1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 .name = "AF_VSOCK",
124 .owner = THIS_MODULE,
125 .obj_size = sizeof(struct vsock_sock),
126 .close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 .psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131
132 /* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150
151 /**** UTILS ****/
152
153 /* Each bound VSocket is stored in the bind hash table and each connected
154 * VSocket is stored in the connected hash table.
155 *
156 * Unbound sockets are all put on the same list attached to the end of the hash
157 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
158 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159 * represents the list that addr hashes to).
160 *
161 * Specifically, we initialize the vsock_bind_table array to a size of
162 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
165 * mods with VSOCK_HASH_SIZE to ensure this.
166 */
167 #define MAX_PORT_RETRIES 24
168
169 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
172
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst) \
175 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst) \
177 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk) \
179 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 struct sock *sk = sk_vsock(vsk);
192 struct sockaddr_vm local_addr;
193
194 if (vsock_addr_bound(&vsk->local_addr))
195 return 0;
196 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 return __vsock_bind(sk, &local_addr);
198 }
199
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 int i;
203
204 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 INIT_LIST_HEAD(&vsock_bind_table[i]);
206
207 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
213 {
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
216 }
217
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
220 {
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
223 }
224
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
229 }
230
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
235 }
236
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 struct vsock_sock *vsk;
240
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 return sk_vsock(vsk);
244
245 if (addr->svm_port == vsk->local_addr.svm_port &&
246 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 addr->svm_cid == VMADDR_CID_ANY))
248 return sk_vsock(vsk);
249 }
250
251 return NULL;
252 }
253
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst)
256 {
257 struct vsock_sock *vsk;
258
259 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 connected_table) {
261 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 dst->svm_port == vsk->local_addr.svm_port) {
263 return sk_vsock(vsk);
264 }
265 }
266
267 return NULL;
268 }
269
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_bound(vsock_unbound_sockets, vsk);
274 spin_unlock_bh(&vsock_table_lock);
275 }
276
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 struct list_head *list = vsock_connected_sockets(
280 &vsk->remote_addr, &vsk->local_addr);
281
282 spin_lock_bh(&vsock_table_lock);
283 __vsock_insert_connected(list, vsk);
284 spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 spin_lock_bh(&vsock_table_lock);
291 if (__vsock_in_bound_table(vsk))
292 __vsock_remove_bound(vsk);
293 spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 spin_lock_bh(&vsock_table_lock);
300 if (__vsock_in_connected_table(vsk))
301 __vsock_remove_connected(vsk);
302 spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 struct sock *sk;
309
310 spin_lock_bh(&vsock_table_lock);
311 sk = __vsock_find_bound_socket(addr);
312 if (sk)
313 sock_hold(sk);
314
315 spin_unlock_bh(&vsock_table_lock);
316
317 return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 struct sockaddr_vm *dst)
323 {
324 struct sock *sk;
325
326 spin_lock_bh(&vsock_table_lock);
327 sk = __vsock_find_connected_socket(src, dst);
328 if (sk)
329 sock_hold(sk);
330
331 spin_unlock_bh(&vsock_table_lock);
332
333 return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 /* Transport reassignment must not remove the binding. */
340 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
341 vsock_remove_bound(vsk);
342
343 vsock_remove_connected(vsk);
344 }
345 EXPORT_SYMBOL_GPL(vsock_remove_sock);
346
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))347 void vsock_for_each_connected_socket(struct vsock_transport *transport,
348 void (*fn)(struct sock *sk))
349 {
350 int i;
351
352 spin_lock_bh(&vsock_table_lock);
353
354 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
355 struct vsock_sock *vsk;
356 list_for_each_entry(vsk, &vsock_connected_table[i],
357 connected_table) {
358 if (vsk->transport != transport)
359 continue;
360
361 fn(sk_vsock(vsk));
362 }
363 }
364
365 spin_unlock_bh(&vsock_table_lock);
366 }
367 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
368
vsock_add_pending(struct sock * listener,struct sock * pending)369 void vsock_add_pending(struct sock *listener, struct sock *pending)
370 {
371 struct vsock_sock *vlistener;
372 struct vsock_sock *vpending;
373
374 vlistener = vsock_sk(listener);
375 vpending = vsock_sk(pending);
376
377 sock_hold(pending);
378 sock_hold(listener);
379 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
380 }
381 EXPORT_SYMBOL_GPL(vsock_add_pending);
382
vsock_remove_pending(struct sock * listener,struct sock * pending)383 void vsock_remove_pending(struct sock *listener, struct sock *pending)
384 {
385 struct vsock_sock *vpending = vsock_sk(pending);
386
387 list_del_init(&vpending->pending_links);
388 sock_put(listener);
389 sock_put(pending);
390 }
391 EXPORT_SYMBOL_GPL(vsock_remove_pending);
392
vsock_enqueue_accept(struct sock * listener,struct sock * connected)393 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
394 {
395 struct vsock_sock *vlistener;
396 struct vsock_sock *vconnected;
397
398 vlistener = vsock_sk(listener);
399 vconnected = vsock_sk(connected);
400
401 sock_hold(connected);
402 sock_hold(listener);
403 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
404 }
405 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
406
vsock_use_local_transport(unsigned int remote_cid)407 static bool vsock_use_local_transport(unsigned int remote_cid)
408 {
409 lockdep_assert_held(&vsock_register_mutex);
410
411 if (!transport_local)
412 return false;
413
414 if (remote_cid == VMADDR_CID_LOCAL)
415 return true;
416
417 if (transport_g2h) {
418 return remote_cid == transport_g2h->get_local_cid();
419 } else {
420 return remote_cid == VMADDR_CID_HOST;
421 }
422 }
423
vsock_deassign_transport(struct vsock_sock * vsk)424 static void vsock_deassign_transport(struct vsock_sock *vsk)
425 {
426 if (!vsk->transport)
427 return;
428
429 vsk->transport->destruct(vsk);
430 module_put(vsk->transport->module);
431 vsk->transport = NULL;
432 }
433
434 /* Assign a transport to a socket and call the .init transport callback.
435 *
436 * Note: for connection oriented socket this must be called when vsk->remote_addr
437 * is set (e.g. during the connect() or when a connection request on a listener
438 * socket is received).
439 * The vsk->remote_addr is used to decide which transport to use:
440 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
441 * g2h is not loaded, will use local transport;
442 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
443 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
444 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
445 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)446 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
447 {
448 const struct vsock_transport *new_transport;
449 struct sock *sk = sk_vsock(vsk);
450 unsigned int remote_cid = vsk->remote_addr.svm_cid;
451 __u8 remote_flags;
452 int ret;
453
454 /* If the packet is coming with the source and destination CIDs higher
455 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
456 * forwarded to the host should be established. Then the host will
457 * need to forward the packets to the guest.
458 *
459 * The flag is set on the (listen) receive path (psk is not NULL). On
460 * the connect path the flag can be set by the user space application.
461 */
462 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
463 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
464 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
465
466 remote_flags = vsk->remote_addr.svm_flags;
467
468 mutex_lock(&vsock_register_mutex);
469
470 switch (sk->sk_type) {
471 case SOCK_DGRAM:
472 new_transport = transport_dgram;
473 break;
474 case SOCK_STREAM:
475 case SOCK_SEQPACKET:
476 if (vsock_use_local_transport(remote_cid))
477 new_transport = transport_local;
478 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
479 (remote_flags & VMADDR_FLAG_TO_HOST))
480 new_transport = transport_g2h;
481 else
482 new_transport = transport_h2g;
483 break;
484 default:
485 ret = -ESOCKTNOSUPPORT;
486 goto err;
487 }
488
489 if (vsk->transport) {
490 if (vsk->transport == new_transport) {
491 ret = 0;
492 goto err;
493 }
494
495 /* transport->release() must be called with sock lock acquired.
496 * This path can only be taken during vsock_connect(), where we
497 * have already held the sock lock. In the other cases, this
498 * function is called on a new socket which is not assigned to
499 * any transport.
500 */
501 vsk->transport->release(vsk);
502 vsock_deassign_transport(vsk);
503
504 /* transport's release() and destruct() can touch some socket
505 * state, since we are reassigning the socket to a new transport
506 * during vsock_connect(), let's reset these fields to have a
507 * clean state.
508 */
509 sock_reset_flag(sk, SOCK_DONE);
510 sk->sk_state = TCP_CLOSE;
511 vsk->peer_shutdown = 0;
512 }
513
514 /* We increase the module refcnt to prevent the transport unloading
515 * while there are open sockets assigned to it.
