1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 typedef enum {
64 need_more, /* block not completed, need more input or more output */
65 block_done, /* block flush performed */
66 finish_started, /* finish started, need only more output at next deflate */
67 finish_done /* finish done, accept no more input or output */
68 } block_state;
69
70 typedef block_state (*compress_func)(deflate_state *s, int flush);
71 /* Compression function. Returns the block state after the call. */
72
73 local block_state deflate_stored(deflate_state *s, int flush);
74 local block_state deflate_fast(deflate_state *s, int flush);
75 #ifndef FASTEST
76 local block_state deflate_slow(deflate_state *s, int flush);
77 #endif
78 local block_state deflate_rle(deflate_state *s, int flush);
79 local block_state deflate_huff(deflate_state *s, int flush);
80
81 /* ===========================================================================
82 * Local data
83 */
84
85 #define NIL 0
86 /* Tail of hash chains */
87
88 #ifndef TOO_FAR
89 # define TOO_FAR 4096
90 #endif
91 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93 /* Values for max_lazy_match, good_match and max_chain_length, depending on
94 * the desired pack level (0..9). The values given below have been tuned to
95 * exclude worst case performance for pathological files. Better values may be
96 * found for specific files.
97 */
98 typedef struct config_s {
99 ush good_length; /* reduce lazy search above this match length */
100 ush max_lazy; /* do not perform lazy search above this match length */
101 ush nice_length; /* quit search above this match length */
102 ush max_chain;
103 compress_func func;
104 } config;
105
106 #ifdef FASTEST
107 local const config configuration_table[2] = {
108 /* good lazy nice chain */
109 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
110 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
111 #else
112 local const config configuration_table[10] = {
113 /* good lazy nice chain */
114 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
115 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
116 /* 2 */ {4, 5, 16, 8, deflate_fast},
117 /* 3 */ {4, 6, 32, 32, deflate_fast},
118
119 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
120 /* 5 */ {8, 16, 32, 32, deflate_slow},
121 /* 6 */ {8, 16, 128, 128, deflate_slow},
122 /* 7 */ {8, 32, 128, 256, deflate_slow},
123 /* 8 */ {32, 128, 258, 1024, deflate_slow},
124 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125 #endif
126
127 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129 * meaning.
130 */
131
132 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135 /* ===========================================================================
136 * Update a hash value with the given input byte
137 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
138 * characters, so that a running hash key can be computed from the previous
139 * key instead of complete recalculation each time.
140 */
141 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144 /* ===========================================================================
145 * Insert string str in the dictionary and set match_head to the previous head
146 * of the hash chain (the most recent string with same hash key). Return
147 * the previous length of the hash chain.
148 * If this file is compiled with -DFASTEST, the compression level is forced
149 * to 1, and no hash chains are maintained.
150 * IN assertion: all calls to INSERT_STRING are made with consecutive input
151 * characters and the first MIN_MATCH bytes of str are valid (except for
152 * the last MIN_MATCH-1 bytes of the input file).
153 */
154 #ifdef FASTEST
155 #define INSERT_STRING(s, str, match_head) \
156 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157 match_head = s->head[s->ins_h], \
158 s->head[s->ins_h] = (Pos)(str))
159 #else
160 #define INSERT_STRING(s, str, match_head) \
161 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163 s->head[s->ins_h] = (Pos)(str))
164 #endif
165
166 /* ===========================================================================
167 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168 * prev[] will be initialized on the fly.
169 */
170 #define CLEAR_HASH(s) \
171 do { \
172 s->head[s->hash_size - 1] = NIL; \
173 zmemzero((Bytef *)s->head, \
174 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175 } while (0)
176
177 /* ===========================================================================
178 * Slide the hash table when sliding the window down (could be avoided with 32
179 * bit values at the expense of memory usage). We slide even when level == 0 to
180 * keep the hash table consistent if we switch back to level > 0 later.
181 */
182 #if defined(__has_feature)
183 # if __has_feature(memory_sanitizer)
184 __attribute__((no_sanitize("memory")))
185 # endif
186 #endif
slide_hash(deflate_state * s)187 local void slide_hash(deflate_state *s)
188 {
189 unsigned n, m;
190 Posf *p;
191 uInt wsize = s->w_size;
192
193 n = s->hash_size;
194 p = &s->head[n];
195 do {
196 m = *--p;
197 *p = (Pos)(m >= wsize ? m - wsize : NIL);
198 } while (--n);
199 n = wsize;
200 #ifndef FASTEST
201 p = &s->prev[n];
202 do {
203 m = *--p;
204 *p = (Pos)(m >= wsize ? m - wsize : NIL);
205 /* If n is not on any hash chain, prev[n] is garbage but
206 * its value will never be used.
207 */
208 } while (--n);
209 #endif
210 }
211
212 /* ===========================================================================
213 * Read a new buffer from the current input stream, update the adler32
214 * and total number of bytes read. All deflate() input goes through
215 * this function so some applications may wish to modify it to avoid
216 * allocating a large strm->next_in buffer and copying from it.
217 * (See also flush_pending()).
218 */
read_buf(z_streamp strm,Bytef * buf,unsigned size)219 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size)
220 {
221 unsigned len = strm->avail_in;
222
223 if (len > size) len = size;
224 if (len == 0) return 0;
225
226 strm->avail_in -= len;
227
228 zmemcpy(buf, strm->next_in, len);
229 if (strm->state->wrap == 1) {
230 strm->adler = adler32(strm->adler, buf, len);
231 }
232 #ifdef GZIP
233 else if (strm->state->wrap == 2) {
234 strm->adler = crc32(strm->adler, buf, len);
235 }
236 #endif
237 strm->next_in += len;
238 strm->total_in += len;
239
240 return len;
241 }
242
243 /* ===========================================================================
244 * Fill the window when the lookahead becomes insufficient.
245 * Updates strstart and lookahead.
246 *
247 * IN assertion: lookahead < MIN_LOOKAHEAD
248 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249 * At least one byte has been read, or avail_in == 0; reads are
250 * performed for at least two bytes (required for the zip translate_eol
251 * option -- not supported here).
252 */
fill_window(deflate_state * s)253 local void fill_window(deflate_state *s)
254 {
255 unsigned n;
256 unsigned more; /* Amount of free space at the end of the window. */
257 uInt wsize = s->w_size;
258
259 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
260
261 do {
262 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
263
264 /* Deal with !@#$% 64K limit: */
265 if (sizeof(int) <= 2) {
266 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
267 more = wsize;
268
269 } else if (more == (unsigned)(-1)) {
270 /* Very unlikely, but possible on 16 bit machine if
271 * strstart == 0 && lookahead == 1 (input done a byte at time)
272 */
273 more--;
274 }
275 }
276
277 /* If the window is almost full and there is insufficient lookahead,
278 * move the upper half to the lower one to make room in the upper half.
279 */
280 if (s->strstart >= wsize + MAX_DIST(s)) {
281
282 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
283 s->match_start -= wsize;
284 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
285 s->block_start -= (long) wsize;
286 if (s->insert > s->strstart)
287 s->insert = s->strstart;
288 slide_hash(s);
289 more += wsize;
290 }
291 if (s->strm->avail_in == 0) break;
292
293 /* If there was no sliding:
294 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
295 * more == window_size - lookahead - strstart
296 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
297 * => more >= window_size - 2*WSIZE + 2
298 * In the BIG_MEM or MMAP case (not yet supported),
299 * window_size == input_size + MIN_LOOKAHEAD &&
300 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
301 * Otherwise, window_size == 2*WSIZE so more >= 2.
302 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
303 */
304 Assert(more >= 2, "more < 2");
305
306 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
307 s->lookahead += n;
308
309 /* Initialize the hash value now that we have some input: */
310 if (s->lookahead + s->insert >= MIN_MATCH) {
311 uInt str = s->strstart - s->insert;
312 s->ins_h = s->window[str];
313 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
314 #if MIN_MATCH != 3
315 Call UPDATE_HASH() MIN_MATCH-3 more times
316 #endif
317 while (s->insert) {
318 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
319 #ifndef FASTEST
320 s->prev[str & s->w_mask] = s->head[s->ins_h];
321 #endif
322 s->head[s->ins_h] = (Pos)str;
323 str++;
324 s->insert--;
325 if (s->lookahead + s->insert < MIN_MATCH)
326 break;
327 }
328 }
329 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
330 * but this is not important since only literal bytes will be emitted.
331 */
332
333 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
334
335 /* If the WIN_INIT bytes after the end of the current data have never been
336 * written, then zero those bytes in order to avoid memory check reports of
337 * the use of uninitialized (or uninitialised as Julian writes) bytes by
338 * the longest match routines. Update the high water mark for the next
339 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
340 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
341 */
342 if (s->high_water < s->window_size) {
343 ulg curr = s->strstart + (ulg)(s->lookahead);
344 ulg init;
345
346 if (s->high_water < curr) {
347 /* Previous high water mark below current data -- zero WIN_INIT
348 * bytes or up to end of window, whichever is less.
