_start = (long)s->strstart;
609     s->insert = s->lookahead;
610     s->lookahead = 0;
611     s->match_length = s->prev_length = MIN_MATCH-1;
612     s->match_available = 0;
613     strm->next_in = next;
614     strm->avail_in = avail;
615     s->wrap = wrap;
616     return Z_OK;
617 }
618 
619 /* ========================================================================= */
deflateGetDictionary(z_streamp strm,Bytef * dictionary,uInt * dictLength)620 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
621                                  uInt *dictLength) {
622     deflate_state *s;
623     uInt len;
624 
625     if (deflateStateCheck(strm))
626         return Z_STREAM_ERROR;
627     s = strm->state;
628     len = s->strstart + s->lookahead;
629     if (len > s->w_size)
630         len = s->w_size;
631     if (dictionary != Z_NULL && len)
632         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
633     if (dictLength != Z_NULL)
634         *dictLength = len;
635     return Z_OK;
636 }
637 
638 /* ========================================================================= */
deflateResetKeep(z_streamp strm)639 int ZEXPORT deflateResetKeep(z_streamp strm) {
640     deflate_state *s;
641 
642     if (deflateStateCheck(strm)) {
643         return Z_STREAM_ERROR;
644     }
645 
646     strm->total_in = strm->total_out = 0;
647     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
648     strm->data_type = Z_UNKNOWN;
649 
650     s = (deflate_state *)strm->state;
651     s->pending = 0;
652     s->pending_out = s->pending_buf;
653 
654     if (s->wrap < 0) {
655         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
656     }
657     s->status =
658 #ifdef GZIP
659         s->wrap == 2 ? GZIP_STATE :
660 #endif
661         INIT_STATE;
662     strm->adler =
663 #ifdef GZIP
664         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
665 #endif
666         adler32(0L, Z_NULL, 0);
667     s->last_flush = -2;
668 
669     _tr_init(s);
670 
671     return Z_OK;
672 }
673 
674 /* ===========================================================================
675  * Initialize the "longest match" routines for a new zlib stream
676  */
lm_init(deflate_state * s)677 local void lm_init(deflate_state *s)
678 {
679     s->window_size = (ulg)2L*s->w_size;
680 
681     CLEAR_HASH(s);
682 
683     /* Set the default configuration parameters:
684      */
685     s->max_lazy_match   = configuration_table[s->level].max_lazy;
686     s->good_match       = configuration_table[s->level].good_length;
687     s->nice_match       = configuration_table[s->level].nice_length;
688     s->max_chain_length = configuration_table[s->level].max_chain;
689 
690     s->strstart = 0;
691     s->block_start = 0L;
692     s->lookahead = 0;
693     s->insert = 0;
694     s->match_length = s->prev_length = MIN_MATCH-1;
695     s->match_available = 0;
696     s->ins_h = 0;
697 }
698 
699 /* ========================================================================= */
deflateReset(z_streamp strm)700 int ZEXPORT deflateReset(z_streamp strm) {
701     int ret;
702 
703     ret = deflateResetKeep(strm);
704     if (ret == Z_OK)
705         lm_init(strm->state);
706     return ret;
707 }
708 
709 /* ========================================================================= */
deflateSetHeader(z_streamp strm,gz_headerp head)710 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
711     if (deflateStateCheck(strm) || strm->state->wrap != 2)
712         return Z_STREAM_ERROR;
713     strm->state->gzhead = head;
714     return Z_OK;
715 }
716 
717 /* ========================================================================= */
deflatePending(z_streamp strm,unsigned * pending,int * bits)718 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
719     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
720     if (pending != Z_NULL)
721         *pending = strm->state->pending;
722     if (bits != Z_NULL)
723         *bits = strm->state->bi_valid;
724     return Z_OK;
725 }
726 
727 /* ========================================================================= */
deflatePrime(z_streamp strm,int bits,int value)728 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
729     deflate_state *s;
730     int put;
731 
732     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
733     s = strm->state;
734 #ifdef LIT_MEM
735     if (bits < 0 || bits > 16 ||
736         (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
737         return Z_BUF_ERROR;
738 #else
739     if (bits < 0 || bits > 16 ||
740         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
741         return Z_BUF_ERROR;
742 #endif
743     do {
744         put = Buf_size - s->bi_valid;
745         if (put > bits)
746             put = bits;
747         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
748         s->bi_valid += put;
749         _tr_flush_bits(s);
750         value >>= put;
751         bits -= put;
752     } while (bits);
753     return Z_OK;
754 }
755 
756 /* ========================================================================= */
deflateParams(z_streamp strm,int level,int strategy)757 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
758     deflate_state *s;
759     compress_func func;
760 
761     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
762     s = strm->state;
763 
764 #ifdef FASTEST
765     if (level != 0) level = 1;
766 #else
767     if (level == Z_DEFAULT_COMPRESSION) level = 6;
768 #endif
769     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
770         return Z_STREAM_ERROR;
771     }
772     func = configuration_table[s->level].func;
773 
774     if ((strategy != s->strategy || func != configuration_table[level].func) &&
775         s->last_flush != -2) {
776         /* Flush the last buffer: */
777         int err = deflate(strm, Z_BLOCK);
778         if (err == Z_STREAM_ERROR)
779             return err;
780         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
781             return Z_BUF_ERROR;
782     }
783     if (s->level != level) {
784         if (s->level == 0 && s->matches != 0) {
785             if (s->matches == 1)
786                 slide_hash(s);
787             else
788                 CLEAR_HASH(s);
789             s->matches = 0;
790         }
791         s->level = level;
792         s->max_lazy_match   = configuration_table[level].max_lazy;
793         s->good_match       = configuration_table[level].good_length;
794         s->nice_match       = configuration_table[level].nice_length;
795         s->max_chain_length = configuration_table[level].max_chain;
796     }
797     s->strategy = strategy;
798     return Z_OK;
799 }
800 
801 /* ========================================================================= */
deflateTune(z_streamp strm,int good_length,int max_lazy,int nice_length,int max_chain)802 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
803                         int nice_length, int max_chain) {
804     deflate_state *s;
805 
806     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
807     s = strm->state;
808     s->good_match = (uInt)good_length;
809     s->max_lazy_match = (uInt)max_lazy;
810     s->nice_match = nice_length;
811     s->max_chain_length = (uInt)max_chain;
812     return Z_OK;
813 }
814 
815 /* =========================================================================
816  * For the default windowBits of 15 and memLevel of 8, this function returns a
817  * close to exact, as well as small, upper bound on the compressed size. This
818  * is an expansion of ~0.03%, plus a small constant.
