• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120 
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 	.name = "AF_VSOCK",
124 	.owner = THIS_MODULE,
125 	.obj_size = sizeof(struct vsock_sock),
126 	.close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 	.psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140 
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150 
151 /**** UTILS ****/
152 
153 /* Each bound VSocket is stored in the bind hash table and each connected
154  * VSocket is stored in the connected hash table.
155  *
156  * Unbound sockets are all put on the same list attached to the end of the hash
157  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
158  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159  * represents the list that addr hashes to).
160  *
161  * Specifically, we initialize the vsock_bind_table array to a size of
162  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
165  * mods with VSOCK_HASH_SIZE to ensure this.
166  */
167 #define MAX_PORT_RETRIES        24
168 
169 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
172 
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst)				\
175 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst)		\
177 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk)				\
179 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187 
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 	struct sock *sk = sk_vsock(vsk);
192 	struct sockaddr_vm local_addr;
193 
194 	if (vsock_addr_bound(&vsk->local_addr))
195 		return 0;
196 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 	return __vsock_bind(sk, &local_addr);
198 }
199 
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 	int i;
203 
204 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 		INIT_LIST_HEAD(&vsock_bind_table[i]);
206 
207 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 		INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 			return sk_vsock(vsk);
244 
245 		if (addr->svm_port == vsk->local_addr.svm_port &&
246 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 		     addr->svm_cid == VMADDR_CID_ANY))
248 			return sk_vsock(vsk);
249 	}
250 
251 	return NULL;
252 }
253 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 						  struct sockaddr_vm *dst)
256 {
257 	struct vsock_sock *vsk;
258 
259 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 			    connected_table) {
261 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 		    dst->svm_port == vsk->local_addr.svm_port) {
263 			return sk_vsock(vsk);
264 		}
265 	}
266 
267 	return NULL;
268 }
269 
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 	struct list_head *list = vsock_connected_sockets(
280 		&vsk->remote_addr, &vsk->local_addr);
281 
282 	spin_lock_bh(&vsock_table_lock);
283 	__vsock_insert_connected(list, vsk);
284 	spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287 
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 	spin_lock_bh(&vsock_table_lock);
291 	if (__vsock_in_bound_table(vsk))
292 		__vsock_remove_bound(vsk);
293 	spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296 
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 	spin_lock_bh(&vsock_table_lock);
300 	if (__vsock_in_connected_table(vsk))
301 		__vsock_remove_connected(vsk);
302 	spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305 
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 	struct sock *sk;
309 
310 	spin_lock_bh(&vsock_table_lock);
311 	sk = __vsock_find_bound_socket(addr);
312 	if (sk)
313 		sock_hold(sk);
314 
315 	spin_unlock_bh(&vsock_table_lock);
316 
317 	return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 					 struct sockaddr_vm *dst)
323 {
324 	struct sock *sk;
325 
326 	spin_lock_bh(&vsock_table_lock);
327 	sk = __vsock_find_connected_socket(src, dst);
328 	if (sk)
329 		sock_hold(sk);
330 
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336 
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 	/* Transport reassignment must not remove the binding. */
340 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
341 		vsock_remove_bound(vsk);
342 
343 	vsock_remove_connected(vsk);
344 }
345 EXPORT_SYMBOL_GPL(vsock_remove_sock);
346 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))347 void vsock_for_each_connected_socket(struct vsock_transport *transport,
348 				     void (*fn)(struct sock *sk))
349 {
350 	int i;
351 
352 	spin_lock_bh(&vsock_table_lock);
353 
354 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
355 		struct vsock_sock *vsk;
356 		list_for_each_entry(vsk, &vsock_connected_table[i],
357 				    connected_table) {
358 			if (vsk->transport != transport)
359 				continue;
360 
361 			fn(sk_vsock(vsk));
362 		}
363 	}
364 
365 	spin_unlock_bh(&vsock_table_lock);
366 }
367 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
368 
vsock_add_pending(struct sock * listener,struct sock * pending)369 void vsock_add_pending(struct sock *listener, struct sock *pending)
370 {
371 	struct vsock_sock *vlistener;
372 	struct vsock_sock *vpending;
373 
374 	vlistener = vsock_sk(listener);
375 	vpending = vsock_sk(pending);
376 
377 	sock_hold(pending);
378 	sock_hold(listener);
379 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
380 }
381 EXPORT_SYMBOL_GPL(vsock_add_pending);
382 
vsock_remove_pending(struct sock * listener,struct sock * pending)383 void vsock_remove_pending(struct sock *listener, struct sock *pending)
384 {
385 	struct vsock_sock *vpending = vsock_sk(pending);
386 
387 	list_del_init(&vpending->pending_links);
388 	sock_put(listener);
389 	sock_put(pending);
390 }
391 EXPORT_SYMBOL_GPL(vsock_remove_pending);
392 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)393 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
394 {
395 	struct vsock_sock *vlistener;
396 	struct vsock_sock *vconnected;
397 
398 	vlistener = vsock_sk(listener);
399 	vconnected = vsock_sk(connected);
400 
401 	sock_hold(connected);
402 	sock_hold(listener);
403 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
404 }
405 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
406 
vsock_use_local_transport(unsigned int remote_cid)407 static bool vsock_use_local_transport(unsigned int remote_cid)
408 {
409 	lockdep_assert_held(&vsock_register_mutex);
410 
411 	if (!transport_local)
412 		return false;
413 
414 	if (remote_cid == VMADDR_CID_LOCAL)
415 		return true;
416 
417 	if (transport_g2h) {
418 		return remote_cid == transport_g2h->get_local_cid();
419 	} else {
420 		return remote_cid == VMADDR_CID_HOST;
421 	}
422 }
423 
vsock_deassign_transport(struct vsock_sock * vsk)424 static void vsock_deassign_transport(struct vsock_sock *vsk)
425 {
426 	if (!vsk->transport)
427 		return;
428 
429 	vsk->transport->destruct(vsk);
430 	module_put(vsk->transport->module);
431 	vsk->transport = NULL;
432 }
433 
434 /* Assign a transport to a socket and call the .init transport callback.
435  *
436  * Note: for connection oriented socket this must be called when vsk->remote_addr
437  * is set (e.g. during the connect() or when a connection request on a listener
438  * socket is received).
439  * The vsk->remote_addr is used to decide which transport to use:
440  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
441  *    g2h is not loaded, will use local transport;
442  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
443  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
444  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
445  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)446 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
447 {
448 	const struct vsock_transport *new_transport;
449 	struct sock *sk = sk_vsock(vsk);
450 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
451 	__u8 remote_flags;
452 	int ret;
453 
454 	/* If the packet is coming with the source and destination CIDs higher
455 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
456 	 * forwarded to the host should be established. Then the host will
457 	 * need to forward the packets to the guest.
458 	 *
459 	 * The flag is set on the (listen) receive path (psk is not NULL). On
460 	 * the connect path the flag can be set by the user space application.
461 	 */
462 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
463 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
464 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
465 
466 	remote_flags = vsk->remote_addr.svm_flags;
467 
468 	mutex_lock(&vsock_register_mutex);
469 
470 	switch (sk->sk_type) {
471 	case SOCK_DGRAM:
472 		new_transport = transport_dgram;
473 		break;
474 	case SOCK_STREAM:
475 	case SOCK_SEQPACKET:
476 		if (vsock_use_local_transport(remote_cid))
477 			new_transport = transport_local;
478 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
479 			 (remote_flags & VMADDR_FLAG_TO_HOST))
480 			new_transport = transport_g2h;
481 		else
482 			new_transport = transport_h2g;
483 		break;
484 	default:
485 		ret = -ESOCKTNOSUPPORT;
486 		goto err;
487 	}
488 
489 	if (vsk->transport) {
490 		if (vsk->transport == new_transport) {
491 			ret = 0;
492 			goto err;
493 		}
494 
495 		/* transport->release() must be called with sock lock acquired.
496 		 * This path can only be taken during vsock_connect(), where we
497 		 * have already held the sock lock. In the other cases, this
498 		 * function is called on a new socket which is not assigned to
499 		 * any transport.
500 		 */
501 		vsk->transport->release(vsk);
502 		vsock_deassign_transport(vsk);
503 
504 		/* transport's release() and destruct() can touch some socket
505 		 * state, since we are reassigning the socket to a new transport
506 		 * during vsock_connect(), let's reset these fields to have a
507 		 * clean state.
508 		 */
509 		sock_reset_flag(sk, SOCK_DONE);
510 		sk->sk_state = TCP_CLOSE;
511 		vsk->peer_shutdown = 0;
512 	}
513 
514 	/* We increase the module refcnt to prevent the transport unloading
515 	 * while there are open sockets assigned to it.
516 	 */
517 	if (!new_transport || !try_module_get(new_transport->module)) {
518 		ret = -ENODEV;
519 		goto err;
520 	}
521 
522 	/* It's safe to release the mutex after a successful try_module_get().
523 	 * Whichever transport `new_transport` points at, it won't go away until
524 	 * the last module_put() below or in vsock_deassign_transport().