349 */
350 init = s->window_size - curr;
351 if (init > WIN_INIT)
352 init = WIN_INIT;
353 zmemzero(s->window + curr, (unsigned)init);
354 s->high_water = curr + init;
355 }
356 else if (s->high_water < (ulg)curr + WIN_INIT) {
357 /* High water mark at or above current data, but below current data
358 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
359 * to end of window, whichever is less.
360 */
361 init = (ulg)curr + WIN_INIT - s->high_water;
362 if (init > s->window_size - s->high_water)
363 init = s->window_size - s->high_water;
364 zmemzero(s->window + s->high_water, (unsigned)init);
365 s->high_water += init;
366 }
367 }
368
369 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
370 "not enough room for search");
371 }
372
373 /* ========================================================================= */
deflateInit_(z_streamp strm,int level,const char * version,int stream_size)374 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
375 int stream_size) {
376 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
377 Z_DEFAULT_STRATEGY, version, stream_size);
378 /* To do: ignore strm->next_in if we use it as window */
379 }
380
381 /* ========================================================================= */
deflateInit2_(z_streamp strm,int level,int method,int windowBits,int memLevel,int strategy,const char * version,int stream_size)382 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
383 int windowBits, int memLevel, int strategy,
384 const char *version, int stream_size) {
385 deflate_state *s;
386 int wrap = 1;
387 static const char my_version[] = ZLIB_VERSION;
388
389 if (version == Z_NULL || version[0] != my_version[0] ||
390 stream_size != sizeof(z_stream)) {
391 return Z_VERSION_ERROR;
392 }
393 if (strm == Z_NULL) return Z_STREAM_ERROR;
394
395 strm->msg = Z_NULL;
396 if (strm->zalloc == (alloc_func)0) {
397 #ifdef Z_SOLO
398 return Z_STREAM_ERROR;
399 #else
400 strm->zalloc = zcalloc;
401 strm->opaque = (voidpf)0;
402 #endif
403 }
404 if (strm->zfree == (free_func)0)
405 #ifdef Z_SOLO
406 return Z_STREAM_ERROR;
407 #else
408 strm->zfree = zcfree;
409 #endif
410
411 #ifdef FASTEST
412 if (level != 0) level = 1;
413 #else
414 if (level == Z_DEFAULT_COMPRESSION) level = 6;
415 #endif
416
417 if (windowBits < 0) { /* suppress zlib wrapper */
418 wrap = 0;
419 if (windowBits < -15)
420 return Z_STREAM_ERROR;
421 windowBits = -windowBits;
422 }
423 #ifdef GZIP
424 else if (windowBits > 15) {
425 wrap = 2; /* write gzip wrapper instead */
426 windowBits -= 16;
427 }
428 #endif
429 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
430 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
431 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
432 return Z_STREAM_ERROR;
433 }
434 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
435 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
436 if (s == Z_NULL) return Z_MEM_ERROR;
437 strm->state = (struct internal_state FAR *)s;
438 s->strm = strm;
439 s->status = INIT_STATE; /* to pass state test in deflateReset() */
440
441 s->wrap = wrap;
442 s->gzhead = Z_NULL;
443 s->w_bits = (uInt)windowBits;
444 s->w_size = 1 << s->w_bits;
445 s->w_mask = s->w_size - 1;
446
447 s->hash_bits = (uInt)memLevel + 7;
448 s->hash_size = 1 << s->hash_bits;
449 s->hash_mask = s->hash_size - 1;
450 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
451
452 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
453 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
454 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
455
456 s->high_water = 0; /* nothing written to s->window yet */
457
458 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
459
460 /* We overlay pending_buf and sym_buf. This works since the average size
461 * for length/distance pairs over any compressed block is assured to be 31
462 * bits or less.
463 *
464 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
465 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
466 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
467 * possible fixed-codes length/distance pair is then 31 bits total.
468 *
469 * sym_buf starts one-fourth of the way into pending_buf. So there are
470 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
471 * in sym_buf is three bytes -- two for the distance and one for the
472 * literal/length. As each symbol is consumed, the pointer to the next
473 * sym_buf value to read moves forward three bytes. From that symbol, up to
474 * 31 bits are written to pending_buf. The closest the written pending_buf
475 * bits gets to the next sym_buf symbol to read is just before the last
476 * code is written. At that time, 31*(n - 2) bits have been written, just
477 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
478 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
479 * symbols are written.) The closest the writing gets to what is unread is
480 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
481 * can range from 128 to 32768.
482 *
483 * Therefore, at a minimum, there are 142 bits of space between what is
484 * written and what is read in the overlain buffers, so the symbols cannot
485 * be overwritten by the compressed data. That space is actually 139 bits,
486 * due to the three-bit fixed-code block header.
487 *
488 * That covers the case where either Z_FIXED is specified, forcing fixed
489 * codes, or when the use of fixed codes is chosen, because that choice
490 * results in a smaller compressed block than dynamic codes. That latter
491 * condition then assures that the above analysis also covers all dynamic
492 * blocks. A dynamic-code block will only be chosen to be emitted if it has
493 * fewer bits than a fixed-code block would for the same set of symbols.
494 * Therefore its average symbol length is assured to be less than 31. So
495 * the compressed data for a dynamic block also cannot overwrite the
496 * symbols from which it is being constructed.
497 */
498
499 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
500 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
501
502 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
503 s->pending_buf == Z_NULL) {
504 s->status = FINISH_STATE;
505 strm->msg = ERR_MSG(Z_MEM_ERROR);
506 deflateEnd (strm);
507 return Z_MEM_ERROR;
508 }
509 #ifdef LIT_MEM
510 s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
511 s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
512 s->sym_end = s->lit_bufsize - 1;
513 #else
514 s->sym_buf = s->pending_buf + s->lit_bufsize;
515 s->sym_end = (s->lit_bufsize - 1) * 3;
516 #endif
517 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
518 * on 16 bit machines and because stored blocks are restricted to
519 * 64K-1 bytes.