819  *
820  * For any setting other than those defaults for windowBits and memLevel, one
821  * of two worst case bounds is returned. This is at most an expansion of ~4% or
822  * ~13%, plus a small constant.
823  *
824  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
825  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
826  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
827  * expansion results from five bytes of header for each stored block.
828  *
829  * The larger expansion of 13% results from a window size less than or equal to
830  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
831  * the data being compressed may have slid out of the sliding window, impeding
832  * a stored block from being emitted. Then the only choice is a fixed or
833  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
834  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
835  * which this can occur is 255 (memLevel == 2).
836  *
837  * Shifts are used to approximate divisions, for speed.
838  */
deflateBound(z_streamp strm,uLong sourceLen)839 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen)
840 {
841     deflate_state *s;
842     uLong fixedlen, storelen, wraplen;
843 
844     /* upper bound for fixed blocks with 9-bit literals and length 255
845        (memLevel == 2, which is the lowest that may not use stored blocks) --
846        ~13% overhead plus a small constant */
847     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
848                (sourceLen >> 9) + 4;
849 
850     /* upper bound for stored blocks with length 127 (memLevel == 1) --
851        ~4% overhead plus a small constant */
852     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
853                (sourceLen >> 11) + 7;
854 
855     /* if can't get parameters, return larger bound plus a zlib wrapper */
856     if (deflateStateCheck(strm))
857         return (fixedlen > storelen ? fixedlen : storelen) + 6;
858 
859     /* compute wrapper length */
860     s = strm->state;
861     switch (s->wrap) {
862     case 0:                                 /* raw deflate */
863         wraplen = 0;
864         break;
865     case 1:                                 /* zlib wrapper */
866         wraplen = 6 + (s->strstart ? 4 : 0);
867         break;
868 #ifdef GZIP
869     case 2:                                 /* gzip wrapper */
870         wraplen = 18;
871         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
872             Bytef *str;
873             if (s->gzhead->extra != Z_NULL)
874                 wraplen += 2 + s->gzhead->extra_len;
875             str = s->gzhead->name;
876             if (str != Z_NULL)
877                 do {
878                     wraplen++;
879                 } while (*str++);
880             str = s->gzhead->comment;
881             if (str != Z_NULL)
882                 do {
883                     wraplen++;
884                 } while (*str++);
885             if (s->gzhead->hcrc)
886                 wraplen += 2;
887         }
888         break;
889 #endif
890     default:                                /* for compiler happiness */
891         wraplen = 6;
892     }
893 
894     /* if not default parameters, return one of the conservative bounds */
895     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
896         return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
897                wraplen;
898 
899     /* default settings: return tight bound for that case -- ~0.03% overhead
900        plus a small constant */
901     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
902            (sourceLen >> 25) + 13 - 6 + wraplen;
903 }
904 
905 /* =========================================================================
906  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
907  * IN assertion: the stream state is correct and there is enough room in
908  * pending_buf.
909  */
putShortMSB(deflate_state * s,uInt b)910 local void putShortMSB(deflate_state *s, uInt b)
911 {
912     put_byte(s, (Byte)(b >> 8));
913     put_byte(s, (Byte)(b & 0xff));
914 }
915 
916 /* =========================================================================
917  * Flush as much pending output as possible. All deflate() output, except for
918  * some deflate_stored() output, goes through this function so some
919  * applications may wish to modify it to avoid allocating a large
920  * strm->next_out buffer and copying into it. (See also read_buf()).
921  */
flush_pending(z_streamp strm)922 local void flush_pending(z_streamp strm)
923 {
924     unsigned len;
925     deflate_state *s = strm->state;
926 
927     _tr_flush_bits(s);
928     len = s->pending;
929     if (len > strm->avail_out) len = strm->avail_out;
930     if (len == 0) return;
931 
932     zmemcpy(strm->next_out, s->pending_out, len);
933     strm->next_out  += len;
934     s->pending_out  += len;
935     strm->total_out += len;
936     strm->avail_out -= len;
937     s->pending      -= len;
938     if (s->pending == 0) {
939         s->pending_out = s->pending_buf;
940     }
941 }
942 
943 /* ===========================================================================
944  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
945  */
946 #define HCRC_UPDATE(beg) \
947     do { \
948         if (s->gzhead->hcrc && s->pending > (beg)) \
949             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
950                                 s->pending - (beg)); \
951     } while (0)
952 
953 /* ========================================================================= */
deflate(z_streamp strm,int flush)954 int ZEXPORT deflate(z_streamp strm, int flush) {
955     int old_flush; /* value of flush param for previous deflate call */
956     deflate_state *s;
957 
958     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
959         return Z_STREAM_ERROR;
960     }
961     s = strm->state;
962 
963     if (strm->next_out == Z_NULL ||
964         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
965         (s->status == FINISH_STATE && flush != Z_FINISH)) {
966         ERR_RETURN(strm, Z_STREAM_ERROR);
967     }
968     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
969 
970     old_flush = s->last_flush;
971     s->last_flush = flush;
972 
973     /* Flush as much pending output as possible */
974     if (s->pending != 0) {
975         flush_pending(strm);
976         if (strm->avail_out == 0) {
977             /* Since avail_out is 0, deflate will be called again with
978              * more output space, but possibly with both pending and
979              * avail_in equal to zero. There won't be anything to do,
980              * but this is not an error situation so make sure we
981              * return OK instead of BUF_ERROR at next call of deflate:
982              */
983             s->last_flush = -1;
984             return Z_OK;
985         }
986 
987     /* Make sure there is something to do and avoid duplicate consecutive
988      * flushes. For repeated and useless calls with Z_FINISH, we keep
989      * returning Z_STREAM_END instead of Z_BUF_ERROR.