516 */
517 if (!new_transport || !try_module_get(new_transport->module)) {
518 ret = -ENODEV;
519 goto err;
520 }
521
522 /* It's safe to release the mutex after a successful try_module_get().
523 * Whichever transport `new_transport` points at, it won't go away until
524 * the last module_put() below or in vsock_deassign_transport().
525 */
526 mutex_unlock(&vsock_register_mutex);
527
528 if (sk->sk_type == SOCK_SEQPACKET) {
529 if (!new_transport->seqpacket_allow ||
530 !new_transport->seqpacket_allow(remote_cid)) {
531 module_put(new_transport->module);
532 return -ESOCKTNOSUPPORT;
533 }
534 }
535
536 ret = new_transport->init(vsk, psk);
537 if (ret) {
538 module_put(new_transport->module);
539 return ret;
540 }
541
542 vsk->transport = new_transport;
543
544 return 0;
545 err:
546 mutex_unlock(&vsock_register_mutex);
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(vsock_assign_transport);
550
551 /*
552 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
553 * Otherwise we may race with module removal. Do not use on `vsk->transport`.
554 */
vsock_registered_transport_cid(const struct vsock_transport ** transport)555 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
556 {
557 u32 cid = VMADDR_CID_ANY;
558
559 mutex_lock(&vsock_register_mutex);
560 if (*transport)
561 cid = (*transport)->get_local_cid();
562 mutex_unlock(&vsock_register_mutex);
563
564 return cid;
565 }
566
vsock_find_cid(unsigned int cid)567 bool vsock_find_cid(unsigned int cid)
568 {
569 if (cid == vsock_registered_transport_cid(&transport_g2h))
570 return true;
571
572 if (transport_h2g && cid == VMADDR_CID_HOST)
573 return true;
574
575 if (transport_local && cid == VMADDR_CID_LOCAL)
576 return true;
577
578 return false;
579 }
580 EXPORT_SYMBOL_GPL(vsock_find_cid);
581
vsock_dequeue_accept(struct sock * listener)582 static struct sock *vsock_dequeue_accept(struct sock *listener)
583 {
584 struct vsock_sock *vlistener;
585 struct vsock_sock *vconnected;
586
587 vlistener = vsock_sk(listener);
588
589 if (list_empty(&vlistener->accept_queue))
590 return NULL;
591
592 vconnected = list_entry(vlistener->accept_queue.next,
593 struct vsock_sock, accept_queue);
594
595 list_del_init(&vconnected->accept_queue);
596 sock_put(listener);
597 /* The caller will need a reference on the connected socket so we let
598 * it call sock_put().
599 */
600
601 return sk_vsock(vconnected);
602 }
603
vsock_is_accept_queue_empty(struct sock * sk)604 static bool vsock_is_accept_queue_empty(struct sock *sk)
605 {
606 struct vsock_sock *vsk = vsock_sk(sk);
607 return list_empty(&vsk->accept_queue);
608 }
609
vsock_is_pending(struct sock * sk)610 static bool vsock_is_pending(struct sock *sk)
611 {
612 struct vsock_sock *vsk = vsock_sk(sk);
613 return !list_empty(&vsk->pending_links);
614 }
615
vsock_send_shutdown(struct sock * sk,int mode)616 static int vsock_send_shutdown(struct sock *sk, int mode)
617 {
618 struct vsock_sock *vsk = vsock_sk(sk);
619
620 if (!vsk->transport)
621 return -ENODEV;
622
623 return vsk->transport->shutdown(vsk, mode);
624 }
625
vsock_pending_work(struct work_struct * work)626 static void vsock_pending_work(struct work_struct *work)
627 {
628 struct sock *sk;
629 struct sock *listener;
630 struct vsock_sock *vsk;
631 bool cleanup;
632
633 vsk = container_of(work, struct vsock_sock, pending_work.work);
634 sk = sk_vsock(vsk);
635 listener = vsk->listener;
636 cleanup = true;
637
638 lock_sock(listener);
639 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
640
641 if (vsock_is_pending(sk)) {
642 vsock_remove_pending(listener, sk);
643
644 sk_acceptq_removed(listener);
645 } else if (!vsk->rejected) {
646 /* We are not on the pending list and accept() did not reject
647 * us, so we must have been accepted by our user process. We
648 * just need to drop our references to the sockets and be on
649 * our way.
650 */
651 cleanup = false;
652 goto out;
653 }
654
655 /* We need to remove ourself from the global connected sockets list so
656 * incoming packets can't find this socket, and to reduce the reference
657 * count.
658 */
659 vsock_remove_connected(vsk);
660
661 sk->sk_state = TCP_CLOSE;
662
663 out:
664 release_sock(sk);
665 release_sock(listener);
666 if (cleanup)
667 sock_put(sk);
668
669 sock_put(sk);
670 sock_put(listener);
671 }
672
673 /**** SOCKET OPERATIONS ****/
674
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)675 static int __vsock_bind_connectible(struct vsock_sock *vsk,
676 struct sockaddr_vm *addr)
677 {
678 static u32 port;
679 struct sockaddr_vm new_addr;
680
681 if (!port)
682 port = get_random_u32_above(LAST_RESERVED_PORT);
683
684 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
685
686 if (addr->svm_port == VMADDR_PORT_ANY) {
687 bool found = false;
688 unsigned int i;
689
690 for (i = 0; i < MAX_PORT_RETRIES; i++) {
691 if (port <= LAST_RESERVED_PORT)
692 port = LAST_RESERVED_PORT + 1;
693
694 new_addr.svm_port = port++;
695
696 if (!__vsock_find_bound_socket(&new_addr)) {
697 found = true;
698 break;
699 }
700 }
701
702 if (!found)
703 return -EADDRNOTAVAIL;
704 } else {
705 /* If port is in reserved range, ensure caller
706 * has necessary privileges.
707 */
708 if (addr->svm_port <= LAST_RESERVED_PORT &&
709 !capable(CAP_NET_BIND_SERVICE)) {
710 return -EACCES;
711 }
712
713 if (__vsock_find_bound_socket(&new_addr))
714 return -EADDRINUSE;
715 }
716
717 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
718
719 /* Remove connection oriented sockets from the unbound list and add them
720 * to the hash table for easy lookup by its address. The unbound list
721 * is simply an extra entry at the end of the hash table, a trick used
722 * by AF_UNIX.
723 */
724 __vsock_remove_bound(vsk);
725 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
726
727 return 0;
728 }
729
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)730 static int __vsock_bind_dgram(struct vsock_sock *vsk,
731 struct sockaddr_vm *addr)
732 {
733 return vsk->transport->dgram_bind(vsk, addr);
734 }
735
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)736 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
737 {
738 struct vsock_sock *vsk = vsock_sk(sk);
739 int retval;
740
741 /* First ensure this socket isn't already bound. */
742 if (vsock_addr_bound(&vsk->local_addr))
743 return -EINVAL;
744
745 /* Now bind to the provided address or select appropriate values if
746 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
747 * like AF_INET prevents binding to a non-local IP address (in most
748 * cases), we only allow binding to a local CID.
749 */
750 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
751 return -EADDRNOTAVAIL;
752
753 switch (sk->sk_socket->type) {
754 case SOCK_STREAM:
755 case SOCK_SEQPACKET:
756 spin_lock_bh(&vsock_table_lock);
757 retval = __vsock_bind_connectible(vsk, addr);
758 spin_unlock_bh(&vsock_table_lock);
759 break;
760
761 case SOCK_DGRAM:
762 retval = __vsock_bind_dgram(vsk, addr);
763 break;
764
765 default:
766 retval = -EINVAL;
767 break;
768 }
769
770 return retval;
771 }
772
773 static void vsock_connect_timeout(struct work_struct *work);
774
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)775 static struct sock *__vsock_create(struct net *net,
776 struct socket *sock,
777 struct sock *parent,
778 gfp_t priority,
779 unsigned short type,
780 int kern)
781 {
782 struct sock *sk;
783 struct vsock_sock *psk;
784 struct vsock_sock *vsk;
785
786 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
787 if (!sk)
788 return NULL;
789
790 sock_init_data(sock, sk);
791
792 /* sk->sk_type is normally set in sock_init_data, but only if sock is
793 * non-NULL. We make sure that our sockets always have a type by
794 * setting it here if needed.