525 	 */
526 	mutex_unlock(&vsock_register_mutex);
527 
528 	if (sk->sk_type == SOCK_SEQPACKET) {
529 		if (!new_transport->seqpacket_allow ||
530 		    !new_transport->seqpacket_allow(remote_cid)) {
531 			module_put(new_transport->module);
532 			return -ESOCKTNOSUPPORT;
533 		}
534 	}
535 
536 	ret = new_transport->init(vsk, psk);
537 	if (ret) {
538 		module_put(new_transport->module);
539 		return ret;
540 	}
541 
542 	vsk->transport = new_transport;
543 
544 	return 0;
545 err:
546 	mutex_unlock(&vsock_register_mutex);
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(vsock_assign_transport);
550 
551 /*
552  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
553  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
554  */
vsock_registered_transport_cid(const struct vsock_transport ** transport)555 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
556 {
557 	u32 cid = VMADDR_CID_ANY;
558 
559 	mutex_lock(&vsock_register_mutex);
560 	if (*transport)
561 		cid = (*transport)->get_local_cid();
562 	mutex_unlock(&vsock_register_mutex);
563 
564 	return cid;
565 }
566 
vsock_find_cid(unsigned int cid)567 bool vsock_find_cid(unsigned int cid)
568 {
569 	if (cid == vsock_registered_transport_cid(&transport_g2h))
570 		return true;
571 
572 	if (transport_h2g && cid == VMADDR_CID_HOST)
573 		return true;
574 
575 	if (transport_local && cid == VMADDR_CID_LOCAL)
576 		return true;
577 
578 	return false;
579 }
580 EXPORT_SYMBOL_GPL(vsock_find_cid);
581 
vsock_dequeue_accept(struct sock * listener)582 static struct sock *vsock_dequeue_accept(struct sock *listener)
583 {
584 	struct vsock_sock *vlistener;
585 	struct vsock_sock *vconnected;
586 
587 	vlistener = vsock_sk(listener);
588 
589 	if (list_empty(&vlistener->accept_queue))
590 		return NULL;
591 
592 	vconnected = list_entry(vlistener->accept_queue.next,
593 				struct vsock_sock, accept_queue);
594 
595 	list_del_init(&vconnected->accept_queue);
596 	sock_put(listener);
597 	/* The caller will need a reference on the connected socket so we let
598 	 * it call sock_put().
599 	 */
600 
601 	return sk_vsock(vconnected);
602 }
603 
vsock_is_accept_queue_empty(struct sock * sk)604 static bool vsock_is_accept_queue_empty(struct sock *sk)
605 {
606 	struct vsock_sock *vsk = vsock_sk(sk);
607 	return list_empty(&vsk->accept_queue);
608 }
609 
vsock_is_pending(struct sock * sk)610 static bool vsock_is_pending(struct sock *sk)
611 {
612 	struct vsock_sock *vsk = vsock_sk(sk);
613 	return !list_empty(&vsk->pending_links);
614 }
615 
vsock_send_shutdown(struct sock * sk,int mode)616 static int vsock_send_shutdown(struct sock *sk, int mode)
617 {
618 	struct vsock_sock *vsk = vsock_sk(sk);
619 
620 	if (!vsk->transport)
621 		return -ENODEV;
622 
623 	return vsk->transport->shutdown(vsk, mode);
624 }
625 
vsock_pending_work(struct work_struct * work)626 static void vsock_pending_work(struct work_struct *work)
627 {
628 	struct sock *sk;
629 	struct sock *listener;
630 	struct vsock_sock *vsk;
631 	bool cleanup;
632 
633 	vsk = container_of(work, struct vsock_sock, pending_work.work);
634 	sk = sk_vsock(vsk);
635 	listener = vsk->listener;
636 	cleanup = true;
637 
638 	lock_sock(listener);
639 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
640 
641 	if (vsock_is_pending(sk)) {
642 		vsock_remove_pending(listener, sk);
643 
644 		sk_acceptq_removed(listener);
645 	} else if (!vsk->rejected) {
646 		/* We are not on the pending list and accept() did not reject
647 		 * us, so we must have been accepted by our user process.  We
648 		 * just need to drop our references to the sockets and be on
649 		 * our way.
650 		 */
651 		cleanup = false;
652 		goto out;
653 	}
654 
655 	/* We need to remove ourself from the global connected sockets list so
656 	 * incoming packets can't find this socket, and to reduce the reference
657 	 * count.
658 	 */
659 	vsock_remove_connected(vsk);
660 
661 	sk->sk_state = TCP_CLOSE;
662 
663 out:
664 	release_sock(sk);
665 	release_sock(listener);
666 	if (cleanup)
667 		sock_put(sk);
668 
669 	sock_put(sk);
670 	sock_put(listener);
671 }
672 
673 /**** SOCKET OPERATIONS ****/
674 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)675 static int __vsock_bind_connectible(struct vsock_sock *vsk,
676 				    struct sockaddr_vm *addr)
677 {
678 	static u32 port;
679 	struct sockaddr_vm new_addr;
680 
681 	if (!port)
682 		port = get_random_u32_above(LAST_RESERVED_PORT);
683 
684 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
685 
686 	if (addr->svm_port == VMADDR_PORT_ANY) {
687 		bool found = false;
688 		unsigned int i;
689 
690 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
691 			if (port <= LAST_RESERVED_PORT)
692 				port = LAST_RESERVED_PORT + 1;
693 
694 			new_addr.svm_port = port++;
695 
696 			if (!__vsock_find_bound_socket(&new_addr)) {
697 				found = true;
698 				break;
699 			}
700 		}
701 
702 		if (!found)
703 			return -EADDRNOTAVAIL;
704 	} else {
705 		/* If port is in reserved range, ensure caller
706 		 * has necessary privileges.
707 		 */
708 		if (addr->svm_port <= LAST_RESERVED_PORT &&
709 		    !capable(CAP_NET_BIND_SERVICE)) {
710 			return -EACCES;
711 		}
712 
713 		if (__vsock_find_bound_socket(&new_addr))
714 			return -EADDRINUSE;
715 	}
716 
717 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
718 
719 	/* Remove connection oriented sockets from the unbound list and add them
720 	 * to the hash table for easy lookup by its address.  The unbound list
721 	 * is simply an extra entry at the end of the hash table, a trick used
722 	 * by AF_UNIX.
723 	 */
724 	__vsock_remove_bound(vsk);
725 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
726 
727 	return 0;
728 }
729 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)730 static int __vsock_bind_dgram(struct vsock_sock *vsk,
731 			      struct sockaddr_vm *addr)
732 {
733 	return vsk->transport->dgram_bind(vsk, addr);
734 }
735 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)736 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
737 {
738 	struct vsock_sock *vsk = vsock_sk(sk);
739 	int retval;
740 
741 	/* First ensure this socket isn't already bound. */
742 	if (vsock_addr_bound(&vsk->local_addr))
743 		return -EINVAL;
744 
745 	/* Now bind to the provided address or select appropriate values if
746 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
747 	 * like AF_INET prevents binding to a non-local IP address (in most
748 	 * cases), we only allow binding to a local CID.
749 	 */
750 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
751 		return -EADDRNOTAVAIL;
752 
753 	switch (sk->sk_socket->type) {
754 	case SOCK_STREAM:
755 	case SOCK_SEQPACKET:
756 		spin_lock_bh(&vsock_table_lock);
757 		retval = __vsock_bind_connectible(vsk, addr);
758 		spin_unlock_bh(&vsock_table_lock);
759 		break;
760 
761 	case SOCK_DGRAM:
762 		retval = __vsock_bind_dgram(vsk, addr);
763 		break;
764 
765 	default:
766 		retval = -EINVAL;
767 		break;
768 	}
769 
770 	return retval;
771 }
772 
773 static void vsock_connect_timeout(struct work_struct *work);
774 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)775 static struct sock *__vsock_create(struct net *net,
776 				   struct socket *sock,
777 				   struct sock *parent,
778 				   gfp_t priority,
779 				   unsigned short type,
780 				   int kern)
781 {
782 	struct sock *sk;
783 	struct vsock_sock *psk;
784 	struct vsock_sock *vsk;
785 
786 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
787 	if (!sk)
788 		return NULL;
789 
790 	sock_init_data(sock, sk);
791 
792 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
793 	 * non-NULL. We make sure that our sockets always have a type by
794 	 * setting it here if needed.