990      */
991     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
992                flush != Z_FINISH) {
993         ERR_RETURN(strm, Z_BUF_ERROR);
994     }
995 
996     /* User must not provide more input after the first FINISH: */
997     if (s->status == FINISH_STATE && strm->avail_in != 0) {
998         ERR_RETURN(strm, Z_BUF_ERROR);
999     }
1000 
1001     /* Write the header */
1002     if (s->status == INIT_STATE && s->wrap == 0)
1003         s->status = BUSY_STATE;
1004     if (s->status == INIT_STATE) {
1005         /* zlib header */
1006         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1007         uInt level_flags;
1008 
1009         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1010             level_flags = 0;
1011         else if (s->level < 6)
1012             level_flags = 1;
1013         else if (s->level == 6)
1014             level_flags = 2;
1015         else
1016             level_flags = 3;
1017         header |= (level_flags << 6);
1018         if (s->strstart != 0) header |= PRESET_DICT;
1019         header += 31 - (header % 31);
1020 
1021         putShortMSB(s, header);
1022 
1023         /* Save the adler32 of the preset dictionary: */
1024         if (s->strstart != 0) {
1025             putShortMSB(s, (uInt)(strm->adler >> 16));
1026             putShortMSB(s, (uInt)(strm->adler & 0xffff));
1027         }
1028         strm->adler = adler32(0L, Z_NULL, 0);
1029         s->status = BUSY_STATE;
1030 
1031         /* Compression must start with an empty pending buffer */
1032         flush_pending(strm);
1033         if (s->pending != 0) {
1034             s->last_flush = -1;
1035             return Z_OK;
1036         }
1037     }
1038 #ifdef GZIP
1039     if (s->status == GZIP_STATE) {
1040         /* gzip header */
1041         strm->adler = crc32(0L, Z_NULL, 0);
1042         put_byte(s, 31);
1043         put_byte(s, 139);
1044         put_byte(s, 8);
1045         if (s->gzhead == Z_NULL) {
1046             put_byte(s, 0);
1047             put_byte(s, 0);
1048             put_byte(s, 0);
1049             put_byte(s, 0);
1050             put_byte(s, 0);
1051             put_byte(s, s->level == 9 ? 2 :
1052                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1053                       4 : 0));
1054             put_byte(s, OS_CODE);
1055             s->status = BUSY_STATE;
1056 
1057             /* Compression must start with an empty pending buffer */
1058             flush_pending(strm);
1059             if (s->pending != 0) {
1060                 s->last_flush = -1;
1061                 return Z_OK;
1062             }
1063         }
1064         else {
1065             put_byte(s, (s->gzhead->text ? 1 : 0) +
1066                      (s->gzhead->hcrc ? 2 : 0) +
1067                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
1068                      (s->gzhead->name == Z_NULL ? 0 : 8) +
1069                      (s->gzhead->comment == Z_NULL ? 0 : 16)
1070                      );
1071             put_byte(s, (Byte)(s->gzhead->time & 0xff));
1072             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1073             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1074             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1075             put_byte(s, s->level == 9 ? 2 :
1076                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1077                       4 : 0));
1078             put_byte(s, s->gzhead->os & 0xff);
1079             if (s->gzhead->extra != Z_NULL) {
1080                 put_byte(s, s->gzhead->extra_len & 0xff);
1081                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1082             }
1083             if (s->gzhead->hcrc)
1084                 strm->adler = crc32(strm->adler, s->pending_buf,
1085                                     s->pending);
1086             s->gzindex = 0;
1087             s->status = EXTRA_STATE;
1088         }
1089     }
1090     if (s->status == EXTRA_STATE) {
1091         if (s->gzhead->extra != Z_NULL) {
1092             ulg beg = s->pending;   /* start of bytes to update crc */
1093             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1094             while (s->pending + left > s->pending_buf_size) {
1095                 uInt copy = s->pending_buf_size - s->pending;
1096                 zmemcpy(s->pending_buf + s->pending,
1097                         s->gzhead->extra + s->gzindex, copy);
1098                 s->pending = s->pending_buf_size;
1099                 HCRC_UPDATE(beg);
1100                 s->gzindex += copy;
1101                 flush_pending(strm);
1102                 if (s->pending != 0) {
1103                     s->last_flush = -1;
1104                     return Z_OK;
1105                 }
1106                 beg = 0;
1107                 left -= copy;
1108             }
1109             zmemcpy(s->pending_buf + s->pending,
1110                     s->gzhead->extra + s->gzindex, left);
1111             s->pending += left;
1112             HCRC_UPDATE(beg);
1113             s->gzindex = 0;
1114         }
1115         s->status = NAME_STATE;
1116     }
1117     if (s->status == NAME_STATE) {
1118         if (s->gzhead->name != Z_NULL) {
1119             ulg beg = s->pending;   /* start of bytes to update crc */
1120             int val;
1121             do {
1122                 if (s->pending == s->pending_buf_size) {
1123                     HCRC_UPDATE(beg);
1124                     flush_pending(strm);
1125                     if (s->pending != 0) {
1126                         s->last_flush = -1;
1127                         return Z_OK;
1128                     }
1129                     beg = 0;
1130                 }
1131                 val = s->gzhead->name[s->gzindex++];
1132                 put_byte(s, val);
1133             } while (val != 0);
1134             HCRC_UPDATE(beg);
1135             s->gzindex = 0;
1136         }
1137         s->status = COMMENT_STATE;
1138     }
1139     if (s->status == COMMENT_STATE) {
1140         if (s->gzhead->comment != Z_NULL) {
1141             ulg beg = s->pending;   /* start of bytes to update crc */
1142             int val;
1143             do {
1144                 if (s->pending == s->pending_buf_size) {
1145                     HCRC_UPDATE(beg);
1146                     flush_pending(strm);
1147                     if (s->pending != 0) {
1148                         s->last_flush = -1;
1149                         return Z_OK;
1150                     }
1151                     beg = 0;
1152                 }
1153                 val = s->gzhead->comment[s->gzindex++];
1154                 put_byte(s, val);
1155             } while (val != 0);
1156             HCRC_UPDATE(beg);
1157         }
1158         s->status = HCRC_STATE;
1159     }
1160     if (s->status == HCRC_STATE) {
1161         if (s->gzhead->hcrc) {
1162             if (s->pending + 2 > s->pending_buf_size) {
1163                 flush_pending(strm);
1164                 if (s->pending != 0) {
1165                     s->last_flush = -1;
1166                     return Z_OK;
1167                 }
1168             }
1169             put_byte(s, (Byte)(strm->adler & 0xff));
1170             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1171             strm->adler = crc32(0L, Z_NULL, 0);
1172         }
1173         s->status = BUSY_STATE;
1174 
1175         /* Compression must start with an empty pending buffer */
1176         flush_pending(strm);
1177         if (s->pending != 0) {
1178             s->last_flush = -1;
1179             return Z_OK;
1180         }
1181     }
1182 #endif
1183 
1184     /* Start a new block or continue the current one.
1185      */
1186     if (strm->avail_in != 0 || s->lookahead != 0 ||
1187         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1188         block_state bstate;
1189 
1190         bstate = s->level == 0 ? deflate_stored(s, flush) :
1191                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1192                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1193                  (*(configuration_table[s->level].func))(s, flush);
1194 
1195         if (bstate == finish_started || bstate == finish_done) {
1196             s->status = FINISH_STATE;
1197         }
1198         if (bstate == need_more || bstate == finish_started) {
1199             if (strm->avail_out == 0) {
1200                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1201             }
1202             return Z_OK;
1203             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1204              * of deflate should use the same flush parameter to make sure
1205              * that the flush is complete. So we don't have to output an
1206              * empty block here, this will be done at next call. This also
1207              * ensures that for a very small output buffer, we emit at most
1208              * one empty block.
