1{ 2 "type": "Program", 3 "statements": [ 4 { 5 "type": "ClassDeclaration", 6 "definition": { 7 "id": { 8 "type": "Identifier", 9 "name": "MathCordic", 10 "decorators": [], 11 "loc": { 12 "start": { 13 "line": 16, 14 "column": 14, 15 "program": "MathCordic.ets" 16 }, 17 "end": { 18 "line": 16, 19 "column": 24, 20 "program": "MathCordic.ets" 21 } 22 } 23 }, 24 "superClass": null, 25 "implements": [], 26 "body": [ 27 { 28 "type": "ClassProperty", 29 "key": { 30 "type": "Identifier", 31 "name": "AG_CONST", 32 "decorators": [], 33 "loc": { 34 "start": { 35 "line": 17, 36 "column": 21, 37 "program": "MathCordic.ets" 38 }, 39 "end": { 40 "line": 17, 41 "column": 29, 42 "program": "MathCordic.ets" 43 } 44 } 45 }, 46 "value": { 47 "type": "NumberLiteral", 48 "value": 0.607253, 49 "loc": { 50 "start": { 51 "line": 17, 52 "column": 41, 53 "program": "MathCordic.ets" 54 }, 55 "end": { 56 "line": 17, 57 "column": 53, 58 "program": "MathCordic.ets" 59 } 60 } 61 }, 62 "accessibility": "public", 63 "static": true, 64 "readonly": true, 65 "declare": false, 66 "optional": false, 67 "computed": false, 68 "typeAnnotation": { 69 "type": "ETSPrimitiveType", 70 "loc": { 71 "start": { 72 "line": 17, 73 "column": 32, 74 "program": "MathCordic.ets" 75 }, 76 "end": { 77 "line": 17, 78 "column": 38, 79 "program": "MathCordic.ets" 80 } 81 } 82 }, 83 "definite": false, 84 "decorators": [], 85 "loc": { 86 "start": { 87 "line": 17, 88 "column": 21, 89 "program": "MathCordic.ets" 90 }, 91 "end": { 92 "line": 17, 93 "column": 53, 94 "program": "MathCordic.ets" 95 } 96 } 97 }, 98 { 99 "type": "ClassProperty", 100 "key": { 101 "type": "Identifier", 102 "name": "TARGET_ANGLE", 103 "decorators": [], 104 "loc": { 105 "start": { 106 "line": 18, 107 "column": 21, 108 "program": "MathCordic.ets" 109 }, 110 "end": { 111 "line": 18, 112 "column": 33, 113 "program": "MathCordic.ets" 114 } 115 } 116 }, 117 "value": { 118 "type": "NumberLiteral", 119 "value": 28.027, 120 "loc": { 121 "start": { 122 "line": 18, 123 "column": 45, 124 "program": "MathCordic.ets" 125 }, 126 "end": { 127 "line": 18, 128 "column": 51, 129 "program": "MathCordic.ets" 130 } 131 } 132 }, 133 "accessibility": "public", 134 "static": true, 135 "readonly": true, 136 "declare": false, 137 "optional": false, 138 "computed": false, 139 "typeAnnotation": { 140 "type": "ETSPrimitiveType", 141 "loc": { 142 "start": { 143 "line": 18, 144 "column": 36, 145 "program": "MathCordic.ets" 146 }, 147 "end": { 148 "line": 18, 149 "column": 42, 150 "program": "MathCordic.ets" 151 } 152 } 153 }, 154 "definite": false, 155 "decorators": [], 156 "loc": { 157 "start": { 158 "line": 18, 159 "column": 21, 160 "program": "MathCordic.ets" 161 }, 162 "end": { 163 "line": 18, 164 "column": 51, 165 "program": "MathCordic.ets" 166 } 167 } 168 }, 169 { 170 "type": "ClassProperty", 171 "key": { 172 "type": "Identifier", 173 "name": "expected", 174 "decorators": [], 175 "loc": { 176 "start": { 177 "line": 19, 178 "column": 21, 179 "program": "MathCordic.ets" 180 }, 181 "end": { 182 "line": 19, 183 "column": 29, 184 "program": "MathCordic.ets" 185 } 186 } 187 }, 188 "value": { 189 "type": "NumberLiteral", 190 "value": 10362.6, 191 "loc": { 192 "start": { 193 "line": 19, 194 "column": 41, 195 "program": "MathCordic.ets" 196 }, 197 "end": { 198 "line": 19, 199 "column": 59, 200 "program": "MathCordic.ets" 201 } 202 } 203 }, 204 "accessibility": "public", 205 "static": true, 206 "readonly": true, 207 "declare": false, 208 "optional": false, 209 "computed": false, 210 "typeAnnotation": { 211 "type": "ETSPrimitiveType", 212 "loc": { 213 "start": { 214 "line": 19, 215 "column": 32, 216 "program": "MathCordic.ets" 217 }, 218 "end": { 219 "line": 19, 220 "column": 38, 221 "program": "MathCordic.ets" 222 } 223 } 224 }, 225 "definite": false, 226 "decorators": [], 227 "loc": { 228 "start": { 229 "line": 19, 230 "column": 21, 231 "program": "MathCordic.ets" 232 }, 233 "end": { 234 "line": 19, 235 "column": 59, 236 "program": "MathCordic.ets" 237 } 238 } 239 }, 240 { 241 "type": "ClassProperty", 242 "key": { 243 "type": "Identifier", 244 "name": "ANGLES", 245 "decorators": [], 246 "loc": { 247 "start": { 248 "line": 20, 249 "column": 21, 250 "program": "MathCordic.ets" 251 }, 252 "end": { 253 "line": 20, 254 "column": 27, 255 "program": "MathCordic.ets" 256 } 257 } 258 }, 259 "value": { 260 "type": "ArrayExpression", 261 "elements": [ 262 { 263 "type": "CallExpression", 264 "callee": { 265 "type": "MemberExpression", 266 "object": { 267 "type": "Identifier", 268 "name": "MathCordic", 269 "decorators": [], 270 "loc": { 271 "start": { 272 "line": 20, 273 "column": 42, 274 "program": "MathCordic.ets" 275 }, 276 "end": { 277 "line": 20, 278 "column": 52, 279 "program": "MathCordic.ets" 280 } 281 } 282 }, 283 "property": { 284 "type": "Identifier", 285 "name": "fnFixed", 286 "decorators": [], 287 "loc": { 288 "start": { 289 "line": 20, 290 "column": 53, 291 "program": "MathCordic.ets" 292 }, 293 "end": { 294 "line": 20, 295 "column": 60, 296 "program": "MathCordic.ets" 297 } 298 } 299 }, 300 "computed": false, 301 "optional": false, 302 "loc": { 303 "start": { 304 "line": 20, 305 "column": 42, 306 "program": "MathCordic.ets" 307 }, 308 "end": { 309 "line": 20, 310 "column": 60, 311 "program": "MathCordic.ets" 312 } 313 } 314 }, 315 "arguments": [ 316 { 317 "type": "NumberLiteral", 318 "value": 45, 319 "loc": { 320 "start": { 321 "line": 20, 322 "column": 61, 323 "program": "MathCordic.ets" 324 }, 325 "end": { 326 "line": 20, 327 "column": 65, 328 "program": "MathCordic.ets" 329 } 330 } 331 } 332 ], 333 "optional": false, 334 "loc": { 335 "start": { 336 "line": 20, 337 "column": 42, 338 "program": "MathCordic.ets" 339 }, 340 "end": { 341 "line": 20, 342 "column": 66, 343 "program": "MathCordic.ets" 344 } 345 } 346 }, 347 { 348 "type": "CallExpression", 349 "callee": { 350 "type": "MemberExpression", 351 "object": { 352 "type": "Identifier", 353 "name": "MathCordic", 354 "decorators": [], 355 "loc": { 356 "start": { 357 "line": 20, 358 "column": 68, 359 "program": "MathCordic.ets" 360 }, 361 "end": { 362 "line": 20, 363 "column": 78, 364 "program": "MathCordic.ets" 365 } 366 } 367 }, 368 "property": { 369 "type": "Identifier", 370 "name": "fnFixed", 371 "decorators": [], 372 "loc": { 373 "start": { 374 "line": 20, 375 "column": 79, 376 "program": "MathCordic.ets" 377 }, 378 "end": { 379 "line": 20, 380 "column": 86, 381 "program": "MathCordic.ets" 382 } 383 } 384 }, 385 "computed": false, 386 "optional": false, 387 "loc": { 388 "start": { 389 "line": 20, 390 "column": 68, 391 "program": "MathCordic.ets" 392 }, 393 "end": { 394 "line": 20, 395 "column": 86, 396 "program": "MathCordic.ets" 397 } 398 } 399 }, 400 "arguments": [ 401 { 402 "type": "NumberLiteral", 403 "value": 26.565, 404 "loc": { 405 "start": { 406 "line": 20, 407 "column": 87, 408 "program": "MathCordic.ets" 409 }, 410 "end": { 411 "line": 20, 412 "column": 93, 413 "program": "MathCordic.ets" 414 } 415 } 416 } 417 ], 418 "optional": false, 419 "loc": { 420 "start": { 421 "line": 20, 422 "column": 68, 423 "program": "MathCordic.ets" 424 }, 425 "end": { 426 "line": 20, 427 "column": 94, 428 "program": "MathCordic.ets" 429 } 430 } 431 }, 432 { 433 "type": "CallExpression", 434 "callee": { 435 "type": "MemberExpression", 436 "object": { 437 "type": "Identifier", 438 "name": "MathCordic", 439 "decorators": [], 440 "loc": { 441 "start": { 442 "line": 20, 443 "column": 96, 444 "program": "MathCordic.ets" 445 }, 446 "end": { 447 "line": 20, 448 "column": 106, 449 "program": "MathCordic.ets" 450 } 451 } 452 }, 453 "property": { 454 "type": "Identifier", 455 "name": "fnFixed", 456 "decorators": [], 457 "loc": { 458 "start": { 459 "line": 20, 460 "column": 107, 461 "program": "MathCordic.ets" 462 }, 463 "end": { 464 "line": 20, 465 "column": 114, 466 "program": "MathCordic.ets" 467 } 468 } 469 }, 470 "computed": false, 471 "optional": false, 472 "loc": { 473 "start": { 474 "line": 20, 475 "column": 96, 476 "program": "MathCordic.ets" 477 }, 478 "end": { 479 "line": 20, 480 "column": 114, 481 "program": "MathCordic.ets" 482 } 483 } 484 }, 485 "arguments": [ 486 { 487 "type": "NumberLiteral", 488 "value": 14.0362, 489 "loc": { 490 "start": { 491 "line": 20, 492 "column": 115, 493 "program": "MathCordic.ets" 494 }, 495 "end": { 496 "line": 20, 497 "column": 122, 498 "program": "MathCordic.ets" 499 } 500 } 501 } 502 ], 503 "optional": false, 504 "loc": { 505 "start": { 506 "line": 20, 507 "column": 96, 508 "program": "MathCordic.ets" 509 }, 510 "end": { 511 "line": 20, 512 "column": 123, 513 "program": "MathCordic.ets" 514 } 515 } 516 }, 517 { 518 "type": "CallExpression", 519 "callee": { 520 "type": "MemberExpression", 521 "object": { 522 "type": "Identifier", 523 "name": "MathCordic", 524 "decorators": [], 525 "loc": { 526 "start": { 527 "line": 20, 528 "column": 125, 529 "program": "MathCordic.ets" 530 }, 531 "end": { 532 "line": 20, 533 "column": 135, 534 "program": "MathCordic.ets" 535 } 536 } 537 }, 538 "property": { 539 "type": "Identifier", 540 "name": "fnFixed", 541 "decorators": [], 542 "loc": { 543 "start": { 544 "line": 20, 545 "column": 136, 546 "program": "MathCordic.ets" 547 }, 548 "end": { 549 "line": 20, 550 "column": 143, 551 "program": "MathCordic.ets" 552 } 553 } 554 }, 555 "computed": false, 556 "optional": false, 557 "loc": { 558 "start": { 559 "line": 20, 560 "column": 125, 561 "program": "MathCordic.ets" 562 }, 563 "end": { 564 "line": 20, 565 "column": 143, 566 "program": "MathCordic.ets" 567 } 568 } 569 }, 570 "arguments": [ 571 { 572 "type": "NumberLiteral", 573 "value": 7.12502, 574 "loc": { 575 "start": { 576 "line": 20, 577 "column": 144, 578 "program": "MathCordic.ets" 579 }, 580 "end": { 581 "line": 20, 582 "column": 151, 583 "program": "MathCordic.ets" 584 } 585 } 586 } 587 ], 588 "optional": false, 589 "loc": { 590 "start": { 591 "line": 20, 592 "column": 125, 593 "program": "MathCordic.ets" 594 }, 595 "end": { 596 "line": 20, 597 "column": 152, 598 "program": "MathCordic.ets" 599 } 600 } 601 }, 602 { 603 "type": "CallExpression", 604 "callee": { 605 "type": "MemberExpression", 606 "object": { 607 "type": "Identifier", 608 "name": "MathCordic", 609 "decorators": [], 610 "loc": { 611 "start": { 612 "line": 20, 613 "column": 154, 614 "program": "MathCordic.ets" 615 }, 616 "end": { 617 "line": 20, 618 "column": 164, 619 "program": "MathCordic.ets" 620 } 621 } 622 }, 623 "property": { 624 "type": "Identifier", 625 "name": "fnFixed", 626 "decorators": [], 627 "loc": { 628 "start": { 629 "line": 20, 630 "column": 165, 631 "program": "MathCordic.ets" 632 }, 633 "end": { 634 "line": 20, 635 "column": 172, 636 "program": "MathCordic.ets" 637 } 638 } 639 }, 640 "computed": false, 641 "optional": false, 642 "loc": { 643 "start": { 644 "line": 20, 645 "column": 154, 646 "program": "MathCordic.ets" 647 }, 648 "end": { 649 "line": 20, 650 "column": 172, 651 "program": "MathCordic.ets" 652 } 653 } 654 }, 655 "arguments": [ 656 { 657 "type": "NumberLiteral", 658 "value": 3.57633, 659 "loc": { 660 "start": { 661 "line": 20, 662 "column": 173, 663 "program": "MathCordic.ets" 664 }, 665 "end": { 666 "line": 20, 667 "column": 180, 668 "program": "MathCordic.ets" 669 } 670 } 671 } 672 ], 673 "optional": false, 674 "loc": { 675 "start": { 676 "line": 20, 677 "column": 154, 678 "program": "MathCordic.ets" 679 }, 680 "end": { 681 "line": 20, 682 "column": 181, 683 "program": "MathCordic.ets" 684 } 685 } 686 }, 687 { 688 "type": "CallExpression", 689 "callee": { 690 "type": "MemberExpression", 691 "object": { 692 "type": "Identifier", 693 "name": "MathCordic", 694 "decorators": [], 695 "loc": { 696 "start": { 697 "line": 20, 698 "column": 183, 699 "program": "MathCordic.ets" 700 }, 701 "end": { 702 "line": 20, 703 "column": 193, 704 "program": "MathCordic.ets" 705 } 706 } 707 }, 708 "property": { 709 "type": "Identifier", 710 "name": "fnFixed", 711 "decorators": [], 712 "loc": { 713 "start": { 714 "line": 20, 715 "column": 194, 716 "program": "MathCordic.ets" 717 }, 718 "end": { 719 "line": 20, 720 "column": 201, 721 "program": "MathCordic.ets" 722 } 723 } 724 }, 725 "computed": false, 726 "optional": false, 727 "loc": { 728 "start": { 729 "line": 20, 730 "column": 183, 731 "program": "MathCordic.ets" 732 }, 733 "end": { 734 "line": 20, 735 "column": 201, 736 "program": "MathCordic.ets" 737 } 738 } 739 }, 740 "arguments": [ 741 { 742 "type": "NumberLiteral", 743 "value": 1.78991, 744 "loc": { 745 "start": { 746 "line": 20, 747 "column": 202, 748 "program": "MathCordic.ets" 749 }, 750 "end": { 751 "line": 20, 752 "column": 209, 753 "program": "MathCordic.ets" 754 } 755 } 756 } 757 ], 758 "optional": false, 759 "loc": { 760 "start": { 761 "line": 20, 762 "column": 183, 763 "program": "MathCordic.ets" 764 }, 765 "end": { 766 "line": 20, 767 "column": 210, 768 "program": "MathCordic.ets" 769 } 770 } 771 }, 772 { 773 "type": "CallExpression", 774 "callee": { 775 "type": "MemberExpression", 776 "object": { 777 "type": "Identifier", 778 "name": "MathCordic", 779 "decorators": [], 780 "loc": { 781 "start": { 782 "line": 20, 783 "column": 212, 784 "program": "MathCordic.ets" 785 }, 786 "end": { 787 "line": 20, 788 "column": 222, 789 "program": "MathCordic.ets" 790 } 791 } 792 }, 793 "property": { 794 "type": "Identifier", 795 "name": "fnFixed", 796 "decorators": [], 797 "loc": { 798 "start": { 799 "line": 20, 800 "column": 223, 801 "program": "MathCordic.ets" 802 }, 803 "end": { 804 "line": 20, 805 "column": 230, 806 "program": "MathCordic.ets" 807 } 808 } 809 }, 810 "computed": false, 811 "optional": false, 812 "loc": { 813 "start": { 814 "line": 20, 815 "column": 212, 816 "program": "MathCordic.ets" 817 }, 818 "end": { 819 "line": 20, 820 "column": 230, 821 "program": "MathCordic.ets" 822 } 823 } 824 }, 825 "arguments": [ 826 { 827 "type": "NumberLiteral", 828 "value": 0.895174, 829 "loc": { 830 "start": { 831 "line": 20, 832 "column": 231, 833 "program": "MathCordic.ets" 834 }, 835 "end": { 836 "line": 20, 837 "column": 239, 838 "program": "MathCordic.ets" 839 } 840 } 841 } 842 ], 843 "optional": false, 844 "loc": { 845 "start": { 846 "line": 20, 847 "column": 212, 848 "program": "MathCordic.ets" 849 }, 850 "end": { 851 "line": 20, 852 "column": 240, 853 "program": "MathCordic.ets" 854 } 855 } 856 }, 857 { 858 "type": "CallExpression", 859 "callee": { 860 "type": "MemberExpression", 861 "object": { 862 "type": "Identifier", 863 "name": "MathCordic", 864 "decorators": [], 865 "loc": { 866 "start": { 867 "line": 20, 868 "column": 242, 869 "program": "MathCordic.ets" 870 }, 871 "end": { 872 "line": 20, 873 "column": 252, 874 "program": "MathCordic.ets" 875 } 876 } 877 }, 878 "property": { 879 "type": "Identifier", 880 "name": "fnFixed", 881 "decorators": [], 882 "loc": { 883 "start": { 884 "line": 20, 885 "column": 253, 886 "program": "MathCordic.ets" 887 }, 888 "end": { 889 "line": 20, 890 "column": 260, 891 "program": "MathCordic.ets" 892 } 893 } 894 }, 895 "computed": false, 896 "optional": false, 897 "loc": { 898 "start": { 899 "line": 20, 900 "column": 242, 901 "program": "MathCordic.ets" 902 }, 903 "end": { 904 "line": 20, 905 "column": 260, 906 "program": "MathCordic.ets" 907 } 908 } 909 }, 910 "arguments": [ 911 { 912 "type": "NumberLiteral", 913 "value": 0.447614, 914 "loc": { 915 "start": { 916 "line": 20, 917 "column": 261, 918 "program": "MathCordic.ets" 919 }, 920 "end": { 921 "line": 20, 922 "column": 269, 923 "program": "MathCordic.ets" 924 } 925 } 926 } 927 ], 928 "optional": false, 929 "loc": { 930 "start": { 931 "line": 20, 932 "column": 242, 933 "program": "MathCordic.ets" 934 }, 935 "end": { 936 "line": 20, 937 "column": 270, 938 "program": "MathCordic.ets" 939 } 940 } 941 }, 942 { 943 "type": "CallExpression", 944 "callee": { 945 "type": "MemberExpression", 946 "object": { 947 "type": "Identifier", 948 "name": "MathCordic", 949 "decorators": [], 950 "loc": { 951 "start": { 952 "line": 20, 953 "column": 272, 954 "program": "MathCordic.ets" 955 }, 956 "end": { 957 "line": 20, 958 "column": 282, 959 "program": "MathCordic.ets" 960 } 961 } 962 }, 963 "property": { 964 "type": "Identifier", 965 "name": "fnFixed", 966 "decorators": [], 967 "loc": { 968 "start": { 969 "line": 20, 970 "column": 283, 971 "program": "MathCordic.ets" 972 }, 973 "end": { 974 "line": 20, 975 "column": 290, 976 "program": "MathCordic.ets" 977 } 978 } 979 }, 980 "computed": false, 981 "optional": false, 982 "loc": { 983 "start": { 984 "line": 20, 985 "column": 272, 986 "program": "MathCordic.ets" 987 }, 988 "end": { 989 "line": 20, 990 "column": 290, 991 "program": "MathCordic.ets" 992 } 993 } 994 }, 995 "arguments": [ 996 { 997 "type": "NumberLiteral", 998 "value": 0.223811, 999 "loc": { 1000 "start": { 1001 "line": 20, 1002 "column": 291, 1003 "program": "MathCordic.ets" 1004 }, 1005 "end": { 1006 "line": 20, 1007 "column": 299, 1008 "program": "MathCordic.ets" 1009 } 1010 } 1011 } 1012 ], 1013 "optional": false, 1014 "loc": { 1015 "start": { 1016 "line": 20, 1017 "column": 272, 1018 "program": "MathCordic.ets" 1019 }, 1020 "end": { 1021 "line": 20, 1022 "column": 300, 1023 "program": "MathCordic.ets" 1024 } 1025 } 1026 }, 1027 { 1028 "type": "CallExpression", 1029 "callee": { 1030 "type": "MemberExpression", 1031 "object": { 1032 "type": "Identifier", 1033 "name": "MathCordic", 1034 "decorators": [], 1035 "loc": { 1036 "start": { 1037 "line": 20, 1038 "column": 302, 1039 "program": "MathCordic.ets" 1040 }, 1041 "end": { 1042 "line": 20, 1043 "column": 312, 1044 "program": "MathCordic.ets" 1045 } 1046 } 1047 }, 1048 "property": { 1049 "type": "Identifier", 1050 "name": "fnFixed", 1051 "decorators": [], 1052 "loc": { 1053 "start": { 1054 "line": 20, 1055 "column": 313, 1056 "program": "MathCordic.ets" 1057 }, 1058 "end": { 1059 "line": 20, 1060 "column": 320, 1061 "program": "MathCordic.ets" 1062 } 1063 } 1064 }, 1065 "computed": false, 1066 "optional": false, 1067 "loc": { 1068 "start": { 1069 "line": 20, 1070 "column": 302, 1071 "program": "MathCordic.ets" 1072 }, 1073 "end": { 1074 "line": 20, 1075 "column": 320, 1076 "program": "MathCordic.ets" 1077 } 1078 } 1079 }, 1080 "arguments": [ 1081 { 1082 "type": "NumberLiteral", 1083 "value": 0.111906, 1084 "loc": { 1085 "start": { 1086 "line": 20, 1087 "column": 321, 1088 "program": "MathCordic.ets" 1089 }, 1090 "end": { 1091 "line": 20, 1092 "column": 329, 1093 "program": "MathCordic.ets" 1094 } 1095 } 1096 } 1097 ], 1098 "optional": false, 1099 "loc": { 1100 "start": { 1101 "line": 20, 1102 "column": 302, 1103 "program": "MathCordic.ets" 1104 }, 1105 "end": { 1106 "line": 20, 1107 "column": 330, 1108 "program": "MathCordic.ets" 1109 } 1110 } 1111 }, 1112 { 1113 "type": "CallExpression", 1114 "callee": { 1115 "type": "MemberExpression", 1116 "object": { 1117 "type": "Identifier", 1118 "name": "MathCordic", 1119 "decorators": [], 1120 "loc": { 1121 "start": { 1122 "line": 20, 1123 "column": 332, 1124 "program": "MathCordic.ets" 1125 }, 1126 "end": { 1127 "line": 20, 1128 "column": 342, 1129 "program": "MathCordic.ets" 1130 } 1131 } 1132 }, 1133 "property": { 1134 "type": "Identifier", 1135 "name": "fnFixed", 1136 "decorators": [], 1137 "loc": { 1138 "start": { 1139 "line": 20, 1140 "column": 343, 1141 "program": "MathCordic.ets" 1142 }, 1143 "end": { 1144 "line": 20, 1145 "column": 350, 1146 "program": "MathCordic.ets" 1147 } 1148 } 1149 }, 1150 "computed": false, 1151 "optional": false, 1152 "loc": { 1153 "start": { 1154 "line": 20, 1155 "column": 332, 1156 "program": "MathCordic.ets" 1157 }, 1158 "end": { 1159 "line": 20, 1160 "column": 350, 1161 "program": "MathCordic.ets" 1162 } 1163 } 1164 }, 1165 "arguments": [ 1166 { 1167 "type": "NumberLiteral", 1168 "value": 0.055953, 1169 "loc": { 1170 "start": { 1171 "line": 20, 1172 "column": 351, 1173 "program": "MathCordic.ets" 1174 }, 1175 "end": { 1176 "line": 20, 1177 "column": 359, 1178 "program": "MathCordic.ets" 1179 } 1180 } 1181 } 1182 ], 1183 "optional": false, 1184 "loc": { 1185 "start": { 1186 "line": 20, 1187 "column": 332, 1188 "program": "MathCordic.ets" 1189 }, 1190 "end": { 1191 "line": 20, 1192 "column": 360, 1193 "program": "MathCordic.ets" 1194 } 1195 } 1196 }, 1197 { 1198 "type": "CallExpression", 1199 "callee": { 1200 "type": "MemberExpression", 1201 "object": { 1202 "type": "Identifier", 1203 "name": "MathCordic", 1204 "decorators": [], 1205 "loc": { 1206 "start": { 1207 "line": 20, 1208 "column": 362, 1209 "program": "MathCordic.ets" 1210 }, 1211 "end": { 1212 "line": 20, 1213 "column": 372, 1214 "program": "MathCordic.ets" 1215 } 1216 } 1217 }, 1218 "property": { 1219 "type": "Identifier", 1220 "name": "fnFixed", 1221 "decorators": [], 1222 "loc": { 1223 "start": { 1224 "line": 20, 1225 "column": 373, 1226 "program": "MathCordic.ets" 1227 }, 1228 "end": { 1229 "line": 20, 1230 "column": 380, 1231 "program": "MathCordic.ets" 1232 } 1233 } 1234 }, 1235 "computed": false, 1236 "optional": false, 1237 "loc": { 1238 "start": { 1239 "line": 20, 1240 "column": 362, 1241 "program": "MathCordic.ets" 1242 }, 1243 "end": { 1244 "line": 20, 1245 "column": 380, 1246 "program": "MathCordic.ets" 1247 } 1248 } 1249 }, 1250 "arguments": [ 1251 { 1252 "type": "NumberLiteral", 1253 "value": 0.027977, 1254 "loc": { 1255 "start": { 1256 "line": 20, 1257 "column": 381, 1258 "program": "MathCordic.ets" 1259 }, 1260 "end": { 1261 "line": 20, 1262 "column": 389, 1263 "program": "MathCordic.ets" 1264 } 1265 } 1266 } 1267 ], 1268 "optional": false, 1269 "loc": { 1270 "start": { 1271 "line": 20, 1272 "column": 362, 1273 "program": "MathCordic.ets" 1274 }, 1275 "end": { 1276 "line": 20, 1277 "column": 390, 1278 "program": "MathCordic.ets" 1279 } 1280 } 1281 } 1282 ], 1283 "loc": { 1284 "start": { 1285 "line": 20, 1286 "column": 41, 1287 "program": "MathCordic.ets" 1288 }, 1289 "end": { 1290 "line": 20, 1291 "column": 391, 1292 "program": "MathCordic.ets" 1293 } 1294 } 1295 }, 1296 "accessibility": "public", 1297 "static": true, 1298 "readonly": true, 1299 "declare": false, 1300 "optional": false, 1301 "computed": false, 1302 "typeAnnotation": { 1303 "type": "ETSTypeReference", 1304 "part": { 1305 "type": "ETSTypeReferencePart", 1306 "name": { 1307 "type": "Identifier", 1308 "name": "Array", 1309 "decorators": [], 1310 "loc": { 1311 "start": { 1312 "line": 1, 1313 "column": 1, 1314 "program": "MathCordic.ets" 1315 }, 1316 "end": { 1317 "line": 1, 1318 "column": 3, 1319 "program": "MathCordic.ets" 1320 } 1321 } 1322 }, 1323 "typeParams": { 1324 "type": "TSTypeParameterInstantiation", 1325 "params": [ 1326 { 1327 "type": "ETSPrimitiveType", 1328 "loc": { 1329 "start": { 1330 "line": 1, 1331 "column": 3, 1332 "program": "MathCordic.ets" 1333 }, 1334 "end": { 1335 "line": 1, 1336 "column": 3, 1337 "program": "MathCordic.ets" 1338 } 1339 } 1340 } 1341 ], 1342 "loc": { 1343 "start": { 1344 "line": 1, 1345 "column": 3, 1346 "program": "MathCordic.ets" 1347 }, 1348 "end": { 1349 "line": 1, 1350 "column": 3, 1351 "program": "MathCordic.ets" 1352 } 1353 } 1354 }, 1355 "loc": { 1356 "start": { 1357 "line": 1, 1358 "column": 1, 1359 "program": "MathCordic.ets" 1360 }, 1361 "end": { 1362 "line": 1, 1363 "column": 3, 1364 "program": "MathCordic.ets" 1365 } 1366 } 1367 }, 1368 "loc": { 1369 "start": { 1370 "line": 20, 1371 "column": 36, 1372 "program": "MathCordic.ets" 1373 }, 1374 "end": { 1375 "line": 20, 1376 "column": 38, 1377 "program": "MathCordic.ets" 1378 } 1379 } 1380 }, 1381 "definite": false, 1382 "decorators": [], 1383 "loc": { 1384 "start": { 1385 "line": 20, 1386 "column": 21, 1387 "program": "MathCordic.ets" 1388 }, 1389 "end": { 1390 "line": 20, 1391 "column": 391, 1392 "program": "MathCordic.ets" 1393 } 1394 } 1395 }, 1396 { 1397 "type": "MethodDefinition", 1398 "key": { 1399 "type": "Identifier", 1400 "name": "fnFixed", 1401 "decorators": [], 1402 "loc": { 1403 "start": { 1404 "line": 22, 1405 "column": 12, 1406 "program": "MathCordic.ets" 1407 }, 1408 "end": { 1409 "line": 22, 1410 "column": 19, 1411 "program": "MathCordic.ets" 1412 } 1413 } 1414 }, 1415 "kind": "method", 1416 "accessibility": "public", 1417 "static": true, 1418 "optional": false, 1419 "computed": false, 1420 "value": { 1421 "type": "FunctionExpression", 1422 "function": { 1423 "type": "ScriptFunction", 1424 "id": { 1425 "type": "Identifier", 1426 "name": "fnFixed", 1427 "decorators": [], 1428 "loc": { 1429 "start": { 1430 "line": 22, 1431 "column": 12, 1432 "program": "MathCordic.ets" 1433 }, 1434 "end": { 1435 "line": 22, 1436 "column": 19, 1437 "program": "MathCordic.ets" 1438 } 1439 } 1440 }, 1441 "generator": false, 1442 "async": false, 1443 "expression": false, 1444 "params": [ 1445 { 1446 "type": "ETSParameterExpression", 1447 "name": { 1448 "type": "Identifier", 1449 "name": "x", 1450 "typeAnnotation": { 1451 "type": "ETSPrimitiveType", 1452 "loc": { 1453 "start": { 1454 "line": 22, 1455 "column": 24, 1456 "program": "MathCordic.ets" 1457 }, 1458 "end": { 1459 "line": 22, 1460 "column": 30, 1461 "program": "MathCordic.ets" 1462 } 1463 } 1464 }, 1465 "decorators": [], 1466 "loc": { 1467 "start": { 1468 "line": 22, 1469 "column": 20, 1470 "program": "MathCordic.ets" 1471 }, 1472 "end": { 1473 "line": 22, 1474 "column": 30, 1475 "program": "MathCordic.ets" 1476 } 1477 } 1478 }, 1479 "loc": { 1480 "start": { 1481 "line": 22, 1482 "column": 20, 1483 "program": "MathCordic.ets" 1484 }, 1485 "end": { 1486 "line": 22, 1487 "column": 30, 1488 "program": "MathCordic.ets" 1489 } 1490 } 1491 } 1492 ], 1493 "returnType": { 1494 "type": "ETSPrimitiveType", 1495 "loc": { 1496 "start": { 1497 "line": 22, 1498 "column": 33, 1499 "program": "MathCordic.ets" 1500 }, 1501 "end": { 1502 "line": 22, 1503 "column": 39, 1504 "program": "MathCordic.ets" 1505 } 1506 } 1507 }, 1508 "body": { 1509 "type": "BlockStatement", 1510 "statements": [ 1511 { 1512 "type": "ReturnStatement", 1513 "argument": { 1514 "type": "BinaryExpression", 1515 "operator": "*", 1516 "left": { 1517 "type": "Identifier", 1518 "name": "x", 1519 "decorators": [], 1520 "loc": { 1521 "start": { 1522 "line": 23, 1523 "column": 16, 1524 "program": "MathCordic.ets" 1525 }, 1526 "end": { 1527 "line": 23, 1528 "column": 17, 1529 "program": "MathCordic.ets" 1530 } 1531 } 1532 }, 1533 "right": { 1534 "type": "NumberLiteral", 1535 "value": 65536, 1536 "loc": { 1537 "start": { 1538 "line": 23, 1539 "column": 20, 1540 "program": "MathCordic.ets" 1541 }, 1542 "end": { 1543 "line": 23, 1544 "column": 27, 1545 "program": "MathCordic.ets" 1546 } 1547 } 1548 }, 1549 "loc": { 1550 "start": { 1551 "line": 23, 1552 "column": 16, 1553 "program": "MathCordic.ets" 1554 }, 1555 "end": { 1556 "line": 23, 1557 "column": 27, 1558 "program": "MathCordic.ets" 1559 } 1560 } 1561 }, 1562 "loc": { 1563 "start": { 1564 "line": 23, 1565 "column": 9, 1566 "program": "MathCordic.ets" 1567 }, 1568 "end": { 1569 "line": 23, 1570 "column": 28, 1571 "program": "MathCordic.ets" 1572 } 1573 } 1574 } 1575 ], 1576 "loc": { 1577 "start": { 1578 "line": 22, 1579 "column": 40, 1580 "program": "MathCordic.ets" 1581 }, 1582 "end": { 1583 "line": 24, 1584 "column": 6, 1585 "program": "MathCordic.ets" 1586 } 1587 } 1588 }, 1589 "loc": { 1590 "start": { 1591 "line": 22, 1592 "column": 19, 1593 "program": "MathCordic.ets" 1594 }, 1595 "end": { 1596 "line": 24, 1597 "column": 6, 1598 "program": "MathCordic.ets" 1599 } 1600 } 1601 }, 1602 "loc": { 1603 "start": { 1604 "line": 22, 1605 "column": 19, 1606 "program": "MathCordic.ets" 1607 }, 1608 "end": { 1609 "line": 24, 1610 "column": 6, 1611 "program": "MathCordic.ets" 1612 } 1613 } 1614 }, 1615 "overloads": [], 1616 "decorators": [], 1617 "loc": { 1618 "start": { 1619 "line": 22, 1620 "column": 5, 1621 "program": "MathCordic.ets" 1622 }, 1623 "end": { 1624 "line": 24, 1625 "column": 6, 1626 "program": "MathCordic.ets" 1627 } 1628 } 1629 }, 1630 { 1631 "type": "MethodDefinition", 1632 "key": { 1633 "type": "Identifier", 1634 "name": "fnFloat", 1635 "decorators": [], 1636 "loc": { 1637 "start": { 1638 "line": 26, 1639 "column": 12, 1640 "program": "MathCordic.ets" 1641 }, 1642 "end": { 1643 "line": 26, 1644 "column": 19, 1645 "program": "MathCordic.ets" 1646 } 1647 } 1648 }, 1649 "kind": "method", 1650 "accessibility": "public", 1651 "static": true, 1652 "optional": false, 