795 	 */
796 	if (!sock)
797 		sk->sk_type = type;
798 
799 	vsk = vsock_sk(sk);
800 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802 
803 	sk->sk_destruct = vsock_sk_destruct;
804 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
805 	sock_reset_flag(sk, SOCK_DONE);
806 
807 	INIT_LIST_HEAD(&vsk->bound_table);
808 	INIT_LIST_HEAD(&vsk->connected_table);
809 	vsk->listener = NULL;
810 	INIT_LIST_HEAD(&vsk->pending_links);
811 	INIT_LIST_HEAD(&vsk->accept_queue);
812 	vsk->rejected = false;
813 	vsk->sent_request = false;
814 	vsk->ignore_connecting_rst = false;
815 	vsk->peer_shutdown = 0;
816 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
817 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
818 
819 	psk = parent ? vsock_sk(parent) : NULL;
820 	if (parent) {
821 		vsk->trusted = psk->trusted;
822 		vsk->owner = get_cred(psk->owner);
823 		vsk->connect_timeout = psk->connect_timeout;
824 		vsk->buffer_size = psk->buffer_size;
825 		vsk->buffer_min_size = psk->buffer_min_size;
826 		vsk->buffer_max_size = psk->buffer_max_size;
827 		security_sk_clone(parent, sk);
828 	} else {
829 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
830 		vsk->owner = get_current_cred();
831 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
832 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
833 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
834 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
835 	}
836 
837 	return sk;
838 }
839 
sock_type_connectible(u16 type)840 static bool sock_type_connectible(u16 type)
841 {
842 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
843 }
844 
__vsock_release(struct sock * sk,int level)845 static void __vsock_release(struct sock *sk, int level)
846 {
847 	struct vsock_sock *vsk;
848 	struct sock *pending;
849 
850 	vsk = vsock_sk(sk);
851 	pending = NULL;	/* Compiler warning. */
852 
853 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
854 	 * version to avoid the warning "possible recursive locking
855 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
856 	 * is the same as lock_sock(sk).
857 	 */
858 	lock_sock_nested(sk, level);
859 
860 	/* Indicate to vsock_remove_sock() that the socket is being released and
861 	 * can be removed from the bound_table. Unlike transport reassignment
862 	 * case, where the socket must remain bound despite vsock_remove_sock()
863 	 * being called from the transport release() callback.
864 	 */
865 	sock_set_flag(sk, SOCK_DEAD);
866 
867 	if (vsk->transport)
868 		vsk->transport->release(vsk);
869 	else if (sock_type_connectible(sk->sk_type))
870 		vsock_remove_sock(vsk);
871 
872 	sock_orphan(sk);
873 	sk->sk_shutdown = SHUTDOWN_MASK;
874 
875 	skb_queue_purge(&sk->sk_receive_queue);
876 
877 	/* Clean up any sockets that never were accepted. */
878 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
879 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
880 		sock_put(pending);
881 	}
882 
883 	release_sock(sk);
884 	sock_put(sk);
885 }
886 
vsock_sk_destruct(struct sock * sk)887 static void vsock_sk_destruct(struct sock *sk)
888 {
889 	struct vsock_sock *vsk = vsock_sk(sk);
890 
891 	vsock_deassign_transport(vsk);
892 
893 	/* When clearing these addresses, there's no need to set the family and
894 	 * possibly register the address family with the kernel.
895 	 */
896 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
897 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
898 
899 	put_cred(vsk->owner);
900 }
901 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)902 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
903 {
904 	int err;
905 
906 	err = sock_queue_rcv_skb(sk, skb);
907 	if (err)
908 		kfree_skb(skb);
909 
910 	return err;
911 }
912 
vsock_create_connected(struct sock * parent)913 struct sock *vsock_create_connected(struct sock *parent)
914 {
915 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
916 			      parent->sk_type, 0);
917 }
918 EXPORT_SYMBOL_GPL(vsock_create_connected);
919 
vsock_stream_has_data(struct vsock_sock * vsk)920 s64 vsock_stream_has_data(struct vsock_sock *vsk)
921 {
922 	if (WARN_ON(!vsk->transport))
923 		return 0;
924 
925 	return vsk->transport->stream_has_data(vsk);
926 }
927 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
928 
vsock_connectible_has_data(struct vsock_sock * vsk)929 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
930 {
931 	struct sock *sk = sk_vsock(vsk);
932 
933 	if (WARN_ON(!vsk->transport))
934 		return 0;
935 
936 	if (sk->sk_type == SOCK_SEQPACKET)
937 		return vsk->transport->seqpacket_has_data(vsk);
938 	else
939 		return vsock_stream_has_data(vsk);
940 }
941 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
942 
vsock_stream_has_space(struct vsock_sock * vsk)943 s64 vsock_stream_has_space(struct vsock_sock *vsk)
944 {
945 	if (WARN_ON(!vsk->transport))
946 		return 0;
947 
948 	return vsk->transport->stream_has_space(vsk);
949 }
950 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
951 
vsock_data_ready(struct sock * sk)952 void vsock_data_ready(struct sock *sk)
953 {
954 	struct vsock_sock *vsk = vsock_sk(sk);
955 
956 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
957 	    sock_flag(sk, SOCK_DONE))
958 		sk->sk_data_ready(sk);
959 }
960 EXPORT_SYMBOL_GPL(vsock_data_ready);
961 
962 /* Dummy callback required by sockmap.
963  * See unconditional call of saved_close() in sock_map_close().
964  */
vsock_close(struct sock * sk,long timeout)965 static void vsock_close(struct sock *sk, long timeout)
966 {
967 }
968 
vsock_release(struct socket * sock)969 static int vsock_release(struct socket *sock)
970 {
971 	struct sock *sk = sock->sk;
972 
973 	if (!sk)
974 		return 0;
975 
976 	sk->sk_prot->close(sk, 0);
977 	__vsock_release(sk, 0);
978 	sock->sk = NULL;
979 	sock->state = SS_FREE;
980 
981 	return 0;
982 }
983 
984 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)985 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
986 {
987 	int err;
988 	struct sock *sk;
989 	struct sockaddr_vm *vm_addr;
990 
991 	sk = sock->sk;
992 
993 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
994 		return -EINVAL;
995 
996 	lock_sock(sk);
997 	err = __vsock_bind(sk, vm_addr);
998 	release_sock(sk);
999 
1000 	return err;
1001 }
1002 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1003 static int vsock_getname(struct socket *sock,
1004 			 struct sockaddr *addr, int peer)
1005 {
1006 	int err;
1007 	struct sock *sk;
1008 	struct vsock_sock *vsk;
1009 	struct sockaddr_vm *vm_addr;
1010 
1011 	sk = sock->sk;
1012 	vsk = vsock_sk(sk);
1013 	err = 0;
1014 
1015 	lock_sock(sk);
1016 
1017 	if (peer) {
1018 		if (sock->state != SS_CONNECTED) {
1019 			err = -ENOTCONN;
1020 			goto out;
1021 		}
1022 		vm_addr = &vsk->remote_addr;
1023 	} else {
1024 		vm_addr = &vsk->local_addr;
1025 	}
1026 
1027 	if (!vm_addr) {
1028 		err = -EINVAL;
1029 		goto out;
1030 	}
1031 
1032 	/* sys_getsockname() and sys_getpeername() pass us a
1033 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1034 	 * that macro is defined in socket.c instead of .h, so we hardcode its
1035 	 * value here.
1036 	 */
1037 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1038 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1039 	err = sizeof(*vm_addr);
1040 
1041 out:
1042 	release_sock(sk);
1043 	return err;
1044 }
1045 
vsock_shutdown(struct socket * sock,int mode)1046 static int vsock_shutdown(struct socket *sock, int mode)
1047 {
1048 	int err;
1049 	struct sock *sk;
1050 
1051 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1052 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1053 	 * here like the other address families do.  Note also that the
1054 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1055 	 * which is what we want.
1056 	 */
1057 	mode++;
1058 
1059 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1060 		return -EINVAL;
1061 
1062 	/* If this is a connection oriented socket and it is not connected then
1063 	 * bail out immediately.  If it is a DGRAM socket then we must first
1064 	 * kick the socket so that it wakes up from any sleeping calls, for
1065 	 * example recv(), and then afterwards return the error.
1066 	 */
1067 
1068 	sk = sock->sk;
1069 
1070 	lock_sock(sk);
1071 	if (sock->state == SS_UNCONNECTED) {
1072 		err = -ENOTCONN;
1073 		if (sock_type_connectible(sk->sk_type))
1074 			goto out;
1075 	} else {
1076 		sock->state = SS_DISCONNECTING;
1077 		err = 0;
1078 	}
1079 
1080 	/* Receive and send shutdowns are treated alike. */
1081 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1082 	if (mode) {
1083 		sk->sk_shutdown |= mode;
1084 		sk->sk_state_change(sk);
1085 
1086 		if (sock_type_connectible(sk->sk_type)) {
1087 			sock_reset_flag(sk, SOCK_DONE);
1088 			vsock_send_shutdown(sk, mode);
1089 		}
1090 	}
1091 
1092 out:
1093 	release_sock(sk);
1094 	return err;
1095 }
1096 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1097 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1098 			       poll_table *wait)
1099 {
1100 	struct sock *sk;
1101 	__poll_t mask;
1102 	struct vsock_sock *vsk;
1103 
1104 	sk = sock->sk;
1105 	vsk = vsock_sk(sk);
1106 
1107 	poll_wait(file, sk_sleep(sk), wait);
1108 	mask = 0;
1109 
1110 	if (sk->sk_err)
1111 		/* Signify that there has been an error on this socket. */
1112 		mask |= EPOLLERR;
1113 
1114 	/* INET sockets treat local write shutdown and peer write shutdown as a
1115 	 * case of EPOLLHUP set.