1209              */
1210         }
1211         if (bstate == block_done) {
1212             if (flush == Z_PARTIAL_FLUSH) {
1213                 _tr_align(s);
1214             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1215                 _tr_stored_block(s, (char*)0, 0L, 0);
1216                 /* For a full flush, this empty block will be recognized
1217                  * as a special marker by inflate_sync().
1218                  */
1219                 if (flush == Z_FULL_FLUSH) {
1220                     CLEAR_HASH(s);             /* forget history */
1221                     if (s->lookahead == 0) {
1222                         s->strstart = 0;
1223                         s->block_start = 0L;
1224                         s->insert = 0;
1225                     }
1226                 }
1227             }
1228             flush_pending(strm);
1229             if (strm->avail_out == 0) {
1230               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1231               return Z_OK;
1232             }
1233         }
1234     }
1235 
1236     if (flush != Z_FINISH) return Z_OK;
1237     if (s->wrap <= 0) return Z_STREAM_END;
1238 
1239     /* Write the trailer */
1240 #ifdef GZIP
1241     if (s->wrap == 2) {
1242         put_byte(s, (Byte)(strm->adler & 0xff));
1243         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1244         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1245         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1246         put_byte(s, (Byte)(strm->total_in & 0xff));
1247         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1248         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1249         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1250     }
1251     else
1252 #endif
1253     {
1254         putShortMSB(s, (uInt)(strm->adler >> 16));
1255         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1256     }
1257     flush_pending(strm);
1258     /* If avail_out is zero, the application will call deflate again
1259      * to flush the rest.
1260      */
1261     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1262     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1263 }
1264 
1265 /* ========================================================================= */
deflateEnd(z_streamp strm)1266 int ZEXPORT deflateEnd(z_streamp strm) {
1267     int status;
1268 
1269     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1270 
1271     status = strm->state->status;
1272 
1273     /* Deallocate in reverse order of allocations: */
1274     TRY_FREE(strm, strm->state->pending_buf);
1275     TRY_FREE(strm, strm->state->head);
1276     TRY_FREE(strm, strm->state->prev);
1277     TRY_FREE(strm, strm->state->window);
1278 
1279     ZFREE(strm, strm->state);
1280     strm->state = Z_NULL;
1281 
1282     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1283 }
1284 
1285 /* =========================================================================
1286  * Copy the source state to the destination state.
1287  * To simplify the source, this is not supported for 16-bit MSDOS (which
1288  * doesn't have enough memory anyway to duplicate compression states).
1289  */
deflateCopy(z_streamp dest,z_streamp source)1290 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1291 #ifdef MAXSEG_64K
1292     (void)dest;
1293     (void)source;
1294     return Z_STREAM_ERROR;
1295 #else
1296     deflate_state *ds;
1297     deflate_state *ss;
1298 
1299 
1300     if (deflateStateCheck(source) || dest == Z_NULL) {
1301         return Z_STREAM_ERROR;
1302     }
1303 
1304     ss = source->state;
1305 
1306     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1307 
1308     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1309     if (ds == Z_NULL) return Z_MEM_ERROR;
1310     dest->state = (struct internal_state FAR *) ds;
1311     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1312     ds->strm = dest;
1313 
1314     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1315     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1316     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1317     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1318 
1319     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1320         ds->pending_buf == Z_NULL) {
1321         deflateEnd (dest);
1322         return Z_MEM_ERROR;
1323     }
1324     /* following zmemcpy do not work for 16-bit MSDOS */
1325     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1326     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1327     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1328     zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1329 
1330     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1331 #ifdef LIT_MEM
1332     ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1333     ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1334 #else
1335     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1336 #endif
1337 
1338     ds->l_desc.dyn_tree = ds->dyn_ltree;
1339     ds->d_desc.dyn_tree = ds->dyn_dtree;
1340     ds->bl_desc.dyn_tree = ds->bl_tree;
1341 
1342     return Z_OK;
1343 #endif /* MAXSEG_64K */
1344 }
1345 
1346 #ifndef FASTEST
1347 /* ===========================================================================
1348  * Set match_start to the longest match starting at the given string and
1349  * return its length. Matches shorter or equal to prev_length are discarded,
1350  * in which case the result is equal to prev_length and match_start is
1351  * garbage.
1352  * IN assertions: cur_match is the head of the hash chain for the current
1353  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1354  * OUT assertion: the match length is not greater than s->lookahead.
1355  */
longest_match(deflate_state * s,IPos cur_match)1356 local uInt longest_match(deflate_state *s, IPos cur_match)
1357 {
1358     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1359     register Bytef *scan = s->window + s->strstart; /* current string */
1360     register Bytef *match;                      /* matched string */
1361     register int len;                           /* length of current match */
1362     int best_len = (int)s->prev_length;         /* best match length so far */
1363     int nice_match = s->nice_match;             /* stop if match long enough */
1364     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1365         s->strstart - (IPos)MAX_DIST(s) : NIL;
1366     /* Stop when cur_match becomes <= limit. To simplify the code,
1367      * we prevent matches with the string of window index 0.
1368      */
1369     Posf *prev = s->prev;
1370     uInt wmask = s->w_mask;
1371 
1372 #ifdef UNALIGNED_OK
1373     /* Compare two bytes at a time. Note: this is not always beneficial.
1374      * Try with and without -DUNALIGNED_OK to check.
1375      */
1376     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1377     register ush scan_start = *(ushf*)scan;
1378     register ush scan_end   = *(ushf*)(scan + best_len - 1);
1379 #else
1380     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1381     register Byte scan_end1  = scan[best_len - 1];
1382     register Byte scan_end   = scan[best_len];
1383 #endif
1384 
1385     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1386      * It is easy to get rid of this optimization if necessary.
1387      */
1388     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1389 
1390     /* Do not waste too much time if we already have a good match: */
1391     if (s->prev_length >= s->good_match) {
1392         chain_length >>= 2;
1393     }
1394     /* Do not look for matches beyond the end of the input. This is necessary
1395      * to make deflate deterministic.
1396      */
1397     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1398 
1399     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1400            "need lookahead");
1401 
1402     do {
1403         Assert(cur_match < s->strstart, "no future");
1404         match = s->window + cur_match;
1405 
1406         /* Skip to next match if the match length cannot increase
1407          * or if the match length is less than 2.  Note that the checks below
1408          * for insufficient lookahead only occur occasionally for performance
1409          * reasons.  Therefore uninitialized memory will be accessed, and
1410          * conditional jumps will be made that depend on those values.