1653 "computed": false, 1654 "value": { 1655 "type": "FunctionExpression", 1656 "function": { 1657 "type": "ScriptFunction", 1658 "id": { 1659 "type": "Identifier", 1660 "name": "fnFloat", 1661 "decorators": [], 1662 "loc": { 1663 "start": { 1664 "line": 26, 1665 "column": 12, 1666 "program": "MathCordic.ets" 1667 }, 1668 "end": { 1669 "line": 26, 1670 "column": 19, 1671 "program": "MathCordic.ets" 1672 } 1673 } 1674 }, 1675 "generator": false, 1676 "async": false, 1677 "expression": false, 1678 "params": [ 1679 { 1680 "type": "ETSParameterExpression", 1681 "name": { 1682 "type": "Identifier", 1683 "name": "x", 1684 "typeAnnotation": { 1685 "type": "ETSPrimitiveType", 1686 "loc": { 1687 "start": { 1688 "line": 26, 1689 "column": 24, 1690 "program": "MathCordic.ets" 1691 }, 1692 "end": { 1693 "line": 26, 1694 "column": 30, 1695 "program": "MathCordic.ets" 1696 } 1697 } 1698 }, 1699 "decorators": [], 1700 "loc": { 1701 "start": { 1702 "line": 26, 1703 "column": 20, 1704 "program": "MathCordic.ets" 1705 }, 1706 "end": { 1707 "line": 26, 1708 "column": 30, 1709 "program": "MathCordic.ets" 1710 } 1711 } 1712 }, 1713 "loc": { 1714 "start": { 1715 "line": 26, 1716 "column": 20, 1717 "program": "MathCordic.ets" 1718 }, 1719 "end": { 1720 "line": 26, 1721 "column": 30, 1722 "program": "MathCordic.ets" 1723 } 1724 } 1725 } 1726 ], 1727 "returnType": { 1728 "type": "ETSPrimitiveType", 1729 "loc": { 1730 "start": { 1731 "line": 26, 1732 "column": 33, 1733 "program": "MathCordic.ets" 1734 }, 1735 "end": { 1736 "line": 26, 1737 "column": 39, 1738 "program": "MathCordic.ets" 1739 } 1740 } 1741 }, 1742 "body": { 1743 "type": "BlockStatement", 1744 "statements": [ 1745 { 1746 "type": "ReturnStatement", 1747 "argument": { 1748 "type": "BinaryExpression", 1749 "operator": "/", 1750 "left": { 1751 "type": "Identifier", 1752 "name": "x", 1753 "decorators": [], 1754 "loc": { 1755 "start": { 1756 "line": 27, 1757 "column": 16, 1758 "program": "MathCordic.ets" 1759 }, 1760 "end": { 1761 "line": 27, 1762 "column": 17, 1763 "program": "MathCordic.ets" 1764 } 1765 } 1766 }, 1767 "right": { 1768 "type": "NumberLiteral", 1769 "value": 65536, 1770 "loc": { 1771 "start": { 1772 "line": 27, 1773 "column": 20, 1774 "program": "MathCordic.ets" 1775 }, 1776 "end": { 1777 "line": 27, 1778 "column": 27, 1779 "program": "MathCordic.ets" 1780 } 1781 } 1782 }, 1783 "loc": { 1784 "start": { 1785 "line": 27, 1786 "column": 16, 1787 "program": "MathCordic.ets" 1788 }, 1789 "end": { 1790 "line": 27, 1791 "column": 27, 1792 "program": "MathCordic.ets" 1793 } 1794 } 1795 }, 1796 "loc": { 1797 "start": { 1798 "line": 27, 1799 "column": 9, 1800 "program": "MathCordic.ets" 1801 }, 1802 "end": { 1803 "line": 27, 1804 "column": 28, 1805 "program": "MathCordic.ets" 1806 } 1807 } 1808 } 1809 ], 1810 "loc": { 1811 "start": { 1812 "line": 26, 1813 "column": 40, 1814 "program": "MathCordic.ets" 1815 }, 1816 "end": { 1817 "line": 28, 1818 "column": 6, 1819 "program": "MathCordic.ets" 1820 } 1821 } 1822 }, 1823 "loc": { 1824 "start": { 1825 "line": 26, 1826 "column": 19, 1827 "program": "MathCordic.ets" 1828 }, 1829 "end": { 1830 "line": 28, 1831 "column": 6, 1832 "program": "MathCordic.ets" 1833 } 1834 } 1835 }, 1836 "loc": { 1837 "start": { 1838 "line": 26, 1839 "column": 19, 1840 "program": "MathCordic.ets" 1841 }, 1842 "end": { 1843 "line": 28, 1844 "column": 6, 1845 "program": "MathCordic.ets" 1846 } 1847 } 1848 }, 1849 "overloads": [], 1850 "decorators": [], 1851 "loc": { 1852 "start": { 1853 "line": 26, 1854 "column": 5, 1855 "program": "MathCordic.ets" 1856 }, 1857 "end": { 1858 "line": 28, 1859 "column": 6, 1860 "program": "MathCordic.ets" 1861 } 1862 } 1863 }, 1864 { 1865 "type": "MethodDefinition", 1866 "key": { 1867 "type": "Identifier", 1868 "name": "fnDegToRad", 1869 "decorators": [], 1870 "loc": { 1871 "start": { 1872 "line": 30, 1873 "column": 12, 1874 "program": "MathCordic.ets" 1875 }, 1876 "end": { 1877 "line": 30, 1878 "column": 22, 1879 "program": "MathCordic.ets" 1880 } 1881 } 1882 }, 1883 "kind": "method", 1884 "accessibility": "public", 1885 "static": true, 1886 "optional": false, 1887 "computed": false, 1888 "value": { 1889 "type": "FunctionExpression", 1890 "function": { 1891 "type": "ScriptFunction", 1892 "id": { 1893 "type": "Identifier", 1894 "name": "fnDegToRad", 1895 "decorators": [], 1896 "loc": { 1897 "start": { 1898 "line": 30, 1899 "column": 12, 1900 "program": "MathCordic.ets" 1901 }, 1902 "end": { 1903 "line": 30, 1904 "column": 22, 1905 "program": "MathCordic.ets" 1906 } 1907 } 1908 }, 1909 "generator": false, 1910 "async": false, 1911 "expression": false, 1912 "params": [ 1913 { 1914 "type": "ETSParameterExpression", 1915 "name": { 1916 "type": "Identifier", 1917 "name": "x", 1918 "typeAnnotation": { 1919 "type": "ETSPrimitiveType", 1920 "loc": { 1921 "start": { 1922 "line": 30, 1923 "column": 27, 1924 "program": "MathCordic.ets" 1925 }, 1926 "end": { 1927 "line": 30, 1928 "column": 33, 1929 "program": "MathCordic.ets" 1930 } 1931 } 1932 }, 1933 "decorators": [], 1934 "loc": { 1935 "start": { 1936 "line": 30, 1937 "column": 23, 1938 "program": "MathCordic.ets" 1939 }, 1940 "end": { 1941 "line": 30, 1942 "column": 33, 1943 "program": "MathCordic.ets" 1944 } 1945 } 1946 }, 1947 "loc": { 1948 "start": { 1949 "line": 30, 1950 "column": 23, 1951 "program": "MathCordic.ets" 1952 }, 1953 "end": { 1954 "line": 30, 1955 "column": 33, 1956 "program": "MathCordic.ets" 1957 } 1958 } 1959 } 1960 ], 1961 "returnType": { 1962 "type": "ETSPrimitiveType", 1963 "loc": { 1964 "start": { 1965 "line": 30, 1966 "column": 36, 1967 "program": "MathCordic.ets" 1968 }, 1969 "end": { 1970 "line": 30, 1971 "column": 42, 1972 "program": "MathCordic.ets" 1973 } 1974 } 1975 }, 1976 "body": { 1977 "type": "BlockStatement", 1978 "statements": [ 1979 { 1980 "type": "ReturnStatement", 1981 "argument": { 1982 "type": "BinaryExpression", 1983 "operator": "*", 1984 "left": { 1985 "type": "NumberLiteral", 1986 "value": 0.017453, 1987 "loc": { 1988 "start": { 1989 "line": 31, 1990 "column": 16, 1991 "program": "MathCordic.ets" 1992 }, 1993 "end": { 1994 "line": 31, 1995 "column": 24, 1996 "program": "MathCordic.ets" 1997 } 1998 } 1999 }, 2000 "right": { 2001 "type": "Identifier", 2002 "name": "x", 2003 "decorators": [], 2004 "loc": { 2005 "start": { 2006 "line": 31, 2007 "column": 27, 2008 "program": "MathCordic.ets" 2009 }, 2010 "end": { 2011 "line": 31, 2012 "column": 28, 2013 "program": "MathCordic.ets" 2014 } 2015 } 2016 }, 2017 "loc": { 2018 "start": { 2019 "line": 31, 2020 "column": 16, 2021 "program": "MathCordic.ets" 2022 }, 2023 "end": { 2024 "line": 31, 2025 "column": 28, 2026 "program": "MathCordic.ets" 2027 } 2028 } 2029 }, 2030 "loc": { 2031 "start": { 2032 "line": 31, 2033 "column": 9, 2034 "program": "MathCordic.ets" 2035 }, 2036 "end": { 2037 "line": 31, 2038 "column": 29, 2039 "program": "MathCordic.ets" 2040 } 2041 } 2042 } 2043 ], 2044 "loc": { 2045 "start": { 2046 "line": 30, 2047 "column": 43, 2048 "program": "MathCordic.ets" 2049 }, 2050 "end": { 2051 "line": 32, 2052 "column": 6, 2053 "program": "MathCordic.ets" 2054 } 2055 } 2056 }, 2057 "loc": { 2058 "start": { 2059 "line": 30, 2060 "column": 22, 2061 "program": "MathCordic.ets" 2062 }, 2063 "end": { 2064 "line": 32, 2065 "column": 6, 2066 "program": "MathCordic.ets" 2067 } 2068 } 2069 }, 2070 "loc": { 2071 "start": { 2072 "line": 30, 2073 "column": 22, 2074 "program": "MathCordic.ets" 2075 }, 2076 "end": { 2077 "line": 32, 2078 "column": 6, 2079 "program": "MathCordic.ets" 2080 } 2081 } 2082 }, 2083 "overloads": [], 2084 "decorators": [], 2085 "loc": { 2086 "start": { 2087 "line": 30, 2088 "column": 5, 2089 "program": "MathCordic.ets" 2090 }, 2091 "end": { 2092 "line": 32, 2093 "column": 6, 2094 "program": "MathCordic.ets" 2095 } 2096 } 2097 }, 2098 { 2099 "type": "MethodDefinition", 2100 "key": { 2101 "type": "Identifier", 2102 "name": "cordicsincos", 2103 "decorators": [], 2104 "loc": { 2105 "start": { 2106 "line": 34, 2107 "column": 12, 2108 "program": "MathCordic.ets" 2109 }, 2110 "end": { 2111 "line": 34, 2112 "column": 24, 2113 "program": "MathCordic.ets" 2114 } 2115 } 2116 }, 2117 "kind": "method", 2118 "accessibility": "public", 2119 "static": true, 2120 "optional": false, 2121 "computed": false, 2122 "value": { 2123 "type": "FunctionExpression", 2124 "function": { 2125 "type": "ScriptFunction", 2126 "id": { 2127 "type": "Identifier", 2128 "name": "cordicsincos", 2129 "decorators": [], 2130 "loc": { 2131 "start": { 2132 "line": 34, 2133 "column": 12, 2134 "program": "MathCordic.ets" 2135 }, 2136 "end": { 2137 "line": 34, 2138 "column": 24, 2139 "program": "MathCordic.ets" 2140 } 2141 } 2142 }, 2143 "generator": false, 2144 "async": false, 2145 "expression": false, 2146 "params": [ 2147 { 2148 "type": "ETSParameterExpression", 2149 "name": { 2150 "type": "Identifier", 2151 "name": "target", 2152 "typeAnnotation": { 2153 "type": "ETSPrimitiveType", 2154 "loc": { 2155 "start": { 2156 "line": 34, 2157 "column": 34, 2158 "program": "MathCordic.ets" 2159 }, 2160 "end": { 2161 "line": 34, 2162 "column": 40, 2163 "program": "MathCordic.ets" 2164 } 2165 } 2166 }, 2167 "decorators": [], 2168 "loc": { 2169 "start": { 2170 "line": 34, 2171 "column": 25, 2172 "program": "MathCordic.ets" 2173 }, 2174 "end": { 2175 "line": 34, 2176 "column": 40, 2177 "program": "MathCordic.ets" 2178 } 2179 } 2180 }, 2181 "loc": { 2182 "start": { 2183 "line": 34, 2184 "column": 25, 2185 "program": "MathCordic.ets" 2186 }, 2187 "end": { 2188 "line": 34, 2189 "column": 40, 2190 "program": "MathCordic.ets" 2191 } 2192 } 2193 } 2194 ], 2195 "returnType": { 2196 "type": "ETSPrimitiveType", 2197 "loc": { 2198 "start": { 2199 "line": 34, 2200 "column": 43, 2201 "program": "MathCordic.ets" 2202 }, 2203 "end": { 2204 "line": 34, 2205 "column": 49, 2206 "program": "MathCordic.ets" 2207 } 2208 } 2209 }, 2210 "body": { 2211 "type": "BlockStatement", 2212 "statements": [ 2213 { 2214 "type": "VariableDeclaration", 2215 "declarations": [ 2216 { 2217 "type": "VariableDeclarator", 2218 "id": { 2219 "type": "Identifier", 2220 "name": "x", 2221 "typeAnnotation": { 2222 "type": "ETSPrimitiveType", 2223 "loc": { 2224 "start": { 2225 "line": 35, 2226 "column": 17, 2227 "program": "MathCordic.ets" 2228 }, 2229 "end": { 2230 "line": 35, 2231 "column": 23, 2232 "program": "MathCordic.ets" 2233 } 2234 } 2235 }, 2236 "decorators": [], 2237 "loc": { 2238 "start": { 2239 "line": 35, 2240 "column": 13, 2241 "program": "MathCordic.ets" 2242 }, 2243 "end": { 2244 "line": 35, 2245 "column": 14, 2246 "program": "MathCordic.ets" 2247 } 2248 } 2249 }, 2250 "init": null, 2251 "loc": { 2252 "start": { 2253 "line": 35, 2254 "column": 13, 2255 "program": "MathCordic.ets" 2256 }, 2257 "end": { 2258 "line": 35, 2259 "column": 14, 2260 "program": "MathCordic.ets" 2261 } 2262 } 2263 } 2264 ], 2265 "kind": "let", 2266 "loc": { 2267 "start": { 2268 "line": 35, 2269 "column": 9, 2270 "program": "MathCordic.ets" 2271 }, 2272 "end": { 2273 "line": 35, 2274 "column": 24, 2275 "program": "MathCordic.ets" 2276 } 2277 } 2278 }, 2279 { 2280 "type": "VariableDeclaration", 2281 "declarations": [ 2282 { 2283 "type": "VariableDeclarator", 2284 "id": { 2285 "type": "Identifier", 2286 "name": "y", 2287 "typeAnnotation": { 2288 "type": "ETSPrimitiveType", 2289 "loc": { 2290 "start": { 2291 "line": 36, 2292 "column": 17, 2293 "program": "MathCordic.ets" 2294 }, 2295 "end": { 2296 "line": 36, 2297 "column": 23, 2298 "program": "MathCordic.ets" 2299 } 2300 } 2301 }, 2302 "decorators": [], 2303 "loc": { 2304 "start": { 2305 "line": 36, 2306 "column": 13, 2307 "program": "MathCordic.ets" 2308 }, 2309 "end": { 2310 "line": 36, 2311 "column": 14, 2312 "program": "MathCordic.ets" 2313 } 2314 } 2315 }, 2316 "init": null, 2317 "loc": { 2318 "start": { 2319 "line": 36, 2320 "column": 13, 2321 "program": "MathCordic.ets" 2322 }, 2323 "end": { 2324 "line": 36, 2325 "column": 14, 2326 "program": "MathCordic.ets" 2327 } 2328 } 2329 } 2330 ], 2331 "kind": "let", 2332 "loc": { 2333 "start": { 2334 "line": 36, 2335 "column": 9, 2336 "program": "MathCordic.ets" 2337 }, 2338 "end": { 2339 "line": 36, 2340 "column": 24, 2341 "program": "MathCordic.ets" 2342 } 2343 } 2344 }, 2345 { 2346 "type": "VariableDeclaration", 2347 "declarations": [ 2348 { 2349 "type": "VariableDeclarator", 2350 "id": { 2351 "type": "Identifier", 2352 "name": "targetAngle", 2353 "typeAnnotation": { 2354 "type": "ETSPrimitiveType", 2355 "loc": { 2356 "start": { 2357 "line": 37, 2358 "column": 27, 2359 "program": "MathCordic.ets" 2360 }, 2361 "end": { 2362 "line": 37, 2363 "column": 33, 2364 "program": "MathCordic.ets" 2365 } 2366 } 2367 }, 2368 "decorators": [], 2369 "loc": { 2370 "start": { 2371 "line": 37, 2372 "column": 13, 2373 "program": "MathCordic.ets" 2374 }, 2375 "end": { 2376 "line": 37, 2377 "column": 24, 2378 "program": "MathCordic.ets" 2379 } 2380 } 2381 }, 2382 "init": { 2383 "type": "CallExpression", 2384 "callee": { 2385 "type": "MemberExpression", 2386 "object": { 2387 "type": "Identifier", 2388 "name": "MathCordic", 2389 "decorators": [], 2390 "loc": { 2391 "start": { 2392 "line": 37, 2393 "column": 36, 2394 "program": "MathCordic.ets" 2395 }, 2396 "end": { 2397 "line": 37, 2398 "column": 46, 2399 "program": "MathCordic.ets" 2400 } 2401 } 2402 }, 2403 "property": { 2404 "type": "Identifier", 2405 "name": "fnFixed", 2406 "decorators": [], 2407 "loc": { 2408 "start": { 2409 "line": 37, 2410 "column": 47, 2411 "program": "MathCordic.ets" 2412 }, 2413 "end": { 2414 "line": 37, 2415 "column": 54, 2416 "program": "MathCordic.ets" 2417 } 2418 } 2419 }, 2420 "computed": false, 2421 "optional": false, 2422 "loc": { 2423 "start": { 2424 "line": 37, 2425 "column": 36, 2426 "program": "MathCordic.ets" 2427 }, 2428 "end": { 2429 "line": 37, 2430 "column": 54, 2431 "program": "MathCordic.ets" 2432 } 2433 } 2434 }, 2435 "arguments": [ 2436 { 2437 "type": "Identifier", 2438 "name": "target", 2439 "decorators": [], 2440 "loc": { 2441 "start": { 2442 "line": 37, 2443 "column": 55, 2444 "program": "MathCordic.ets" 2445 }, 2446 "end": { 2447 "line": 37, 2448 "column": 