1116 	 */
1117 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1118 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1119 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1120 		mask |= EPOLLHUP;
1121 	}
1122 
1123 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1124 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1125 		mask |= EPOLLRDHUP;
1126 	}
1127 
1128 	if (sk_is_readable(sk))
1129 		mask |= EPOLLIN | EPOLLRDNORM;
1130 
1131 	if (sock->type == SOCK_DGRAM) {
1132 		/* For datagram sockets we can read if there is something in
1133 		 * the queue and write as long as the socket isn't shutdown for
1134 		 * sending.
1135 		 */
1136 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1137 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1138 			mask |= EPOLLIN | EPOLLRDNORM;
1139 		}
1140 
1141 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1142 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1143 
1144 	} else if (sock_type_connectible(sk->sk_type)) {
1145 		const struct vsock_transport *transport;
1146 
1147 		lock_sock(sk);
1148 
1149 		transport = vsk->transport;
1150 
1151 		/* Listening sockets that have connections in their accept
1152 		 * queue can be read.
1153 		 */
1154 		if (sk->sk_state == TCP_LISTEN
1155 		    && !vsock_is_accept_queue_empty(sk))
1156 			mask |= EPOLLIN | EPOLLRDNORM;
1157 
1158 		/* If there is something in the queue then we can read. */
1159 		if (transport && transport->stream_is_active(vsk) &&
1160 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1161 			bool data_ready_now = false;
1162 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1163 			int ret = transport->notify_poll_in(
1164 					vsk, target, &data_ready_now);
1165 			if (ret < 0) {
1166 				mask |= EPOLLERR;
1167 			} else {
1168 				if (data_ready_now)
1169 					mask |= EPOLLIN | EPOLLRDNORM;
1170 
1171 			}
1172 		}
1173 
1174 		/* Sockets whose connections have been closed, reset, or
1175 		 * terminated should also be considered read, and we check the
1176 		 * shutdown flag for that.
1177 		 */
1178 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1179 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1180 			mask |= EPOLLIN | EPOLLRDNORM;
1181 		}
1182 
1183 		/* Connected sockets that can produce data can be written. */
1184 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1185 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1186 				bool space_avail_now = false;
1187 				int ret = transport->notify_poll_out(
1188 						vsk, 1, &space_avail_now);
1189 				if (ret < 0) {
1190 					mask |= EPOLLERR;
1191 				} else {
1192 					if (space_avail_now)
1193 						/* Remove EPOLLWRBAND since INET
1194 						 * sockets are not setting it.
1195 						 */
1196 						mask |= EPOLLOUT | EPOLLWRNORM;
1197 
1198 				}
1199 			}
1200 		}
1201 
1202 		/* Simulate INET socket poll behaviors, which sets
1203 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1204 		 * but local send is not shutdown.
1205 		 */
1206 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1207 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1208 				mask |= EPOLLOUT | EPOLLWRNORM;
1209 
1210 		}
1211 
1212 		release_sock(sk);
1213 	}
1214 
1215 	return mask;
1216 }
1217 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1218 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1219 {
1220 	struct vsock_sock *vsk = vsock_sk(sk);
1221 
1222 	if (WARN_ON_ONCE(!vsk->transport))
1223 		return -ENODEV;
1224 
1225 	return vsk->transport->read_skb(vsk, read_actor);
1226 }
1227 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1228 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1229 			       size_t len)
1230 {
1231 	int err;
1232 	struct sock *sk;
1233 	struct vsock_sock *vsk;
1234 	struct sockaddr_vm *remote_addr;
1235 	const struct vsock_transport *transport;
1236 
1237 	if (msg->msg_flags & MSG_OOB)
1238 		return -EOPNOTSUPP;
1239 
1240 	/* For now, MSG_DONTWAIT is always assumed... */
1241 	err = 0;
1242 	sk = sock->sk;
1243 	vsk = vsock_sk(sk);
1244 
1245 	lock_sock(sk);
1246 
1247 	transport = vsk->transport;
1248 
1249 	err = vsock_auto_bind(vsk);
1250 	if (err)
1251 		goto out;
1252 
1253 
1254 	/* If the provided message contains an address, use that.  Otherwise
1255 	 * fall back on the socket's remote handle (if it has been connected).
1256 	 */
1257 	if (msg->msg_name &&
1258 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1259 			    &remote_addr) == 0) {
1260 		/* Ensure this address is of the right type and is a valid
1261 		 * destination.
1262 		 */
1263 
1264 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1265 			remote_addr->svm_cid = transport->get_local_cid();
1266 
1267 		if (!vsock_addr_bound(remote_addr)) {
1268 			err = -EINVAL;
1269 			goto out;
1270 		}
1271 	} else if (sock->state == SS_CONNECTED) {
1272 		remote_addr = &vsk->remote_addr;
1273 
1274 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1275 			remote_addr->svm_cid = transport->get_local_cid();
1276 
1277 		/* XXX Should connect() or this function ensure remote_addr is
1278 		 * bound?
1279 		 */
1280 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1281 			err = -EINVAL;
1282 			goto out;
1283 		}
1284 	} else {
1285 		err = -EINVAL;
1286 		goto out;
1287 	}
1288 
1289 	if (!transport->dgram_allow(remote_addr->svm_cid,
1290 				    remote_addr->svm_port)) {
1291 		err = -EINVAL;
1292 		goto out;
1293 	}
1294 
1295 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1296 
1297 out:
1298 	release_sock(sk);
1299 	return err;
1300 }
1301 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1302 static int vsock_dgram_connect(struct socket *sock,
1303 			       struct sockaddr *addr, int addr_len, int flags)
1304 {
1305 	int err;
1306 	struct sock *sk;
1307 	struct vsock_sock *vsk;
1308 	struct sockaddr_vm *remote_addr;
1309 
1310 	sk = sock->sk;
1311 	vsk = vsock_sk(sk);
1312 
1313 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1314 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1315 		lock_sock(sk);
1316 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1317 				VMADDR_PORT_ANY);
1318 		sock->state = SS_UNCONNECTED;
1319 		release_sock(sk);
1320 		return 0;
1321 	} else if (err != 0)
1322 		return -EINVAL;
1323 
1324 	lock_sock(sk);
1325 
1326 	err = vsock_auto_bind(vsk);
1327 	if (err)
1328 		goto out;
1329 
1330 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1331 					 remote_addr->svm_port)) {
1332 		err = -EINVAL;
1333 		goto out;
1334 	}
1335 
1336 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1337 	sock->state = SS_CONNECTED;
1338 
1339 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1340 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1341 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1342 	 *
1343 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1344 	 * same approach can be see in other datagram socket types as well
1345 	 * (such as unix sockets).
1346 	 */
1347 	sk->sk_state = TCP_ESTABLISHED;
1348 
1349 out:
1350 	release_sock(sk);
1351 	return err;
1352 }
1353 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1354 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1355 			  size_t len, int flags)
1356 {
1357 	struct sock *sk = sock->sk;
1358 	struct vsock_sock *vsk = vsock_sk(sk);
1359 
1360 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1361 }
1362 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1363 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1364 			size_t len, int flags)
1365 {
1366 #ifdef CONFIG_BPF_SYSCALL
1367 	struct sock *sk = sock->sk;
1368 	const struct proto *prot;
1369 
1370 	prot = READ_ONCE(sk->sk_prot);
1371 	if (prot != &vsock_proto)
1372 		return prot->recvmsg(sk, msg, len, flags, NULL);
1373 #endif
1374 
1375 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1376 }
1377 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1378 
1379 static const struct proto_ops vsock_dgram_ops = {
1380 	.family = PF_VSOCK,
1381 	.owner = THIS_MODULE,
1382 	.release = vsock_release,
1383 	.bind = vsock_bind,
1384 	.connect = vsock_dgram_connect,
1385 	.socketpair = sock_no_socketpair,
1386 	.accept = sock_no_accept,
1387 	.getname = vsock_getname,
1388 	.poll = vsock_poll,
1389 	.ioctl = sock_no_ioctl,
1390 	.listen = sock_no_listen,
1391 	.shutdown = vsock_shutdown,
1392 	.sendmsg = vsock_dgram_sendmsg,
1393 	.recvmsg = vsock_dgram_recvmsg,
1394 	.mmap = sock_no_mmap,
1395 	.read_skb = vsock_read_skb,
1396 };
1397 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1398 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1399 {
1400 	const struct vsock_transport *transport = vsk->transport;
1401 
1402 	if (!transport || !transport->cancel_pkt)
1403 		return -EOPNOTSUPP;
1404 
1405 	return transport->cancel_pkt(vsk);
1406 }
1407 
vsock_connect_timeout(struct work_struct * work)1408 static void vsock_connect_timeout(struct work_struct *work)
1409 {
1410 	struct sock *sk;
1411 	struct vsock_sock *vsk;
1412 
1413 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1414 	sk = sk_vsock(vsk);
1415 
1416 	lock_sock(sk);
1417 	if (sk->sk_state == TCP_SYN_SENT &&
1418 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1419 		sk->sk_state = TCP_CLOSE;
1420 		sk->sk_socket->state = SS_UNCONNECTED;
1421 		sk->sk_err = ETIMEDOUT;
1422 		sk_error_report(sk);
1423 		vsock_transport_cancel_pkt(vsk);
1424 	}
1425 	release_sock(sk);
1426 
1427 	sock_put(sk);
1428 }
1429 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1430 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1431 			 int addr_len, int flags)
1432 {
1433 	int err;
1434 	struct sock *sk;
1435 	struct vsock_sock *vsk;
1436 	const struct vsock_transport *transport;
1437 	struct sockaddr_vm *remote_addr;
1438 	long timeout;
1439 	DEFINE_WAIT(wait);
1440 
1441 	err = 0;
1442 	sk = sock->sk;
1443 	vsk = vsock_sk(sk);
1444 
1445 	lock_sock(sk);
1446 
1447 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1448 	switch (sock->state) {
1449 	case SS_CONNECTED:
1450 		err = -EISCONN;
1451 		goto out;
1452 	case SS_DISCONNECTING:
1453 		err = -EINVAL;
1454 		goto out;
1455 	case SS_CONNECTING:
1456 		/* This continues on so we can move sock into the SS_CONNECTED
1457 		 * state once the connection has completed (at which point err
1458 		 * will be set to zero also).  Otherwise, we will either wait
1459 		 * for the connection or return -EALREADY should this be a
1460 		 * non-blocking call.