1411          * However the length of the match is limited to the lookahead, so
1412          * the output of deflate is not affected by the uninitialized values.
1413          */
1414 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1415         /* This code assumes sizeof(unsigned short) == 2. Do not use
1416          * UNALIGNED_OK if your compiler uses a different size.
1417          */
1418         if (*(ushf*)(match + best_len - 1) != scan_end ||
1419             *(ushf*)match != scan_start) continue;
1420 
1421         /* It is not necessary to compare scan[2] and match[2] since they are
1422          * always equal when the other bytes match, given that the hash keys
1423          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1424          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1425          * lookahead only every 4th comparison; the 128th check will be made
1426          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1427          * necessary to put more guard bytes at the end of the window, or
1428          * to check more often for insufficient lookahead.
1429          */
1430         Assert(scan[2] == match[2], "scan[2]?");
1431         scan++, match++;
1432         do {
1433         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1434                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1435                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1436                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1437                  scan < strend);
1438         /* The funny "do {}" generates better code on most compilers */
1439 
1440         /* Here, scan <= window + strstart + 257 */
1441         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1442                "wild scan");
1443         if (*scan == *match) scan++;
1444 
1445         len = (MAX_MATCH - 1) - (int)(strend - scan);
1446         scan = strend - (MAX_MATCH-1);
1447 
1448 #else /* UNALIGNED_OK */
1449 
1450         if (match[best_len]     != scan_end  ||
1451             match[best_len - 1] != scan_end1 ||
1452             *match              != *scan     ||
1453             *++match            != scan[1])      continue;
1454 
1455         /* The check at best_len - 1 can be removed because it will be made
1456          * again later. (This heuristic is not always a win.)
1457          * It is not necessary to compare scan[2] and match[2] since they
1458          * are always equal when the other bytes match, given that
1459          * the hash keys are equal and that HASH_BITS >= 8.
1460          */
1461         scan += 2, match++;
1462         Assert(*scan == *match, "match[2]?");
1463 
1464         /* We check for insufficient lookahead only every 8th comparison;
1465          * the 256th check will be made at strstart + 258.
1466          */
1467         do {
1468         } while (*++scan == *++match && *++scan == *++match &&
1469                  *++scan == *++match && *++scan == *++match &&
1470                  *++scan == *++match && *++scan == *++match &&
1471                  *++scan == *++match && *++scan == *++match &&
1472                  scan < strend);
1473 
1474         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1475                "wild scan");
1476 
1477         len = MAX_MATCH - (int)(strend - scan);
1478         scan = strend - MAX_MATCH;
1479 
1480 #endif /* UNALIGNED_OK */
1481 
1482         if (len > best_len) {
1483             s->match_start = cur_match;
1484             best_len = len;
1485             if (len >= nice_match) break;
1486 #ifdef UNALIGNED_OK
1487             scan_end = *(ushf*)(scan + best_len - 1);
1488 #else
1489             scan_end1  = scan[best_len - 1];
1490             scan_end   = scan[best_len];
1491 #endif
1492         }
1493     } while ((cur_match = prev[cur_match & wmask]) > limit
1494              && --chain_length != 0);
1495 
1496     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1497     return s->lookahead;
1498 }
1499 
1500 #else /* FASTEST */
1501 
1502 /* ---------------------------------------------------------------------------
1503  * Optimized version for FASTEST only
1504  */
longest_match(deflate_state * s,IPos cur_match)1505 local uInt longest_match(deflate_state *s, IPos cur_match)
1506 {
1507     register Bytef *scan = s->window + s->strstart; /* current string */
1508     register Bytef *match;                       /* matched string */
1509     register int len;                           /* length of current match */
1510     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1511 
1512     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1513      * It is easy to get rid of this optimization if necessary.
1514      */
1515     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1516 
1517     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1518            "need lookahead");
1519 
1520     Assert(cur_match < s->strstart, "no future");
1521 
1522     match = s->window + cur_match;
1523 
1524     /* Return failure if the match length is less than 2:
1525      */
1526     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1527 
1528     /* The check at best_len - 1 can be removed because it will be made
1529      * again later. (This heuristic is not always a win.)
1530      * It is not necessary to compare scan[2] and match[2] since they
1531      * are always equal when the other bytes match, given that
1532      * the hash keys are equal and that HASH_BITS >= 8.
1533      */
1534     scan += 2, match += 2;
1535     Assert(*scan == *match, "match[2]?");
1536 
1537     /* We check for insufficient lookahead only every 8th comparison;
1538      * the 256th check will be made at strstart + 258.
1539      */
1540     do {
1541     } while (*++scan == *++match && *++scan == *++match &&
1542              *++scan == *++match && *++scan == *++match &&
1543              *++scan == *++match && *++scan == *++match &&
1544              *++scan == *++match && *++scan == *++match &&
1545              scan < strend);
1546 
1547     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1548 
1549     len = MAX_MATCH - (int)(strend - scan);
1550 
1551     if (len < MIN_MATCH) return MIN_MATCH - 1;
1552 
1553     s->match_start = cur_match;
1554     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1555 }
1556 
1557 #endif /* FASTEST */
1558 
1559 #ifdef ZLIB_DEBUG
1560 
1561 #define EQUAL 0
1562 /* result of memcmp for equal strings */
1563 
1564 /* ===========================================================================
1565  * Check that the match at match_start is indeed a match.
1566  */
check_match(deflate_state * s,IPos start,IPos match,int length)1567 local void check_match(deflate_state *s, IPos start, IPos match, int length)
1568 {
1569     /* check that the match is indeed a match */
1570     Bytef *back = s->window + (int)match, *here = s->window + start;
1571     IPos len = length;
1572     if (match == (IPos)-1) {
1573         /* match starts one byte before the current window -- just compare the
1574            subsequent length-1 bytes */
1575         back++;
1576         here++;
1577         len--;
1578     }
1579     if (zmemcmp(back, here, len) != EQUAL) {
1580         fprintf(stderr, " start %u, match %d, length %d\n",
1581                 start, (int)match, length);
1582         do {
1583             fprintf(stderr, "(%02x %02x)", *back++, *here++);
1584         } while (--len != 0);
1585         z_error("invalid match");
1586     }
1587     if (z_verbose > 1) {
1588         fprintf(stderr,"\\[%d,%d]", start - match, length);
1589         do { putc(s->window[start++], stderr); } while (--length != 0);
1590     }
1591 }
1592 #else
1593 #  define check_match(s, start, match, length)
1594 #endif /* ZLIB_DEBUG */
1595 
1596 /* ===========================================================================
1597  * Flush the current block, with given end-of-file flag.
1598  * IN assertion: strstart is set to the end of the current match.