520 */
521
522 s->level = level;
523 s->strategy = strategy;
524 s->method = (Byte)method;
525
526 return deflateReset(strm);
527 }
528
529 /* =========================================================================
530 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
531 */
deflateStateCheck(z_streamp strm)532 local int deflateStateCheck(z_streamp strm)
533 {
534 deflate_state *s;
535 if (strm == Z_NULL ||
536 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
537 return 1;
538 s = strm->state;
539 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
540 #ifdef GZIP
541 s->status != GZIP_STATE &&
542 #endif
543 s->status != EXTRA_STATE &&
544 s->status != NAME_STATE &&
545 s->status != COMMENT_STATE &&
546 s->status != HCRC_STATE &&
547 s->status != BUSY_STATE &&
548 s->status != FINISH_STATE))
549 return 1;
550 return 0;
551 }
552
553 /* ========================================================================= */
deflateSetDictionary(z_streamp strm,const Bytef * dictionary,uInt dictLength)554 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
555 uInt dictLength) {
556 deflate_state *s;
557 uInt str, n;
558 int wrap;
559 unsigned avail;
560 z_const unsigned char *next;
561
562 if (deflateStateCheck(strm) || dictionary == Z_NULL)
563 return Z_STREAM_ERROR;
564 s = strm->state;
565 wrap = s->wrap;
566 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
567 return Z_STREAM_ERROR;
568
569 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
570 if (wrap == 1)
571 strm->adler = adler32(strm->adler, dictionary, dictLength);
572 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
573
574 /* if dictionary would fill window, just replace the history */
575 if (dictLength >= s->w_size) {
576 if (wrap == 0) { /* already empty otherwise */
577 CLEAR_HASH(s);
578 s->strstart = 0;
579 s->block_start = 0L;
580 s->insert = 0;
581 }
582 dictionary += dictLength - s->w_size; /* use the tail */
583 dictLength = s->w_size;
584 }
585
586 /* insert dictionary into window and hash */
587 avail = strm->avail_in;
588 next = strm->next_in;
589 strm->avail_in = dictLength;
590 strm->next_in = (z_const Bytef *)dictionary;
591 fill_window(s);
592 while (s->lookahead >= MIN_MATCH) {
593 str = s->strstart;
594 n = s->lookahead - (MIN_MATCH-1);
595 do {
596 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
597 #ifndef FASTEST
598 s->prev[str & s->w_mask] = s->head[s->ins_h];
599 #endif
600 s->head[s->ins_h] = (Pos)str;
601 str++;
602 } while (--n);
603 s->strstart = str;
604 s->lookahead = MIN_MATCH-1;
605 fill_window(s);
606 }
607 s->strstart += s->lookahead;
608 s->block_start = (long)s->strstart;
609 s->insert = s->lookahead;
610 s->lookahead = 0;
611 s->match_length = s->prev_length = MIN_MATCH-1;
612 s->match_available = 0;
613 strm->next_in = next;
614 strm->avail_in = avail;
615 s->wrap = wrap;
616 return Z_OK;
617 }
618
619 /* ========================================================================= */
deflateGetDictionary(z_streamp strm,Bytef * dictionary,uInt * dictLength)620 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
621 uInt *dictLength) {
622 deflate_state *s;
623 uInt len;
624
625 if (deflateStateCheck(strm))
626 return Z_STREAM_ERROR;
627 s = strm->state;
628 len = s->strstart + s->lookahead;
629 if (len > s->w_size)
630 len = s->w_size;
631 if (dictionary != Z_NULL && len)
632 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
633 if (dictLength != Z_NULL)
634 *dictLength = len;
635 return Z_OK;
636 }
637
638 /* ========================================================================= */
deflateResetKeep(z_streamp strm)639 int ZEXPORT deflateResetKeep(z_streamp strm) {
640 deflate_state *s;
641
642 if (deflateStateCheck(strm)) {
643 return Z_STREAM_ERROR;
644 }
645
646 strm->total_in = strm->total_out = 0;
647 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
648 strm->data_type = Z_UNKNOWN;
649
650 s = (deflate_state *)strm->state;
651 s->pending = 0;
652 s->pending_out = s->pending_buf;
653
654 if (s->wrap < 0) {
655 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
656 }
657 s->status =
658 #ifdef GZIP
659 s->wrap == 2 ? GZIP_STATE :
660 #endif
661 INIT_STATE;
662 strm->adler =
663 #ifdef GZIP
664 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
665 #endif
666 adler32(0L, Z_NULL, 0);
667 s->last_flush = -2;
668
669 _tr_init(s);
670
671 return Z_OK;
672 }
673
674 /* ===========================================================================
675 * Initialize the "longest match" routines for a new zlib stream
676 */
lm_init(deflate_state * s)677 local void lm_init(deflate_state *s)
678 {
679 s->window_size = (ulg)2L*s->w_size;
680
681 CLEAR_HASH(s);
682
683 /* Set the default configuration parameters:
684 */
685 s->max_lazy_match = configuration_table[s->level].max_lazy;
686 s->good_match = configuration_table[s->level].good_length;
687 s->nice_match = configuration_table[s->level].nice_length;
688 s->max_chain_length = configuration_table[s->level].max_chain;
689
690 s->strstart = 0;
691 s->block_start = 0L;
692 s->lookahead = 0;
693 s->insert = 0;
694 s->match_length = s->prev_length = MIN_MATCH-1;
695 s->match_available = 0;
696 s->ins_h = 0;
697 }
698
699 /* ========================================================================= */
deflateReset(z_streamp strm)700 int ZEXPORT deflateReset(z_streamp strm) {
701 int ret;
702
703 ret = deflateResetKeep(strm);
704 if (ret == Z_OK)
705 lm_init(strm->state);
706 return ret;
707 }
708
709 /* ========================================================================= */
deflateSetHeader(z_streamp strm,gz_headerp head)710 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
711 if (deflateStateCheck(strm) || strm->state->wrap != 2)
712 return Z_STREAM_ERROR;
713 strm->state->gzhead = head;
714 return Z_OK;
715 }
716
717 /* ========================================================================= */
deflatePending(z_streamp strm,unsigned * pending,int * bits)718 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
719 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
720 if (pending != Z_NULL)
721 *pending = strm->state->pending;
722 if (bits != Z_NULL)
723 *bits = strm->state->bi_valid;
724 return Z_OK;
725 }
726
727 /* ========================================================================= */
deflatePrime(z_streamp strm,int bits,int value)728 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
729 deflate_state *s;
730 int put;
731
732 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
733 s = strm->state;
734 #ifdef LIT_MEM
735 if (bits < 0 || bits > 16 ||
736 (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
737 return Z_BUF_ERROR;
738 #else
739 if (bits < 0 || bits > 16 ||
740 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
741 return Z_BUF_ERROR;
742 #endif
743 do {
744 put = Buf_size - s->bi_valid;
745 if (put > bits)
746 put = bits;
747 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
748 s->bi_valid += put;
749 _tr_flush_bits(s);
750 value >>= put;
751 bits -= put;
752 } while (bits);
753 return Z_OK;
754 }
755
756 /* ========================================================================= */
deflateParams(z_streamp strm,int level,int strategy)757 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
758 deflate_state *s;
759 compress_func func;
760
761 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
762 s = strm->state;
763
764 #ifdef FASTEST
765 if (level != 0) level = 1;
766 #else
767 if (level == Z_DEFAULT_COMPRESSION) level = 6;
768 #endif
769 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
770 return Z_STREAM_ERROR;
771 }
772 func = configuration_table[s->level].func;
773
774 if ((strategy != s->strategy || func != configuration_table[level].func) &&
775 s->last_flush != -2) {
776 /* Flush the last buffer: */
777 int err = deflate(strm, Z_BLOCK);
778 if (err == Z_STREAM_ERROR)
779 return err;
780 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
781 return Z_BUF_ERROR;
782 }
783 if (s->level != level) {
784 if (s->level == 0 && s->matches != 0) {
785 if (s->matches == 1)
786 slide_hash(s);
787 else
788 CLEAR_HASH(s);
789 s->matches = 0;
790 }
791 s->level = level;
792 s->max_lazy_match = configuration_table[level].max_lazy;
793 s->good_match = configuration_table[level].good_length;
794 s->nice_match = configuration_table[level].nice_length;
795 s->max_chain_length = configuration_table[level].max_chain;
796 }
797 s->strategy = strategy;
798 return Z_OK;
799 }
800
801 /* ========================================================================= */
deflateTune(z_streamp strm,int good_length,int max_lazy,int nice_length,int max_chain)802 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
803 int nice_length, int max_chain) {
804 deflate_state *s;
805
806 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
807 s = strm->state;
808 s->good_match = (uInt)good_length;
809 s->max_lazy_match = (uInt)max_lazy;
810 s->nice_match = nice_length;
811 s->max_chain_length = (uInt)max_chain;
812 return Z_OK;
813 }
814
815 /* =========================================================================
816 * For the default windowBits of 15 and memLevel of 8, this function returns a
817 * close to exact, as well as small, upper bound on the compressed size. This
818 * is an expansion of ~0.03%, plus a small constant.
819 *
820 * For any setting other than those defaults for windowBits and memLevel, one
821 * of two worst case bounds is returned. This is at most an expansion of ~4% or
822 * ~13%, plus a small constant.
823 *
824 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
825 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
826 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
827 * expansion results from five bytes of header for each stored block.
828 *
829 * The larger expansion of 13% results from a window size less than or equal to
830 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
831 * the data being compressed may have slid out of the sliding window, impeding
832 * a stored block from being emitted. Then the only choice is a fixed or
833 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
834 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
835 * which this can occur is 255 (memLevel == 2).
836 *
837 * Shifts are used to approximate divisions, for speed.
838 */
deflateBound(z_streamp strm,uLong sourceLen)839 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen)
840 {
841 deflate_state *s;
842 uLong fixedlen, storelen, wraplen;
843
844 /* upper bound for fixed blocks with 9-bit literals and length 255
845 (memLevel == 2, which is the lowest that may not use stored blocks) --
846 ~13% overhead plus a small constant */
847 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
848 (sourceLen >> 9) + 4;
849
850 /* upper bound for stored blocks with length 127 (memLevel == 1) --
851 ~4% overhead plus a small constant */
852 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
853 (sourceLen >> 11) + 7;
854
855 /* if can't get parameters, return larger bound plus a zlib wrapper */
856 if (deflateStateCheck(strm))
857 return (fixedlen > storelen ? fixedlen : storelen) + 6;
858
859 /* compute wrapper length */
860 s = strm->state;
861 switch (s->wrap) {
862 case 0: /* raw deflate */
863 wraplen = 0;
864 break;
865 case 1: /* zlib wrapper */
866 wraplen = 6 + (s->strstart ? 4 : 0);
867 break;
868 #ifdef GZIP
869 case 2: /* gzip wrapper */
870 wraplen = 18;
871 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
872 Bytef *str;
873 if (s->gzhead->extra != Z_NULL)
874 wraplen += 2 + s->gzhead->extra_len;
875 str = s->gzhead->name;
876 if (str != Z_NULL)
877 do {
878 wraplen++;
879 } while (*str++);
880 str = s->gzhead->comment;
881 if (str != Z_NULL)
882 do {
883 wraplen++;
884 } while (*str++);
885 if (s->gzhead->hcrc)
886 wraplen += 2;
887 }
888 break;
889 #endif
890 default: /* for compiler happiness */
891 wraplen = 6;
892 }
893
894 /* if not default parameters, return one of the conservative bounds */
895 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
896 return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
897 wraplen;
898
899 /* default settings: return tight bound for that case -- ~0.03% overhead
900 plus a small constant */
901 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
902 (sourceLen >> 25) + 13 - 6 + wraplen;
903 }
904
905 /* =========================================================================
906 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
907 * IN assertion: the stream state is correct and there is enough room in
908 * pending_buf.