795 */
796 if (!sock)
797 sk->sk_type = type;
798
799 vsk = vsock_sk(sk);
800 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802
803 sk->sk_destruct = vsock_sk_destruct;
804 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
805 sock_reset_flag(sk, SOCK_DONE);
806
807 INIT_LIST_HEAD(&vsk->bound_table);
808 INIT_LIST_HEAD(&vsk->connected_table);
809 vsk->listener = NULL;
810 INIT_LIST_HEAD(&vsk->pending_links);
811 INIT_LIST_HEAD(&vsk->accept_queue);
812 vsk->rejected = false;
813 vsk->sent_request = false;
814 vsk->ignore_connecting_rst = false;
815 vsk->peer_shutdown = 0;
816 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
817 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
818
819 psk = parent ? vsock_sk(parent) : NULL;
820 if (parent) {
821 vsk->trusted = psk->trusted;
822 vsk->owner = get_cred(psk->owner);
823 vsk->connect_timeout = psk->connect_timeout;
824 vsk->buffer_size = psk->buffer_size;
825 vsk->buffer_min_size = psk->buffer_min_size;
826 vsk->buffer_max_size = psk->buffer_max_size;
827 security_sk_clone(parent, sk);
828 } else {
829 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
830 vsk->owner = get_current_cred();
831 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
832 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
833 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
834 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
835 }
836
837 return sk;
838 }
839
sock_type_connectible(u16 type)840 static bool sock_type_connectible(u16 type)
841 {
842 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
843 }
844
__vsock_release(struct sock * sk,int level)845 static void __vsock_release(struct sock *sk, int level)
846 {
847 struct vsock_sock *vsk;
848 struct sock *pending;
849
850 vsk = vsock_sk(sk);
851 pending = NULL; /* Compiler warning. */
852
853 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
854 * version to avoid the warning "possible recursive locking
855 * detected". When "level" is 0, lock_sock_nested(sk, level)
856 * is the same as lock_sock(sk).
857 */
858 lock_sock_nested(sk, level);
859
860 /* Indicate to vsock_remove_sock() that the socket is being released and
861 * can be removed from the bound_table. Unlike transport reassignment
862 * case, where the socket must remain bound despite vsock_remove_sock()
863 * being called from the transport release() callback.
864 */
865 sock_set_flag(sk, SOCK_DEAD);
866
867 if (vsk->transport)
868 vsk->transport->release(vsk);
869 else if (sock_type_connectible(sk->sk_type))
870 vsock_remove_sock(vsk);
871
872 sock_orphan(sk);
873 sk->sk_shutdown = SHUTDOWN_MASK;
874
875 skb_queue_purge(&sk->sk_receive_queue);
876
877 /* Clean up any sockets that never were accepted. */
878 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
879 __vsock_release(pending, SINGLE_DEPTH_NESTING);
880 sock_put(pending);
881 }
882
883 release_sock(sk);
884 sock_put(sk);
885 }
886
vsock_sk_destruct(struct sock * sk)887 static void vsock_sk_destruct(struct sock *sk)
888 {
889 struct vsock_sock *vsk = vsock_sk(sk);
890
891 vsock_deassign_transport(vsk);
892
893 /* When clearing these addresses, there's no need to set the family and
894 * possibly register the address family with the kernel.
895 */
896 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
897 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
898
899 put_cred(vsk->owner);
900 }
901
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)902 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
903 {
904 int err;
905
906 err = sock_queue_rcv_skb(sk, skb);
907 if (err)
908 kfree_skb(skb);
909
910 return err;
911 }
912
vsock_create_connected(struct sock * parent)913 struct sock *vsock_create_connected(struct sock *parent)
914 {
915 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
916 parent->sk_type, 0);
917 }
918 EXPORT_SYMBOL_GPL(vsock_create_connected);
919
vsock_stream_has_data(struct vsock_sock * vsk)920 s64 vsock_stream_has_data(struct vsock_sock *vsk)
921 {
922 if (WARN_ON(!vsk->transport))
923 return 0;
924
925 return vsk->transport->stream_has_data(vsk);
926 }
927 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
928
vsock_connectible_has_data(struct vsock_sock * vsk)929 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
930 {
931 struct sock *sk = sk_vsock(vsk);
932
933 if (WARN_ON(!vsk->transport))
934 return 0;
935
936 if (sk->sk_type == SOCK_SEQPACKET)
937 return vsk->transport->seqpacket_has_data(vsk);
938 else
939 return vsock_stream_has_data(vsk);
940 }
941 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
942
vsock_stream_has_space(struct vsock_sock * vsk)943 s64 vsock_stream_has_space(struct vsock_sock *vsk)
944 {
945 if (WARN_ON(!vsk->transport))
946 return 0;
947
948 return vsk->transport->stream_has_space(vsk);
949 }
950 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
951
vsock_data_ready(struct sock * sk)952 void vsock_data_ready(struct sock *sk)
953 {
954 struct vsock_sock *vsk = vsock_sk(sk);
955
956 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
957 sock_flag(sk, SOCK_DONE))
958 sk->sk_data_ready(sk);
959 }
960 EXPORT_SYMBOL_GPL(vsock_data_ready);
961
962 /* Dummy callback required by sockmap.
963 * See unconditional call of saved_close() in sock_map_close().
964 */
vsock_close(struct sock * sk,long timeout)965 static void vsock_close(struct sock *sk, long timeout)
966 {
967 }
968
vsock_release(struct socket * sock)969 static int vsock_release(struct socket *sock)
970 {
971 struct sock *sk = sock->sk;
972
973 if (!sk)
974 return 0;
975
976 sk->sk_prot->close(sk, 0);
977 __vsock_release(sk, 0);
978 sock->sk = NULL;
979 sock->state = SS_FREE;
980
981 return 0;
982 }
983
984 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)985 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
986 {
987 int err;
988 struct sock *sk;
989 struct sockaddr_vm *vm_addr;
990
991 sk = sock->sk;
992
993 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
994 return -EINVAL;
995
996 lock_sock(sk);
997 err = __vsock_bind(sk, vm_addr);
998 release_sock(sk);
999
1000 return err;
1001 }
1002
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1003 static int vsock_getname(struct socket *sock,
1004 struct sockaddr *addr, int peer)
1005 {
1006 int err;
1007 struct sock *sk;
1008 struct vsock_sock *vsk;
1009 struct sockaddr_vm *vm_addr;
1010
1011 sk = sock->sk;
1012 vsk = vsock_sk(sk);
1013 err = 0;
1014
1015 lock_sock(sk);
1016
1017 if (peer) {
1018 if (sock->state != SS_CONNECTED) {
1019 err = -ENOTCONN;
1020 goto out;
1021 }
1022 vm_addr = &vsk->remote_addr;
1023 } else {
1024 vm_addr = &vsk->local_addr;
1025 }
1026
1027 if (!vm_addr) {
1028 err = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* sys_getsockname() and sys_getpeername() pass us a
1033 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
1034 * that macro is defined in socket.c instead of .h, so we hardcode its
1035 * value here.
1036 */
1037 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1038 memcpy(addr, vm_addr, sizeof(*vm_addr));
1039 err = sizeof(*vm_addr);
1040
1041 out:
1042 release_sock(sk);
1043 return err;
1044 }
1045
vsock_shutdown(struct socket * sock,int mode)1046 static int vsock_shutdown(struct socket *sock, int mode)
1047 {
1048 int err;
1049 struct sock *sk;
1050
1051 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1052 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1053 * here like the other address families do. Note also that the
1054 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1055 * which is what we want.
1056 */
1057 mode++;
1058
1059 if ((mode & ~SHUTDOWN_MASK) || !mode)
1060 return -EINVAL;
1061
1062 /* If this is a connection oriented socket and it is not connected then
1063 * bail out immediately. If it is a DGRAM socket then we must first
1064 * kick the socket so that it wakes up from any sleeping calls, for
1065 * example recv(), and then afterwards return the error.
1066 */
1067
1068 sk = sock->sk;
1069
1070 lock_sock(sk);
1071 if (sock->state == SS_UNCONNECTED) {
1072 err = -ENOTCONN;
1073 if (sock_type_connectible(sk->sk_type))
1074 goto out;
1075 } else {
1076 sock->state = SS_DISCONNECTING;
1077 err = 0;
1078 }
1079
1080 /* Receive and send shutdowns are treated alike. */
1081 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1082 if (mode) {
1083 sk->sk_shutdown |= mode;
1084 sk->sk_state_change(sk);
1085
1086 if (sock_type_connectible(sk->sk_type)) {
1087 sock_reset_flag(sk, SOCK_DONE);
1088 vsock_send_shutdown(sk, mode);
1089 }
1090 }
1091
1092 out:
1093 release_sock(sk);
1094 return err;
1095 }
1096
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1097 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1098 poll_table *wait)
1099 {
1100 struct sock *sk;
1101 __poll_t mask;
1102 struct vsock_sock *vsk;
1103
1104 sk = sock->sk;
1105 vsk = vsock_sk(sk);
1106
1107 poll_wait(file, sk_sleep(sk), wait);
1108 mask = 0;
1109
1110 if (sk->sk_err)
1111 /* Signify that there has been an error on this socket. */
1112 mask |= EPOLLERR;
1113
1114 /* INET sockets treat local write shutdown and peer write shutdown as a
1115 * case of EPOLLHUP set.