61, 2449 "program": "MathCordic.ets" 2450 } 2451 } 2452 } 2453 ], 2454 "optional": false, 2455 "loc": { 2456 "start": { 2457 "line": 37, 2458 "column": 36, 2459 "program": "MathCordic.ets" 2460 }, 2461 "end": { 2462 "line": 37, 2463 "column": 62, 2464 "program": "MathCordic.ets" 2465 } 2466 } 2467 }, 2468 "loc": { 2469 "start": { 2470 "line": 37, 2471 "column": 13, 2472 "program": "MathCordic.ets" 2473 }, 2474 "end": { 2475 "line": 37, 2476 "column": 62, 2477 "program": "MathCordic.ets" 2478 } 2479 } 2480 } 2481 ], 2482 "kind": "let", 2483 "loc": { 2484 "start": { 2485 "line": 37, 2486 "column": 9, 2487 "program": "MathCordic.ets" 2488 }, 2489 "end": { 2490 "line": 37, 2491 "column": 63, 2492 "program": "MathCordic.ets" 2493 } 2494 } 2495 }, 2496 { 2497 "type": "VariableDeclaration", 2498 "declarations": [ 2499 { 2500 "type": "VariableDeclarator", 2501 "id": { 2502 "type": "Identifier", 2503 "name": "currAngle", 2504 "typeAnnotation": { 2505 "type": "ETSPrimitiveType", 2506 "loc": { 2507 "start": { 2508 "line": 38, 2509 "column": 25, 2510 "program": "MathCordic.ets" 2511 }, 2512 "end": { 2513 "line": 38, 2514 "column": 31, 2515 "program": "MathCordic.ets" 2516 } 2517 } 2518 }, 2519 "decorators": [], 2520 "loc": { 2521 "start": { 2522 "line": 38, 2523 "column": 13, 2524 "program": "MathCordic.ets" 2525 }, 2526 "end": { 2527 "line": 38, 2528 "column": 22, 2529 "program": "MathCordic.ets" 2530 } 2531 } 2532 }, 2533 "init": { 2534 "type": "NumberLiteral", 2535 "value": 0, 2536 "loc": { 2537 "start": { 2538 "line": 38, 2539 "column": 34, 2540 "program": "MathCordic.ets" 2541 }, 2542 "end": { 2543 "line": 38, 2544 "column": 35, 2545 "program": "MathCordic.ets" 2546 } 2547 } 2548 }, 2549 "loc": { 2550 "start": { 2551 "line": 38, 2552 "column": 13, 2553 "program": "MathCordic.ets" 2554 }, 2555 "end": { 2556 "line": 38, 2557 "column": 35, 2558 "program": "MathCordic.ets" 2559 } 2560 } 2561 } 2562 ], 2563 "kind": "let", 2564 "loc": { 2565 "start": { 2566 "line": 38, 2567 "column": 9, 2568 "program": "MathCordic.ets" 2569 }, 2570 "end": { 2571 "line": 38, 2572 "column": 36, 2573 "program": "MathCordic.ets" 2574 } 2575 } 2576 }, 2577 { 2578 "type": "VariableDeclaration", 2579 "declarations": [ 2580 { 2581 "type": "VariableDeclarator", 2582 "id": { 2583 "type": "Identifier", 2584 "name": "step", 2585 "typeAnnotation": { 2586 "type": "ETSPrimitiveType", 2587 "loc": { 2588 "start": { 2589 "line": 39, 2590 "column": 20, 2591 "program": "MathCordic.ets" 2592 }, 2593 "end": { 2594 "line": 39, 2595 "column": 23, 2596 "program": "MathCordic.ets" 2597 } 2598 } 2599 }, 2600 "decorators": [], 2601 "loc": { 2602 "start": { 2603 "line": 39, 2604 "column": 13, 2605 "program": "MathCordic.ets" 2606 }, 2607 "end": { 2608 "line": 39, 2609 "column": 17, 2610 "program": "MathCordic.ets" 2611 } 2612 } 2613 }, 2614 "init": null, 2615 "loc": { 2616 "start": { 2617 "line": 39, 2618 "column": 13, 2619 "program": "MathCordic.ets" 2620 }, 2621 "end": { 2622 "line": 39, 2623 "column": 17, 2624 "program": "MathCordic.ets" 2625 } 2626 } 2627 } 2628 ], 2629 "kind": "let", 2630 "loc": { 2631 "start": { 2632 "line": 39, 2633 "column": 9, 2634 "program": "MathCordic.ets" 2635 }, 2636 "end": { 2637 "line": 39, 2638 "column": 25, 2639 "program": "MathCordic.ets" 2640 } 2641 } 2642 }, 2643 { 2644 "type": "ExpressionStatement", 2645 "expression": { 2646 "type": "AssignmentExpression", 2647 "operator": "=", 2648 "left": { 2649 "type": "Identifier", 2650 "name": "x", 2651 "decorators": [], 2652 "loc": { 2653 "start": { 2654 "line": 40, 2655 "column": 9, 2656 "program": "MathCordic.ets" 2657 }, 2658 "end": { 2659 "line": 40, 2660 "column": 10, 2661 "program": "MathCordic.ets" 2662 } 2663 } 2664 }, 2665 "right": { 2666 "type": "CallExpression", 2667 "callee": { 2668 "type": "MemberExpression", 2669 "object": { 2670 "type": "Identifier", 2671 "name": "MathCordic", 2672 "decorators": [], 2673 "loc": { 2674 "start": { 2675 "line": 40, 2676 "column": 13, 2677 "program": "MathCordic.ets" 2678 }, 2679 "end": { 2680 "line": 40, 2681 "column": 23, 2682 "program": "MathCordic.ets" 2683 } 2684 } 2685 }, 2686 "property": { 2687 "type": "Identifier", 2688 "name": "fnFixed", 2689 "decorators": [], 2690 "loc": { 2691 "start": { 2692 "line": 40, 2693 "column": 24, 2694 "program": "MathCordic.ets" 2695 }, 2696 "end": { 2697 "line": 40, 2698 "column": 31, 2699 "program": "MathCordic.ets" 2700 } 2701 } 2702 }, 2703 "computed": false, 2704 "optional": false, 2705 "loc": { 2706 "start": { 2707 "line": 40, 2708 "column": 13, 2709 "program": "MathCordic.ets" 2710 }, 2711 "end": { 2712 "line": 40, 2713 "column": 31, 2714 "program": "MathCordic.ets" 2715 } 2716 } 2717 }, 2718 "arguments": [ 2719 { 2720 "type": "BinaryExpression", 2721 "operator": "*", 2722 "left": { 2723 "type": "MemberExpression", 2724 "object": { 2725 "type": "Identifier", 2726 "name": "MathCordic", 2727 "decorators": [], 2728 "loc": { 2729 "start": { 2730 "line": 40, 2731 "column": 32, 2732 "program": "MathCordic.ets" 2733 }, 2734 "end": { 2735 "line": 40, 2736 "column": 42, 2737 "program": "MathCordic.ets" 2738 } 2739 } 2740 }, 2741 "property": { 2742 "type": "Identifier", 2743 "name": "AG_CONST", 2744 "decorators": [], 2745 "loc": { 2746 "start": { 2747 "line": 40, 2748 "column": 43, 2749 "program": "MathCordic.ets" 2750 }, 2751 "end": { 2752 "line": 40, 2753 "column": 51, 2754 "program": "MathCordic.ets" 2755 } 2756 } 2757 }, 2758 "computed": false, 2759 "optional": false, 2760 "loc": { 2761 "start": { 2762 "line": 40, 2763 "column": 32, 2764 "program": "MathCordic.ets" 2765 }, 2766 "end": { 2767 "line": 40, 2768 "column": 51, 2769 "program": "MathCordic.ets" 2770 } 2771 } 2772 }, 2773 "right": { 2774 "type": "CallExpression", 2775 "callee": { 2776 "type": "Identifier", 2777 "name": "cos", 2778 "decorators": [], 2779 "loc": { 2780 "start": { 2781 "line": 40, 2782 "column": 54, 2783 "program": "MathCordic.ets" 2784 }, 2785 "end": { 2786 "line": 40, 2787 "column": 57, 2788 "program": "MathCordic.ets" 2789 } 2790 } 2791 }, 2792 "arguments": [ 2793 { 2794 "type": "NumberLiteral", 2795 "value": 0, 2796 "loc": { 2797 "start": { 2798 "line": 40, 2799 "column": 58, 2800 "program": "MathCordic.ets" 2801 }, 2802 "end": { 2803 "line": 40, 2804 "column": 59, 2805 "program": "MathCordic.ets" 2806 } 2807 } 2808 } 2809 ], 2810 "optional": false, 2811 "loc": { 2812 "start": { 2813 "line": 40, 2814 "column": 54, 2815 "program": "MathCordic.ets" 2816 }, 2817 "end": { 2818 "line": 40, 2819 "column": 60, 2820 "program": "MathCordic.ets" 2821 } 2822 } 2823 }, 2824 "loc": { 2825 "start": { 2826 "line": 40, 2827 "column": 32, 2828 "program": "MathCordic.ets" 2829 }, 2830 "end": { 2831 "line": 40, 2832 "column": 60, 2833 "program": "MathCordic.ets" 2834 } 2835 } 2836 } 2837 ], 2838 "optional": false, 2839 "loc": { 2840 "start": { 2841 "line": 40, 2842 "column": 13, 2843 "program": "MathCordic.ets" 2844 }, 2845 "end": { 2846 "line": 40, 2847 "column": 61, 2848 "program": "MathCordic.ets" 2849 } 2850 } 2851 }, 2852 "loc": { 2853 "start": { 2854 "line": 40, 2855 "column": 9, 2856 "program": "MathCordic.ets" 2857 }, 2858 "end": { 2859 "line": 40, 2860 "column": 61, 2861 "program": "MathCordic.ets" 2862 } 2863 } 2864 }, 2865 "loc": { 2866 "start": { 2867 "line": 40, 2868 "column": 9, 2869 "program": "MathCordic.ets" 2870 }, 2871 "end": { 2872 "line": 40, 2873 "column": 62, 2874 "program": "MathCordic.ets" 2875 } 2876 } 2877 }, 2878 { 2879 "type": "ExpressionStatement", 2880 "expression": { 2881 "type": "AssignmentExpression", 2882 "operator": "=", 2883 "left": { 2884 "type": "Identifier", 2885 "name": "y", 2886 "decorators": [], 2887 "loc": { 2888 "start": { 2889 "line": 41, 2890 "column": 9, 2891 "program": "MathCordic.ets" 2892 }, 2893 "end": { 2894 "line": 41, 2895 "column": 10, 2896 "program": "MathCordic.ets" 2897 } 2898 } 2899 }, 2900 "right": { 2901 "type": "CallExpression", 2902 "callee": { 2903 "type": "Identifier", 2904 "name": "sin", 2905 "decorators": [], 2906 "loc": { 2907 "start": { 2908 "line": 41, 2909 "column": 13, 2910 "program": "MathCordic.ets" 2911 }, 2912 "end": { 2913 "line": 41, 2914 "column": 16, 2915 "program": "MathCordic.ets" 2916 } 2917 } 2918 }, 2919 "arguments": [ 2920 { 2921 "type": "NumberLiteral", 2922 "value": 0, 2923 "loc": { 2924 "start": { 2925 "line": 41, 2926 "column": 17, 2927 "program": "MathCordic.ets" 2928 }, 2929 "end": { 2930 "line": 41, 2931 "column": 18, 2932 "program": "MathCordic.ets" 2933 } 2934 } 2935 } 2936 ], 2937 "optional": false, 2938 "loc": { 2939 "start": { 2940 "line": 41, 2941 "column": 13, 2942 "program": "MathCordic.ets" 2943 }, 2944 "end": { 2945 "line": 41, 2946 "column": 19, 2947 "program": "MathCordic.ets" 2948 } 2949 } 2950 }, 2951 "loc": { 2952 "start": { 2953 "line": 41, 2954 "column": 9, 2955 "program": "MathCordic.ets" 2956 }, 2957 "end": { 2958 "line": 41, 2959 "column": 19, 2960 "program": "MathCordic.ets" 2961 } 2962 } 2963 }, 2964 "loc": { 2965 "start": { 2966 "line": 41, 2967 "column": 9, 2968 "program": "MathCordic.ets" 2969 }, 2970 "end": { 2971 "line": 41, 2972 "column": 20, 2973 "program": "MathCordic.ets" 2974 } 2975 } 2976 }, 2977 { 2978 "type": "ForUpdateStatement", 2979 "init": { 2980 "type": "AssignmentExpression", 2981 "operator": "=", 2982 "left": { 2983 "type": "Identifier", 2984 "name": "step", 2985 "decorators": [], 2986 "loc": { 2987 "start": { 2988 "line": 42, 2989 "column": 14, 2990 "program": "MathCordic.ets" 2991 }, 2992 "end": { 2993 "line": 42, 2994 "column": 18, 2995 "program": "MathCordic.ets" 2996 } 2997 } 2998 }, 2999 "right": { 3000 "type": "NumberLiteral", 3001 "value": 0, 3002 "loc": { 3003 "start": { 3004 "line": 42, 3005 "column": 21, 3006 "program": "MathCordic.ets" 3007 }, 3008 "end": { 3009 "line": 42, 3010 "column": 22, 3011 "program": "MathCordic.ets" 3012 } 3013 } 3014 }, 3015 "loc": { 3016 "start": { 3017 "line": 42, 3018 "column": 14, 3019 "program": "MathCordic.ets" 3020 }, 3021 "end": { 3022 "line": 42, 3023 "column": 22, 3024 "program": "MathCordic.ets" 3025 } 3026 } 3027 }, 3028 "test": { 3029 "type": "BinaryExpression", 3030 "operator": "<", 3031 "left": { 3032 "type": "Identifier", 3033 "name": "step", 3034 "decorators": [], 3035 "loc": { 3036 "start": { 3037 "line": 42, 3038 "column": 24, 3039 "program": "MathCordic.ets" 3040 }, 3041 "end": { 3042 "line": 42, 3043 "column": 28, 3044 "program": "MathCordic.ets" 3045 } 3046 } 3047 }, 3048 "right": { 3049 "type": "NumberLiteral", 3050 "value": 12, 3051 "loc": { 3052 "start": { 3053 "line": 42, 3054 "column": 31, 3055 "program": "MathCordic.ets" 3056 }, 3057 "end": { 3058 "line": 42, 3059 "column": 33, 3060 "program": "MathCordic.ets" 3061 } 3062 } 3063 }, 3064 "loc": { 3065 "start": { 3066 "line": 42, 3067 "column": 24, 3068 "program": "MathCordic.ets" 3069 }, 3070 "end": { 3071 "line": 42, 3072 "column": 33, 3073 "program": "MathCordic.ets" 3074 } 3075 } 3076 }, 3077 "update": { 3078 "type": "UpdateExpression", 3079 "operator": "++", 3080 "prefix": false, 3081 "argument": { 3082 "type": "Identifier", 3083 "name": "step", 3084 "decorators": [], 3085 "loc": { 3086 "start": { 3087 "line": 42, 3088 "column": 35, 3089 "program": "MathCordic.ets" 3090 }, 3091 "end": { 3092 "line": 42, 3093 "column": 39, 3094 "program": "MathCordic.ets" 3095 } 3096 } 3097 }, 3098 "loc": { 3099 "start": { 3100 "line": 42, 3101 "column": 35, 3102 "program": "MathCordic.ets" 3103 }, 3104 "end": { 3105 "line": 42, 3106 "column": 41, 3107 "program": "MathCordic.ets" 3108 } 3109 } 3110 }, 3111 "body": { 3112 "type": "BlockStatement", 3113 "statements": [ 3114 { 3115 "type": "VariableDeclaration", 3116 "declarations": [ 3117 { 3118 "type": "VariableDeclarator", 3119 "id": { 3120 "type": "Identifier", 3121 "name": "newX", 3122 "typeAnnotation": { 3123 "type": "ETSPrimitiveType", 3124 "loc": { 3125 "start": { 3126 "line": 43, 3127 "column": 24, 3128 "program": "MathCordic.ets" 3129 }, 3130 "end": { 3131 "line": 43, 3132 "column": 30, 3133 "program": "MathCordic.ets" 3134 } 3135 } 3136 }, 3137 "decorators": [], 3138 "loc": { 3139 "start": { 3140 "line": 43, 3141 "column": 17, 3142 "program": "MathCordic.ets" 3143 }, 3144 "end": { 3145 "line": 43, 3146 "column": 21, 3147 "program": "MathCordic.ets" 3148 } 3149 } 3150 }, 3151 "init": null, 3152 "loc": { 3153 "start": { 3154 "line": 43, 3155 "column": 17, 3156 "program": "MathCordic.ets" 3157 }, 3158 "end": { 3159 "line": 43, 3160 "column": 21, 3161 "program": "MathCordic.ets" 3162 } 3163 } 3164 } 3165 ], 3166 "kind": "let", 3167 "loc": { 3168 "start": { 3169 "line": 43, 3170 "column": 13, 3171 "program": "MathCordic.ets" 3172 }, 3173 "end": { 3174 "line": 43, 3175 "column": 32, 3176 "program": "MathCordic.ets" 3177 } 3178 } 3179 }, 3180 { 3181 "type": "IfStatement", 3182 "test": { 3183 "type": "BinaryExpression", 3184 "operator": ">", 3185 "left": { 3186 "type": "Identifier", 3187 "name": "targetAngle", 3188 "decorators": [], 3189 "loc": { 3190 "start": { 3191 "line": 44, 3192 "column": 17, 3193 "program": "MathCordic.ets" 3194 }, 3195 "end": { 3196 "line": 44, 3197 "column": 28, 3198 "program": "MathCordic.ets" 3199 } 3200 } 3201 }, 3202 "right": { 3203 "type": "Identifier", 3204 "name": "currAngle", 3205 "decorators": [], 3206 "loc": { 3207 "start": { 3208 "line": 44, 3209 "column": 31, 3210 "program": "MathCordic.ets" 3211 }, 3212 "end": { 3213 "line": 44, 3214 "column": 40, 3215 "program": "MathCordic.ets" 3216 } 3217 } 3218 }, 3219 "loc": { 3220 "start": { 3221 "line": 44, 3222 "column": 17, 3223 "program": "MathCordic.ets" 3224 }, 3225 "end": { 3226 "line": 44, 3227 "column": 40, 3228 "program": "MathCordic.ets" 3229 } 3230 } 3231 }, 3232 "consequent": { 3233 "type": "BlockStatement", 3234 "statements": [ 3235 { 3236 "type": "ExpressionStatement", 3237 "expression": { 3238 "type": "AssignmentExpression", 3239 "operator": "=", 3240 "left": { 3241 "type": "Identifier", 3242 "name": "newX", 3243 "decorators": [], 3244 "loc": { 3245 "start": { 3246 "line": 45, 3247 "column": 17, 3248 "program": "MathCordic.ets" 3249 }, 3250 "end": { 3251 "line": 45, 3252 "column": 21, 3253 "program": "MathCordic.ets" 