909 */
putShortMSB(deflate_state * s,uInt b)910 local void putShortMSB(deflate_state *s, uInt b)
911 {
912 put_byte(s, (Byte)(b >> 8));
913 put_byte(s, (Byte)(b & 0xff));
914 }
915
916 /* =========================================================================
917 * Flush as much pending output as possible. All deflate() output, except for
918 * some deflate_stored() output, goes through this function so some
919 * applications may wish to modify it to avoid allocating a large
920 * strm->next_out buffer and copying into it. (See also read_buf()).
921 */
flush_pending(z_streamp strm)922 local void flush_pending(z_streamp strm)
923 {
924 unsigned len;
925 deflate_state *s = strm->state;
926
927 _tr_flush_bits(s);
928 len = s->pending;
929 if (len > strm->avail_out) len = strm->avail_out;
930 if (len == 0) return;
931
932 zmemcpy(strm->next_out, s->pending_out, len);
933 strm->next_out += len;
934 s->pending_out += len;
935 strm->total_out += len;
936 strm->avail_out -= len;
937 s->pending -= len;
938 if (s->pending == 0) {
939 s->pending_out = s->pending_buf;
940 }
941 }
942
943 /* ===========================================================================
944 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
945 */
946 #define HCRC_UPDATE(beg) \
947 do { \
948 if (s->gzhead->hcrc && s->pending > (beg)) \
949 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
950 s->pending - (beg)); \
951 } while (0)
952
953 /* ========================================================================= */
deflate(z_streamp strm,int flush)954 int ZEXPORT deflate(z_streamp strm, int flush) {
955 int old_flush; /* value of flush param for previous deflate call */
956 deflate_state *s;
957
958 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
959 return Z_STREAM_ERROR;
960 }
961 s = strm->state;
962
963 if (strm->next_out == Z_NULL ||
964 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
965 (s->status == FINISH_STATE && flush != Z_FINISH)) {
966 ERR_RETURN(strm, Z_STREAM_ERROR);
967 }
968 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
969
970 old_flush = s->last_flush;
971 s->last_flush = flush;
972
973 /* Flush as much pending output as possible */
974 if (s->pending != 0) {
975 flush_pending(strm);
976 if (strm->avail_out == 0) {
977 /* Since avail_out is 0, deflate will be called again with
978 * more output space, but possibly with both pending and
979 * avail_in equal to zero. There won't be anything to do,
980 * but this is not an error situation so make sure we
981 * return OK instead of BUF_ERROR at next call of deflate:
982 */
983 s->last_flush = -1;
984 return Z_OK;
985 }
986
987 /* Make sure there is something to do and avoid duplicate consecutive
988 * flushes. For repeated and useless calls with Z_FINISH, we keep
989 * returning Z_STREAM_END instead of Z_BUF_ERROR.
990 */
991 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
992 flush != Z_FINISH) {
993 ERR_RETURN(strm, Z_BUF_ERROR);
994 }
995
996 /* User must not provide more input after the first FINISH: */
997 if (s->status == FINISH_STATE && strm->avail_in != 0) {
998 ERR_RETURN(strm, Z_BUF_ERROR);
999 }
1000
1001 /* Write the header */
1002 if (s->status == INIT_STATE && s->wrap == 0)
1003 s->status = BUSY_STATE;
1004 if (s->status == INIT_STATE) {
1005 /* zlib header */
1006 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1007 uInt level_flags;
1008
1009 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1010 level_flags = 0;
1011 else if (s->level < 6)
1012 level_flags = 1;
1013 else if (s->level == 6)
1014 level_flags = 2;
1015 else
1016 level_flags = 3;
1017 header |= (level_flags << 6);
1018 if (s->strstart != 0) header |= PRESET_DICT;
1019 header += 31 - (header % 31);
1020
1021 putShortMSB(s, header);
1022
1023 /* Save the adler32 of the preset dictionary: */
1024 if (s->strstart != 0) {
1025 putShortMSB(s, (uInt)(strm->adler >> 16));
1026 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1027 }
1028 strm->adler = adler32(0L, Z_NULL, 0);
1029 s->status = BUSY_STATE;
1030
1031 /* Compression must start with an empty pending buffer */
1032 flush_pending(strm);
1033 if (s->pending != 0) {
1034 s->last_flush = -1;
1035 return Z_OK;
1036 }
1037 }
1038 #ifdef GZIP
1039 if (s->status == GZIP_STATE) {
1040 /* gzip header */
1041 strm->adler = crc32(0L, Z_NULL, 0);
1042 put_byte(s, 31);
1043 put_byte(s, 139);
1044 put_byte(s, 8);
1045 if (s->gzhead == Z_NULL) {
1046 put_byte(s, 0);
1047 put_byte(s, 0);
1048 put_byte(s, 0);
1049 put_byte(s, 0);
1050 put_byte(s, 0);
1051 put_byte(s, s->level == 9 ? 2 :
1052 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1053 4 : 0));
1054 put_byte(s, OS_CODE);
1055 s->status = BUSY_STATE;
1056
1057 /* Compression must start with an empty pending buffer */
1058 flush_pending(strm);
1059 if (s->pending != 0) {
1060 s->last_flush = -1;
1061 return Z_OK;
1062 }
1063 }
1064 else {
1065 put_byte(s, (s->gzhead->text ? 1 : 0) +
1066 (s->gzhead->hcrc ? 2 : 0) +
1067 (s->gzhead->extra == Z_NULL ? 0 : 4) +
1068 (s->gzhead->name == Z_NULL ? 0 : 8) +
1069 (s->gzhead->comment == Z_NULL ? 0 : 16)
1070 );
1071 put_byte(s, (Byte)(s->gzhead->time & 0xff));
1072 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1073 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1074 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1075 put_byte(s, s->level == 9 ? 2 :
1076 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1077 4 : 0));
1078 put_byte(s, s->gzhead->os & 0xff);
1079 if (s->gzhead->extra != Z_NULL) {
1080 put_byte(s, s->gzhead->extra_len & 0xff);
1081 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1082 }
1083 if (s->gzhead->hcrc)
1084 strm->adler = crc32(strm->adler, s->pending_buf,
1085 s->pending);
1086 s->gzindex = 0;
1087 s->status = EXTRA_STATE;
1088 }
1089 }
1090 if (s->status == EXTRA_STATE) {
1091 if (s->gzhead->extra != Z_NULL) {
1092 ulg beg = s->pending; /* start of bytes to update crc */
1093 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1094 while (s->pending + left > s->pending_buf_size) {
1095 uInt copy = s->pending_buf_size - s->pending;
1096 zmemcpy(s->pending_buf + s->pending,
1097 s->gzhead->extra + s->gzindex, copy);
1098 s->pending = s->pending_buf_size;
1099 HCRC_UPDATE(beg);
1100 s->gzindex += copy;
1101 flush_pending(strm);
1102 if (s->pending != 0) {
1103 s->last_flush = -1;
1104 return Z_OK;
1105 }
1106 beg = 0;
1107 left -= copy;
1108 }
1109 zmemcpy(s->pending_buf + s->pending,
1110 s->gzhead->extra + s->gzindex, left);
1111 s->pending += left;
1112 HCRC_UPDATE(beg);
1113 s->gzindex = 0;
1114 }
1115 s->status = NAME_STATE;
1116 }
1117 if (s->status == NAME_STATE) {
1118 if (s->gzhead->name != Z_NULL) {
1119 ulg beg = s->pending; /* start of bytes to update crc */
1120 int val;
1121 do {
1122 if (s->pending == s->pending_buf_size) {
1123 HCRC_UPDATE(beg);
1124 flush_pending(strm);
1125 if (s->pending != 0) {
1126 s->last_flush = -1;
1127 return Z_OK;
1128 }
1129 beg = 0;
1130 }
1131 val = s->gzhead->name[s->gzindex++];
1132 put_byte(s, val);
1133 } while (val != 0);
1134 HCRC_UPDATE(beg);
1135 s->gzindex = 0;
1136 }
1137 s->status = COMMENT_STATE;
1138 }
1139 if (s->status == COMMENT_STATE) {
1140 if (s->gzhead->comment != Z_NULL) {
1141 ulg beg = s->pending; /* start of bytes to update crc */
1142 int val;
1143 do {
1144 if (s->pending == s->pending_buf_size) {
1145 HCRC_UPDATE(beg);
1146 flush_pending(strm);
1147 if (s->pending != 0) {
1148 s->last_flush = -1;
1149 return Z_OK;
1150 }
1151 beg = 0;
1152 }
1153 val = s->gzhead->comment[s->gzindex++];
1154 put_byte(s, val);
1155 } while (val != 0);
1156 HCRC_UPDATE(beg);
1157 }
1158 s->status = HCRC_STATE;
1159 }
1160 if (s->status == HCRC_STATE) {
1161 if (s->gzhead->hcrc) {
1162 if (s->pending + 2 > s->pending_buf_size) {
1163 flush_pending(strm);
1164 if (s->pending != 0) {
1165 s->last_flush = -1;
1166 return Z_OK;
1167 }
1168 }
1169 put_byte(s, (Byte)(strm->adler & 0xff));
1170 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1171 strm->adler = crc32(0L, Z_NULL, 0);
1172 }
1173 s->status = BUSY_STATE;
1174
1175 /* Compression must start with an empty pending buffer */
1176 flush_pending(strm);
1177 if (s->pending != 0) {
1178 s->last_flush = -1;
1179 return Z_OK;
1180 }
1181 }
1182 #endif
1183
1184 /* Start a new block or continue the current one.