1116 */
1117 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1118 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1119 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1120 mask |= EPOLLHUP;
1121 }
1122
1123 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1124 vsk->peer_shutdown & SEND_SHUTDOWN) {
1125 mask |= EPOLLRDHUP;
1126 }
1127
1128 if (sk_is_readable(sk))
1129 mask |= EPOLLIN | EPOLLRDNORM;
1130
1131 if (sock->type == SOCK_DGRAM) {
1132 /* For datagram sockets we can read if there is something in
1133 * the queue and write as long as the socket isn't shutdown for
1134 * sending.
1135 */
1136 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1137 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1138 mask |= EPOLLIN | EPOLLRDNORM;
1139 }
1140
1141 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1142 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1143
1144 } else if (sock_type_connectible(sk->sk_type)) {
1145 const struct vsock_transport *transport;
1146
1147 lock_sock(sk);
1148
1149 transport = vsk->transport;
1150
1151 /* Listening sockets that have connections in their accept
1152 * queue can be read.
1153 */
1154 if (sk->sk_state == TCP_LISTEN
1155 && !vsock_is_accept_queue_empty(sk))
1156 mask |= EPOLLIN | EPOLLRDNORM;
1157
1158 /* If there is something in the queue then we can read. */
1159 if (transport && transport->stream_is_active(vsk) &&
1160 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1161 bool data_ready_now = false;
1162 int target = sock_rcvlowat(sk, 0, INT_MAX);
1163 int ret = transport->notify_poll_in(
1164 vsk, target, &data_ready_now);
1165 if (ret < 0) {
1166 mask |= EPOLLERR;
1167 } else {
1168 if (data_ready_now)
1169 mask |= EPOLLIN | EPOLLRDNORM;
1170
1171 }
1172 }
1173
1174 /* Sockets whose connections have been closed, reset, or
1175 * terminated should also be considered read, and we check the
1176 * shutdown flag for that.
1177 */
1178 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1179 vsk->peer_shutdown & SEND_SHUTDOWN) {
1180 mask |= EPOLLIN | EPOLLRDNORM;
1181 }
1182
1183 /* Connected sockets that can produce data can be written. */
1184 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1185 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1186 bool space_avail_now = false;
1187 int ret = transport->notify_poll_out(
1188 vsk, 1, &space_avail_now);
1189 if (ret < 0) {
1190 mask |= EPOLLERR;
1191 } else {
1192 if (space_avail_now)
1193 /* Remove EPOLLWRBAND since INET
1194 * sockets are not setting it.
1195 */
1196 mask |= EPOLLOUT | EPOLLWRNORM;
1197
1198 }
1199 }
1200 }
1201
1202 /* Simulate INET socket poll behaviors, which sets
1203 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1204 * but local send is not shutdown.
1205 */
1206 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1207 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1208 mask |= EPOLLOUT | EPOLLWRNORM;
1209
1210 }
1211
1212 release_sock(sk);
1213 }
1214
1215 return mask;
1216 }
1217
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1218 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1219 {
1220 struct vsock_sock *vsk = vsock_sk(sk);
1221
1222 if (WARN_ON_ONCE(!vsk->transport))
1223 return -ENODEV;
1224
1225 return vsk->transport->read_skb(vsk, read_actor);
1226 }
1227
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1228 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1229 size_t len)
1230 {
1231 int err;
1232 struct sock *sk;
1233 struct vsock_sock *vsk;
1234 struct sockaddr_vm *remote_addr;
1235 const struct vsock_transport *transport;
1236
1237 if (msg->msg_flags & MSG_OOB)
1238 return -EOPNOTSUPP;
1239
1240 /* For now, MSG_DONTWAIT is always assumed... */
1241 err = 0;
1242 sk = sock->sk;
1243 vsk = vsock_sk(sk);
1244
1245 lock_sock(sk);
1246
1247 transport = vsk->transport;
1248
1249 err = vsock_auto_bind(vsk);
1250 if (err)
1251 goto out;
1252
1253
1254 /* If the provided message contains an address, use that. Otherwise
1255 * fall back on the socket's remote handle (if it has been connected).
1256 */
1257 if (msg->msg_name &&
1258 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1259 &remote_addr) == 0) {
1260 /* Ensure this address is of the right type and is a valid
1261 * destination.
1262 */
1263
1264 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1265 remote_addr->svm_cid = transport->get_local_cid();
1266
1267 if (!vsock_addr_bound(remote_addr)) {
1268 err = -EINVAL;
1269 goto out;
1270 }
1271 } else if (sock->state == SS_CONNECTED) {
1272 remote_addr = &vsk->remote_addr;
1273
1274 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1275 remote_addr->svm_cid = transport->get_local_cid();
1276
1277 /* XXX Should connect() or this function ensure remote_addr is
1278 * bound?
1279 */
1280 if (!vsock_addr_bound(&vsk->remote_addr)) {
1281 err = -EINVAL;
1282 goto out;
1283 }
1284 } else {
1285 err = -EINVAL;
1286 goto out;
1287 }
1288
1289 if (!transport->dgram_allow(remote_addr->svm_cid,
1290 remote_addr->svm_port)) {
1291 err = -EINVAL;
1292 goto out;
1293 }
1294
1295 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1296
1297 out:
1298 release_sock(sk);
1299 return err;
1300 }
1301
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1302 static int vsock_dgram_connect(struct socket *sock,
1303 struct sockaddr *addr, int addr_len, int flags)
1304 {
1305 int err;
1306 struct sock *sk;
1307 struct vsock_sock *vsk;
1308 struct sockaddr_vm *remote_addr;
1309
1310 sk = sock->sk;
1311 vsk = vsock_sk(sk);
1312
1313 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1314 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1315 lock_sock(sk);
1316 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1317 VMADDR_PORT_ANY);
1318 sock->state = SS_UNCONNECTED;
1319 release_sock(sk);
1320 return 0;
1321 } else if (err != 0)
1322 return -EINVAL;
1323
1324 lock_sock(sk);
1325
1326 err = vsock_auto_bind(vsk);
1327 if (err)
1328 goto out;
1329
1330 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1331 remote_addr->svm_port)) {
1332 err = -EINVAL;
1333 goto out;
1334 }
1335
1336 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1337 sock->state = SS_CONNECTED;
1338
1339 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1340 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1341 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1342 *
1343 * This doesn't seem to be abnormal state for datagram sockets, as the
1344 * same approach can be see in other datagram socket types as well
1345 * (such as unix sockets).