1599  */
1600 #define FLUSH_BLOCK_ONLY(s, last) { \
1601    _tr_flush_block(s, (s->block_start >= 0L ? \
1602                    (charf *)&s->window[(unsigned)s->block_start] : \
1603                    (charf *)Z_NULL), \
1604                 (ulg)((long)s->strstart - s->block_start), \
1605                 (last)); \
1606    s->block_start = s->strstart; \
1607    flush_pending(s->strm); \
1608    Tracev((stderr,"[FLUSH]")); \
1609 }
1610 
1611 /* Same but force premature exit if necessary. */
1612 #define FLUSH_BLOCK(s, last) { \
1613    FLUSH_BLOCK_ONLY(s, last); \
1614    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1615 }
1616 
1617 /* Maximum stored block length in deflate format (not including header). */
1618 #define MAX_STORED 65535
1619 
1620 /* Minimum of a and b. */
1621 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1622 
1623 /* ===========================================================================
1624  * Copy without compression as much as possible from the input stream, return
1625  * the current block state.
1626  *
1627  * In case deflateParams() is used to later switch to a non-zero compression
1628  * level, s->matches (otherwise unused when storing) keeps track of the number
1629  * of hash table slides to perform. If s->matches is 1, then one hash table
1630  * slide will be done when switching. If s->matches is 2, the maximum value
1631  * allowed here, then the hash table will be cleared, since two or more slides
1632  * is the same as a clear.
1633  *
1634  * deflate_stored() is written to minimize the number of times an input byte is
1635  * copied. It is most efficient with large input and output buffers, which
1636  * maximizes the opportunities to have a single copy from next_in to next_out.
1637  */
deflate_stored(deflate_state * s,int flush)1638 local block_state deflate_stored(deflate_state *s, int flush)
1639 {
1640     /* Smallest worthy block size when not flushing or finishing. By default
1641      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1642      * large input and output buffers, the stored block size will be larger.
1643      */
1644     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1645 
1646     /* Copy as many min_block or larger stored blocks directly to next_out as
1647      * possible. If flushing, copy the remaining available input to next_out as
1648      * stored blocks, if there is enough space.
1649      */
1650     unsigned len, left, have, last = 0;
1651     unsigned used = s->strm->avail_in;
1652     do {
1653         /* Set len to the maximum size block that we can copy directly with the
1654          * available input data and output space. Set left to how much of that
1655          * would be copied from what's left in the window.
1656          */
1657         len = MAX_STORED;       /* maximum deflate stored block length */
1658         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1659         if (s->strm->avail_out < have)          /* need room for header */
1660             break;
1661             /* maximum stored block length that will fit in avail_out: */
1662         have = s->strm->avail_out - have;
1663         left = s->strstart - s->block_start;    /* bytes left in window */
1664         if (len > (ulg)left + s->strm->avail_in)
1665             len = left + s->strm->avail_in;     /* limit len to the input */
1666         if (len > have)
1667             len = have;                         /* limit len to the output */
1668 
1669         /* If the stored block would be less than min_block in length, or if
1670          * unable to copy all of the available input when flushing, then try
1671          * copying to the window and the pending buffer instead. Also don't
1672          * write an empty block when flushing -- deflate() does that.
1673          */
1674         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1675                                 flush == Z_NO_FLUSH ||
1676                                 len != left + s->strm->avail_in))
1677             break;
1678 
1679         /* Make a dummy stored block in pending to get the header bytes,
1680          * including any pending bits. This also updates the debugging counts.
1681          */
1682         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1683         _tr_stored_block(s, (char *)0, 0L, last);
1684 
1685         /* Replace the lengths in the dummy stored block with len. */
1686         s->pending_buf[s->pending - 4] = len;
1687         s->pending_buf[s->pending - 3] = len >> 8;
1688         s->pending_buf[s->pending - 2] = ~len;
1689         s->pending_buf[s->pending - 1] = ~len >> 8;
1690 
1691         /* Write the stored block header bytes. */
1692         flush_pending(s->strm);
1693 
1694 #ifdef ZLIB_DEBUG
1695         /* Update debugging counts for the data about to be copied. */
1696         s->compressed_len += len << 3;
1697         s->bits_sent += len << 3;
1698 #endif
1699 
1700         /* Copy uncompressed bytes from the window to next_out. */
1701         if (left) {
1702             if (left > len)
1703                 left = len;
1704             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1705             s->strm->next_out += left;
1706             s->strm->avail_out -= left;
1707             s->strm->total_out += left;
1708             s->block_start += left;
1709             len -= left;
1710         }
1711 
1712         /* Copy uncompressed bytes directly from next_in to next_out, updating
1713          * the check value.
1714          */
1715         if (len) {
1716             read_buf(s->strm, s->strm->next_out, len);
1717             s->strm->next_out += len;
1718             s->strm->avail_out -= len;
1719             s->strm->total_out += len;
1720         }
1721     } while (last == 0);
1722 
1723     /* Update the sliding window with the last s->w_size bytes of the copied
1724      * data, or append all of the copied data to the existing window if less
1725      * than s->w_size bytes were copied. Also update the number of bytes to
1726      * insert in the hash tables, in the event that deflateParams() switches to
1727      * a non-zero compression level.
1728      */
1729     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1730     if (used) {
1731         /* If any input was used, then no unused input remains in the window,
1732          * therefore s->block_start == s->strstart.
1733          */
1734         if (used >= s->w_size) {    /* supplant the previous history */
1735             s->matches = 2;         /* clear hash */
1736             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1737             s->strstart = s->w_size;
1738             s->insert = s->strstart;
1739         }
1740         else {
1741             if (s->window_size - s->strstart <= used) {
1742                 /* Slide the window down. */
1743                 s->strstart -= s->w_size;
1744                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1745                 if (s->matches < 2)
1746                     s->matches++;   /* add a pending slide_hash() */
1747                 if (s->insert > s->strstart)
1748                     s->insert = s->strstart;
1749             }
1750             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1751             s->strstart += used;
1752             s->insert += MIN(used, s->w_size - s->insert);
1753         }
1754         s->block_start = s->strstart;
1755     }
1756     if (s->high_water < s->strstart)
1757         s->high_water = s->strstart;
1758 
1759     /* If the last block was written to next_out, then done. */
1760     if (last)
1761         return finish_done;
1762 
1763     /* If flushing and all input has been consumed, then done. */
1764     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1765         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1766         return block_done;
1767 
1768     /* Fill the window with any remaining input. */
1769     have = s->window_size - s->strstart;
1770     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1771         /* Slide the window down. */
1772         s->block_start -= s->w_size;
1773         s->strstart -= s->w_size;
1774         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1775         if (s->matches < 2)
1776             s->matches++;           /* add a pending slide_hash() */
1777         have += s->w_size;          /* more space now */
1778         if (s->insert > s->strstart)
1779             s->insert = s->strstart;
1780     }
1781     if (have > s->strm->avail_in)
1782         have = s->strm->avail_in;
1783     if (have) {
1784         read_buf(s->strm, s->window + s->strstart, have);
1785         s->strstart += have;
1786         s->insert += MIN(have, s->w_size - s->insert);
1787     }
1788     if (s->high_water < s->strstart)
1789         s->high_water = s->strstart;
1790 
1791     /* There was not enough avail_out to write a complete worthy or flushed
1792      * stored block to next_out. Write a stored block to pending instead, if we
1793      * have enough input for a worthy block, or if flushing and there is enough
1794      * room for the remaining input as a stored block in the pending buffer.