1185 */
1186 if (strm->avail_in != 0 || s->lookahead != 0 ||
1187 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1188 block_state bstate;
1189
1190 bstate = s->level == 0 ? deflate_stored(s, flush) :
1191 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1192 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1193 (*(configuration_table[s->level].func))(s, flush);
1194
1195 if (bstate == finish_started || bstate == finish_done) {
1196 s->status = FINISH_STATE;
1197 }
1198 if (bstate == need_more || bstate == finish_started) {
1199 if (strm->avail_out == 0) {
1200 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1201 }
1202 return Z_OK;
1203 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1204 * of deflate should use the same flush parameter to make sure
1205 * that the flush is complete. So we don't have to output an
1206 * empty block here, this will be done at next call. This also
1207 * ensures that for a very small output buffer, we emit at most
1208 * one empty block.
1209 */
1210 }
1211 if (bstate == block_done) {
1212 if (flush == Z_PARTIAL_FLUSH) {
1213 _tr_align(s);
1214 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1215 _tr_stored_block(s, (char*)0, 0L, 0);
1216 /* For a full flush, this empty block will be recognized
1217 * as a special marker by inflate_sync().
1218 */
1219 if (flush == Z_FULL_FLUSH) {
1220 CLEAR_HASH(s); /* forget history */
1221 if (s->lookahead == 0) {
1222 s->strstart = 0;
1223 s->block_start = 0L;
1224 s->insert = 0;
1225 }
1226 }
1227 }
1228 flush_pending(strm);
1229 if (strm->avail_out == 0) {
1230 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1231 return Z_OK;
1232 }
1233 }
1234 }
1235
1236 if (flush != Z_FINISH) return Z_OK;
1237 if (s->wrap <= 0) return Z_STREAM_END;
1238
1239 /* Write the trailer */
1240 #ifdef GZIP
1241 if (s->wrap == 2) {
1242 put_byte(s, (Byte)(strm->adler & 0xff));
1243 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1244 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1245 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1246 put_byte(s, (Byte)(strm->total_in & 0xff));
1247 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1248 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1249 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1250 }
1251 else
1252 #endif
1253 {
1254 putShortMSB(s, (uInt)(strm->adler >> 16));
1255 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1256 }
1257 flush_pending(strm);
1258 /* If avail_out is zero, the application will call deflate again
1259 * to flush the rest.
1260 */
1261 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1262 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1263 }
1264
1265 /* ========================================================================= */
deflateEnd(z_streamp strm)1266 int ZEXPORT deflateEnd(z_streamp strm) {
1267 int status;
1268
1269 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1270
1271 status = strm->state->status;
1272
1273 /* Deallocate in reverse order of allocations: */
1274 TRY_FREE(strm, strm->state->pending_buf);
1275 TRY_FREE(strm, strm->state->head);
1276 TRY_FREE(strm, strm->state->prev);
1277 TRY_FREE(strm, strm->state->window);
1278
1279 ZFREE(strm, strm->state);
1280 strm->state = Z_NULL;
1281
1282 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1283 }
1284
1285 /* =========================================================================
1286 * Copy the source state to the destination state.
1287 * To simplify the source, this is not supported for 16-bit MSDOS (which
1288 * doesn't have enough memory anyway to duplicate compression states).
1289 */
deflateCopy(z_streamp dest,z_streamp source)1290 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1291 #ifdef MAXSEG_64K
1292 (void)dest;
1293 (void)source;
1294 return Z_STREAM_ERROR;
1295 #else
1296 deflate_state *ds;
1297 deflate_state *ss;
1298
1299
1300 if (deflateStateCheck(source) || dest == Z_NULL) {
1301 return Z_STREAM_ERROR;
1302 }
1303
1304 ss = source->state;
1305
1306 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1307
1308 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1309 if (ds == Z_NULL) return Z_MEM_ERROR;
1310 dest->state = (struct internal_state FAR *) ds;
1311 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1312 ds->strm = dest;
1313
1314 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1315 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1316 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1317 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1318
1319 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1320 ds->pending_buf == Z_NULL) {
1321 deflateEnd (dest);
1322 return Z_MEM_ERROR;
1323 }
1324 /* following zmemcpy do not work for 16-bit MSDOS */
1325 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1326 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1327 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1328 zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1329
1330 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1331 #ifdef LIT_MEM
1332 ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1333 ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1334 #else
1335 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1336 #endif
1337
1338 ds->l_desc.dyn_tree = ds->dyn_ltree;
1339 ds->d_desc.dyn_tree = ds->dyn_dtree;
1340 ds->bl_desc.dyn_tree = ds->bl_tree;
1341
1342 return Z_OK;
1343 #endif /* MAXSEG_64K */
1344 }
1345
1346 #ifndef FASTEST
1347 /* ===========================================================================
1348 * Set match_start to the longest match starting at the given string and
1349 * return its length. Matches shorter or equal to prev_length are discarded,
1350 * in which case the result is equal to prev_length and match_start is
1351 * garbage.
1352 * IN assertions: cur_match is the head of the hash chain for the current
1353 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1354 * OUT assertion: the match length is not greater than s->lookahead.
1355 */
longest_match(deflate_state * s,IPos cur_match)1356 local uInt longest_match(deflate_state *s, IPos cur_match)
1357 {
1358 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1359 register Bytef *scan = s->window + s->strstart; /* current string */
1360 register Bytef *match; /* matched string */
1361 register int len; /* length of current match */
1362 int best_len = (int)s->prev_length; /* best match length so far */
1363 int nice_match = s->nice_match; /* stop if match long enough */
1364 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1365 s->strstart - (IPos)MAX_DIST(s) : NIL;
1366 /* Stop when cur_match becomes <= limit. To simplify the code,
1367 * we prevent matches with the string of window index 0.
1368 */
1369 Posf *prev = s->prev;
1370 uInt wmask = s->w_mask;
1371
1372 #ifdef UNALIGNED_OK
1373 /* Compare two bytes at a time. Note: this is not always beneficial.
1374 * Try with and without -DUNALIGNED_OK to check.
1375 */
1376 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1377 register ush scan_start = *(ushf*)scan;
1378 register ush scan_end = *(ushf*)(scan + best_len - 1);
1379 #else
1380 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1381 register Byte scan_end1 = scan[best_len - 1];
1382 register Byte scan_end = scan[best_len];
1383 #endif
1384
1385 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1386 * It is easy to get rid of this optimization if necessary.
1387 */
1388 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1389
1390 /* Do not waste too much time if we already have a good match: */
1391 if (s->prev_length >= s->good_match) {
1392 chain_length >>= 2;
1393 }
1394 /* Do not look for matches beyond the end of the input. This is necessary
1395 * to make deflate deterministic.
1396 */
1397 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1398
1399 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1400 "need lookahead");
1401
1402 do {
1403 Assert(cur_match < s->strstart, "no future");
1404 match = s->window + cur_match;
1405
1406 /* Skip to next match if the match length cannot increase
1407 * or if the match length is less than 2. Note that the checks below
1408 * for insufficient lookahead only occur occasionally for performance
1409 * reasons. Therefore uninitialized memory will be accessed, and
1410 * conditional jumps will be made that depend on those values.
1411 * However the length of the match is limited to the lookahead, so
1412 * the output of deflate is not affected by the uninitialized values.