1346 */
1347 sk->sk_state = TCP_ESTABLISHED;
1348
1349 out:
1350 release_sock(sk);
1351 return err;
1352 }
1353
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1354 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1355 size_t len, int flags)
1356 {
1357 struct sock *sk = sock->sk;
1358 struct vsock_sock *vsk = vsock_sk(sk);
1359
1360 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1361 }
1362
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1363 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1364 size_t len, int flags)
1365 {
1366 #ifdef CONFIG_BPF_SYSCALL
1367 struct sock *sk = sock->sk;
1368 const struct proto *prot;
1369
1370 prot = READ_ONCE(sk->sk_prot);
1371 if (prot != &vsock_proto)
1372 return prot->recvmsg(sk, msg, len, flags, NULL);
1373 #endif
1374
1375 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1376 }
1377 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1378
1379 static const struct proto_ops vsock_dgram_ops = {
1380 .family = PF_VSOCK,
1381 .owner = THIS_MODULE,
1382 .release = vsock_release,
1383 .bind = vsock_bind,
1384 .connect = vsock_dgram_connect,
1385 .socketpair = sock_no_socketpair,
1386 .accept = sock_no_accept,
1387 .getname = vsock_getname,
1388 .poll = vsock_poll,
1389 .ioctl = sock_no_ioctl,
1390 .listen = sock_no_listen,
1391 .shutdown = vsock_shutdown,
1392 .sendmsg = vsock_dgram_sendmsg,
1393 .recvmsg = vsock_dgram_recvmsg,
1394 .mmap = sock_no_mmap,
1395 .read_skb = vsock_read_skb,
1396 };
1397
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1398 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1399 {
1400 const struct vsock_transport *transport = vsk->transport;
1401
1402 if (!transport || !transport->cancel_pkt)
1403 return -EOPNOTSUPP;
1404
1405 return transport->cancel_pkt(vsk);
1406 }
1407
vsock_connect_timeout(struct work_struct * work)1408 static void vsock_connect_timeout(struct work_struct *work)
1409 {
1410 struct sock *sk;
1411 struct vsock_sock *vsk;
1412
1413 vsk = container_of(work, struct vsock_sock, connect_work.work);
1414 sk = sk_vsock(vsk);
1415
1416 lock_sock(sk);
1417 if (sk->sk_state == TCP_SYN_SENT &&
1418 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1419 sk->sk_state = TCP_CLOSE;
1420 sk->sk_socket->state = SS_UNCONNECTED;
1421 sk->sk_err = ETIMEDOUT;
1422 sk_error_report(sk);
1423 vsock_transport_cancel_pkt(vsk);
1424 }
1425 release_sock(sk);
1426
1427 sock_put(sk);
1428 }
1429
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1430 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1431 int addr_len, int flags)
1432 {
1433 int err;
1434 struct sock *sk;
1435 struct vsock_sock *vsk;
1436 const struct vsock_transport *transport;
1437 struct sockaddr_vm *remote_addr;
1438 long timeout;
1439 DEFINE_WAIT(wait);
1440
1441 err = 0;
1442 sk = sock->sk;
1443 vsk = vsock_sk(sk);
1444
1445 lock_sock(sk);
1446
1447 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1448 switch (sock->state) {
1449 case SS_CONNECTED:
1450 err = -EISCONN;
1451 goto out;
1452 case SS_DISCONNECTING:
1453 err = -EINVAL;
1454 goto out;
1455 case SS_CONNECTING:
1456 /* This continues on so we can move sock into the SS_CONNECTED
1457 * state once the connection has completed (at which point err
1458 * will be set to zero also). Otherwise, we will either wait
1459 * for the connection or return -EALREADY should this be a
1460 * non-blocking call.
1461 */
1462 err = -EALREADY;
1463 if (flags & O_NONBLOCK)
1464 goto out;
1465 break;
1466 default:
1467 if ((sk->sk_state == TCP_LISTEN) ||
1468 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1469 err = -EINVAL;
1470 goto out;
1471 }
1472
1473 /* Set the remote address that we are connecting to. */
1474 memcpy(&vsk->remote_addr, remote_addr,
1475 sizeof(vsk->remote_addr));
1476
1477 err = vsock_assign_transport(vsk, NULL);
1478 if (err)
1479 goto out;
1480
1481 transport = vsk->transport;
1482
1483 /* The hypervisor and well-known contexts do not have socket
1484 * endpoints.
1485 */
1486 if (!transport ||
1487 !transport->stream_allow(remote_addr->svm_cid,
1488 remote_addr->svm_port)) {
1489 err = -ENETUNREACH;
1490 goto out;
1491 }
1492
1493 err = vsock_auto_bind(vsk);
1494 if (err)
1495 goto out;
1496
1497 sk->sk_state = TCP_SYN_SENT;
1498
1499 err = transport->connect(vsk);
1500 if (err < 0)
1501 goto out;
1502
1503 /* sk_err might have been set as a result of an earlier
1504 * (failed) connect attempt.
1505 */
1506 sk->sk_err = 0;
1507
1508 /* Mark sock as connecting and set the error code to in
1509 * progress in case this is a non-blocking connect.
1510 */
1511 sock->state = SS_CONNECTING;
1512 err = -EINPROGRESS;
1513 }
1514
1515 /* The receive path will handle all communication until we are able to
1516 * enter the connected state. Here we wait for the connection to be
1517 * completed or a notification of an error.
1518 */
1519 timeout = vsk->connect_timeout;
1520 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1521
1522 /* If the socket is already closing or it is in an error state, there
1523 * is no point in waiting.
1524 */
1525 while (sk->sk_state != TCP_ESTABLISHED &&
1526 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1527 if (flags & O_NONBLOCK) {
1528 /* If we're not going to block, we schedule a timeout
1529 * function to generate a timeout on the connection
1530 * attempt, in case the peer doesn't respond in a
1531 * timely manner. We hold on to the socket until the
1532 * timeout fires.
1533 */
1534 sock_hold(sk);
1535
1536 /* If the timeout function is already scheduled,
1537 * reschedule it, then ungrab the socket refcount to
1538 * keep it balanced.
1539 */
1540 if (mod_delayed_work(system_wq, &vsk->connect_work,
1541 timeout))
1542 sock_put(sk);
1543
1544 /* Skip ahead to preserve error code set above. */
1545 goto out_wait;
1546 }
1547
1548 release_sock(sk);
1549 timeout = schedule_timeout(timeout);
1550 lock_sock(sk);
1551
1552 if (signal_pending(current)) {
1553 err = sock_intr_errno(timeout);
1554 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1555 sock->state = SS_UNCONNECTED;
1556 vsock_transport_cancel_pkt(vsk);
1557 vsock_remove_connected(vsk);
1558 goto out_wait;
1559 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1560 err = -ETIMEDOUT;
1561 sk->sk_state = TCP_CLOSE;
1562 sock->state = SS_UNCONNECTED;
1563 vsock_transport_cancel_pkt(vsk);
1564 goto out_wait;
1565 }
1566
1567 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1568 }
1569
1570 if (sk->sk_err) {
1571 err = -sk->sk_err;
1572 sk->sk_state = TCP_CLOSE;
1573 sock->state = SS_UNCONNECTED;
1574 } else {
1575 err = 0;
1576 }
1577
1578 out_wait:
1579 finish_wait(sk_sleep(sk), &wait);
1580 out:
1581 release_sock(sk);
1582 return err;
1583 }
1584
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1585 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1586 bool kern)
1587 {
1588 struct sock *listener;
1589 int err;
1590 struct sock *connected;
1591 struct vsock_sock *vconnected;
1592 long timeout;
1593 DEFINE_WAIT(wait);
1594
1595 err = 0;
1596 listener = sock->sk;
1597
1598 lock_sock(listener);
1599
1600 if (!sock_type_connectible(sock->type)) {
1601 err = -EOPNOTSUPP;
1602 goto out;
1603 }
1604
1605 if (listener->sk_state != TCP_LISTEN) {
1606 err = -EINVAL;
1607 goto out;
1608 }
1609
1610 /* Wait for children sockets to appear; these are the new sockets
1611 * created upon connection establishment.
1612 */
1613 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1614 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1615
1616 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1617 listener->sk_err == 0) {
1618 release_sock(listener);
1619 timeout = schedule_timeout(timeout);
1620 finish_wait(sk_sleep(listener), &wait);
1621 lock_sock(listener);
1622
1623 if (signal_pending(current)) {
1624 err = sock_intr_errno(timeout);
1625 goto out;
1626 } else if (timeout == 0) {
1627 err = -EAGAIN;
1628 goto out;
1629 }
1630
1631 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1632 }
1633 finish_wait(sk_sleep(listener), &wait);
1634
1635 if (listener->sk_err)
1636 err = -listener->sk_err;
1637
1638 if (connected) {
1639 sk_acceptq_removed(listener);
1640
1641 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1642 vconnected = vsock_sk(connected);
1643
1644 /* If the listener socket has received an error, then we should
1645 * reject this socket and return. Note that we simply mark the
1646 * socket rejected, drop our reference, and let the cleanup
1647 * function handle the cleanup; the fact that we found it in
1648 * the listener's accept queue guarantees that the cleanup
1649 * function hasn't run yet.