3254 } 3255 } 3256 }, 3257 "right": { 3258 "type": "BinaryExpression", 3259 "operator": "-", 3260 "left": { 3261 "type": "Identifier", 3262 "name": "x", 3263 "decorators": [], 3264 "loc": { 3265 "start": { 3266 "line": 45, 3267 "column": 24, 3268 "program": "MathCordic.ets" 3269 }, 3270 "end": { 3271 "line": 45, 3272 "column": 25, 3273 "program": "MathCordic.ets" 3274 } 3275 } 3276 }, 3277 "right": { 3278 "type": "BinaryExpression", 3279 "operator": ">>", 3280 "left": { 3281 "type": "TSAsExpression", 3282 "expression": { 3283 "type": "Identifier", 3284 "name": "y", 3285 "decorators": [], 3286 "loc": { 3287 "start": { 3288 "line": 45, 3289 "column": 29, 3290 "program": "MathCordic.ets" 3291 }, 3292 "end": { 3293 "line": 45, 3294 "column": 30, 3295 "program": "MathCordic.ets" 3296 } 3297 } 3298 }, 3299 "typeAnnotation": { 3300 "type": "ETSPrimitiveType", 3301 "loc": { 3302 "start": { 3303 "line": 45, 3304 "column": 34, 3305 "program": "MathCordic.ets" 3306 }, 3307 "end": { 3308 "line": 45, 3309 "column": 37, 3310 "program": "MathCordic.ets" 3311 } 3312 } 3313 }, 3314 "loc": { 3315 "start": { 3316 "line": 45, 3317 "column": 29, 3318 "program": "MathCordic.ets" 3319 }, 3320 "end": { 3321 "line": 45, 3322 "column": 30, 3323 "program": "MathCordic.ets" 3324 } 3325 } 3326 }, 3327 "right": { 3328 "type": "Identifier", 3329 "name": "step", 3330 "decorators": [], 3331 "loc": { 3332 "start": { 3333 "line": 45, 3334 "column": 41, 3335 "program": "MathCordic.ets" 3336 }, 3337 "end": { 3338 "line": 45, 3339 "column": 45, 3340 "program": "MathCordic.ets" 3341 } 3342 } 3343 }, 3344 "loc": { 3345 "start": { 3346 "line": 45, 3347 "column": 28, 3348 "program": "MathCordic.ets" 3349 }, 3350 "end": { 3351 "line": 45, 3352 "column": 46, 3353 "program": "MathCordic.ets" 3354 } 3355 } 3356 }, 3357 "loc": { 3358 "start": { 3359 "line": 45, 3360 "column": 24, 3361 "program": "MathCordic.ets" 3362 }, 3363 "end": { 3364 "line": 45, 3365 "column": 46, 3366 "program": "MathCordic.ets" 3367 } 3368 } 3369 }, 3370 "loc": { 3371 "start": { 3372 "line": 45, 3373 "column": 17, 3374 "program": "MathCordic.ets" 3375 }, 3376 "end": { 3377 "line": 45, 3378 "column": 46, 3379 "program": "MathCordic.ets" 3380 } 3381 } 3382 }, 3383 "loc": { 3384 "start": { 3385 "line": 45, 3386 "column": 17, 3387 "program": "MathCordic.ets" 3388 }, 3389 "end": { 3390 "line": 45, 3391 "column": 47, 3392 "program": "MathCordic.ets" 3393 } 3394 } 3395 }, 3396 { 3397 "type": "ExpressionStatement", 3398 "expression": { 3399 "type": "AssignmentExpression", 3400 "operator": "=", 3401 "left": { 3402 "type": "Identifier", 3403 "name": "y", 3404 "decorators": [], 3405 "loc": { 3406 "start": { 3407 "line": 46, 3408 "column": 17, 3409 "program": "MathCordic.ets" 3410 }, 3411 "end": { 3412 "line": 46, 3413 "column": 18, 3414 "program": "MathCordic.ets" 3415 } 3416 } 3417 }, 3418 "right": { 3419 "type": "BinaryExpression", 3420 "operator": "+", 3421 "left": { 3422 "type": "BinaryExpression", 3423 "operator": ">>", 3424 "left": { 3425 "type": "TSAsExpression", 3426 "expression": { 3427 "type": "Identifier", 3428 "name": "x", 3429 "decorators": [], 3430 "loc": { 3431 "start": { 3432 "line": 46, 3433 "column": 22, 3434 "program": "MathCordic.ets" 3435 }, 3436 "end": { 3437 "line": 46, 3438 "column": 23, 3439 "program": "MathCordic.ets" 3440 } 3441 } 3442 }, 3443 "typeAnnotation": { 3444 "type": "ETSPrimitiveType", 3445 "loc": { 3446 "start": { 3447 "line": 46, 3448 "column": 27, 3449 "program": "MathCordic.ets" 3450 }, 3451 "end": { 3452 "line": 46, 3453 "column": 30, 3454 "program": "MathCordic.ets" 3455 } 3456 } 3457 }, 3458 "loc": { 3459 "start": { 3460 "line": 46, 3461 "column": 22, 3462 "program": "MathCordic.ets" 3463 }, 3464 "end": { 3465 "line": 46, 3466 "column": 23, 3467 "program": "MathCordic.ets" 3468 } 3469 } 3470 }, 3471 "right": { 3472 "type": "Identifier", 3473 "name": "step", 3474 "decorators": [], 3475 "loc": { 3476 "start": { 3477 "line": 46, 3478 "column": 34, 3479 "program": "MathCordic.ets" 3480 }, 3481 "end": { 3482 "line": 46, 3483 "column": 38, 3484 "program": "MathCordic.ets" 3485 } 3486 } 3487 }, 3488 "loc": { 3489 "start": { 3490 "line": 46, 3491 "column": 21, 3492 "program": "MathCordic.ets" 3493 }, 3494 "end": { 3495 "line": 46, 3496 "column": 39, 3497 "program": "MathCordic.ets" 3498 } 3499 } 3500 }, 3501 "right": { 3502 "type": "Identifier", 3503 "name": "y", 3504 "decorators": [], 3505 "loc": { 3506 "start": { 3507 "line": 46, 3508 "column": 42, 3509 "program": "MathCordic.ets" 3510 }, 3511 "end": { 3512 "line": 46, 3513 "column": 43, 3514 "program": "MathCordic.ets" 3515 } 3516 } 3517 }, 3518 "loc": { 3519 "start": { 3520 "line": 46, 3521 "column": 21, 3522 "program": "MathCordic.ets" 3523 }, 3524 "end": { 3525 "line": 46, 3526 "column": 43, 3527 "program": "MathCordic.ets" 3528 } 3529 } 3530 }, 3531 "loc": { 3532 "start": { 3533 "line": 46, 3534 "column": 17, 3535 "program": "MathCordic.ets" 3536 }, 3537 "end": { 3538 "line": 46, 3539 "column": 43, 3540 "program": "MathCordic.ets" 3541 } 3542 } 3543 }, 3544 "loc": { 3545 "start": { 3546 "line": 46, 3547 "column": 17, 3548 "program": "MathCordic.ets" 3549 }, 3550 "end": { 3551 "line": 46, 3552 "column": 44, 3553 "program": "MathCordic.ets" 3554 } 3555 } 3556 }, 3557 { 3558 "type": "ExpressionStatement", 3559 "expression": { 3560 "type": "AssignmentExpression", 3561 "operator": "=", 3562 "left": { 3563 "type": "Identifier", 3564 "name": "x", 3565 "decorators": [], 3566 "loc": { 3567 "start": { 3568 "line": 47, 3569 "column": 17, 3570 "program": "MathCordic.ets" 3571 }, 3572 "end": { 3573 "line": 47, 3574 "column": 18, 3575 "program": "MathCordic.ets" 3576 } 3577 } 3578 }, 3579 "right": { 3580 "type": "Identifier", 3581 "name": "newX", 3582 "decorators": [], 3583 "loc": { 3584 "start": { 3585 "line": 47, 3586 "column": 21, 3587 "program": "MathCordic.ets" 3588 }, 3589 "end": { 3590 "line": 47, 3591 "column": 25, 3592 "program": "MathCordic.ets" 3593 } 3594 } 3595 }, 3596 "loc": { 3597 "start": { 3598 "line": 47, 3599 "column": 17, 3600 "program": "MathCordic.ets" 3601 }, 3602 "end": { 3603 "line": 47, 3604 "column": 25, 3605 "program": "MathCordic.ets" 3606 } 3607 } 3608 }, 3609 "loc": { 3610 "start": { 3611 "line": 47, 3612 "column": 17, 3613 "program": "MathCordic.ets" 3614 }, 3615 "end": { 3616 "line": 47, 3617 "column": 26, 3618 "program": "MathCordic.ets" 3619 } 3620 } 3621 }, 3622 { 3623 "type": "ExpressionStatement", 3624 "expression": { 3625 "type": "AssignmentExpression", 3626 "operator": "+=", 3627 "left": { 3628 "type": "Identifier", 3629 "name": "currAngle", 3630 "decorators": [], 3631 "loc": { 3632 "start": { 3633 "line": 48, 3634 "column": 17, 3635 "program": "MathCordic.ets" 3636 }, 3637 "end": { 3638 "line": 48, 3639 "column": 26, 3640 "program": "MathCordic.ets" 3641 } 3642 } 3643 }, 3644 "right": { 3645 "type": "MemberExpression", 3646 "object": { 3647 "type": "MemberExpression", 3648 "object": { 3649 "type": "Identifier", 3650 "name": "MathCordic", 3651 "decorators": [], 3652 "loc": { 3653 "start": { 3654 "line": 48, 3655 "column": 30, 3656 "program": "MathCordic.ets" 3657 }, 3658 "end": { 3659 "line": 48, 3660 "column": 40, 3661 "program": "MathCordic.ets" 3662 } 3663 } 3664 }, 3665 "property": { 3666 "type": "Identifier", 3667 "name": "ANGLES", 3668 "decorators": [], 3669 "loc": { 3670 "start": { 3671 "line": 48, 3672 "column": 41, 3673 "program": "MathCordic.ets" 3674 }, 3675 "end": { 3676 "line": 48, 3677 "column": 47, 3678 "program": "MathCordic.ets" 3679 } 3680 } 3681 }, 3682 "computed": false, 3683 "optional": false, 3684 "loc": { 3685 "start": { 3686 "line": 48, 3687 "column": 30, 3688 "program": "MathCordic.ets" 3689 }, 3690 "end": { 3691 "line": 48, 3692 "column": 47, 3693 "program": "MathCordic.ets" 3694 } 3695 } 3696 }, 3697 "property": { 3698 "type": "Identifier", 3699 "name": "step", 3700 "decorators": [], 3701 "loc": { 3702 "start": { 3703 "line": 48, 3704 "column": 48, 3705 "program": "MathCordic.ets" 3706 }, 3707 "end": { 3708 "line": 48, 3709 "column": 52, 3710 "program": "MathCordic.ets" 3711 } 3712 } 3713 }, 3714 "computed": true, 3715 "optional": false, 3716 "loc": { 3717 "start": { 3718 "line": 48, 3719 "column": 30, 3720 "program": "MathCordic.ets" 3721 }, 3722 "end": { 3723 "line": 48, 3724 "column": 53, 3725 "program": "MathCordic.ets" 3726 } 3727 } 3728 }, 3729 "loc": { 3730 "start": { 3731 "line": 48, 3732 "column": 17, 3733 "program": "MathCordic.ets" 3734 }, 3735 "end": { 3736 "line": 48, 3737 "column": 53, 3738 "program": "MathCordic.ets" 3739 } 3740 } 3741 }, 3742 "loc": { 3743 "start": { 3744 "line": 48, 3745 "column": 17, 3746 "program": "MathCordic.ets" 3747 }, 3748 "end": { 3749 "line": 48, 3750 "column": 54, 3751 "program": "MathCordic.ets" 3752 } 3753 } 3754 } 3755 ], 3756 "loc": { 3757 "start": { 3758 "line": 44, 3759 "column": 42, 3760 "program": "MathCordic.ets" 3761 }, 3762 "end": { 3763 "line": 49, 3764 "column": 14, 3765 "program": "MathCordic.ets" 3766 } 3767 } 3768 }, 3769 "alternate": { 3770 "type": "BlockStatement", 3771 "statements": [ 3772 { 3773 "type": "ExpressionStatement", 3774 "expression": { 3775 "type": "AssignmentExpression", 3776 "operator": "=", 3777 "left": { 3778 "type": "Identifier", 3779 "name": "newX", 3780 "decorators": [], 3781 "loc": { 3782 "start": { 3783 "line": 51, 3784 "column": 17, 3785 "program": "MathCordic.ets" 3786 }, 3787 "end": { 3788 "line": 51, 3789 "column": 21, 3790 "program": "MathCordic.ets" 3791 } 3792 } 3793 }, 3794 "right": { 3795 "type": "BinaryExpression", 3796 "operator": "+", 3797 "left": { 3798 "type": "Identifier", 3799 "name": "x", 3800 "decorators": [], 3801 "loc": { 3802 "start": { 3803 "line": 51, 3804 "column": 24, 3805 "program": "MathCordic.ets" 3806 }, 3807 "end": { 3808 "line": 51, 3809 "column": 25, 3810 "program": "MathCordic.ets" 3811 } 3812 } 3813 }, 3814 "right": { 3815 "type": "BinaryExpression", 3816 "operator": ">>", 3817 "left": { 3818 "type": "TSAsExpression", 3819 "expression": { 3820 "type": "Identifier", 3821 "name": "y", 3822 "decorators": [], 3823 "loc": { 3824 "start": { 3825 "line": 51, 3826 "column": 29, 3827 "program": "MathCordic.ets" 3828 }, 3829 "end": { 3830 "line": 51, 3831 "column": 30, 3832 "program": "MathCordic.ets" 3833 } 3834 } 3835 }, 3836 "typeAnnotation": { 3837 "type": "ETSPrimitiveType", 3838 "loc": { 3839 "start": { 3840 "line": 51, 3841 "column": 34, 3842 "program": "MathCordic.ets" 3843 }, 3844 "end": { 3845 "line": 51, 3846 "column": 37, 3847 "program": "MathCordic.ets" 3848 } 3849 } 3850 }, 3851 "loc": { 3852 "start": { 3853 "line": 51, 3854 "column": 29, 3855 "program": "MathCordic.ets" 3856 }, 3857 "end": { 3858 "line": 51, 3859 "column": 30, 3860 "program": "MathCordic.ets" 3861 } 3862 } 3863 }, 3864 "right": { 3865 "type": "Identifier", 3866 "name": "step", 3867 "decorators": [], 3868 "loc": { 3869 "start": { 3870 "line": 51, 3871 "column": 41, 3872 "program": "MathCordic.ets" 3873 }, 3874 "end": { 3875 "line": 51, 3876 "column": 45, 3877 "program": "MathCordic.ets" 3878 } 3879 } 3880 }, 3881 "loc": { 3882 "start": { 3883 "line": 51, 3884 "column": 28, 3885 "program": "MathCordic.ets" 3886 }, 3887 "end": { 3888 "line": 51, 3889 "column": 46, 3890 "program": "MathCordic.ets" 3891 } 3892 } 3893 }, 3894 "loc": { 3895 "start": { 3896 "line": 51, 3897 "column": 24, 3898 "program": "MathCordic.ets" 3899 }, 3900 "end": { 3901 "line": 51, 3902 "column": 46, 3903 "program": "MathCordic.ets" 3904 } 3905 } 3906 }, 3907 "loc": { 3908 "start": { 3909 "line": 51, 3910 "column": 17, 3911 "program": "MathCordic.ets" 3912 }, 3913 "end": { 3914 "line": 51, 3915 "column": 46, 3916 "program": "MathCordic.ets" 3917 } 3918 } 3919 }, 3920 "loc": { 3921 "start": { 3922 "line": 51, 3923 "column": 17, 3924 "program": "MathCordic.ets" 3925 }, 3926 "end": { 3927 "line": 51, 3928 "column": 47, 3929 "program": "MathCordic.ets" 3930 } 3931 } 3932 }, 3933 { 3934 "type": "ExpressionStatement", 3935 "expression": { 3936 "type": "AssignmentExpression", 3937 "operator": "=", 3938 "left": { 3939 "type": "Identifier", 3940 "name": "y", 3941 "decorators": [], 3942 "loc": { 3943 "start": { 3944 "line": 52, 3945 "column": 17, 3946 "program": "MathCordic.ets" 3947 }, 3948 "end": { 3949 "line": 52, 3950 "column": 18, 3951 "program": "MathCordic.ets" 3952 } 3953 } 3954 }, 3955 "right": { 3956 "type": "BinaryExpression", 3957 "operator": "+", 3958 "left": { 3959 "type": "UnaryExpression", 3960 "operator": "-", 3961 "prefix": true, 3962 "argument": { 3963 "type": "BinaryExpression", 3964 "operator": ">>", 3965 "left": { 3966 "type": "TSAsExpression", 3967 "expression": { 3968 "type": "Identifier", 3969 "name": "x", 3970 "decorators": [], 3971 "loc": { 3972 "start": { 3973 "line": 52, 3974 "column": 23, 3975 "program": "MathCordic.ets" 3976 }, 3977 "end": { 3978 "line": 52, 3979 "column": 24, 3980 "program": "MathCordic.ets" 3981 } 3982 } 3983 }, 3984 "typeAnnotation": { 3985 "type": "ETSPrimitiveType", 3986 "loc": { 3987 "start": { 3988 "line": 52, 3989 "column": 28, 3990 "program": "MathCordic.ets" 3991 }, 3992 "end": { 3993 "line": 52, 3994 "column": 31, 3995 "program": "MathCordic.ets" 3996 } 3997 } 3998 }, 3999 "loc": { 4000 "start": { 4001 "line": 52, 4002 "column": 23, 4003 "program": "MathCordic.ets" 4004 }, 4005 "end": { 4006 "line": 52, 4007 "column": 24, 4008 "program": "MathCordic.ets" 4009 } 4010 } 4011 }, 4012 "right": { 4013 "type": "Identifier", 4014 "name": "step", 4015 "decorators": [], 4016 "loc": { 4017 "start": { 4018 "line": 52, 4019 "column": 35, 4020 "program": "MathCordic.ets" 4021 }, 4022 "end": { 4023 "line": 52, 4024 "column": 39, 4025 "program": "MathCordic.ets" 4026 } 4027 } 4028 }, 4029 "loc": { 4030 "start": { 4031 "line": 52, 4032 "column": 22, 4033 "program": "MathCordic.ets" 4034 }, 4035 "end": { 4036 "line": 52, 4037 "column": 40, 4038 "program": "MathCordic.ets" 4039 } 4040 } 4041 }, 4042 "loc": { 4043 "start": { 4044 "line": 52, 4045 "column": 21, 4046 "program": "MathCordic.ets" 4047 }, 4048 "end": { 4049 "line": 52, 4050 "column": 40, 4051 "program": "MathCordic.ets" 4052 } 4053 } 4054 }, 4055 "right": { 4056 "type": "Identifier", 4057 "name": "y", 4058 "decorators": [], 4059 "loc": { 4060 "start": { 4061 "line": 52, 4062 "column": 43, 4063 "program": "MathCordic.ets" 4064 }, 4065 "end": { 4066 "line": 52, 4067 "column": 44, 4068 "program": "MathCordic.ets" 4069 } 4070 } 4071 }, 4072 "loc": { 4073 "start": { 4074 "line": 52, 4075 "column": 21, 4076 "program": "MathCordic.ets" 4077 }, 4078 "end": { 4079 "line": 52, 4080 "column": 44, 4081 "program": "MathCordic.ets" 4082 } 4083 } 4084 }, 4085 "loc": { 4086 "start": { 4087 "line": 52, 4088 "column": 17, 4089 "program": "MathCordic.ets" 4090 }, 4091 "end": { 4092 "line": 52, 4093 "column": 44, 4094 "program": "MathCordic.ets" 4095 } 4096 } 4097 }, 4098 "loc": { 4099 "start": { 4100 "line": 52, 4101 "column": 17, 4102 "program": "MathCordic.ets" 4103 }, 4104 "end": { 4105 "line": 52, 4106 "column": 45, 4107 "program": "MathCordic.ets" 4108 } 4109 } 4110 }, 4111 { 4112 "type": "ExpressionStatement", 4113 "expression": { 4114 "type": "AssignmentExpression", 4115 "operator": "=", 4116 "left": { 4117 "type": "Identifier", 4118 "name": "x", 4119 "decorators": [], 4120 "loc": { 4121 "start": { 4122 "line": 53, 4123 "column": 17, 4124 "program": "MathCordic.ets" 4125 }, 4126 "end": { 4127 "line": 53, 4128 "column": 18, 4129 "program": "MathCordic.ets" 4130 } 4131 } 4132 }, 4133 "right": { 4134 "type": "Identifier", 4135 "name": "newX", 4136 "decorators": [], 4137 "loc": { 4138 "start": { 4139 "line": 53, 4140 "column": 21, 4141 "program": "MathCordic.ets" 4142 }, 4143 "end": { 4144 "line": 53, 4145 "column": 25, 4146 "program": "MathCordic.ets" 4147 } 4148 } 4149 }, 4150 "loc": { 4151 "start": { 4152 "line": 53, 4153 "column": 17, 4154 "program": "MathCordic.ets" 4155 }, 4156 "end": { 4157 "line": 53, 4158 "column": 25, 4159 "program": "MathCordic.ets" 4160 } 4161 } 4162 }, 4163 "loc": { 4164 "start": { 4165 "line": 53, 4166 "column": 17, 4167 "program": "MathCordic.ets" 4168 }, 4169 "end": { 4170 "line": 53, 4171 "column": 26, 4172 "program": "MathCordic.ets" 4173 } 4174 } 4175 }, 4176 { 4177 "type": "ExpressionStatement", 4178 "expression": { 4179 "type": "AssignmentExpression", 4180 "operator": "-=", 4181 "left": { 4182 "type": "Identifier", 4183 "name": "currAngle", 4184 "decorators": [], 4185 "loc": { 4186 "start": { 4187 "line": 54, 4188 "column": 17, 4189 "program": "MathCordic.ets" 4190 }, 4191 "end": { 4192 "line": 54, 4193 "column": 26, 4194 "program": "MathCordic.ets" 4195 } 4196 } 4197 }, 4198 "right": { 4199 "type": "MemberExpression", 4200 "object": { 4201 "type": "MemberExpression", 4202 "object": { 4203 "type": "Identifier", 4204 "name": "MathCordic", 4205 "decorators": [], 4206 "loc": { 4207 "start": { 4208 "line": 54, 4209 "column": 30, 4210 "program": "MathCordic.ets" 4211 }, 4212 "end": { 4213 "line": 54, 4214 "column": 40, 4215 "program": "MathCordic.ets" 4216 } 4217 } 4218 }, 4219 "property": { 4220 "type": "Identifier", 4221 "name": "ANGLES", 4222 "decorators": [], 4223 "loc": { 4224 "start": { 4225 "line": 54, 4226 "column": 41, 4227 "program": "MathCordic.ets" 4228 }, 4229 "end": { 4230 "line": 54, 4231 "column": 47, 4232 "program": "MathCordic.ets" 4233 } 4234 } 4235 }, 4236 "computed": false, 4237 "optional": false, 4238 "loc": { 4239 "start": { 4240 "line": 54, 4241 "column": 30, 4242 "program": "MathCordic.ets" 4243 }, 4244 "end": { 4245 "line": 54, 4246 "column": 47, 4247 "program": "MathCordic.ets" 4248 } 4249 } 4250 }, 4251 "property": { 4252 "type": "Identifier", 4253 "name": "step", 4254 "decorators": [], 4255 "loc": { 4256 "start": { 4257 "line": 54, 4258 "column": 48, 4259 "program": "MathCordic.ets" 4260 }, 4261 "end": { 4262 "line": 54, 4263 "column": 52, 4264 "program": "MathCordic.ets" 4265 } 4266 } 4267 }, 4268 "computed": true, 4269 "optional": false, 4270 "loc": { 4271 "start": { 4272 "line": 54, 4273 "column": 30, 4274 "program": "MathCordic.ets" 4275 }, 4276 "end": { 4277 "line": 54, 4278 "column": 53, 4279 "program": "MathCordic.ets" 4280 } 4281 } 4282 }, 4283 "loc": { 4284 "start": { 4285 "line": 54, 4286 "column": 17, 4287 "program": "MathCordic.ets" 4288 }, 4289 "end": { 4290 "line": 54, 4291 "column": 53, 4292 "program": "MathCordic.ets" 4293 } 4294 } 4295 }, 4296 "loc": { 4297 "start": { 4298 "line": 54, 4299 "column": 17, 4300 "program": "MathCordic.ets" 4301 }, 4302 "end": { 4303 "line": 54, 4304 "column": 54, 4305 "program": "MathCordic.ets" 4306 } 4307 } 4308 } 4309 ], 4310 "loc": { 4311 "start": { 4312 "line": 50, 4313 "column": 18, 4314 "program": "MathCordic.ets" 4315 }, 4316 "end": { 4317 "line": 55, 4318 "column": 14, 4319 "program": "MathCordic.ets" 4320 } 4321 } 4322 }, 4323 "loc": { 4324 "start": { 4325 "line": 44, 4326 "column": 13, 4327 "program": "MathCordic.ets" 4328 }, 4329 "end": { 4330 "line": 55, 4331 "column": 14, 4332 "program": "MathCordic.ets" 4333 } 4334 } 4335 } 4336 ], 4337 "loc": { 4338 "start": { 4339 "line": 42, 4340 "column": 43, 4341 "program": "MathCordic.ets" 4342 }, 4343 "end": { 4344 "line": 56, 4345 "column": 10, 4346 "program": "MathCordic.ets" 4347 } 4348 } 4349 }, 4350 "loc": { 4351 "start": { 4352 "line": 42, 4353 "column": 9, 4354 "program": "MathCordic.ets" 4355 }, 4356 "end": { 4357 "line": 56, 4358 "column": 10, 4359 "program": "MathCordic.ets" 4360 } 4361 } 4362 }, 4363 { 4364 "type": "ReturnStatement", 4365 "argument": { 4366 "type": "BinaryExpression", 4367 "operator": "*", 4368 "left": { 4369 "type": "CallExpression", 4370 "callee": { 4371 "type": "MemberExpression", 4372 "object": { 4373 "type": "Identifier", 4374 "name": "MathCordic", 4375 "decorators": [], 4376 "loc": { 4377 "start": { 4378 "line": 57, 4379 "column": 16, 4380 "program": "MathCordic.ets" 4381 }, 4382 "end": { 4383 "line": 57, 4384 "column": 26, 4385 "program": "MathCordic.ets" 4386 } 4387 } 4388 }, 4389 "property": { 4390 "type": "Identifier", 4391 "name": "fnFloat", 4392 "decorators": [], 4393 "loc": { 4394 "start": { 4395 "line": 57, 4396 "column": 27, 4397 "program": "MathCordic.ets" 4398 }, 4399 "end": { 4400 "line": 57, 4401 "column": 34, 4402 "program": "MathCordic.ets" 4403 } 4404 } 4405 }, 4406 "computed": false, 4407 "optional": false, 4408 "loc": { 4409 "start": { 4410 "line": 57, 4411 "column": 16, 4412 "program": "MathCordic.ets" 4413 }, 4414 "end": { 4415 "line": 57, 4416 "column": 34, 4417 "program": "MathCordic.ets" 4418 } 4419 } 4420 }, 4421 "arguments": [ 4422 { 4423 "type": "Identifier", 4424 "name": "x", 4425 "decorators": [], 4426 "loc": { 4427 "start": { 4428 "line": 57, 4429 "column": 35, 4430 "program": "MathCordic.ets" 4431 }, 4432 "end": { 4433 "line": 57, 4434 "column": 36, 4435 "program": "MathCordic.ets" 4436 } 4437 } 4438 } 4439 ], 4440 "optional": false, 4441 "loc": { 4442 "start": { 4443 "line": 57, 4444 "column": 16, 4445 "program": "MathCordic.ets" 4446 }, 4447 "end": { 4448 "line": 57, 4449 "column": 37, 4450 "program": "MathCordic.ets" 4451 } 4452 } 4453 }, 4454 "right": { 4455 "type": "CallExpression", 4456 "callee": { 4457 "type": "MemberExpression", 4458 "object": { 4459 "type": "Identifier", 4460 "name": "MathCordic", 4461 "decorators": [], 4462 "loc": { 4463 "start": { 4464 "line": 57, 4465 "column": 40, 4466 "program": "MathCordic.ets" 4467 }, 4468 "end": { 4469 "line": 57, 4470 "column": 50, 4471 "program": "MathCordic.ets" 4472 } 4473 } 4474 }, 4475 "property": { 4476 "type": "Identifier", 4477 "name": "fnFloat", 4478 "decorators": [], 4479 "loc": { 4480 "start": { 4481 "line": 57, 4482 "column": 51, 4483 "program": "MathCordic.ets" 4484 }, 4485 "end": { 4486 "line": 57, 4487 "column": 58, 4488 "program": "MathCordic.ets" 4489 } 4490 } 4491 }, 4492 "computed": false, 4493 "optional": false, 4494 "loc": { 4495 "start": { 4496 "line": 57, 4497 "column": 40, 4498 "program": "MathCordic.ets" 4499 }, 4500 "end": { 4501 "line": 57, 4502 "column": 58, 4503 "program": "MathCordic.ets" 4504 } 4505 } 4506 }, 4507 "arguments": [ 4508 { 4509 "type": "Identifier", 4510 "name": "y", 4511 "decorators": [], 4512 "loc": { 4513 "start": { 4514 "line": 57, 4515 "column": 59, 4516 "program": "MathCordic.ets" 4517 }, 4518 "end": { 4519 "line": 57, 4520 "column": 60, 4521 "program": "MathCordic.ets" 4522 } 4523 } 4524 } 4525 ], 4526 "optional": false, 4527 "loc": { 4528 "start": { 4529 "line": 57, 4530 "column": 40, 4531 "program": "MathCordic.ets" 4532 }, 4533 "end": { 4534 "line": 57, 4535 "column": 61, 4536 "program": "MathCordic.ets" 4537 } 4538 } 4539 }, 4540 "loc": { 4541 "start": { 4542 "line": 57, 4543 "column": 16, 4544 "program": "MathCordic.ets" 4545 }, 4546 "end": { 4547 "line": 57, 4548 "column": 61, 4549 "program": "MathCordic.ets" 4550 } 4551 } 4552 }, 4553 "loc": { 4554 "start": { 4555 "line": 57, 4556 "column": 9, 4557 "program": "MathCordic.ets" 4558 }, 4559 "end": { 4560 "line": 57, 4561 "column": 62, 4562 "program": "MathCordic.ets" 4563 } 4564 } 4565 } 4566 ], 4567 "loc": { 4568 "start": { 4569 "line": 34, 4570 "column": 50, 4571 "program": "MathCordic.ets" 4572 }, 4573 "end": { 4574 "line": 58, 4575 "column": 6, 4576 "program": "MathCordic.ets" 4577 } 4578 } 4579 }, 4580 "loc": { 4581 "start": { 4582 "line": 34, 4583 "column": 24, 4584 "program": "MathCordic.ets" 4585 }, 4586 "end": { 4587 "line": 58, 4588 "column": 6, 4589 "program": "MathCordic.ets" 4590 } 4591 } 4592 }, 4593 "loc": { 4594 "start": { 4595 "line": 34, 4596 "column": 24, 4597 "program": "MathCordic.ets" 4598 }, 4599 "end": { 4600 "line": 58, 4601 "column": 6, 4602 "program": "MathCordic.ets" 4603 } 4604 } 4605 }, 4606 "overloads": [], 4607 "decorators": [], 4608 "loc": { 4609 "start": { 4610 "line": 34, 4611 "column": 5, 4612 "program": "MathCordic.ets" 4613 }, 4614 "end": { 4615 "line": 58, 4616 "column": 6, 4617 "program": "MathCordic.ets" 4618 } 4619 } 4620 }, 4621 { 4622 "type": "MethodDefinition", 4623 "key": { 4624 "type": "Identifier", 4625 "name": "cordic", 4626 "decorators": [], 4627 "loc": { 4628 "start": { 4629 "line": 60, 4630 "column": 12, 4631 "program": "MathCordic.ets" 4632 }, 4633 "end": { 4634 "line": 60, 4635 "column": 18, 4636 "program": "MathCordic.ets" 4637 } 4638 } 4639 }, 4640 "kind": "method", 4641 "accessibility": "public", 4642 "static": true, 4643 "optional": false, 4644 "computed": false, 4645 "value": { 4646 "type": "FunctionExpression", 4647 "function": { 4648 "type": "ScriptFunction", 4649 "id": { 4650 "type": "Identifier", 4651 "name": "cordic", 4652 "decorators": [], 4653 "loc": { 4654 "start": { 4655 "line": 60, 4656 "column": 12, 4657 "program": "MathCordic.ets" 4658 }, 4659 "end": { 4660 "line": 60, 4661 "column": 18, 4662 "program": "MathCordic.ets" 4663 } 4664 } 4665 }, 4666 "generator": false, 4667 "async": false, 4668 "expression": false, 4669 "params": [ 4670 { 4671 "type": "ETSParameterExpression", 4672 "name": { 4673 "type": "Identifier", 4674 "name": "runs", 4675 "typeAnnotation": { 4676 "type": "ETSPrimitiveType", 4677 "loc": { 4678 "start": { 4679 "line": 60, 4680 "column": 26, 4681 "program": "MathCordic.ets" 4682 }, 4683 "end": { 4684 "line": 60, 4685 "column": 29, 4686 "program": "MathCordic.ets" 4687 } 4688 } 4689 }, 4690 "decorators": [], 4691 "loc": { 4692 "start": { 4693 "line": 60, 4694 "column": 19, 4695 "program": "MathCordic.ets" 4696 }, 4697 "end": { 4698 "line": 60, 4699 "column": 29, 4700 "program": "MathCordic.ets" 4701 } 4702 } 4703 }, 4704 "loc": { 4705 "start": { 4706 "line": 60, 4707 "column": 19, 4708 "program": "MathCordic.ets" 4709 }, 4710 "end": { 4711 "line": 60, 4712 "column": 29, 4713 "program": "MathCordic.ets" 4714 } 4715 } 4716 } 4717 ], 4718 "returnType": { 4719 "type": "ETSPrimitiveType", 4720 "loc": { 4721 "start": { 4722 "line": 60, 4723 "column": 32, 4724 "program": "MathCordic.ets" 4725 }, 4726 "end": { 4727 "line": 60, 4728 "column": 38, 4729 "program": "MathCordic.ets" 4730 } 4731 } 4732 }, 4733 "body": { 4734 "type": "BlockStatement", 4735 "statements": [ 4736 { 4737 "type": "VariableDeclaration", 4738 "declarations": [ 4739 { 4740 "type": "VariableDeclarator", 4741 "id": { 4742 "type": "Identifier", 4743 "name": "total", 4744 "typeAnnotation": { 4745 "type": "ETSPrimitiveType", 4746 "loc": { 4747 "start": { 4748 "line": 61, 4749 "column": 21, 4750 "program": "MathCordic.ets" 4751 }, 4752 "end": { 4753 "line": 61, 4754 "column": 27, 4755 "program": "MathCordic.ets" 4756 } 4757 } 4758 }, 4759 "decorators": [], 4760 "loc": { 4761 "start": { 4762 "line": 61, 4763 "column": 13, 4764 "program": "MathCordic.ets" 4765 }, 4766 "end": { 4767 "line": 61, 4768 "column": 18, 4769 "program": "MathCordic.ets" 4770 } 4771 } 4772 }, 4773 "init": { 4774 "type": "NumberLiteral", 4775 "value": 0, 4776 "loc": { 4777 "start": { 4778 "line": 61, 4779 "column": 30, 4780 "program": "MathCordic.ets" 4781 }, 4782 "end": { 4783 "line": 61, 4784 "column": 31, 4785 "program": "MathCordic.ets" 4786 } 4787 } 4788 }, 4789 "loc": { 4790 "start": { 4791 "line": 61, 4792 "column": 13, 4793 "program": "MathCordic.ets" 4794 }, 4795 "end": { 4796 "line": 61, 4797 "column": 31, 4798 "program": "MathCordic.ets" 4799 } 4800 } 4801 } 4802 ], 4803 "kind": "let", 4804 "loc": { 4805 "start": { 4806 "line": 61, 4807 "column": 9, 4808 "program": "MathCordic.ets" 4809 }, 4810 "end": { 4811 "line": 61, 4812 "column": 32, 4813 "program": "MathCordic.ets" 4814 } 4815 } 4816 }, 4817 { 4818 "type": "ForUpdateStatement", 4819 "init": { 4820 "type": "VariableDeclaration", 4821 "declarations": [ 4822 { 4823 "type": "VariableDeclarator", 4824 "id": { 4825 "type": "Identifier", 4826 "name": "i", 4827 "typeAnnotation": { 4828 "type": "ETSPrimitiveType", 4829 "loc": { 4830 "start": { 4831 "line": 62, 4832 "column": 22, 4833 "program": "MathCordic.ets" 4834 }, 4835 "end": { 4836 "line": 62, 4837 "column": 25, 4838 "program": "MathCordic.ets" 4839 } 4840 } 4841 }, 4842 "decorators": [], 4843 "loc": { 4844 "start": { 4845 "line": 62, 4846 "column": 18, 4847 "program": "MathCordic.ets" 4848 }, 4849 "end": { 4850 "line": 62, 4851 "column": 19, 4852 "program": "MathCordic.ets" 4853 } 4854 } 4855 }, 4856 "init": { 4857 "type": "NumberLiteral", 4858 "value": 0, 4859 "loc": { 4860 "start": { 4861 "line": 