1413 */
1414 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1415 /* This code assumes sizeof(unsigned short) == 2. Do not use
1416 * UNALIGNED_OK if your compiler uses a different size.
1417 */
1418 if (*(ushf*)(match + best_len - 1) != scan_end ||
1419 *(ushf*)match != scan_start) continue;
1420
1421 /* It is not necessary to compare scan[2] and match[2] since they are
1422 * always equal when the other bytes match, given that the hash keys
1423 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1424 * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1425 * lookahead only every 4th comparison; the 128th check will be made
1426 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1427 * necessary to put more guard bytes at the end of the window, or
1428 * to check more often for insufficient lookahead.
1429 */
1430 Assert(scan[2] == match[2], "scan[2]?");
1431 scan++, match++;
1432 do {
1433 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1434 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1435 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1436 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1437 scan < strend);
1438 /* The funny "do {}" generates better code on most compilers */
1439
1440 /* Here, scan <= window + strstart + 257 */
1441 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1442 "wild scan");
1443 if (*scan == *match) scan++;
1444
1445 len = (MAX_MATCH - 1) - (int)(strend - scan);
1446 scan = strend - (MAX_MATCH-1);
1447
1448 #else /* UNALIGNED_OK */
1449
1450 if (match[best_len] != scan_end ||
1451 match[best_len - 1] != scan_end1 ||
1452 *match != *scan ||
1453 *++match != scan[1]) continue;
1454
1455 /* The check at best_len - 1 can be removed because it will be made
1456 * again later. (This heuristic is not always a win.)
1457 * It is not necessary to compare scan[2] and match[2] since they
1458 * are always equal when the other bytes match, given that
1459 * the hash keys are equal and that HASH_BITS >= 8.
1460 */
1461 scan += 2, match++;
1462 Assert(*scan == *match, "match[2]?");
1463
1464 /* We check for insufficient lookahead only every 8th comparison;
1465 * the 256th check will be made at strstart + 258.
1466 */
1467 do {
1468 } while (*++scan == *++match && *++scan == *++match &&
1469 *++scan == *++match && *++scan == *++match &&
1470 *++scan == *++match && *++scan == *++match &&
1471 *++scan == *++match && *++scan == *++match &&
1472 scan < strend);
1473
1474 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1475 "wild scan");
1476
1477 len = MAX_MATCH - (int)(strend - scan);
1478 scan = strend - MAX_MATCH;
1479
1480 #endif /* UNALIGNED_OK */
1481
1482 if (len > best_len) {
1483 s->match_start = cur_match;
1484 best_len = len;
1485 if (len >= nice_match) break;
1486 #ifdef UNALIGNED_OK
1487 scan_end = *(ushf*)(scan + best_len - 1);
1488 #else
1489 scan_end1 = scan[best_len - 1];
1490 scan_end = scan[best_len];
1491 #endif
1492 }
1493 } while ((cur_match = prev[cur_match & wmask]) > limit
1494 && --chain_length != 0);
1495
1496 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1497 return s->lookahead;
1498 }
1499
1500 #else /* FASTEST */
1501
1502 /* ---------------------------------------------------------------------------
1503 * Optimized version for FASTEST only
1504 */
longest_match(deflate_state * s,IPos cur_match)1505 local uInt longest_match(deflate_state *s, IPos cur_match)
1506 {
1507 register Bytef *scan = s->window + s->strstart; /* current string */
1508 register Bytef *match; /* matched string */
1509 register int len; /* length of current match */
1510 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1511
1512 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1513 * It is easy to get rid of this optimization if necessary.
1514 */
1515 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1516
1517 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1518 "need lookahead");
1519
1520 Assert(cur_match < s->strstart, "no future");
1521
1522 match = s->window + cur_match;
1523
1524 /* Return failure if the match length is less than 2:
1525 */
1526 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1527
1528 /* The check at best_len - 1 can be removed because it will be made
1529 * again later. (This heuristic is not always a win.)
1530 * It is not necessary to compare scan[2] and match[2] since they
1531 * are always equal when the other bytes match, given that
1532 * the hash keys are equal and that HASH_BITS >= 8.
1533 */
1534 scan += 2, match += 2;
1535 Assert(*scan == *match, "match[2]?");
1536
1537 /* We check for insufficient lookahead only every 8th comparison;
1538 * the 256th check will be made at strstart + 258.
1539 */
1540 do {
1541 } while (*++scan == *++match && *++scan == *++match &&
1542 *++scan == *++match && *++scan == *++match &&
1543 *++scan == *++match && *++scan == *++match &&
1544 *++scan == *++match && *++scan == *++match &&
1545 scan < strend);
1546
1547 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1548
1549 len = MAX_MATCH - (int)(strend - scan);
1550
1551 if (len < MIN_MATCH) return MIN_MATCH - 1;
1552
1553 s->match_start = cur_match;
1554 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1555 }
1556
1557 #endif /* FASTEST */
1558
1559 #ifdef ZLIB_DEBUG
1560
1561 #define EQUAL 0
1562 /* result of memcmp for equal strings */
1563
1564 /* ===========================================================================
1565 * Check that the match at match_start is indeed a match.
1566 */
check_match(deflate_state * s,IPos start,IPos match,int length)1567 local void check_match(deflate_state *s, IPos start, IPos match, int length)
1568 {
1569 /* check that the match is indeed a match */
1570 Bytef *back = s->window + (int)match, *here = s->window + start;
1571 IPos len = length;
1572 if (match == (IPos)-1) {
1573 /* match starts one byte before the current window -- just compare the
1574 subsequent length-1 bytes */
1575 back++;
1576 here++;
1577 len--;
1578 }
1579 if (zmemcmp(back, here, len) != EQUAL) {
1580 fprintf(stderr, " start %u, match %d, length %d\n",
1581 start, (int)match, length);
1582 do {
1583 fprintf(stderr, "(%02x %02x)", *back++, *here++);
1584 } while (--len != 0);
1585 z_error("invalid match");
1586 }
1587 if (z_verbose > 1) {
1588 fprintf(stderr,"\\[%d,%d]", start - match, length);
1589 do { putc(s->window[start++], stderr); } while (--length != 0);
1590 }
1591 }
1592 #else
1593 # define check_match(s, start, match, length)
1594 #endif /* ZLIB_DEBUG */
1595
1596 /* ===========================================================================
1597 * Flush the current block, with given end-of-file flag.
1598 * IN assertion: strstart is set to the end of the current match.
1599 */
1600 #define FLUSH_BLOCK_ONLY(s, last) { \
1601 _tr_flush_block(s, (s->block_start >= 0L ? \
1602 (charf *)&s->window[(unsigned)s->block_start] : \
1603 (charf *)Z_NULL), \
1604 (ulg)((long)s->strstart - s->block_start), \
1605 (last)); \
1606 s->block_start = s->strstart; \
1607 flush_pending(s->strm); \
1608 Tracev((stderr,"[FLUSH]")); \
1609 }
1610
1611 /* Same but force premature exit if necessary. */
1612 #define FLUSH_BLOCK(s, last) { \
1613 FLUSH_BLOCK_ONLY(s, last); \
1614 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1615 }
1616
1617 /* Maximum stored block length in deflate format (not including header). */
1618 #define MAX_STORED 65535
1619
1620 /* Minimum of a and b. */
1621 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1622
1623 /* ===========================================================================
1624 * Copy without compression as much as possible from the input stream, return
1625 * the current block state.
1626 *
1627 * In case deflateParams() is used to later switch to a non-zero compression
1628 * level, s->matches (otherwise unused when storing) keeps track of the number
1629 * of hash table slides to perform. If s->matches is 1, then one hash table
1630 * slide will be done when switching. If s->matches is 2, the maximum value
1631 * allowed here, then the hash table will be cleared, since two or more slides
1632 * is the same as a clear.
1633 *
1634 * deflate_stored() is written to minimize the number of times an input byte is
1635 * copied. It is most efficient with large input and output buffers, which
1636 * maximizes the opportunities to have a single copy from next_in to next_out.
1637 */
deflate_stored(deflate_state * s,int flush)1638 local block_state deflate_stored(deflate_state *s, int flush)
1639 {
1640 /* Smallest worthy block size when not flushing or finishing. By default
1641 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1642 * large input and output buffers, the stored block size will be larger.
1643 */
1644 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1645
1646 /* Copy as many min_block or larger stored blocks directly to next_out as
1647 * possible. If flushing, copy the remaining available input to next_out as
1648 * stored blocks, if there is enough space.
1649 */
1650 unsigned len, left, have, last = 0;
1651 unsigned used = s->strm->avail_in;
1652 do {
1653 /* Set len to the maximum size block that we can copy directly with the
1654 * available input data and output space. Set left to how much of that
1655 * would be copied from what's left in the window.