1650 */
1651 if (err) {
1652 vconnected->rejected = true;
1653 } else {
1654 newsock->state = SS_CONNECTED;
1655 sock_graft(connected, newsock);
1656 }
1657
1658 release_sock(connected);
1659 sock_put(connected);
1660 }
1661
1662 out:
1663 release_sock(listener);
1664 return err;
1665 }
1666
vsock_listen(struct socket * sock,int backlog)1667 static int vsock_listen(struct socket *sock, int backlog)
1668 {
1669 int err;
1670 struct sock *sk;
1671 struct vsock_sock *vsk;
1672
1673 sk = sock->sk;
1674
1675 lock_sock(sk);
1676
1677 if (!sock_type_connectible(sk->sk_type)) {
1678 err = -EOPNOTSUPP;
1679 goto out;
1680 }
1681
1682 if (sock->state != SS_UNCONNECTED) {
1683 err = -EINVAL;
1684 goto out;
1685 }
1686
1687 vsk = vsock_sk(sk);
1688
1689 if (!vsock_addr_bound(&vsk->local_addr)) {
1690 err = -EINVAL;
1691 goto out;
1692 }
1693
1694 sk->sk_max_ack_backlog = backlog;
1695 sk->sk_state = TCP_LISTEN;
1696
1697 err = 0;
1698
1699 out:
1700 release_sock(sk);
1701 return err;
1702 }
1703
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1704 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1705 const struct vsock_transport *transport,
1706 u64 val)
1707 {
1708 if (val > vsk->buffer_max_size)
1709 val = vsk->buffer_max_size;
1710
1711 if (val < vsk->buffer_min_size)
1712 val = vsk->buffer_min_size;
1713
1714 if (val != vsk->buffer_size &&
1715 transport && transport->notify_buffer_size)
1716 transport->notify_buffer_size(vsk, &val);
1717
1718 vsk->buffer_size = val;
1719 }
1720
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1721 static int vsock_connectible_setsockopt(struct socket *sock,
1722 int level,
1723 int optname,
1724 sockptr_t optval,
1725 unsigned int optlen)
1726 {
1727 int err;
1728 struct sock *sk;
1729 struct vsock_sock *vsk;
1730 const struct vsock_transport *transport;
1731 u64 val;
1732
1733 if (level != AF_VSOCK)
1734 return -ENOPROTOOPT;
1735
1736 #define COPY_IN(_v) \
1737 do { \
1738 if (optlen < sizeof(_v)) { \
1739 err = -EINVAL; \
1740 goto exit; \
1741 } \
1742 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1743 err = -EFAULT; \
1744 goto exit; \
1745 } \
1746 } while (0)
1747
1748 err = 0;
1749 sk = sock->sk;
1750 vsk = vsock_sk(sk);
1751
1752 lock_sock(sk);
1753
1754 transport = vsk->transport;
1755
1756 switch (optname) {
1757 case SO_VM_SOCKETS_BUFFER_SIZE:
1758 COPY_IN(val);
1759 vsock_update_buffer_size(vsk, transport, val);
1760 break;
1761
1762 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1763 COPY_IN(val);
1764 vsk->buffer_max_size = val;
1765 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1766 break;
1767
1768 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1769 COPY_IN(val);
1770 vsk->buffer_min_size = val;
1771 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1772 break;
1773
1774 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1775 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1776 struct __kernel_sock_timeval tv;
1777
1778 err = sock_copy_user_timeval(&tv, optval, optlen,
1779 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1780 if (err)
1781 break;
1782 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1783 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1784 vsk->connect_timeout = tv.tv_sec * HZ +
1785 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1786 if (vsk->connect_timeout == 0)
1787 vsk->connect_timeout =
1788 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1789
1790 } else {
1791 err = -ERANGE;
1792 }
1793 break;
1794 }
1795
1796 default:
1797 err = -ENOPROTOOPT;
1798 break;
1799 }
1800
1801 #undef COPY_IN
1802
1803 exit:
1804 release_sock(sk);
1805 return err;
1806 }
1807
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1808 static int vsock_connectible_getsockopt(struct socket *sock,
1809 int level, int optname,
1810 char __user *optval,
1811 int __user *optlen)
1812 {
1813 struct sock *sk = sock->sk;
1814 struct vsock_sock *vsk = vsock_sk(sk);
1815
1816 union {
1817 u64 val64;
1818 struct old_timeval32 tm32;
1819 struct __kernel_old_timeval tm;
1820 struct __kernel_sock_timeval stm;
1821 } v;
1822
1823 int lv = sizeof(v.val64);
1824 int len;
1825
1826 if (level != AF_VSOCK)
1827 return -ENOPROTOOPT;
1828
1829 if (get_user(len, optlen))
1830 return -EFAULT;
1831
1832 memset(&v, 0, sizeof(v));
1833
1834 switch (optname) {
1835 case SO_VM_SOCKETS_BUFFER_SIZE:
1836 v.val64 = vsk->buffer_size;
1837 break;
1838
1839 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1840 v.val64 = vsk->buffer_max_size;
1841 break;
1842
1843 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1844 v.val64 = vsk->buffer_min_size;
1845 break;
1846
1847 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1848 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1849 lv = sock_get_timeout(vsk->connect_timeout, &v,
1850 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1851 break;
1852
1853 default:
1854 return -ENOPROTOOPT;
1855 }
1856
1857 if (len < lv)
1858 return -EINVAL;
1859 if (len > lv)
1860 len = lv;
1861 if (copy_to_user(optval, &v, len))
1862 return -EFAULT;
1863
1864 if (put_user(len, optlen))
1865 return -EFAULT;
1866
1867 return 0;
1868 }
1869
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1870 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1871 size_t len)
1872 {
1873 struct sock *sk;
1874 struct vsock_sock *vsk;
1875 const struct vsock_transport *transport;
1876 ssize_t total_written;
1877 long timeout;
1878 int err;
1879 struct vsock_transport_send_notify_data send_data;
1880 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1881
1882 sk = sock->sk;
1883 vsk = vsock_sk(sk);
1884 total_written = 0;
1885 err = 0;
1886
1887 if (msg->msg_flags & MSG_OOB)
1888 return -EOPNOTSUPP;
1889
1890 lock_sock(sk);
1891
1892 transport = vsk->transport;
1893
1894 /* Callers should not provide a destination with connection oriented
1895 * sockets.
1896 */
1897 if (msg->msg_namelen) {
1898 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1899 goto out;
1900 }
1901
1902 /* Send data only if both sides are not shutdown in the direction. */
1903 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1904 vsk->peer_shutdown & RCV_SHUTDOWN) {
1905 err = -EPIPE;
1906 goto out;
1907 }
1908
1909 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1910 !vsock_addr_bound(&vsk->local_addr)) {
1911 err = -ENOTCONN;
1912 goto out;
1913 }
1914
1915 if (!vsock_addr_bound(&vsk->remote_addr)) {
1916 err = -EDESTADDRREQ;
1917 goto out;
1918 }
1919
1920 /* Wait for room in the produce queue to enqueue our user's data. */
1921 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1922
1923 err = transport->notify_send_init(vsk, &send_data);
1924 if (err < 0)
1925 goto out;
1926
1927 while (total_written < len) {
1928 ssize_t written;
1929
1930 add_wait_queue(sk_sleep(sk), &wait);
1931 while (vsock_stream_has_space(vsk) == 0 &&
1932 sk->sk_err == 0 &&
1933 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1934 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1935
1936 /* Don't wait for non-blocking sockets. */
1937 if (timeout == 0) {
1938 err = -EAGAIN;
1939 remove_wait_queue(sk_sleep(sk), &wait);
1940 goto out_err;
1941 }
1942
1943 err = transport->notify_send_pre_block(vsk, &send_data);
1944 if (err < 0) {
1945 remove_wait_queue(sk_sleep(sk), &wait);
1946 goto out_err;
1947 }
1948
1949 release_sock(sk);
1950 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1951 lock_sock(sk);
1952 if (signal_pending(current)) {
1953 err = sock_intr_errno(timeout);
1954 remove_wait_queue(sk_sleep(sk), &wait);
1955 goto out_err;
1956 } else if (timeout == 0) {
1957 err = -EAGAIN;
1958 remove_wait_queue(sk_sleep(sk), &wait);
1959 goto out_err;
1960 }
1961 }
1962 remove_wait_queue(sk_sleep(sk), &wait);
1963
1964 /* These checks occur both as part of and after the loop
1965 * conditional since we need to check before and after
1966 * sleeping.
1967 */
1968 if (sk->sk_err) {
1969 err = -sk->sk_err;
1970 goto out_err;
1971 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1972 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1973 err = -EPIPE;
1974 goto out_err;
1975 }
1976
1977 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1978 if (err < 0)
1979 goto out_err;
1980
1981 /* Note that enqueue will only write as many bytes as are free
1982 * in the produce queue, so we don't need to ensure len is
1983 * smaller than the queue size. It is the caller's
1984 * responsibility to check how many bytes we were able to send.
1985 */
1986
1987 if (sk->sk_type == SOCK_SEQPACKET) {
1988 written = transport->seqpacket_enqueue(vsk,
1989 msg, len - total_written);
1990 } else {
1991 written = transport->stream_enqueue(vsk,
1992 msg, len - total_written);
1993 }
1994
1995 if (written < 0) {
1996 err = written;
1997 goto out_err;
1998 }
1999
2000 total_written += written;
2001
2002 err = transport->notify_send_post_enqueue(
2003 vsk, written, &send_data);
2004 if (err < 0)
2005 goto out_err;
2006
2007 }
2008
2009 out_err:
2010 if (total_written > 0) {
2011 /* Return number of written bytes only if:
2012 * 1) SOCK_STREAM socket.