1795      */
1796     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1797         /* maximum stored block length that will fit in pending: */
1798     have = MIN(s->pending_buf_size - have, MAX_STORED);
1799     min_block = MIN(have, s->w_size);
1800     left = s->strstart - s->block_start;
1801     if (left >= min_block ||
1802         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1803          s->strm->avail_in == 0 && left <= have)) {
1804         len = MIN(left, have);
1805         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1806                len == left ? 1 : 0;
1807         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1808         s->block_start += len;
1809         flush_pending(s->strm);
1810     }
1811 
1812     /* We've done all we can with the available input and output. */
1813     return last ? finish_started : need_more;
1814 }
1815 
1816 /* ===========================================================================
1817  * Compress as much as possible from the input stream, return the current
1818  * block state.
1819  * This function does not perform lazy evaluation of matches and inserts
1820  * new strings in the dictionary only for unmatched strings or for short
1821  * matches. It is used only for the fast compression options.
1822  */
deflate_fast(deflate_state * s,int flush)1823 local block_state deflate_fast(deflate_state *s, int flush)
1824 {
1825     IPos hash_head;       /* head of the hash chain */
1826     int bflush;           /* set if current block must be flushed */
1827 
1828     for (;;) {
1829         /* Make sure that we always have enough lookahead, except
1830          * at the end of the input file. We need MAX_MATCH bytes
1831          * for the next match, plus MIN_MATCH bytes to insert the
1832          * string following the next match.
1833          */
1834         if (s->lookahead < MIN_LOOKAHEAD) {
1835             fill_window(s);
1836             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1837                 return need_more;
1838             }
1839             if (s->lookahead == 0) break; /* flush the current block */
1840         }
1841 
1842         /* Insert the string window[strstart .. strstart + 2] in the
1843          * dictionary, and set hash_head to the head of the hash chain:
1844          */
1845         hash_head = NIL;
1846         if (s->lookahead >= MIN_MATCH) {
1847             INSERT_STRING(s, s->strstart, hash_head);
1848         }
1849 
1850         /* Find the longest match, discarding those <= prev_length.
1851          * At this point we have always match_length < MIN_MATCH
1852          */
1853         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1854             /* To simplify the code, we prevent matches with the string
1855              * of window index 0 (in particular we have to avoid a match
1856              * of the string with itself at the start of the input file).
1857              */
1858             s->match_length = longest_match (s, hash_head);
1859             /* longest_match() sets match_start */
1860         }
1861         if (s->match_length >= MIN_MATCH) {
1862             check_match(s, s->strstart, s->match_start, s->match_length);
1863 
1864             _tr_tally_dist(s, s->strstart - s->match_start,
1865                            s->match_length - MIN_MATCH, bflush);
1866 
1867             s->lookahead -= s->match_length;
1868 
1869             /* Insert new strings in the hash table only if the match length
1870              * is not too large. This saves time but degrades compression.
1871              */
1872 #ifndef FASTEST
1873             if (s->match_length <= s->max_insert_length &&
1874                 s->lookahead >= MIN_MATCH) {
1875                 s->match_length--; /* string at strstart already in table */
1876                 do {
1877                     s->strstart++;
1878                     INSERT_STRING(s, s->strstart, hash_head);
1879                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1880                      * always MIN_MATCH bytes ahead.
1881                      */
1882                 } while (--s->match_length != 0);
1883                 s->strstart++;
1884             } else
1885 #endif
1886             {
1887                 s->strstart += s->match_length;
1888                 s->match_length = 0;
1889                 s->ins_h = s->window[s->strstart];
1890                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1891 #if MIN_MATCH != 3
1892                 Call UPDATE_HASH() MIN_MATCH-3 more times
1893 #endif
1894                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1895                  * matter since it will be recomputed at next deflate call.
1896                  */
1897             }
1898         } else {
1899             /* No match, output a literal byte */
1900             Tracevv((stderr,"%c", s->window[s->strstart]));
1901             _tr_tally_lit(s, s->window[s->strstart], bflush);
1902             s->lookahead--;
1903             s->strstart++;
1904         }
1905         if (bflush) FLUSH_BLOCK(s, 0);
1906     }
1907     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1908     if (flush == Z_FINISH) {
1909         FLUSH_BLOCK(s, 1);
1910         return finish_done;
1911     }
1912     if (s->sym_next)
1913         FLUSH_BLOCK(s, 0);
1914     return block_done;
1915 }
1916 
1917 #ifndef FASTEST
1918 /* ===========================================================================
1919  * Same as above, but achieves better compression. We use a lazy
1920  * evaluation for matches: a match is finally adopted only if there is
1921  * no better match at the next window position.
1922  */
deflate_slow(deflate_state * s,int flush)1923 local block_state deflate_slow(deflate_state *s, int flush)
1924 {
1925     IPos hash_head;          /* head of hash chain */
1926     int bflush;              /* set if current block must be flushed */
1927 
1928     /* Process the input block. */
1929     for (;;) {
1930         /* Make sure that we always have enough lookahead, except
1931          * at the end of the input file. We need MAX_MATCH bytes
1932          * for the next match, plus MIN_MATCH bytes to insert the
1933          * string following the next match.
1934          */
1935         if (s->lookahead < MIN_LOOKAHEAD) {
1936             fill_window(s);
1937             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1938                 return need_more;
1939             }
1940             if (s->lookahead == 0) break; /* flush the current block */
1941         }
1942 
1943         /* Insert the string window[strstart .. strstart + 2] in the
1944          * dictionary, and set hash_head to the head of the hash chain:
1945          */
1946         hash_head = NIL;
1947         if (s->lookahead >= MIN_MATCH) {
1948             INSERT_STRING(s, s->strstart, hash_head);
1949         }
1950 
1951         /* Find the longest match, discarding those <= prev_length.