1656 */
1657 len = MAX_STORED; /* maximum deflate stored block length */
1658 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1659 if (s->strm->avail_out < have) /* need room for header */
1660 break;
1661 /* maximum stored block length that will fit in avail_out: */
1662 have = s->strm->avail_out - have;
1663 left = s->strstart - s->block_start; /* bytes left in window */
1664 if (len > (ulg)left + s->strm->avail_in)
1665 len = left + s->strm->avail_in; /* limit len to the input */
1666 if (len > have)
1667 len = have; /* limit len to the output */
1668
1669 /* If the stored block would be less than min_block in length, or if
1670 * unable to copy all of the available input when flushing, then try
1671 * copying to the window and the pending buffer instead. Also don't
1672 * write an empty block when flushing -- deflate() does that.
1673 */
1674 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1675 flush == Z_NO_FLUSH ||
1676 len != left + s->strm->avail_in))
1677 break;
1678
1679 /* Make a dummy stored block in pending to get the header bytes,
1680 * including any pending bits. This also updates the debugging counts.
1681 */
1682 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1683 _tr_stored_block(s, (char *)0, 0L, last);
1684
1685 /* Replace the lengths in the dummy stored block with len. */
1686 s->pending_buf[s->pending - 4] = len;
1687 s->pending_buf[s->pending - 3] = len >> 8;
1688 s->pending_buf[s->pending - 2] = ~len;
1689 s->pending_buf[s->pending - 1] = ~len >> 8;
1690
1691 /* Write the stored block header bytes. */
1692 flush_pending(s->strm);
1693
1694 #ifdef ZLIB_DEBUG
1695 /* Update debugging counts for the data about to be copied. */
1696 s->compressed_len += len << 3;
1697 s->bits_sent += len << 3;
1698 #endif
1699
1700 /* Copy uncompressed bytes from the window to next_out. */
1701 if (left) {
1702 if (left > len)
1703 left = len;
1704 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1705 s->strm->next_out += left;
1706 s->strm->avail_out -= left;
1707 s->strm->total_out += left;
1708 s->block_start += left;
1709 len -= left;
1710 }
1711
1712 /* Copy uncompressed bytes directly from next_in to next_out, updating
1713 * the check value.
1714 */
1715 if (len) {
1716 read_buf(s->strm, s->strm->next_out, len);
1717 s->strm->next_out += len;
1718 s->strm->avail_out -= len;
1719 s->strm->total_out += len;
1720 }
1721 } while (last == 0);
1722
1723 /* Update the sliding window with the last s->w_size bytes of the copied
1724 * data, or append all of the copied data to the existing window if less
1725 * than s->w_size bytes were copied. Also update the number of bytes to
1726 * insert in the hash tables, in the event that deflateParams() switches to
1727 * a non-zero compression level.
1728 */
1729 used -= s->strm->avail_in; /* number of input bytes directly copied */
1730 if (used) {
1731 /* If any input was used, then no unused input remains in the window,
1732 * therefore s->block_start == s->strstart.
1733 */
1734 if (used >= s->w_size) { /* supplant the previous history */
1735 s->matches = 2; /* clear hash */
1736 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1737 s->strstart = s->w_size;
1738 s->insert = s->strstart;
1739 }
1740 else {
1741 if (s->window_size - s->strstart <= used) {
1742 /* Slide the window down. */
1743 s->strstart -= s->w_size;
1744 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1745 if (s->matches < 2)
1746 s->matches++; /* add a pending slide_hash() */
1747 if (s->insert > s->strstart)
1748 s->insert = s->strstart;
1749 }
1750 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1751 s->strstart += used;
1752 s->insert += MIN(used, s->w_size - s->insert);
1753 }
1754 s->block_start = s->strstart;
1755 }
1756 if (s->high_water < s->strstart)
1757 s->high_water = s->strstart;
1758
1759 /* If the last block was written to next_out, then done. */
1760 if (last)
1761 return finish_done;
1762
1763 /* If flushing and all input has been consumed, then done. */
1764 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1765 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1766 return block_done;
1767
1768 /* Fill the window with any remaining input. */
1769 have = s->window_size - s->strstart;
1770 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1771 /* Slide the window down. */
1772 s->block_start -= s->w_size;
1773 s->strstart -= s->w_size;
1774 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1775 if (s->matches < 2)
1776 s->matches++; /* add a pending slide_hash() */
1777 have += s->w_size; /* more space now */
1778 if (s->insert > s->strstart)
1779 s->insert = s->strstart;
1780 }
1781 if (have > s->strm->avail_in)
1782 have = s->strm->avail_in;
1783 if (have) {
1784 read_buf(s->strm, s->window + s->strstart, have);
1785 s->strstart += have;
1786 s->insert += MIN(have, s->w_size - s->insert);
1787 }
1788 if (s->high_water < s->strstart)
1789 s->high_water = s->strstart;
1790
1791 /* There was not enough avail_out to write a complete worthy or flushed
1792 * stored block to next_out. Write a stored block to pending instead, if we
1793 * have enough input for a worthy block, or if flushing and there is enough
1794 * room for the remaining input as a stored block in the pending buffer.
1795 */
1796 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1797 /* maximum stored block length that will fit in pending: */
1798 have = MIN(s->pending_buf_size - have, MAX_STORED);
1799 min_block = MIN(have, s->w_size);
1800 left = s->strstart - s->block_start;
1801 if (left >= min_block ||
1802 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1803 s->strm->avail_in == 0 && left <= have)) {
1804 len = MIN(left, have);
1805 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1806 len == left ? 1 : 0;
1807 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1808 s->block_start += len;
1809 flush_pending(s->strm);
1810 }
1811
1812 /* We've done all we can with the available input and output. */
1813 return last ? finish_started : need_more;
1814 }
1815
1816 /* ===========================================================================
1817 * Compress as much as possible from the input stream, return the current
1818 * block state.
1819 * This function does not perform lazy evaluation of matches and inserts
1820 * new strings in the dictionary only for unmatched strings or for short
1821 * matches. It is used only for the fast compression options.
1822 */
deflate_fast(deflate_state * s,int flush)1823 local block_state deflate_fast(deflate_state *s, int flush)
1824 {
1825 IPos hash_head; /* head of the hash chain */
1826 int bflush; /* set if current block must be flushed */
1827
1828 for (;;) {
1829 /* Make sure that we always have enough lookahead, except
1830 * at the end of the input file. We need MAX_MATCH bytes
1831 * for the next match, plus MIN_MATCH bytes to insert the
1832 * string following the next match.
1833 */
1834 if (s->lookahead < MIN_LOOKAHEAD) {
1835 fill_window(s);
1836 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1837 return need_more;
1838 }
1839 if (s->lookahead == 0) break; /* flush the current block */
1840 }
1841
1842 /* Insert the string window[strstart .. strstart + 2] in the
1843 * dictionary, and set hash_head to the head of the hash chain:
1844 */
1845 hash_head = NIL;
1846 if (s->lookahead >= MIN_MATCH) {
1847 INSERT_STRING(s, s->strstart, hash_head);
1848 }
1849
1850 /* Find the longest match, discarding those <= prev_length.
1851 * At this point we have always match_length < MIN_MATCH
1852 */
1853 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1854 /* To simplify the code, we prevent matches with the string
1855 * of window index 0 (in particular we have to avoid a match
1856 * of the string with itself at the start of the input file).
1857 */
1858 s->match_length = longest_match (s, hash_head);
1859 /* longest_match() sets match_start */
1860 }
1861 if (s->match_length >= MIN_MATCH) {
1862 check_match(s, s->strstart, s->match_start, s->match_length);
1863
1864 _tr_tally_dist(s, s->strstart - s->match_start,
1865 s->match_length - MIN_MATCH, bflush);
1866
1867 s->lookahead -= s->match_length;
1868
1869 /* Insert new strings in the hash table only if the match length
1870 * is not too large. This saves time but degrades compression.
1871 */
1872 #ifndef FASTEST
1873 if (s->match_length <= s->max_insert_length &&
1874 s->lookahead >= MIN_MATCH) {
1875 s->match_length--; /* string at strstart already in table */
1876 do {
1877 s->strstart++;
1878 INSERT_STRING(s, s->strstart, hash_head);
1879 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1880 * always MIN_MATCH bytes ahead.
1881 */
1882 } while (--s->match_length != 0);
1883 s->strstart++;
1884 } else
1885 #endif
1886 {
1887 s->strstart += s->match_length;
1888 s->match_length = 0;
1889 s->ins_h = s->window[s->strstart];
1890 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1891 #if MIN_MATCH != 3
1892 Call UPDATE_HASH() MIN_MATCH-3 more times
1893 #endif
1894 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1895 * matter since it will be recomputed at next deflate call.