2013 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2014 */
2015 if (sk->sk_type == SOCK_STREAM || total_written == len)
2016 err = total_written;
2017 }
2018 out:
2019 release_sock(sk);
2020 return err;
2021 }
2022
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2023 static int vsock_connectible_wait_data(struct sock *sk,
2024 struct wait_queue_entry *wait,
2025 long timeout,
2026 struct vsock_transport_recv_notify_data *recv_data,
2027 size_t target)
2028 {
2029 const struct vsock_transport *transport;
2030 struct vsock_sock *vsk;
2031 s64 data;
2032 int err;
2033
2034 vsk = vsock_sk(sk);
2035 err = 0;
2036 transport = vsk->transport;
2037
2038 while (1) {
2039 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2040 data = vsock_connectible_has_data(vsk);
2041 if (data != 0)
2042 break;
2043
2044 if (sk->sk_err != 0 ||
2045 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2046 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2047 break;
2048 }
2049
2050 /* Don't wait for non-blocking sockets. */
2051 if (timeout == 0) {
2052 err = -EAGAIN;
2053 break;
2054 }
2055
2056 if (recv_data) {
2057 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2058 if (err < 0)
2059 break;
2060 }
2061
2062 release_sock(sk);
2063 timeout = schedule_timeout(timeout);
2064 lock_sock(sk);
2065
2066 if (signal_pending(current)) {
2067 err = sock_intr_errno(timeout);
2068 break;
2069 } else if (timeout == 0) {
2070 err = -EAGAIN;
2071 break;
2072 }
2073 }
2074
2075 finish_wait(sk_sleep(sk), wait);
2076
2077 if (err)
2078 return err;
2079
2080 /* Internal transport error when checking for available
2081 * data. XXX This should be changed to a connection
2082 * reset in a later change.
2083 */
2084 if (data < 0)
2085 return -ENOMEM;
2086
2087 return data;
2088 }
2089
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2090 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2091 size_t len, int flags)
2092 {
2093 struct vsock_transport_recv_notify_data recv_data;
2094 const struct vsock_transport *transport;
2095 struct vsock_sock *vsk;
2096 ssize_t copied;
2097 size_t target;
2098 long timeout;
2099 int err;
2100
2101 DEFINE_WAIT(wait);
2102
2103 vsk = vsock_sk(sk);
2104 transport = vsk->transport;
2105
2106 /* We must not copy less than target bytes into the user's buffer
2107 * before returning successfully, so we wait for the consume queue to
2108 * have that much data to consume before dequeueing. Note that this
2109 * makes it impossible to handle cases where target is greater than the
2110 * queue size.
2111 */
2112 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2113 if (target >= transport->stream_rcvhiwat(vsk)) {
2114 err = -ENOMEM;
2115 goto out;
2116 }
2117 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2118 copied = 0;
2119
2120 err = transport->notify_recv_init(vsk, target, &recv_data);
2121 if (err < 0)
2122 goto out;
2123
2124
2125 while (1) {
2126 ssize_t read;
2127
2128 err = vsock_connectible_wait_data(sk, &wait, timeout,
2129 &recv_data, target);
2130 if (err <= 0)
2131 break;
2132
2133 err = transport->notify_recv_pre_dequeue(vsk, target,
2134 &recv_data);
2135 if (err < 0)
2136 break;
2137
2138 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2139 if (read < 0) {
2140 err = read;
2141 break;
2142 }
2143
2144 copied += read;
2145
2146 err = transport->notify_recv_post_dequeue(vsk, target, read,
2147 !(flags & MSG_PEEK), &recv_data);
2148 if (err < 0)
2149 goto out;
2150
2151 if (read >= target || flags & MSG_PEEK)
2152 break;
2153
2154 target -= read;
2155 }
2156
2157 if (sk->sk_err)
2158 err = -sk->sk_err;
2159 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2160 err = 0;
2161
2162 if (copied > 0)
2163 err = copied;
2164
2165 out:
2166 return err;
2167 }
2168
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2169 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2170 size_t len, int flags)
2171 {
2172 const struct vsock_transport *transport;
2173 struct vsock_sock *vsk;
2174 ssize_t msg_len;
2175 long timeout;
2176 int err = 0;
2177 DEFINE_WAIT(wait);
2178
2179 vsk = vsock_sk(sk);
2180 transport = vsk->transport;
2181
2182 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2183
2184 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2185 if (err <= 0)
2186 goto out;
2187
2188 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2189
2190 if (msg_len < 0) {
2191 err = msg_len;
2192 goto out;
2193 }
2194
2195 if (sk->sk_err) {
2196 err = -sk->sk_err;
2197 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2198 err = 0;
2199 } else {
2200 /* User sets MSG_TRUNC, so return real length of
2201 * packet.
2202 */
2203 if (flags & MSG_TRUNC)
2204 err = msg_len;
2205 else
2206 err = len - msg_data_left(msg);
2207
2208 /* Always set MSG_TRUNC if real length of packet is
2209 * bigger than user's buffer.
2210 */
2211 if (msg_len > len)
2212 msg->msg_flags |= MSG_TRUNC;
2213 }
2214
2215 out:
2216 return err;
2217 }
2218
2219 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2220 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2221 int flags)
2222 {
2223 struct sock *sk;
2224 struct vsock_sock *vsk;
2225 const struct vsock_transport *transport;
2226 int err;
2227
2228 sk = sock->sk;
2229
2230 if (unlikely(flags & MSG_ERRQUEUE))
2231 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2232
2233 vsk = vsock_sk(sk);
2234 err = 0;
2235
2236 lock_sock(sk);
2237
2238 transport = vsk->transport;
2239
2240 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2241 /* Recvmsg is supposed to return 0 if a peer performs an
2242 * orderly shutdown. Differentiate between that case and when a
2243 * peer has not connected or a local shutdown occurred with the
2244 * SOCK_DONE flag.
2245 */
2246 if (sock_flag(sk, SOCK_DONE))
2247 err = 0;
2248 else
2249 err = -ENOTCONN;
2250
2251 goto out;
2252 }
2253
2254 if (flags & MSG_OOB) {
2255 err = -EOPNOTSUPP;
2256 goto out;
2257 }
2258
2259 /* We don't check peer_shutdown flag here since peer may actually shut
2260 * down, but there can be data in the queue that a local socket can
2261 * receive.
2262 */
2263 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2264 err = 0;
2265 goto out;
2266 }
2267
2268 /* It is valid on Linux to pass in a zero-length receive buffer. This
2269 * is not an error. We may as well bail out now.