1461 		 */
1462 		err = -EALREADY;
1463 		if (flags & O_NONBLOCK)
1464 			goto out;
1465 		break;
1466 	default:
1467 		if ((sk->sk_state == TCP_LISTEN) ||
1468 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1469 			err = -EINVAL;
1470 			goto out;
1471 		}
1472 
1473 		/* Set the remote address that we are connecting to. */
1474 		memcpy(&vsk->remote_addr, remote_addr,
1475 		       sizeof(vsk->remote_addr));
1476 
1477 		err = vsock_assign_transport(vsk, NULL);
1478 		if (err)
1479 			goto out;
1480 
1481 		transport = vsk->transport;
1482 
1483 		/* The hypervisor and well-known contexts do not have socket
1484 		 * endpoints.
1485 		 */
1486 		if (!transport ||
1487 		    !transport->stream_allow(remote_addr->svm_cid,
1488 					     remote_addr->svm_port)) {
1489 			err = -ENETUNREACH;
1490 			goto out;
1491 		}
1492 
1493 		err = vsock_auto_bind(vsk);
1494 		if (err)
1495 			goto out;
1496 
1497 		sk->sk_state = TCP_SYN_SENT;
1498 
1499 		err = transport->connect(vsk);
1500 		if (err < 0)
1501 			goto out;
1502 
1503 		/* sk_err might have been set as a result of an earlier
1504 		 * (failed) connect attempt.
1505 		 */
1506 		sk->sk_err = 0;
1507 
1508 		/* Mark sock as connecting and set the error code to in
1509 		 * progress in case this is a non-blocking connect.
1510 		 */
1511 		sock->state = SS_CONNECTING;
1512 		err = -EINPROGRESS;
1513 	}
1514 
1515 	/* The receive path will handle all communication until we are able to
1516 	 * enter the connected state.  Here we wait for the connection to be
1517 	 * completed or a notification of an error.
1518 	 */
1519 	timeout = vsk->connect_timeout;
1520 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1521 
1522 	/* If the socket is already closing or it is in an error state, there
1523 	 * is no point in waiting.
1524 	 */
1525 	while (sk->sk_state != TCP_ESTABLISHED &&
1526 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1527 		if (flags & O_NONBLOCK) {
1528 			/* If we're not going to block, we schedule a timeout
1529 			 * function to generate a timeout on the connection
1530 			 * attempt, in case the peer doesn't respond in a
1531 			 * timely manner. We hold on to the socket until the
1532 			 * timeout fires.
1533 			 */
1534 			sock_hold(sk);
1535 
1536 			/* If the timeout function is already scheduled,
1537 			 * reschedule it, then ungrab the socket refcount to
1538 			 * keep it balanced.
1539 			 */
1540 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1541 					     timeout))
1542 				sock_put(sk);
1543 
1544 			/* Skip ahead to preserve error code set above. */
1545 			goto out_wait;
1546 		}
1547 
1548 		release_sock(sk);
1549 		timeout = schedule_timeout(timeout);
1550 		lock_sock(sk);
1551 
1552 		if (signal_pending(current)) {
1553 			err = sock_intr_errno(timeout);
1554 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1555 			sock->state = SS_UNCONNECTED;
1556 			vsock_transport_cancel_pkt(vsk);
1557 			vsock_remove_connected(vsk);
1558 			goto out_wait;
1559 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1560 			err = -ETIMEDOUT;
1561 			sk->sk_state = TCP_CLOSE;
1562 			sock->state = SS_UNCONNECTED;
1563 			vsock_transport_cancel_pkt(vsk);
1564 			goto out_wait;
1565 		}
1566 
1567 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1568 	}
1569 
1570 	if (sk->sk_err) {
1571 		err = -sk->sk_err;
1572 		sk->sk_state = TCP_CLOSE;
1573 		sock->state = SS_UNCONNECTED;
1574 	} else {
1575 		err = 0;
1576 	}
1577 
1578 out_wait:
1579 	finish_wait(sk_sleep(sk), &wait);
1580 out:
1581 	release_sock(sk);
1582 	return err;
1583 }
1584 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1585 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1586 			bool kern)
1587 {
1588 	struct sock *listener;
1589 	int err;
1590 	struct sock *connected;
1591 	struct vsock_sock *vconnected;
1592 	long timeout;
1593 	DEFINE_WAIT(wait);
1594 
1595 	err = 0;
1596 	listener = sock->sk;
1597 
1598 	lock_sock(listener);
1599 
1600 	if (!sock_type_connectible(sock->type)) {
1601 		err = -EOPNOTSUPP;
1602 		goto out;
1603 	}
1604 
1605 	if (listener->sk_state != TCP_LISTEN) {
1606 		err = -EINVAL;
1607 		goto out;
1608 	}
1609 
1610 	/* Wait for children sockets to appear; these are the new sockets
1611 	 * created upon connection establishment.
1612 	 */
1613 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1614 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1615 
1616 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1617 	       listener->sk_err == 0) {
1618 		release_sock(listener);
1619 		timeout = schedule_timeout(timeout);
1620 		finish_wait(sk_sleep(listener), &wait);
1621 		lock_sock(listener);
1622 
1623 		if (signal_pending(current)) {
1624 			err = sock_intr_errno(timeout);
1625 			goto out;
1626 		} else if (timeout == 0) {
1627 			err = -EAGAIN;
1628 			goto out;
1629 		}
1630 
1631 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1632 	}
1633 	finish_wait(sk_sleep(listener), &wait);
1634 
1635 	if (listener->sk_err)
1636 		err = -listener->sk_err;
1637 
1638 	if (connected) {
1639 		sk_acceptq_removed(listener);
1640 
1641 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1642 		vconnected = vsock_sk(connected);
1643 
1644 		/* If the listener socket has received an error, then we should
1645 		 * reject this socket and return.  Note that we simply mark the
1646 		 * socket rejected, drop our reference, and let the cleanup
1647 		 * function handle the cleanup; the fact that we found it in
1648 		 * the listener's accept queue guarantees that the cleanup
1649 		 * function hasn't run yet.