1952          */
1953         s->prev_length = s->match_length, s->prev_match = s->match_start;
1954         s->match_length = MIN_MATCH-1;
1955 
1956         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1957             s->strstart - hash_head <= MAX_DIST(s)) {
1958             /* To simplify the code, we prevent matches with the string
1959              * of window index 0 (in particular we have to avoid a match
1960              * of the string with itself at the start of the input file).
1961              */
1962             s->match_length = longest_match (s, hash_head);
1963             /* longest_match() sets match_start */
1964 
1965             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1966 #if TOO_FAR <= 32767
1967                 || (s->match_length == MIN_MATCH &&
1968                     s->strstart - s->match_start > TOO_FAR)
1969 #endif
1970                 )) {
1971 
1972                 /* If prev_match is also MIN_MATCH, match_start is garbage
1973                  * but we will ignore the current match anyway.
1974                  */
1975                 s->match_length = MIN_MATCH-1;
1976             }
1977         }
1978         /* If there was a match at the previous step and the current
1979          * match is not better, output the previous match:
1980          */
1981         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1982             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1983             /* Do not insert strings in hash table beyond this. */
1984 
1985             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1986 
1987             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1988                            s->prev_length - MIN_MATCH, bflush);
1989 
1990             /* Insert in hash table all strings up to the end of the match.
1991              * strstart - 1 and strstart are already inserted. If there is not
1992              * enough lookahead, the last two strings are not inserted in
1993              * the hash table.
1994              */
1995             s->lookahead -= s->prev_length - 1;
1996             s->prev_length -= 2;
1997             do {
1998                 if (++s->strstart <= max_insert) {
1999                     INSERT_STRING(s, s->strstart, hash_head);
2000                 }
2001             } while (--s->prev_length != 0);
2002             s->match_available = 0;
2003             s->match_length = MIN_MATCH-1;
2004             s->strstart++;
2005 
2006             if (bflush) FLUSH_BLOCK(s, 0);
2007 
2008         } else if (s->match_available) {
2009             /* If there was no match at the previous position, output a
2010              * single literal. If there was a match but the current match
2011              * is longer, truncate the previous match to a single literal.
2012              */
2013             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2014             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2015             if (bflush) {
2016                 FLUSH_BLOCK_ONLY(s, 0);
2017             }
2018             s->strstart++;
2019             s->lookahead--;
2020             if (s->strm->avail_out == 0) return need_more;
2021         } else {
2022             /* There is no previous match to compare with, wait for
2023              * the next step to decide.
2024              */
2025             s->match_available = 1;
2026             s->strstart++;
2027             s->lookahead--;
2028         }
2029     }
2030     Assert (flush != Z_NO_FLUSH, "no flush?");
2031     if (s->match_available) {
2032         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2033         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2034         s->match_available = 0;
2035     }
2036     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2037     if (flush == Z_FINISH) {
2038         FLUSH_BLOCK(s, 1);
2039         return finish_done;
2040     }
2041     if (s->sym_next)
2042         FLUSH_BLOCK(s, 0);
2043     return block_done;
2044 }
2045 #endif /* FASTEST */
2046 
2047 /* ===========================================================================
2048  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2049  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2050  * deflate switches away from Z_RLE.)
2051  */
deflate_rle(deflate_state * s,int flush)2052 local block_state deflate_rle(deflate_state *s, int flush)
2053 {
2054     int bflush;             /* set if current block must be flushed */
2055     uInt prev;              /* byte at distance one to match */
2056     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2057 
2058     for (;;) {
2059         /* Make sure that we always have enough lookahead, except
2060          * at the end of the input file. We need MAX_MATCH bytes
2061          * for the longest run, plus one for the unrolled loop.
2062          */
2063         if (s->lookahead <= MAX_MATCH) {
2064             fill_window(s);
2065             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2066                 return need_more;
2067             }
2068             if (s->lookahead == 0) break; /* flush the current block */
2069         }
2070 
2071         /* See how many times the previous byte repeats */
2072         s->match_length = 0;
2073         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2074             scan = s->window + s->strstart - 1;
2075             prev = *scan;
2076             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2077                 strend = s->window + s->strstart + MAX_MATCH;
2078                 do {
2079                 } while (prev == *++scan && prev == *++scan &&
2080                          prev == *++scan && prev == *++scan &&
2081                          prev == *++scan && prev == *++scan &&
2082                          prev == *++scan && prev == *++scan &&
2083                          scan < strend);
2084                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2085                 if (s->match_length > s->lookahead)
2086                     s->match_length = s->lookahead;
2087             }
2088             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2089                    "wild scan");
2090         }
2091 
2092         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2093         if (s->match_length >= MIN_MATCH) {
2094             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2095 
2096             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2097 
2098             s->lookahead -= s->match_length;
2099             s->strstart += s->match_length;
2100             s->match_length = 0;
2101         } else {
2102             /* No match, output a literal byte */
2103             Tracevv((stderr,"%c", s->window[s->strstart]));
2104             _tr_tally_lit(s, s->window[s->strstart], bflush);
2105             s->lookahead--;
2106             s->strstart++;
2107         }
2108         if (bflush) FLUSH_BLOCK(s, 0);
2109     }
2110     s->insert = 0;
2111     if (flush == Z_FINISH) {
2112         FLUSH_BLOCK(s, 1);
2113         return finish_done;
2114     }
2115     if (s->sym_next)
2116         FLUSH_BLOCK(s, 0);
2117     return block_done;
2118 }
2119 
2120 /* ===========================================================================
2121  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2122  * (It will be regenerated if this run of deflate switches away from Huffman.)
2123  */
deflate_huff(deflate_state * s,int flush)2124 local block_state deflate_huff(deflate_state *s, int flush)
2125 {
2126     int bflush;             /* set if current block must be flushed */
2127 
2128     for (;;) {
2129         /* Make sure that we have a literal to write. */
2130         if (s->lookahead == 0) {
2131             fill_window(s);
2132             if (s->lookahead == 0) {
2133                 if (flush == Z_NO_FLUSH)
2134                     return need_more;
2135                 break;      /* flush the current block */
2136             }
2137         }
2138 
2139         /* Output a literal byte */
2140         s->match_length = 0;
2141         Tracevv((stderr,"%c", s->window[s->strstart]));
2142         _tr_tally_lit(s, s->window[s->strstart], bflush);
2143         s->lookahead--;
2144         s->strstart++;
2145         if (bflush) FLUSH_BLOCK(s, 0);
2146     }
2147     s->insert = 0;
2148     if (flush == Z_FINISH) {
2149         FLUSH_BLOCK(s, 1);
2150         return finish_done;
2151     }
2152     if (s->sym_next)
2153         FLUSH_BLOCK(s, 0);
2154     return block_done;
2155 }
2156