2270 */
2271 if (!len) {
2272 err = 0;
2273 goto out;
2274 }
2275
2276 if (sk->sk_type == SOCK_STREAM)
2277 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2278 else
2279 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2280
2281 out:
2282 release_sock(sk);
2283 return err;
2284 }
2285
2286 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2287 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2288 int flags)
2289 {
2290 #ifdef CONFIG_BPF_SYSCALL
2291 struct sock *sk = sock->sk;
2292 const struct proto *prot;
2293
2294 prot = READ_ONCE(sk->sk_prot);
2295 if (prot != &vsock_proto)
2296 return prot->recvmsg(sk, msg, len, flags, NULL);
2297 #endif
2298
2299 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2300 }
2301 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2302
vsock_set_rcvlowat(struct sock * sk,int val)2303 static int vsock_set_rcvlowat(struct sock *sk, int val)
2304 {
2305 const struct vsock_transport *transport;
2306 struct vsock_sock *vsk;
2307
2308 vsk = vsock_sk(sk);
2309
2310 if (val > vsk->buffer_size)
2311 return -EINVAL;
2312
2313 transport = vsk->transport;
2314
2315 if (transport && transport->notify_set_rcvlowat) {
2316 int err;
2317
2318 err = transport->notify_set_rcvlowat(vsk, val);
2319 if (err)
2320 return err;
2321 }
2322
2323 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2324 return 0;
2325 }
2326
2327 static const struct proto_ops vsock_stream_ops = {
2328 .family = PF_VSOCK,
2329 .owner = THIS_MODULE,
2330 .release = vsock_release,
2331 .bind = vsock_bind,
2332 .connect = vsock_connect,
2333 .socketpair = sock_no_socketpair,
2334 .accept = vsock_accept,
2335 .getname = vsock_getname,
2336 .poll = vsock_poll,
2337 .ioctl = sock_no_ioctl,
2338 .listen = vsock_listen,
2339 .shutdown = vsock_shutdown,
2340 .setsockopt = vsock_connectible_setsockopt,
2341 .getsockopt = vsock_connectible_getsockopt,
2342 .sendmsg = vsock_connectible_sendmsg,
2343 .recvmsg = vsock_connectible_recvmsg,
2344 .mmap = sock_no_mmap,
2345 .set_rcvlowat = vsock_set_rcvlowat,
2346 .read_skb = vsock_read_skb,
2347 };
2348
2349 static const struct proto_ops vsock_seqpacket_ops = {
2350 .family = PF_VSOCK,
2351 .owner = THIS_MODULE,
2352 .release = vsock_release,
2353 .bind = vsock_bind,
2354 .connect = vsock_connect,
2355 .socketpair = sock_no_socketpair,
2356 .accept = vsock_accept,
2357 .getname = vsock_getname,
2358 .poll = vsock_poll,
2359 .ioctl = sock_no_ioctl,
2360 .listen = vsock_listen,
2361 .shutdown = vsock_shutdown,
2362 .setsockopt = vsock_connectible_setsockopt,
2363 .getsockopt = vsock_connectible_getsockopt,
2364 .sendmsg = vsock_connectible_sendmsg,
2365 .recvmsg = vsock_connectible_recvmsg,
2366 .mmap = sock_no_mmap,
2367 .read_skb = vsock_read_skb,
2368 };
2369
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2370 static int vsock_create(struct net *net, struct socket *sock,
2371 int protocol, int kern)
2372 {
2373 struct vsock_sock *vsk;
2374 struct sock *sk;
2375 int ret;
2376
2377 if (!sock)
2378 return -EINVAL;
2379
2380 if (protocol && protocol != PF_VSOCK)
2381 return -EPROTONOSUPPORT;
2382
2383 switch (sock->type) {
2384 case SOCK_DGRAM:
2385 sock->ops = &vsock_dgram_ops;
2386 break;
2387 case SOCK_STREAM:
2388 sock->ops = &vsock_stream_ops;
2389 break;
2390 case SOCK_SEQPACKET:
2391 sock->ops = &vsock_seqpacket_ops;
2392 break;
2393 default:
2394 return -ESOCKTNOSUPPORT;
2395 }
2396
2397 sock->state = SS_UNCONNECTED;
2398
2399 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2400 if (!sk)
2401 return -ENOMEM;
2402
2403 vsk = vsock_sk(sk);
2404
2405 if (sock->type == SOCK_DGRAM) {
2406 ret = vsock_assign_transport(vsk, NULL);
2407 if (ret < 0) {
2408 sock_put(sk);
2409 return ret;
2410 }
2411 }
2412
2413 vsock_insert_unbound(vsk);
2414
2415 return 0;
2416 }
2417
2418 static const struct net_proto_family vsock_family_ops = {
2419 .family = AF_VSOCK,
2420 .create = vsock_create,
2421 .owner = THIS_MODULE,
2422 };
2423
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2424 static long vsock_dev_do_ioctl(struct file *filp,
2425 unsigned int cmd, void __user *ptr)
2426 {
2427 u32 __user *p = ptr;
2428 int retval = 0;
2429 u32 cid;
2430
2431 switch (cmd) {
2432 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2433 /* To be compatible with the VMCI behavior, we prioritize the
2434 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2435 */
2436 cid = vsock_registered_transport_cid(&transport_g2h);
2437 if (cid == VMADDR_CID_ANY)
2438 cid = vsock_registered_transport_cid(&transport_h2g);
2439 if (cid == VMADDR_CID_ANY)
2440 cid = vsock_registered_transport_cid(&transport_local);
2441
2442 if (put_user(cid, p) != 0)
2443 retval = -EFAULT;
2444 break;
2445
2446 default:
2447 retval = -ENOIOCTLCMD;
2448 }
2449
2450 return retval;
2451 }
2452
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2453 static long vsock_dev_ioctl(struct file *filp,
2454 unsigned int cmd, unsigned long arg)
2455 {
2456 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2457 }
2458
2459 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2460 static long vsock_dev_compat_ioctl(struct file *filp,
2461 unsigned int cmd, unsigned long arg)
2462 {
2463 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2464 }
2465 #endif
2466
2467 static const struct file_operations vsock_device_ops = {
2468 .owner = THIS_MODULE,
2469 .unlocked_ioctl = vsock_dev_ioctl,
2470 #ifdef CONFIG_COMPAT
2471 .compat_ioctl = vsock_dev_compat_ioctl,
2472 #endif
2473 .open = nonseekable_open,
2474 };
2475
2476 static struct miscdevice vsock_device = {
2477 .name = "vsock",
2478 .fops = &vsock_device_ops,
2479 };
2480
vsock_init(void)2481 static int __init vsock_init(void)
2482 {
2483 int err = 0;
2484
2485 vsock_init_tables();
2486
2487 vsock_proto.owner = THIS_MODULE;
2488 vsock_device.minor = MISC_DYNAMIC_MINOR;
2489 err = misc_register(&vsock_device);
2490 if (err) {
2491 pr_err("Failed to register misc device\n");
2492 goto err_reset_transport;
2493 }
2494
2495 err = proto_register(&vsock_proto, 1); /* we want our slab */
2496 if (err) {
2497 pr_err("Cannot register vsock protocol\n");
2498 goto err_deregister_misc;
2499 }
2500
2501 err = sock_register(&vsock_family_ops);
2502 if (err) {
2503 pr_err("could not register af_vsock (%d) address family: %d\n",
2504 AF_VSOCK, err);
2505 goto err_unregister_proto;
2506 }
2507
2508 vsock_bpf_build_proto();
2509
2510 return 0;
2511
2512 err_unregister_proto:
2513 proto_unregister(&vsock_proto);
2514 err_deregister_misc:
2515 misc_deregister(&vsock_device);
2516 err_reset_transport:
2517 return err;
2518 }
2519
vsock_exit(void)2520 static void __exit vsock_exit(void)
2521 {
2522 misc_deregister(&vsock_device);
2523 sock_unregister(AF_VSOCK);
2524 proto_unregister(&vsock_proto);
2525 }
2526
vsock_core_get_transport(struct vsock_sock * vsk)2527 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2528 {
2529 return vsk->transport;
2530 }
2531 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2532
vsock_core_register(const struct vsock_transport * t,int features)2533 int vsock_core_register(const struct vsock_transport *t, int features)
2534 {
2535 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2536 int err = mutex_lock_interruptible(&vsock_register_mutex);
2537
2538 if (err)
2539 return err;
2540
2541 t_h2g = transport_h2g;
2542 t_g2h = transport_g2h;
2543 t_dgram = transport_dgram;
2544 t_local = transport_local;
2545
2546 if (features & VSOCK_TRANSPORT_F_H2G) {
2547 if (t_h2g) {
2548 err = -EBUSY;
2549 goto err_busy;
2550 }
2551 t_h2g = t;
2552 }
2553
2554 if (features & VSOCK_TRANSPORT_F_G2H) {
2555 if (t_g2h) {
2556 err = -EBUSY;
2557 goto err_busy;
2558 }
2559 t_g2h = t;
2560 }
2561
2562 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2563 if (t_dgram) {
2564 err = -EBUSY;
2565 goto err_busy;
2566 }
2567 t_dgram = t;
2568 }
2569
2570 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2571 if (t_local) {
2572 err = -EBUSY;
2573 goto err_busy;
2574 }
2575 t_local = t;
2576 }
2577
2578 transport_h2g = t_h2g;
2579 transport_g2h = t_g2h;
2580 transport_dgram = t_dgram;
2581 transport_local = t_local;
2582
2583 err_busy:
2584 mutex_unlock(&vsock_register_mutex);
2585 return err;
2586 }
2587 EXPORT_SYMBOL_GPL(vsock_core_register);
2588
vsock_core_unregister(const struct vsock_transport * t)2589 void vsock_core_unregister(const struct vsock_transport *t)
2590 {
2591 mutex_lock(&vsock_register_mutex);
2592
2593 if (transport_h2g == t)
2594 transport_h2g = NULL;
2595
2596 if (transport_g2h == t)
2597 transport_g2h = NULL;
2598
2599 if (transport_dgram == t)
2600 transport_dgram = NULL;
2601
2602 if (transport_local == t)
2603 transport_local = NULL;
2604
2605 mutex_unlock(&vsock_register_mutex);
2606 }
2607 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2608
2609 module_init(vsock_init);
2610 module_exit(vsock_exit);
2611
2612 MODULE_AUTHOR("VMware, Inc.");
2613 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2614 MODULE_VERSION("1.0.2.0-k");
2615 MODULE_LICENSE("GPL v2");
2616