62, 4862 "column": 28, 4863 "program": "MathCordic.ets" 4864 }, 4865 "end": { 4866 "line": 62, 4867 "column": 29, 4868 "program": "MathCordic.ets" 4869 } 4870 } 4871 }, 4872 "loc": { 4873 "start": { 4874 "line": 62, 4875 "column": 18, 4876 "program": "MathCordic.ets" 4877 }, 4878 "end": { 4879 "line": 62, 4880 "column": 29, 4881 "program": "MathCordic.ets" 4882 } 4883 } 4884 } 4885 ], 4886 "kind": "let", 4887 "loc": { 4888 "start": { 4889 "line": 62, 4890 "column": 14, 4891 "program": "MathCordic.ets" 4892 }, 4893 "end": { 4894 "line": 62, 4895 "column": 29, 4896 "program": "MathCordic.ets" 4897 } 4898 } 4899 }, 4900 "test": { 4901 "type": "BinaryExpression", 4902 "operator": "<", 4903 "left": { 4904 "type": "Identifier", 4905 "name": "i", 4906 "decorators": [], 4907 "loc": { 4908 "start": { 4909 "line": 62, 4910 "column": 31, 4911 "program": "MathCordic.ets" 4912 }, 4913 "end": { 4914 "line": 62, 4915 "column": 32, 4916 "program": "MathCordic.ets" 4917 } 4918 } 4919 }, 4920 "right": { 4921 "type": "Identifier", 4922 "name": "runs", 4923 "decorators": [], 4924 "loc": { 4925 "start": { 4926 "line": 62, 4927 "column": 35, 4928 "program": "MathCordic.ets" 4929 }, 4930 "end": { 4931 "line": 62, 4932 "column": 39, 4933 "program": "MathCordic.ets" 4934 } 4935 } 4936 }, 4937 "loc": { 4938 "start": { 4939 "line": 62, 4940 "column": 31, 4941 "program": "MathCordic.ets" 4942 }, 4943 "end": { 4944 "line": 62, 4945 "column": 39, 4946 "program": "MathCordic.ets" 4947 } 4948 } 4949 }, 4950 "update": { 4951 "type": "UpdateExpression", 4952 "operator": "++", 4953 "prefix": false, 4954 "argument": { 4955 "type": "Identifier", 4956 "name": "i", 4957 "decorators": [], 4958 "loc": { 4959 "start": { 4960 "line": 62, 4961 "column": 41, 4962 "program": "MathCordic.ets" 4963 }, 4964 "end": { 4965 "line": 62, 4966 "column": 42, 4967 "program": "MathCordic.ets" 4968 } 4969 } 4970 }, 4971 "loc": { 4972 "start": { 4973 "line": 62, 4974 "column": 41, 4975 "program": "MathCordic.ets" 4976 }, 4977 "end": { 4978 "line": 62, 4979 "column": 44, 4980 "program": "MathCordic.ets" 4981 } 4982 } 4983 }, 4984 "body": { 4985 "type": "BlockStatement", 4986 "statements": [ 4987 { 4988 "type": "ExpressionStatement", 4989 "expression": { 4990 "type": "AssignmentExpression", 4991 "operator": "+=", 4992 "left": { 4993 "type": "Identifier", 4994 "name": "total", 4995 "decorators": [], 4996 "loc": { 4997 "start": { 4998 "line": 63, 4999 "column": 13, 5000 "program": "MathCordic.ets" 5001 }, 5002 "end": { 5003 "line": 63, 5004 "column": 18, 5005 "program": "MathCordic.ets" 5006 } 5007 } 5008 }, 5009 "right": { 5010 "type": "CallExpression", 5011 "callee": { 5012 "type": "MemberExpression", 5013 "object": { 5014 "type": "Identifier", 5015 "name": "MathCordic", 5016 "decorators": [], 5017 "loc": { 5018 "start": { 5019 "line": 63, 5020 "column": 22, 5021 "program": "MathCordic.ets" 5022 }, 5023 "end": { 5024 "line": 63, 5025 "column": 32, 5026 "program": "MathCordic.ets" 5027 } 5028 } 5029 }, 5030 "property": { 5031 "type": "Identifier", 5032 "name": "cordicsincos", 5033 "decorators": [], 5034 "loc": { 5035 "start": { 5036 "line": 63, 5037 "column": 33, 5038 "program": "MathCordic.ets" 5039 }, 5040 "end": { 5041 "line": 63, 5042 "column": 45, 5043 "program": "MathCordic.ets" 5044 } 5045 } 5046 }, 5047 "computed": false, 5048 "optional": false, 5049 "loc": { 5050 "start": { 5051 "line": 63, 5052 "column": 22, 5053 "program": "MathCordic.ets" 5054 }, 5055 "end": { 5056 "line": 63, 5057 "column": 45, 5058 "program": "MathCordic.ets" 5059 } 5060 } 5061 }, 5062 "arguments": [ 5063 { 5064 "type": "MemberExpression", 5065 "object": { 5066 "type": "Identifier", 5067 "name": "MathCordic", 5068 "decorators": [], 5069 "loc": { 5070 "start": { 5071 "line": 63, 5072 "column": 46, 5073 "program": "MathCordic.ets" 5074 }, 5075 "end": { 5076 "line": 63, 5077 "column": 56, 5078 "program": "MathCordic.ets" 5079 } 5080 } 5081 }, 5082 "property": { 5083 "type": "Identifier", 5084 "name": "TARGET_ANGLE", 5085 "decorators": [], 5086 "loc": { 5087 "start": { 5088 "line": 63, 5089 "column": 57, 5090 "program": "MathCordic.ets" 5091 }, 5092 "end": { 5093 "line": 63, 5094 "column": 69, 5095 "program": "MathCordic.ets" 5096 } 5097 } 5098 }, 5099 "computed": false, 5100 "optional": false, 5101 "loc": { 5102 "start": { 5103 "line": 63, 5104 "column": 46, 5105 "program": "MathCordic.ets" 5106 }, 5107 "end": { 5108 "line": 63, 5109 "column": 69, 5110 "program": "MathCordic.ets" 5111 } 5112 } 5113 } 5114 ], 5115 "optional": false, 5116 "loc": { 5117 "start": { 5118 "line": 63, 5119 "column": 22, 5120 "program": "MathCordic.ets" 5121 }, 5122 "end": { 5123 "line": 63, 5124 "column": 70, 5125 "program": "MathCordic.ets" 5126 } 5127 } 5128 }, 5129 "loc": { 5130 "start": { 5131 "line": 63, 5132 "column": 13, 5133 "program": "MathCordic.ets" 5134 }, 5135 "end": { 5136 "line": 63, 5137 "column": 70, 5138 "program": "MathCordic.ets" 5139 } 5140 } 5141 }, 5142 "loc": { 5143 "start": { 5144 "line": 63, 5145 "column": 13, 5146 "program": "MathCordic.ets" 5147 }, 5148 "end": { 5149 "line": 63, 5150 "column": 71, 5151 "program": "MathCordic.ets" 5152 } 5153 } 5154 } 5155 ], 5156 "loc": { 5157 "start": { 5158 "line": 62, 5159 "column": 46, 5160 "program": "MathCordic.ets" 5161 }, 5162 "end": { 5163 "line": 64, 5164 "column": 10, 5165 "program": "MathCordic.ets" 5166 } 5167 } 5168 }, 5169 "loc": { 5170 "start": { 5171 "line": 62, 5172 "column": 9, 5173 "program": "MathCordic.ets" 5174 }, 5175 "end": { 5176 "line": 64, 5177 "column": 10, 5178 "program": "MathCordic.ets" 5179 } 5180 } 5181 }, 5182 { 5183 "type": "ReturnStatement", 5184 "argument": { 5185 "type": "Identifier", 5186 "name": "total", 5187 "decorators": [], 5188 "loc": { 5189 "start": { 5190 "line": 65, 5191 "column": 16, 5192 "program": "MathCordic.ets" 5193 }, 5194 "end": { 5195 "line": 65, 5196 "column": 21, 5197 "program": "MathCordic.ets" 5198 } 5199 } 5200 }, 5201 "loc": { 5202 "start": { 5203 "line": 65, 5204 "column": 9, 5205 "program": "MathCordic.ets" 5206 }, 5207 "end": { 5208 "line": 65, 5209 "column": 22, 5210 "program": "MathCordic.ets" 5211 } 5212 } 5213 } 5214 ], 5215 "loc": { 5216 "start": { 5217 "line": 60, 5218 "column": 39, 5219 "program": "MathCordic.ets" 5220 }, 5221 "end": { 5222 "line": 66, 5223 "column": 6, 5224 "program": "MathCordic.ets" 5225 } 5226 } 5227 }, 5228 "loc": { 5229 "start": { 5230 "line": 60, 5231 "column": 18, 5232 "program": "MathCordic.ets" 5233 }, 5234 "end": { 5235 "line": 66, 5236 "column": 6, 5237 "program": "MathCordic.ets" 5238 } 5239 } 5240 }, 5241 "loc": { 5242 "start": { 5243 "line": 60, 5244 "column": 18, 5245 "program": "MathCordic.ets" 5246 }, 5247 "end": { 5248 "line": 66, 5249 "column": 6, 5250 "program": "MathCordic.ets" 5251 } 5252 } 5253 }, 5254 "overloads": [], 5255 "decorators": [], 5256 "loc": { 5257 "start": { 5258 "line": 60, 5259 "column": 5, 5260 "program": "MathCordic.ets" 5261 }, 5262 "end": { 5263 "line": 66, 5264 "column": 6, 5265 "program": "MathCordic.ets" 5266 } 5267 } 5268 }, 5269 { 5270 "type": "ClassProperty", 5271 "key": { 5272 "type": "Identifier", 5273 "name": "n", 5274 "decorators": [], 5275 "loc": { 5276 "start": { 5277 "line": 68, 5278 "column": 5, 5279 "program": "MathCordic.ets" 5280 }, 5281 "end": { 5282 "line": 68, 5283 "column": 6, 5284 "program": "MathCordic.ets" 5285 } 5286 } 5287 }, 5288 "accessibility": "public", 5289 "static": false, 5290 "readonly": false, 5291 "declare": false, 5292 "optional": false, 5293 "computed": false, 5294 "typeAnnotation": { 5295 "type": "ETSPrimitiveType", 5296 "loc": { 5297 "start": { 5298 "line": 68, 5299 "column": 9, 5300 "program": "MathCordic.ets" 5301 }, 5302 "end": { 5303 "line": 68, 5304 "column": 12, 5305 "program": "MathCordic.ets" 5306 } 5307 } 5308 }, 5309 "definite": false, 5310 "decorators": [], 5311 "loc": { 5312 "start": { 5313 "line": 68, 5314 "column": 5, 5315 "program": "MathCordic.ets" 5316 }, 5317 "end": { 5318 "line": 68, 5319 "column": 12, 5320 "program": "MathCordic.ets" 5321 } 5322 } 5323 }, 5324 { 5325 "type": "MethodDefinition", 5326 "key": { 5327 "type": "Identifier", 5328 "name": "run", 5329 "decorators": [], 5330 "loc": { 5331 "start": { 5332 "line": 70, 5333 "column": 13, 5334 "program": "MathCordic.ets" 5335 }, 5336 "end": { 5337 "line": 70, 5338 "column": 16, 5339 "program": "MathCordic.ets" 5340 } 5341 } 5342 }, 5343 "kind": "method", 5344 "accessibility": "public", 5345 "static": false, 5346 "optional": false, 5347 "computed": false, 5348 "value": { 5349 "type": "FunctionExpression", 5350 "function": { 5351 "type": "ScriptFunction", 5352 "id": { 5353 "type": "Identifier", 5354 "name": "run", 5355 "decorators": [], 5356 "loc": { 5357 "start": { 5358 "line": 70, 5359 "column": 13, 5360 "program": "MathCordic.ets" 5361 }, 5362 "end": { 5363 "line": 70, 5364 "column": 16, 5365 "program": "MathCordic.ets" 5366 } 5367 } 5368 }, 5369 "generator": false, 5370 "async": false, 5371 "expression": false, 5372 "params": [], 5373 "returnType": { 5374 "type": "ETSPrimitiveType", 5375 "loc": { 5376 "start": { 5377 "line": 70, 5378 "column": 20, 5379 "program": "MathCordic.ets" 5380 }, 5381 "end": { 5382 "line": 70, 5383 "column": 24, 5384 "program": "MathCordic.ets" 5385 } 5386 } 5387 }, 5388 "body": { 5389 "type": "BlockStatement", 5390 "statements": [ 5391 { 5392 "type": "ExpressionStatement", 5393 "expression": { 5394 "type": "AssignmentExpression", 5395 "operator": "=", 5396 "left": { 5397 "type": "MemberExpression", 5398 "object": { 5399 "type": "ThisExpression", 5400 "loc": { 5401 "start": { 5402 "line": 71, 5403 "column": 9, 5404 "program": "MathCordic.ets" 5405 }, 5406 "end": { 5407 "line": 71, 5408 "column": 13, 5409 "program": "MathCordic.ets" 5410 } 5411 } 5412 }, 5413 "property": { 5414 "type": "Identifier", 5415 "name": "n", 5416 "decorators": [], 5417 "loc": { 5418 "start": { 5419 "line": 71, 5420 "column": 14, 5421 "program": "MathCordic.ets" 5422 }, 5423 "end": { 5424 "line": 71, 5425 "column": 15, 5426 "program": "MathCordic.ets" 5427 } 5428 } 5429 }, 5430 "computed": false, 5431 "optional": false, 5432 "loc": { 5433 "start": { 5434 "line": 71, 5435 "column": 9, 5436 "program": "MathCordic.ets" 5437 }, 5438 "end": { 5439 "line": 71, 5440 "column": 15, 5441 "program": "MathCordic.ets" 5442 } 5443 } 5444 }, 5445 "right": { 5446 "type": "NumberLiteral", 5447 "value": 25000, 5448 "loc": { 5449 "start": { 5450 "line": 71, 5451 "column": 18, 5452 "program": "MathCordic.ets" 5453 }, 5454 "end": { 5455 "line": 71, 5456 "column": 23, 5457 "program": "MathCordic.ets" 5458 } 5459 } 5460 }, 5461 "loc": { 5462 "start": { 5463 "line": 71, 5464 "column": 9, 5465 "program": "MathCordic.ets" 5466 }, 5467 "end": { 5468 "line": 71, 5469 "column": 23, 5470 "program": "MathCordic.ets" 5471 } 5472 } 5473 }, 5474 "loc": { 5475 "start": { 5476 "line": 71, 5477 "column": 9, 5478 "program": "MathCordic.ets" 5479 }, 5480 "end": { 5481 "line": 71, 5482 "column": 24, 5483 "program": "MathCordic.ets" 5484 } 5485 } 5486 }, 5487 { 5488 "type": "VariableDeclaration", 5489 "declarations": [ 5490 { 5491 "type": "VariableDeclarator", 5492 "id": { 5493 "type": "Identifier", 5494 "name": "total", 5495 "typeAnnotation": { 5496 "type": "ETSPrimitiveType", 5497 "loc": { 5498 "start": { 5499 "line": 72, 5500 "column": 21, 5501 "program": "MathCordic.ets" 5502 }, 5503 "end": { 5504 "line": 72, 5505 "column": 27, 5506 "program": "MathCordic.ets" 5507 } 5508 } 5509 }, 5510 "decorators": [], 5511 "loc": { 5512 "start": { 5513 "line": 72, 5514 "column": 13, 5515 "program": "MathCordic.ets" 5516 }, 5517 "end": { 5518 "line": 72, 5519 "column": 18, 5520 "program": "MathCordic.ets" 5521 } 5522 } 5523 }, 5524 "init": { 5525 "type": "CallExpression", 5526 "callee": { 5527 "type": "MemberExpression", 5528 "object": { 5529 "type": "Identifier", 5530 "name": "MathCordic", 5531 "decorators": [], 5532 "loc": { 5533 "start": { 5534 "line": 72, 5535 "column": 30, 5536 "program": "MathCordic.ets" 5537 }, 5538 "end": { 5539 "line": 72, 5540 "column": 40, 5541 "program": "MathCordic.ets" 5542 } 5543 } 5544 }, 5545 "property": { 5546 "type": "Identifier", 5547 "name": "cordic", 5548 "decorators": [], 5549 "loc": { 5550 "start": { 5551 "line": 72, 5552 "column": 41, 5553 "program": "MathCordic.ets" 5554 }, 5555 "end": { 5556 "line": 72, 5557 "column": 47, 5558 "program": "MathCordic.ets" 5559 } 5560 } 5561 }, 5562 "computed": false, 5563 "optional": false, 5564 "loc": { 5565 "start": { 5566 "line": 72, 5567 "column": 30, 5568 "program": "MathCordic.ets" 5569 }, 5570 "end": { 5571 "line": 72, 5572 "column": 47, 5573 "program": "MathCordic.ets" 5574 } 5575 } 5576 }, 5577 "arguments": [ 5578 { 5579 "type": "MemberExpression", 5580 "object": { 5581 "type": "ThisExpression", 5582 "loc": { 5583 "start": { 5584 "line": 72, 5585 "column": 48, 5586 "program": "MathCordic.ets" 5587 }, 5588 "end": { 5589 "line": 72, 5590 "column": 52, 5591 "program": "MathCordic.ets" 5592 } 5593 } 5594 }, 5595 "property": { 5596 "type": "Identifier", 5597 "name": "n", 5598 "decorators": [], 5599 "loc": { 5600 "start": { 5601 "line": 72, 5602 "column": 53, 5603 "program": "MathCordic.ets" 5604 }, 5605 "end": { 5606 "line": 72, 5607 "column": 54, 5608 "program": "MathCordic.ets" 5609 } 5610 } 5611 }, 5612 "computed": false, 5613 "optional": false, 5614 "loc": { 5615 "start": { 5616 "line": 72, 5617 "column": 48, 5618 "program": "MathCordic.ets" 5619 }, 5620 "end": { 5621 "line": 72, 5622 "column": 54, 5623 "program": "MathCordic.ets" 5624 } 5625 } 5626 } 5627 ], 5628 "optional": false, 5629 "loc": { 5630 "start": { 5631 "line": 72, 5632 "column": 30, 5633 "program": "MathCordic.ets" 5634 }, 5635 "end": { 5636 "line": 72, 5637 "column": 55, 5638 "program": "MathCordic.ets" 5639 } 5640 } 5641 }, 5642 "loc": { 5643 "start": { 5644 "line": 72, 5645 "column": 13, 5646 "program": "MathCordic.ets" 5647 }, 5648 "end": { 5649 "line": 72, 5650 "column": 55, 5651 "program": "MathCordic.ets" 5652 } 5653 } 5654 } 5655 ], 5656 "kind": "let", 5657 "loc": { 5658 "start": { 5659 "line": 72, 5660 "column": 9, 5661 "program": "MathCordic.ets" 