1650 		 */
1651 		if (err) {
1652 			vconnected->rejected = true;
1653 		} else {
1654 			newsock->state = SS_CONNECTED;
1655 			sock_graft(connected, newsock);
1656 		}
1657 
1658 		release_sock(connected);
1659 		sock_put(connected);
1660 	}
1661 
1662 out:
1663 	release_sock(listener);
1664 	return err;
1665 }
1666 
vsock_listen(struct socket * sock,int backlog)1667 static int vsock_listen(struct socket *sock, int backlog)
1668 {
1669 	int err;
1670 	struct sock *sk;
1671 	struct vsock_sock *vsk;
1672 
1673 	sk = sock->sk;
1674 
1675 	lock_sock(sk);
1676 
1677 	if (!sock_type_connectible(sk->sk_type)) {
1678 		err = -EOPNOTSUPP;
1679 		goto out;
1680 	}
1681 
1682 	if (sock->state != SS_UNCONNECTED) {
1683 		err = -EINVAL;
1684 		goto out;
1685 	}
1686 
1687 	vsk = vsock_sk(sk);
1688 
1689 	if (!vsock_addr_bound(&vsk->local_addr)) {
1690 		err = -EINVAL;
1691 		goto out;
1692 	}
1693 
1694 	sk->sk_max_ack_backlog = backlog;
1695 	sk->sk_state = TCP_LISTEN;
1696 
1697 	err = 0;
1698 
1699 out:
1700 	release_sock(sk);
1701 	return err;
1702 }
1703 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1704 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1705 				     const struct vsock_transport *transport,
1706 				     u64 val)
1707 {
1708 	if (val > vsk->buffer_max_size)
1709 		val = vsk->buffer_max_size;
1710 
1711 	if (val < vsk->buffer_min_size)
1712 		val = vsk->buffer_min_size;
1713 
1714 	if (val != vsk->buffer_size &&
1715 	    transport && transport->notify_buffer_size)
1716 		transport->notify_buffer_size(vsk, &val);
1717 
1718 	vsk->buffer_size = val;
1719 }
1720 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1721 static int vsock_connectible_setsockopt(struct socket *sock,
1722 					int level,
1723 					int optname,
1724 					sockptr_t optval,
1725 					unsigned int optlen)
1726 {
1727 	int err;
1728 	struct sock *sk;
1729 	struct vsock_sock *vsk;
1730 	const struct vsock_transport *transport;
1731 	u64 val;
1732 
1733 	if (level != AF_VSOCK)
1734 		return -ENOPROTOOPT;
1735 
1736 #define COPY_IN(_v)                                       \
1737 	do {						  \
1738 		if (optlen < sizeof(_v)) {		  \
1739 			err = -EINVAL;			  \
1740 			goto exit;			  \
1741 		}					  \
1742 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1743 			err = -EFAULT;					\
1744 			goto exit;					\
1745 		}							\
1746 	} while (0)
1747 
1748 	err = 0;
1749 	sk = sock->sk;
1750 	vsk = vsock_sk(sk);
1751 
1752 	lock_sock(sk);
1753 
1754 	transport = vsk->transport;
1755 
1756 	switch (optname) {
1757 	case SO_VM_SOCKETS_BUFFER_SIZE:
1758 		COPY_IN(val);
1759 		vsock_update_buffer_size(vsk, transport, val);
1760 		break;
1761 
1762 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1763 		COPY_IN(val);
1764 		vsk->buffer_max_size = val;
1765 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1766 		break;
1767 
1768 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1769 		COPY_IN(val);
1770 		vsk->buffer_min_size = val;
1771 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1772 		break;
1773 
1774 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1775 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1776 		struct __kernel_sock_timeval tv;
1777 
1778 		err = sock_copy_user_timeval(&tv, optval, optlen,
1779 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1780 		if (err)
1781 			break;
1782 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1783 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1784 			vsk->connect_timeout = tv.tv_sec * HZ +
1785 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1786 			if (vsk->connect_timeout == 0)
1787 				vsk->connect_timeout =
1788 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1789 
1790 		} else {
1791 			err = -ERANGE;
1792 		}
1793 		break;
1794 	}
1795 
1796 	default:
1797 		err = -ENOPROTOOPT;
1798 		break;
1799 	}
1800 
1801 #undef COPY_IN
1802 
1803 exit:
1804 	release_sock(sk);
1805 	return err;
1806 }
1807 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1808 static int vsock_connectible_getsockopt(struct socket *sock,
1809 					int level, int optname,
1810 					char __user *optval,
1811 					int __user *optlen)
1812 {
1813 	struct sock *sk = sock->sk;
1814 	struct vsock_sock *vsk = vsock_sk(sk);
1815 
1816 	union {
1817 		u64 val64;
1818 		struct old_timeval32 tm32;
1819 		struct __kernel_old_timeval tm;
1820 		struct  __kernel_sock_timeval stm;
1821 	} v;
1822 
1823 	int lv = sizeof(v.val64);
1824 	int len;
1825 
1826 	if (level != AF_VSOCK)
1827 		return -ENOPROTOOPT;
1828 
1829 	if (get_user(len, optlen))
1830 		return -EFAULT;
1831 
1832 	memset(&v, 0, sizeof(v));
1833 
1834 	switch (optname) {
1835 	case SO_VM_SOCKETS_BUFFER_SIZE:
1836 		v.val64 = vsk->buffer_size;
1837 		break;
1838 
1839 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1840 		v.val64 = vsk->buffer_max_size;
1841 		break;
1842 
1843 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1844 		v.val64 = vsk->buffer_min_size;
1845 		break;
1846 
1847 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1848 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1849 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1850 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1851 		break;
1852 
1853 	default:
1854 		return -ENOPROTOOPT;
1855 	}
1856 
1857 	if (len < lv)
1858 		return -EINVAL;
1859 	if (len > lv)
1860 		len = lv;
1861 	if (copy_to_user(optval, &v, len))
1862 		return -EFAULT;
1863 
1864 	if (put_user(len, optlen))
1865 		return -EFAULT;
1866 
1867 	return 0;
1868 }
1869 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1870 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1871 				     size_t len)
1872 {
1873 	struct sock *sk;
1874 	struct vsock_sock *vsk;
1875 	const struct vsock_transport *transport;
1876 	ssize_t total_written;
1877 	long timeout;
1878 	int err;
1879 	struct vsock_transport_send_notify_data send_data;
1880 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1881 
1882 	sk = sock->sk;
1883 	vsk = vsock_sk(sk);
1884 	total_written = 0;
1885 	err = 0;
1886 
1887 	if (msg->msg_flags & MSG_OOB)
1888 		return -EOPNOTSUPP;
1889 
1890 	lock_sock(sk);
1891 
1892 	transport = vsk->transport;
1893 
1894 	/* Callers should not provide a destination with connection oriented
1895 	 * sockets.
1896 	 */
1897 	if (msg->msg_namelen) {
1898 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1899 		goto out;
1900 	}
1901 
1902 	/* Send data only if both sides are not shutdown in the direction. */
1903 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1904 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1905 		err = -EPIPE;
1906 		goto out;
1907 	}
1908 
1909 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1910 	    !vsock_addr_bound(&vsk->local_addr)) {
1911 		err = -ENOTCONN;
1912 		goto out;
1913 	}
1914 
1915 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1916 		err = -EDESTADDRREQ;
1917 		goto out;
1918 	}
1919 
1920 	/* Wait for room in the produce queue to enqueue our user's data. */
1921 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1922 
1923 	err = transport->notify_send_init(vsk, &send_data);
1924 	if (err < 0)
1925 		goto out;
1926 
1927 	while (total_written < len) {
1928 		ssize_t written;
1929 
1930 		add_wait_queue(sk_sleep(sk), &wait);
1931 		while (vsock_stream_has_space(vsk) == 0 &&
1932 		       sk->sk_err == 0 &&
1933 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1934 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1935 
1936 			/* Don't wait for non-blocking sockets. */
1937 			if (timeout == 0) {
1938 				err = -EAGAIN;
1939 				remove_wait_queue(sk_sleep(sk), &wait);
1940 				goto out_err;
1941 			}
1942 
1943 			err = transport->notify_send_pre_block(vsk, &send_data);
1944 			if (err < 0) {
1945 				remove_wait_queue(sk_sleep(sk), &wait);
1946 				goto out_err;
1947 			}
1948 
1949 			release_sock(sk);
1950 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1951 			lock_sock(sk);
1952 			if (signal_pending(current)) {
1953 				err = sock_intr_errno(timeout);
1954 				remove_wait_queue(sk_sleep(sk), &wait);
1955 				goto out_err;
1956 			} else if (timeout == 0) {
1957 				err = -EAGAIN;
1958 				remove_wait_queue(sk_sleep(sk), &wait);
1959 				goto out_err;
1960 			}
1961 		}
1962 		remove_wait_queue(sk_sleep(sk), &wait);
1963 
1964 		/* These checks occur both as part of and after the loop
1965 		 * conditional since we need to check before and after
1966 		 * sleeping.
1967 		 */
1968 		if (sk->sk_err) {
1969 			err = -sk->sk_err;
1970 			goto out_err;
1971 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1972 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1973 			err = -EPIPE;
1974 			goto out_err;
1975 		}
1976 
1977 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1978 		if (err < 0)
1979 			goto out_err;
1980 
1981 		/* Note that enqueue will only write as many bytes as are free
1982 		 * in the produce queue, so we don't need to ensure len is
1983 		 * smaller than the queue size.  It is the caller's
1984 		 * responsibility to check how many bytes we were able to send.
1985 		 */
1986 
1987 		if (sk->sk_type == SOCK_SEQPACKET) {
1988 			written = transport->seqpacket_enqueue(vsk,
1989 						msg, len - total_written);
1990 		} else {
1991 			written = transport->stream_enqueue(vsk,
1992 					msg, len - total_written);
1993 		}
1994 
1995 		if (written < 0) {
1996 			err = written;
1997 			goto out_err;
1998 		}
1999 
2000 		total_written += written;
2001 
2002 		err = transport->notify_send_post_enqueue(
2003 				vsk, written, &send_data);
2004 		if (err < 0)
2005 			goto out_err;
2006 
2007 	}
2008 
2009 out_err:
2010 	if (total_written > 0) {
2011 		/* Return number of written bytes only if:
2012 		 * 1) SOCK_STREAM socket.