1896 */
1897 }
1898 } else {
1899 /* No match, output a literal byte */
1900 Tracevv((stderr,"%c", s->window[s->strstart]));
1901 _tr_tally_lit(s, s->window[s->strstart], bflush);
1902 s->lookahead--;
1903 s->strstart++;
1904 }
1905 if (bflush) FLUSH_BLOCK(s, 0);
1906 }
1907 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1908 if (flush == Z_FINISH) {
1909 FLUSH_BLOCK(s, 1);
1910 return finish_done;
1911 }
1912 if (s->sym_next)
1913 FLUSH_BLOCK(s, 0);
1914 return block_done;
1915 }
1916
1917 #ifndef FASTEST
1918 /* ===========================================================================
1919 * Same as above, but achieves better compression. We use a lazy
1920 * evaluation for matches: a match is finally adopted only if there is
1921 * no better match at the next window position.
1922 */
deflate_slow(deflate_state * s,int flush)1923 local block_state deflate_slow(deflate_state *s, int flush)
1924 {
1925 IPos hash_head; /* head of hash chain */
1926 int bflush; /* set if current block must be flushed */
1927
1928 /* Process the input block. */
1929 for (;;) {
1930 /* Make sure that we always have enough lookahead, except
1931 * at the end of the input file. We need MAX_MATCH bytes
1932 * for the next match, plus MIN_MATCH bytes to insert the
1933 * string following the next match.
1934 */
1935 if (s->lookahead < MIN_LOOKAHEAD) {
1936 fill_window(s);
1937 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1938 return need_more;
1939 }
1940 if (s->lookahead == 0) break; /* flush the current block */
1941 }
1942
1943 /* Insert the string window[strstart .. strstart + 2] in the
1944 * dictionary, and set hash_head to the head of the hash chain:
1945 */
1946 hash_head = NIL;
1947 if (s->lookahead >= MIN_MATCH) {
1948 INSERT_STRING(s, s->strstart, hash_head);
1949 }
1950
1951 /* Find the longest match, discarding those <= prev_length.
1952 */
1953 s->prev_length = s->match_length, s->prev_match = s->match_start;
1954 s->match_length = MIN_MATCH-1;
1955
1956 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1957 s->strstart - hash_head <= MAX_DIST(s)) {
1958 /* To simplify the code, we prevent matches with the string
1959 * of window index 0 (in particular we have to avoid a match
1960 * of the string with itself at the start of the input file).
1961 */
1962 s->match_length = longest_match (s, hash_head);
1963 /* longest_match() sets match_start */
1964
1965 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1966 #if TOO_FAR <= 32767
1967 || (s->match_length == MIN_MATCH &&
1968 s->strstart - s->match_start > TOO_FAR)
1969 #endif
1970 )) {
1971
1972 /* If prev_match is also MIN_MATCH, match_start is garbage
1973 * but we will ignore the current match anyway.
1974 */
1975 s->match_length = MIN_MATCH-1;
1976 }
1977 }
1978 /* If there was a match at the previous step and the current
1979 * match is not better, output the previous match:
1980 */
1981 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1982 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1983 /* Do not insert strings in hash table beyond this. */
1984
1985 check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1986
1987 _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1988 s->prev_length - MIN_MATCH, bflush);
1989
1990 /* Insert in hash table all strings up to the end of the match.
1991 * strstart - 1 and strstart are already inserted. If there is not
1992 * enough lookahead, the last two strings are not inserted in
1993 * the hash table.
1994 */
1995 s->lookahead -= s->prev_length - 1;
1996 s->prev_length -= 2;
1997 do {
1998 if (++s->strstart <= max_insert) {
1999 INSERT_STRING(s, s->strstart, hash_head);
2000 }
2001 } while (--s->prev_length != 0);
2002 s->match_available = 0;
2003 s->match_length = MIN_MATCH-1;
2004 s->strstart++;
2005
2006 if (bflush) FLUSH_BLOCK(s, 0);
2007
2008 } else if (s->match_available) {
2009 /* If there was no match at the previous position, output a
2010 * single literal. If there was a match but the current match
2011 * is longer, truncate the previous match to a single literal.
2012 */
2013 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2014 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2015 if (bflush) {
2016 FLUSH_BLOCK_ONLY(s, 0);
2017 }
2018 s->strstart++;
2019 s->lookahead--;
2020 if (s->strm->avail_out == 0) return need_more;
2021 } else {
2022 /* There is no previous match to compare with, wait for
2023 * the next step to decide.
2024 */
2025 s->match_available = 1;
2026 s->strstart++;
2027 s->lookahead--;
2028 }
2029 }
2030 Assert (flush != Z_NO_FLUSH, "no flush?");
2031 if (s->match_available) {
2032 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2033 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2034 s->match_available = 0;
2035 }
2036 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2037 if (flush == Z_FINISH) {
2038 FLUSH_BLOCK(s, 1);
2039 return finish_done;
2040 }
2041 if (s->sym_next)
2042 FLUSH_BLOCK(s, 0);
2043 return block_done;
2044 }
2045 #endif /* FASTEST */
2046
2047 /* ===========================================================================
2048 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2049 * one. Do not maintain a hash table. (It will be regenerated if this run of
2050 * deflate switches away from Z_RLE.)
2051 */
deflate_rle(deflate_state * s,int flush)2052 local block_state deflate_rle(deflate_state *s, int flush)
2053 {
2054 int bflush; /* set if current block must be flushed */
2055 uInt prev; /* byte at distance one to match */
2056 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2057
2058 for (;;) {
2059 /* Make sure that we always have enough lookahead, except
2060 * at the end of the input file. We need MAX_MATCH bytes
2061 * for the longest run, plus one for the unrolled loop.
2062 */
2063 if (s->lookahead <= MAX_MATCH) {
2064 fill_window(s);
2065 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2066 return need_more;
2067 }
2068 if (s->lookahead == 0) break; /* flush the current block */
2069 }
2070
2071 /* See how many times the previous byte repeats */
2072 s->match_length = 0;
2073 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2074 scan = s->window + s->strstart - 1;
2075 prev = *scan;
2076 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2077 strend = s->window + s->strstart + MAX_MATCH;
2078 do {
2079 } while (prev == *++scan && prev == *++scan &&
2080 prev == *++scan && prev == *++scan &&
2081 prev == *++scan && prev == *++scan &&
2082 prev == *++scan && prev == *++scan &&
2083 scan < strend);
2084 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2085 if (s->match_length > s->lookahead)
2086 s->match_length = s->lookahead;
2087 }
2088 Assert(scan <= s->window + (uInt)(s->window_size - 1),
2089 "wild scan");
2090 }
2091
2092 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2093 if (s->match_length >= MIN_MATCH) {
2094 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2095
2096 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2097
2098 s->lookahead -= s->match_length;
2099 s->strstart += s->match_length;
2100 s->match_length = 0;
2101 } else {
2102 /* No match, output a literal byte */
2103 Tracevv((stderr,"%c", s->window[s->strstart]));
2104 _tr_tally_lit(s, s->window[s->strstart], bflush);
2105 s->lookahead--;
2106 s->strstart++;
2107 }
2108 if (bflush) FLUSH_BLOCK(s, 0);
2109 }
2110 s->insert = 0;
2111 if (flush == Z_FINISH) {
2112 FLUSH_BLOCK(s, 1);
2113 return finish_done;
2114 }
2115 if (s->sym_next)
2116 FLUSH_BLOCK(s, 0);
2117 return block_done;
2118 }
2119
2120 /* ===========================================================================
2121 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2122 * (It will be regenerated if this run of deflate switches away from Huffman.)
2123 */
deflate_huff(deflate_state * s,int flush)2124 local block_state deflate_huff(deflate_state *s, int flush)
2125 {
2126 int bflush; /* set if current block must be flushed */
2127
2128 for (;;) {
2129 /* Make sure that we have a literal to write. */
2130 if (s->lookahead == 0) {
2131 fill_window(s);
2132 if (s->lookahead == 0) {
2133 if (flush == Z_NO_FLUSH)
2134 return need_more;
2135 break; /* flush the current block */
2136 }
2137 }
2138
2139 /* Output a literal byte */
2140 s->match_length = 0;
2141 Tracevv((stderr,"%c", s->window[s->strstart]));
2142 _tr_tally_lit(s, s->window[s->strstart], bflush);
2143 s->lookahead--;
2144 s->strstart++;
2145 if (bflush) FLUSH_BLOCK(s, 0);
2146 }
2147 s->insert = 0;
2148 if (flush == Z_FINISH) {
2149 FLUSH_BLOCK(s, 1);
2150 return finish_done;
2151 }
2152 if (s->sym_next)
2153 FLUSH_BLOCK(s, 0);
2154 return block_done;
2155 }
2156