5662 }, 5663 "end": { 5664 "line": 72, 5665 "column": 56, 5666 "program": "MathCordic.ets" 5667 } 5668 } 5669 }, 5670 { 5671 "type": "ExpressionStatement", 5672 "expression": { 5673 "type": "CallExpression", 5674 "callee": { 5675 "type": "Identifier", 5676 "name": "assertEQ", 5677 "decorators": [], 5678 "loc": { 5679 "start": { 5680 "line": 74, 5681 "column": 9, 5682 "program": "MathCordic.ets" 5683 }, 5684 "end": { 5685 "line": 74, 5686 "column": 17, 5687 "program": "MathCordic.ets" 5688 } 5689 } 5690 }, 5691 "arguments": [ 5692 { 5693 "type": "Identifier", 5694 "name": "total", 5695 "decorators": [], 5696 "loc": { 5697 "start": { 5698 "line": 74, 5699 "column": 18, 5700 "program": "MathCordic.ets" 5701 }, 5702 "end": { 5703 "line": 74, 5704 "column": 23, 5705 "program": "MathCordic.ets" 5706 } 5707 } 5708 }, 5709 { 5710 "type": "MemberExpression", 5711 "object": { 5712 "type": "Identifier", 5713 "name": "MathCordic", 5714 "decorators": [], 5715 "loc": { 5716 "start": { 5717 "line": 74, 5718 "column": 25, 5719 "program": "MathCordic.ets" 5720 }, 5721 "end": { 5722 "line": 74, 5723 "column": 35, 5724 "program": "MathCordic.ets" 5725 } 5726 } 5727 }, 5728 "property": { 5729 "type": "Identifier", 5730 "name": "expected", 5731 "decorators": [], 5732 "loc": { 5733 "start": { 5734 "line": 74, 5735 "column": 36, 5736 "program": "MathCordic.ets" 5737 }, 5738 "end": { 5739 "line": 74, 5740 "column": 44, 5741 "program": "MathCordic.ets" 5742 } 5743 } 5744 }, 5745 "computed": false, 5746 "optional": false, 5747 "loc": { 5748 "start": { 5749 "line": 74, 5750 "column": 25, 5751 "program": "MathCordic.ets" 5752 }, 5753 "end": { 5754 "line": 74, 5755 "column": 44, 5756 "program": "MathCordic.ets" 5757 } 5758 } 5759 }, 5760 { 5761 "type": "StringLiteral", 5762 "value": "Incorrect result", 5763 "loc": { 5764 "start": { 5765 "line": 74, 5766 "column": 47, 5767 "program": "MathCordic.ets" 5768 }, 5769 "end": { 5770 "line": 74, 5771 "column": 65, 5772 "program": "MathCordic.ets" 5773 } 5774 } 5775 } 5776 ], 5777 "optional": false, 5778 "loc": { 5779 "start": { 5780 "line": 74, 5781 "column": 9, 5782 "program": "MathCordic.ets" 5783 }, 5784 "end": { 5785 "line": 74, 5786 "column": 66, 5787 "program": "MathCordic.ets" 5788 } 5789 } 5790 }, 5791 "loc": { 5792 "start": { 5793 "line": 74, 5794 "column": 9, 5795 "program": "MathCordic.ets" 5796 }, 5797 "end": { 5798 "line": 74, 5799 "column": 67, 5800 "program": "MathCordic.ets" 5801 } 5802 } 5803 } 5804 ], 5805 "loc": { 5806 "start": { 5807 "line": 70, 5808 "column": 25, 5809 "program": "MathCordic.ets" 5810 }, 5811 "end": { 5812 "line": 75, 5813 "column": 6, 5814 "program": "MathCordic.ets" 5815 } 5816 } 5817 }, 5818 "loc": { 5819 "start": { 5820 "line": 70, 5821 "column": 16, 5822 "program": "MathCordic.ets" 5823 }, 5824 "end": { 5825 "line": 75, 5826 "column": 6, 5827 "program": "MathCordic.ets" 5828 } 5829 } 5830 }, 5831 "loc": { 5832 "start": { 5833 "line": 70, 5834 "column": 16, 5835 "program": "MathCordic.ets" 5836 }, 5837 "end": { 5838 "line": 75, 5839 "column": 6, 5840 "program": "MathCordic.ets" 5841 } 5842 } 5843 }, 5844 "overloads": [], 5845 "decorators": [], 5846 "loc": { 5847 "start": { 5848 "line": 70, 5849 "column": 5, 5850 "program": "MathCordic.ets" 5851 }, 5852 "end": { 5853 "line": 75, 5854 "column": 6, 5855 "program": "MathCordic.ets" 5856 } 5857 } 5858 }, 5859 { 5860 "type": "MethodDefinition", 5861 "key": { 5862 "type": "Identifier", 5863 "name": "constructor", 5864 "decorators": [], 5865 "loc": { 5866 "start": { 5867 "line": 16, 5868 "column": 27, 5869 "program": "MathCordic.ets" 5870 }, 5871 "end": { 5872 "line": 16, 5873 "column": 27, 5874 "program": "MathCordic.ets" 5875 } 5876 } 5877 }, 5878 "kind": "constructor", 5879 "static": false, 5880 "optional": false, 5881 "computed": false, 5882 "value": { 5883 "type": "FunctionExpression", 5884 "function": { 5885 "type": "ScriptFunction", 5886 "id": { 5887 "type": "Identifier", 5888 "name": "constructor", 5889 "decorators": [], 5890 "loc": { 5891 "start": { 5892 "line": 16, 5893 "column": 27, 5894 "program": "MathCordic.ets" 5895 }, 5896 "end": { 5897 "line": 16, 5898 "column": 27, 5899 "program": "MathCordic.ets" 5900 } 5901 } 5902 }, 5903 "generator": false, 5904 "async": false, 5905 "expression": false, 5906 "params": [], 5907 "body": { 5908 "type": "BlockStatement", 5909 "statements": [], 5910 "loc": { 5911 "start": { 5912 "line": 16, 5913 "column": 27, 5914 "program": "MathCordic.ets" 5915 }, 5916 "end": { 5917 "line": 16, 5918 "column": 27, 5919 "program": "MathCordic.ets" 5920 } 5921 } 5922 }, 5923 "loc": { 5924 "start": { 5925 "line": 16, 5926 "column": 27, 5927 "program": "MathCordic.ets" 5928 }, 5929 "end": { 5930 "line": 16, 5931 "column": 27, 5932 "program": "MathCordic.ets" 5933 } 5934 } 5935 }, 5936 "loc": { 5937 "start": { 5938 "line": 16, 5939 "column": 27, 5940 "program": "MathCordic.ets" 5941 }, 5942 "end": { 5943 "line": 16, 5944 "column": 27, 5945 "program": "MathCordic.ets" 5946 } 5947 } 5948 }, 5949 "overloads": [], 5950 "decorators": [], 5951 "loc": { 5952 "start": { 5953 "line": 1, 5954 "column": 1, 5955 "program": null 5956 }, 5957 "end": { 5958 "line": 1, 5959 "column": 1, 5960 "program": null 5961 } 5962 } 5963 } 5964 ], 5965 "loc": { 5966 "start": { 5967 "line": 16, 5968 "column": 26, 5969 "program": "MathCordic.ets" 5970 }, 5971 "end": { 5972 "line": 78, 5973 "column": 9, 5974 "program": "MathCordic.ets" 5975 } 5976 } 5977 }, 5978 "loc": { 5979 "start": { 5980 "line": 16, 5981 "column": 8, 5982 "program": "MathCordic.ets" 5983 }, 5984 "end": { 5985 "line": 78, 5986 "column": 9, 5987 "program": "MathCordic.ets" 5988 } 5989 } 5990 }, 5991 { 5992 "type": "ClassDeclaration", 5993 "definition": { 5994 "id": { 5995 "type": "Identifier", 5996 "name": "ETSGLOBAL", 5997 "decorators": [], 5998 "loc": { 5999 "start": { 6000 "line": 1, 6001 "column": 1, 6002 "program": "MathCordic.ets" 6003 }, 6004 "end": { 6005 "line": 1, 6006 "column": 1, 6007 "program": "MathCordic.ets" 6008 } 6009 } 6010 }, 6011 "superClass": null, 6012 "implements": [], 6013 "body": [ 6014 { 6015 "type": "MethodDefinition", 6016 "key": { 6017 "type": "Identifier", 6018 "name": "_$init$_", 6019 "decorators": [], 6020 "loc": { 6021 "start": { 6022 "line": 1, 6023 "column": 1, 6024 "program": null 6025 }, 6026 "end": { 6027 "line": 1, 6028 "column": 1, 6029 "program": null 6030 } 6031 } 6032 }, 6033 "kind": "method", 6034 "accessibility": "public", 6035 "static": true, 6036 "optional": false, 6037 "computed": false, 6038 "value": { 6039 "type": "FunctionExpression", 6040 "function": { 6041 "type": "ScriptFunction", 6042 "id": { 6043 "type": "Identifier", 6044 "name": "_$init$_", 6045 "decorators": [], 6046 "loc": { 6047 "start": { 6048 "line": 1, 6049 "column": 1, 6050 "program": null 6051 }, 6052 "end": { 6053 "line": 1, 6054 "column": 1, 6055 "program": null 6056 } 6057 } 6058 }, 6059 "generator": false, 6060 "async": false, 6061 "expression": false, 6062 "params": [], 6063 "body": { 6064 "type": "BlockStatement", 6065 "statements": [], 6066 "loc": { 6067 "start": { 6068 "line": 1, 6069 "column": 1, 6070 "program": null 6071 }, 6072 "end": { 6073 "line": 1, 6074 "column": 1, 6075 "program": null 6076 } 6077 } 6078 }, 6079 "loc": { 6080 "start": { 6081 "line": 1, 6082 "column": 1, 6083 "program": null 6084 }, 6085 "end": { 6086 "line": 1, 6087 "column": 1, 6088 "program": null 6089 } 6090 } 6091 }, 6092 "loc": { 6093 "start": { 6094 "line": 1, 6095 "column": 1, 6096 "program": null 6097 }, 6098 "end": { 6099 "line": 1, 6100 "column": 1, 6101 "program": null 6102 } 6103 } 6104 }, 6105 "overloads": [], 6106 "decorators": [], 6107 "loc": { 6108 "start": { 6109 "line": 1, 6110 "column": 1, 6111 "program": "MathCordic.ets" 6112 }, 6113 "end": { 6114 "line": 1, 6115 "column": 1, 6116 "program": "MathCordic.ets" 6117 } 6118 } 6119 }, 6120 { 6121 "type": "MethodDefinition", 6122 "key": { 6123 "type": "Identifier", 6124 "name": "main", 6125 "decorators": [], 6126 "loc": { 6127 "start": { 6128 "line": 78, 6129 "column": 10, 6130 "program": "MathCordic.ets" 6131 }, 6132 "end": { 6133 "line": 78, 6134 "column": 14, 6135 "program": "MathCordic.ets" 6136 } 6137 } 6138 }, 6139 "kind": "method", 6140 "accessibility": "public", 6141 "static": true, 6142 "optional": false, 6143 "computed": false, 6144 "value": { 6145 "type": "FunctionExpression", 6146 "function": { 6147 "type": "ScriptFunction", 6148 "id": { 6149 "type": "Identifier", 6150 "name": "main", 6151 "decorators": [], 6152 "loc": { 6153 "start": { 6154 "line": 78, 6155 "column": 10, 6156 "program": "MathCordic.ets" 6157 }, 6158 "end": { 6159 "line": 78, 6160 "column": 14, 6161 "program": "MathCordic.ets" 6162 } 6163 } 6164 }, 6165 "generator": false, 6166 "async": false, 6167 "expression": false, 6168 "params": [], 6169 "returnType": { 6170 "type": "ETSPrimitiveType", 6171 "loc": { 6172 "start": { 6173 "line": 78, 6174 "column": 18, 6175 "program": "MathCordic.ets" 6176 }, 6177 "end": { 6178 "line": 78, 6179 "column": 22, 6180 "program": "MathCordic.ets" 6181 } 6182 } 6183 }, 6184 "body": { 6185 "type": "BlockStatement", 6186 "statements": [ 6187 { 6188 "type": "VariableDeclaration", 6189 "declarations": [ 6190 { 6191 "type": "VariableDeclarator", 6192 "id": { 6193 "type": "Identifier", 6194 "name": "a", 6195 "decorators": [], 6196 "loc": { 6197 "start": { 6198 "line": 79, 6199 "column": 7, 6200 "program": "MathCordic.ets" 6201 }, 6202 "end": { 6203 "line": 79, 6204 "column": 8, 6205 "program": "MathCordic.ets" 6206 } 6207 } 6208 }, 6209 "init": { 6210 "type": "ETSNewClassInstanceExpression", 6211 "typeReference": { 6212 "type": "ETSTypeReference", 6213 "part": { 6214 "type": "ETSTypeReferencePart", 6215 "name": { 6216 "type": "Identifier", 6217 "name": "MathCordic", 6218 "decorators": [], 6219 "loc": { 6220 "start": { 6221 "line": 79, 6222 "column": 15, 6223 "program": "MathCordic.ets" 6224 }, 6225 "end": { 6226 "line": 79, 6227 "column": 25, 6228 "program": "MathCordic.ets" 6229 } 6230 } 6231 }, 6232 "loc": { 6233 "start": { 6234 "line": 79, 6235 "column": 15, 6236 "program": "MathCordic.ets" 6237 }, 6238 "end": { 6239 "line": 79, 6240 "column": 26, 6241 "program": "MathCordic.ets" 6242 } 6243 } 6244 }, 6245 "loc": { 6246 "start": { 6247 "line": 79, 6248 "column": 15, 6249 "program": "MathCordic.ets" 6250 }, 6251 "end": { 6252 "line": 79, 6253 "column": 26, 6254 "program": "MathCordic.ets" 6255 } 6256 } 6257 }, 6258 "arguments": [], 6259 "loc": { 6260 "start": { 6261 "line": 79, 6262 "column": 11, 6263 "program": "MathCordic.ets" 6264 }, 6265 "end": { 6266 "line": 79, 6267 "column": 26, 6268 "program": "MathCordic.ets" 6269 } 6270 } 6271 }, 6272 "loc": { 6273 "start": { 6274 "line": 79, 6275 "column": 7, 6276 "program": "MathCordic.ets" 6277 }, 6278 "end": { 6279 "line": 79, 6280 "column": 26, 6281 "program": "MathCordic.ets" 6282 } 6283 } 6284 } 6285 ], 6286 "kind": "let", 6287 "loc": { 6288 "start": { 6289 "line": 79, 6290 "column": 3, 6291 "program": "MathCordic.ets" 6292 }, 6293 "end": { 6294 "line": 79, 6295 "column": 26, 6296 "program": "MathCordic.ets" 6297 } 6298 } 6299 }, 6300 { 6301 "type": "ExpressionStatement", 6302 "expression": { 6303 "type": "CallExpression", 6304 "callee": { 6305 "type": "MemberExpression", 6306 "object": { 6307 "type": "Identifier", 6308 "name": "a", 6309 "decorators": [], 6310 "loc": { 6311 "start": { 6312 "line": 80, 6313 "column": 3, 6314 "program": "MathCordic.ets" 6315 }, 6316 "end": { 6317 "line": 80, 6318 "column": 4, 6319 "program": "MathCordic.ets" 6320 } 6321 } 6322 }, 6323 "property": { 6324 "type": "Identifier", 6325 "name": "run", 6326 "decorators": [], 6327 "loc": { 6328 "start": { 6329 "line": 80, 6330 "column": 5, 6331 "program": "MathCordic.ets" 6332 }, 6333 "end": { 6334 "line": 80, 6335 "column": 8, 6336 "program": "MathCordic.ets" 6337 } 6338 } 6339 }, 6340 "computed": false, 6341 "optional": false, 6342 "loc": { 6343 "start": { 6344 "line": 80, 6345 "column": 3, 6346 "program": "MathCordic.ets" 6347 }, 6348 "end": { 6349 "line": 80, 6350 "column": 8, 6351 "program": "MathCordic.ets" 6352 } 6353 } 6354 }, 6355 "arguments": [], 6356 "optional": false, 6357 "loc": { 6358 "start": { 6359 "line": 80, 6360 "column": 3, 6361 "program": "MathCordic.ets" 6362 }, 6363 "end": { 6364 "line": 80, 6365 "column": 10, 6366 "program": "MathCordic.ets" 6367 } 6368 } 6369 }, 6370 "loc": { 6371 "start": { 6372 "line": 80, 6373 "column": 3, 6374 "program": "MathCordic.ets" 6375 }, 6376 "end": { 6377 "line": 80, 6378 "column": 11, 6379 "program": "MathCordic.ets" 6380 } 6381 } 6382 } 6383 ], 6384 "loc": { 6385 "start": { 6386 "line": 78, 6387 "column": 23, 6388 "program": "MathCordic.ets" 6389 }, 6390 "end": { 6391 "line": 81, 6392 "column": 2, 6393 "program": "MathCordic.ets" 6394 } 6395 } 6396 }, 6397 "loc": { 6398 "start": { 6399 "line": 78, 6400 "column": 10, 6401 "program": "MathCordic.ets" 6402 }, 6403 "end": { 6404 "line": 81, 6405 "column": 2, 6406 "program": "MathCordic.ets" 6407 } 6408 } 6409 }, 6410 "loc": { 6411 "start": { 6412 "line": 78, 6413 "column": 10, 6414 "program": "MathCordic.ets" 6415 }, 6416 "end": { 6417 "line": 81, 6418 "column": 2, 6419 "program": "MathCordic.ets" 6420 } 6421 } 6422 }, 6423 "overloads": [], 6424 "decorators": [], 6425 "loc": { 6426 "start": { 6427 "line": 78, 6428 "column": 1, 6429 "program": "MathCordic.ets" 6430 }, 6431 "end": { 6432 "line": 81, 6433 "column": 2, 6434 "program": "MathCordic.ets" 6435 } 6436 } 6437 } 6438 ], 6439 "loc": { 6440 "start": { 6441 "line": 1, 6442 "column": 1, 6443 "program": "MathCordic.ets" 6444 }, 6445 "end": { 6446 "line": 1, 6447 "column": 1, 6448 "program": "MathCordic.ets" 6449 } 6450 } 6451 }, 6452 "loc": { 6453 "start": { 6454 "line": 1, 6455 "column": 1, 6456 "program": "MathCordic.ets" 6457 }, 6458 "end": { 6459 "line": 1, 6460 "column": 1, 6461 "program": "MathCordic.ets" 6462 } 6463 } 6464 } 6465 ], 6466 "loc": { 6467 "start": { 6468 "line": 1, 6469 "column": 1, 6470 "program": "MathCordic.ets" 6471 }, 6472 "end": { 6473 "line": 82, 6474 "column": 1, 6475 "program": "MathCordic.ets" 6476 } 6477 } 6478} 6479