2013 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2014 		 */
2015 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2016 			err = total_written;
2017 	}
2018 out:
2019 	release_sock(sk);
2020 	return err;
2021 }
2022 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2023 static int vsock_connectible_wait_data(struct sock *sk,
2024 				       struct wait_queue_entry *wait,
2025 				       long timeout,
2026 				       struct vsock_transport_recv_notify_data *recv_data,
2027 				       size_t target)
2028 {
2029 	const struct vsock_transport *transport;
2030 	struct vsock_sock *vsk;
2031 	s64 data;
2032 	int err;
2033 
2034 	vsk = vsock_sk(sk);
2035 	err = 0;
2036 	transport = vsk->transport;
2037 
2038 	while (1) {
2039 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2040 		data = vsock_connectible_has_data(vsk);
2041 		if (data != 0)
2042 			break;
2043 
2044 		if (sk->sk_err != 0 ||
2045 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2046 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2047 			break;
2048 		}
2049 
2050 		/* Don't wait for non-blocking sockets. */
2051 		if (timeout == 0) {
2052 			err = -EAGAIN;
2053 			break;
2054 		}
2055 
2056 		if (recv_data) {
2057 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2058 			if (err < 0)
2059 				break;
2060 		}
2061 
2062 		release_sock(sk);
2063 		timeout = schedule_timeout(timeout);
2064 		lock_sock(sk);
2065 
2066 		if (signal_pending(current)) {
2067 			err = sock_intr_errno(timeout);
2068 			break;
2069 		} else if (timeout == 0) {
2070 			err = -EAGAIN;
2071 			break;
2072 		}
2073 	}
2074 
2075 	finish_wait(sk_sleep(sk), wait);
2076 
2077 	if (err)
2078 		return err;
2079 
2080 	/* Internal transport error when checking for available
2081 	 * data. XXX This should be changed to a connection
2082 	 * reset in a later change.
2083 	 */
2084 	if (data < 0)
2085 		return -ENOMEM;
2086 
2087 	return data;
2088 }
2089 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2090 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2091 				  size_t len, int flags)
2092 {
2093 	struct vsock_transport_recv_notify_data recv_data;
2094 	const struct vsock_transport *transport;
2095 	struct vsock_sock *vsk;
2096 	ssize_t copied;
2097 	size_t target;
2098 	long timeout;
2099 	int err;
2100 
2101 	DEFINE_WAIT(wait);
2102 
2103 	vsk = vsock_sk(sk);
2104 	transport = vsk->transport;
2105 
2106 	/* We must not copy less than target bytes into the user's buffer
2107 	 * before returning successfully, so we wait for the consume queue to
2108 	 * have that much data to consume before dequeueing.  Note that this
2109 	 * makes it impossible to handle cases where target is greater than the
2110 	 * queue size.
2111 	 */
2112 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2113 	if (target >= transport->stream_rcvhiwat(vsk)) {
2114 		err = -ENOMEM;
2115 		goto out;
2116 	}
2117 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2118 	copied = 0;
2119 
2120 	err = transport->notify_recv_init(vsk, target, &recv_data);
2121 	if (err < 0)
2122 		goto out;
2123 
2124 
2125 	while (1) {
2126 		ssize_t read;
2127 
2128 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2129 						  &recv_data, target);
2130 		if (err <= 0)
2131 			break;
2132 
2133 		err = transport->notify_recv_pre_dequeue(vsk, target,
2134 							 &recv_data);
2135 		if (err < 0)
2136 			break;
2137 
2138 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2139 		if (read < 0) {
2140 			err = read;
2141 			break;
2142 		}
2143 
2144 		copied += read;
2145 
2146 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2147 						!(flags & MSG_PEEK), &recv_data);
2148 		if (err < 0)
2149 			goto out;
2150 
2151 		if (read >= target || flags & MSG_PEEK)
2152 			break;
2153 
2154 		target -= read;
2155 	}
2156 
2157 	if (sk->sk_err)
2158 		err = -sk->sk_err;
2159 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2160 		err = 0;
2161 
2162 	if (copied > 0)
2163 		err = copied;
2164 
2165 out:
2166 	return err;
2167 }
2168 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2169 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2170 				     size_t len, int flags)
2171 {
2172 	const struct vsock_transport *transport;
2173 	struct vsock_sock *vsk;
2174 	ssize_t msg_len;
2175 	long timeout;
2176 	int err = 0;
2177 	DEFINE_WAIT(wait);
2178 
2179 	vsk = vsock_sk(sk);
2180 	transport = vsk->transport;
2181 
2182 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2183 
2184 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2185 	if (err <= 0)
2186 		goto out;
2187 
2188 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2189 
2190 	if (msg_len < 0) {
2191 		err = msg_len;
2192 		goto out;
2193 	}
2194 
2195 	if (sk->sk_err) {
2196 		err = -sk->sk_err;
2197 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2198 		err = 0;
2199 	} else {
2200 		/* User sets MSG_TRUNC, so return real length of
2201 		 * packet.
2202 		 */
2203 		if (flags & MSG_TRUNC)
2204 			err = msg_len;
2205 		else
2206 			err = len - msg_data_left(msg);
2207 
2208 		/* Always set MSG_TRUNC if real length of packet is
2209 		 * bigger than user's buffer.
2210 		 */
2211 		if (msg_len > len)
2212 			msg->msg_flags |= MSG_TRUNC;
2213 	}
2214 
2215 out:
2216 	return err;
2217 }
2218 
2219 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2220 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2221 			    int flags)
2222 {
2223 	struct sock *sk;
2224 	struct vsock_sock *vsk;
2225 	const struct vsock_transport *transport;
2226 	int err;
2227 
2228 	sk = sock->sk;
2229 
2230 	if (unlikely(flags & MSG_ERRQUEUE))
2231 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2232 
2233 	vsk = vsock_sk(sk);
2234 	err = 0;
2235 
2236 	lock_sock(sk);
2237 
2238 	transport = vsk->transport;
2239 
2240 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2241 		/* Recvmsg is supposed to return 0 if a peer performs an
2242 		 * orderly shutdown. Differentiate between that case and when a
2243 		 * peer has not connected or a local shutdown occurred with the
2244 		 * SOCK_DONE flag.
2245 		 */
2246 		if (sock_flag(sk, SOCK_DONE))
2247 			err = 0;
2248 		else
2249 			err = -ENOTCONN;
2250 
2251 		goto out;
2252 	}
2253 
2254 	if (flags & MSG_OOB) {
2255 		err = -EOPNOTSUPP;
2256 		goto out;
2257 	}
2258 
2259 	/* We don't check peer_shutdown flag here since peer may actually shut
2260 	 * down, but there can be data in the queue that a local socket can
2261 	 * receive.
2262 	 */
2263 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2264 		err = 0;
2265 		goto out;
2266 	}
2267 
2268 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2269 	 * is not an error.  We may as well bail out now.
2270 	 */
2271 	if (!len) {
2272 		err = 0;
2273 		goto out;
2274 	}
2275 
2276 	if (sk->sk_type == SOCK_STREAM)
2277 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2278 	else
2279 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2280 
2281 out:
2282 	release_sock(sk);
2283 	return err;
2284 }
2285 
2286 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2287 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2288 			  int flags)
2289 {
2290 #ifdef CONFIG_BPF_SYSCALL
2291 	struct sock *sk = sock->sk;
2292 	const struct proto *prot;
2293 
2294 	prot = READ_ONCE(sk->sk_prot);
2295 	if (prot != &vsock_proto)
2296 		return prot->recvmsg(sk, msg, len, flags, NULL);
2297 #endif
2298 
2299 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2300 }
2301 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2302 
vsock_set_rcvlowat(struct sock * sk,int val)2303 static int vsock_set_rcvlowat(struct sock *sk, int val)
2304 {
2305 	const struct vsock_transport *transport;
2306 	struct vsock_sock *vsk;
2307 
2308 	vsk = vsock_sk(sk);
2309 
2310 	if (val > vsk->buffer_size)
2311 		return -EINVAL;
2312 
2313 	transport = vsk->transport;
2314 
2315 	if (transport && transport->notify_set_rcvlowat) {
2316 		int err;
2317 
2318 		err = transport->notify_set_rcvlowat(vsk, val);
2319 		if (err)
2320 			return err;
2321 	}
2322 
2323 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2324 	return 0;
2325 }
2326 
2327 static const struct proto_ops vsock_stream_ops = {
2328 	.family = PF_VSOCK,
2329 	.owner = THIS_MODULE,
2330 	.release = vsock_release,
2331 	.bind = vsock_bind,
2332 	.connect = vsock_connect,
2333 	.socketpair = sock_no_socketpair,
2334 	.accept = vsock_accept,
2335 	.getname = vsock_getname,
2336 	.poll = vsock_poll,
2337 	.ioctl = sock_no_ioctl,
2338 	.listen = vsock_listen,
2339 	.shutdown = vsock_shutdown,
2340 	.setsockopt = vsock_connectible_setsockopt,
2341 	.getsockopt = vsock_connectible_getsockopt,
2342 	.sendmsg = vsock_connectible_sendmsg,
2343 	.recvmsg = vsock_connectible_recvmsg,
2344 	.mmap = sock_no_mmap,
2345 	.set_rcvlowat = vsock_set_rcvlowat,
2346 	.read_skb = vsock_read_skb,
2347 };
2348 
2349 static const struct proto_ops vsock_seqpacket_ops = {
2350 	.family = PF_VSOCK,
2351 	.owner = THIS_MODULE,
2352 	.release = vsock_release,
2353 	.bind = vsock_bind,
2354 	.connect = vsock_connect,
2355 	.socketpair = sock_no_socketpair,
2356 	.accept = vsock_accept,
2357 	.getname = vsock_getname,
2358 	.poll = vsock_poll,
2359 	.ioctl = sock_no_ioctl,
2360 	.listen = vsock_listen,
2361 	.shutdown = vsock_shutdown,
2362 	.setsockopt = vsock_connectible_setsockopt,
2363 	.getsockopt = vsock_connectible_getsockopt,
2364 	.sendmsg = vsock_connectible_sendmsg,
2365 	.recvmsg = vsock_connectible_recvmsg,
2366 	.mmap = sock_no_mmap,
2367 	.read_skb = vsock_read_skb,
2368 };
2369 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2370 static int vsock_create(struct net *net, struct socket *sock,
2371 			int protocol, int kern)
2372 {
2373 	struct vsock_sock *vsk;
2374 	struct sock *sk;
2375 	int ret;
2376 
2377 	if (!sock)
2378 		return -EINVAL;
2379 
2380 	if (protocol && protocol != PF_VSOCK)
2381 		return -EPROTONOSUPPORT;
2382 
2383 	switch (sock->type) {
2384 	case SOCK_DGRAM:
2385 		sock->ops = &vsock_dgram_ops;
2386 		break;
2387 	case SOCK_STREAM:
2388 		sock->ops = &vsock_stream_ops;
2389 		break;
2390 	case SOCK_SEQPACKET:
2391 		sock->ops = &vsock_seqpacket_ops;
2392 		break;
2393 	default:
2394 		return -ESOCKTNOSUPPORT;
2395 	}
2396 
2397 	sock->state = SS_UNCONNECTED;
2398 
2399 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2400 	if (!sk)
2401 		return -ENOMEM;
2402 
2403 	vsk = vsock_sk(sk);
2404 
2405 	if (sock->type == SOCK_DGRAM) {
2406 		ret = vsock_assign_transport(vsk, NULL);
2407 		if (ret < 0) {
2408 			sock_put(sk);
2409 			return ret;
2410 		}
2411 	}
2412 
2413 	vsock_insert_unbound(vsk);
2414 
2415 	return 0;
2416 }
2417 
2418 static const struct net_proto_family vsock_family_ops = {
2419 	.family = AF_VSOCK,
2420 	.create = vsock_create,
2421 	.owner = THIS_MODULE,
2422 };
2423 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2424 static long vsock_dev_do_ioctl(struct file *filp,
2425 			       unsigned int cmd, void __user *ptr)
2426 {
2427 	u32 __user *p = ptr;
2428 	int retval = 0;
2429 	u32 cid;
2430 
2431 	switch (cmd) {
2432 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2433 		/* To be compatible with the VMCI behavior, we prioritize the
2434 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2435 		 */
2436 		cid = vsock_registered_transport_cid(&transport_g2h);
2437 		if (cid == VMADDR_CID_ANY)
2438 			cid = vsock_registered_transport_cid(&transport_h2g);
2439 		if (cid == VMADDR_CID_ANY)
2440 			cid = vsock_registered_transport_cid(&transport_local);
2441 
2442 		if (put_user(cid, p) != 0)
2443 			retval = -EFAULT;
2444 		break;
2445 
2446 	default:
2447 		retval = -ENOIOCTLCMD;
2448 	}
2449 
2450 	return retval;
2451 }
2452 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2453 static long vsock_dev_ioctl(struct file *filp,
2454 			    unsigned int cmd, unsigned long arg)
2455 {
2456 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2457 }
2458 
2459 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2460 static long vsock_dev_compat_ioctl(struct file *filp,
2461 				   unsigned int cmd, unsigned long arg)
2462 {
2463 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2464 }
2465 #endif
2466 
2467 static const struct file_operations vsock_device_ops = {
2468 	.owner		= THIS_MODULE,
2469 	.unlocked_ioctl	= vsock_dev_ioctl,
2470 #ifdef CONFIG_COMPAT
2471 	.compat_ioctl	= vsock_dev_compat_ioctl,
2472 #endif
2473 	.open		= nonseekable_open,
2474 };
2475 
2476 static struct miscdevice vsock_device = {
2477 	.name		= "vsock",
2478 	.fops		= &vsock_device_ops,
2479 };
2480 
vsock_init(void)2481 static int __init vsock_init(void)
2482 {
2483 	int err = 0;
2484 
2485 	vsock_init_tables();
2486 
2487 	vsock_proto.owner = THIS_MODULE;
2488 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2489 	err = misc_register(&vsock_device);
2490 	if (err) {
2491 		pr_err("Failed to register misc device\n");
2492 		goto err_reset_transport;
2493 	}
2494 
2495 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2496 	if (err) {
2497 		pr_err("Cannot register vsock protocol\n");
2498 		goto err_deregister_misc;
2499 	}
2500 
2501 	err = sock_register(&vsock_family_ops);
2502 	if (err) {
2503 		pr_err("could not register af_vsock (%d) address family: %d\n",
2504 		       AF_VSOCK, err);
2505 		goto err_unregister_proto;
2506 	}
2507 
2508 	vsock_bpf_build_proto();
2509 
2510 	return 0;
2511 
2512 err_unregister_proto:
2513 	proto_unregister(&vsock_proto);
2514 err_deregister_misc:
2515 	misc_deregister(&vsock_device);
2516 err_reset_transport:
2517 	return err;
2518 }
2519 
vsock_exit(void)2520 static void __exit vsock_exit(void)
2521 {
2522 	misc_deregister(&vsock_device);
2523 	sock_unregister(AF_VSOCK);
2524 	proto_unregister(&vsock_proto);
2525 }
2526 
vsock_core_get_transport(struct vsock_sock * vsk)2527 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2528 {
2529 	return vsk->transport;
2530 }
2531 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2532 
vsock_core_register(const struct vsock_transport * t,int features)2533 int vsock_core_register(const struct vsock_transport *t, int features)
2534 {
2535 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2536 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2537 
2538 	if (err)
2539 		return err;
2540 
2541 	t_h2g = transport_h2g;
2542 	t_g2h = transport_g2h;
2543 	t_dgram = transport_dgram;
2544 	t_local = transport_local;
2545 
2546 	if (features & VSOCK_TRANSPORT_F_H2G) {
2547 		if (t_h2g) {
2548 			err = -EBUSY;
2549 			goto err_busy;
2550 		}
2551 		t_h2g = t;
2552 	}
2553 
2554 	if (features & VSOCK_TRANSPORT_F_G2H) {
2555 		if (t_g2h) {
2556 			err = -EBUSY;
2557 			goto err_busy;
2558 		}
2559 		t_g2h = t;
2560 	}
2561 
2562 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2563 		if (t_dgram) {
2564 			err = -EBUSY;
2565 			goto err_busy;
2566 		}
2567 		t_dgram = t;
2568 	}
2569 
2570 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2571 		if (t_local) {
2572 			err = -EBUSY;
2573 			goto err_busy;
2574 		}
2575 		t_local = t;
2576 	}
2577 
2578 	transport_h2g = t_h2g;
2579 	transport_g2h = t_g2h;
2580 	transport_dgram = t_dgram;
2581 	transport_local = t_local;
2582 
2583 err_busy:
2584 	mutex_unlock(&vsock_register_mutex);
2585 	return err;
2586 }
2587 EXPORT_SYMBOL_GPL(vsock_core_register);
2588 
vsock_core_unregister(const struct vsock_transport * t)2589 void vsock_core_unregister(const struct vsock_transport *t)
2590 {
2591 	mutex_lock(&vsock_register_mutex);
2592 
2593 	if (transport_h2g == t)
2594 		transport_h2g = NULL;
2595 
2596 	if (transport_g2h == t)
2597 		transport_g2h = NULL;
2598 
2599 	if (transport_dgram == t)
2600 		transport_dgram = NULL;
2601 
2602 	if (transport_local == t)
2603 		transport_local = NULL;
2604 
2605 	mutex_unlock(&vsock_register_mutex);
2606 }
2607 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2608 
2609 module_init(vsock_init);
2610 module_exit(vsock_exit);
2611 
2612 MODULE_AUTHOR("VMware, Inc.");
2613 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2614 MODULE_VERSION("1.0.2.0-k");
2615 MODULE_LICENSE("GPL v2");
2616