1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore */
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock; /* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
169
170 static int newary(struct ipc_namespace *, struct ipc_params *);
171 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
172 #ifdef CONFIG_PROC_FS
173 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
174 #endif
175
176 #define SEMMSL_FAST 256 /* 512 bytes on stack */
177 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
178
179 /*
180 * Switching from the mode suitable for simple ops
181 * to the mode for complex ops is costly. Therefore:
182 * use some hysteresis
183 */
184 #define USE_GLOBAL_LOCK_HYSTERESIS 10
185
186 /*
187 * Locking:
188 * a) global sem_lock() for read/write
189 * sem_undo.id_next,
190 * sem_array.complex_count,
191 * sem_array.pending{_alter,_const},
192 * sem_array.sem_undo
193 *
194 * b) global or semaphore sem_lock() for read/write:
195 * sem_array.sems[i].pending_{const,alter}:
196 *
197 * c) special:
198 * sem_undo_list.list_proc:
199 * * undo_list->lock for write
200 * * rcu for read
201 * use_global_lock:
202 * * global sem_lock() for write
203 * * either local or global sem_lock() for read.
204 *
205 * Memory ordering:
206 * Most ordering is enforced by using spin_lock() and spin_unlock().
207 *
208 * Exceptions:
209 * 1) use_global_lock: (SEM_BARRIER_1)
210 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
211 * using smp_store_release(): Immediately after setting it to 0,
212 * a simple op can start.
213 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
214 * smp_load_acquire().
215 * Setting it from 0 to non-zero must be ordered with regards to
216 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
217 * is inside a spin_lock() and after a write from 0 to non-zero a
218 * spin_lock()+spin_unlock() is done.
219 *
220 * 2) queue.status: (SEM_BARRIER_2)
221 * Initialization is done while holding sem_lock(), so no further barrier is
222 * required.
223 * Setting it to a result code is a RELEASE, this is ensured by both a
224 * smp_store_release() (for case a) and while holding sem_lock()
225 * (for case b).
226 * The AQUIRE when reading the result code without holding sem_lock() is
227 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
228 * (case a above).
229 * Reading the result code while holding sem_lock() needs no further barriers,
230 * the locks inside sem_lock() enforce ordering (case b above)
231 *
232 * 3) current->state:
233 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
234 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
235 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
236 * when holding sem_lock(), no further barriers are required.
237 *
238 * See also ipc/mqueue.c for more details on the covered races.
239 */
240
241 #define sc_semmsl sem_ctls[0]
242 #define sc_semmns sem_ctls[1]
243 #define sc_semopm sem_ctls[2]
244 #define sc_semmni sem_ctls[3]
245
sem_init_ns(struct ipc_namespace * ns)246 void sem_init_ns(struct ipc_namespace *ns)
247 {
248 ns->sc_semmsl = SEMMSL;
249 ns->sc_semmns = SEMMNS;
250 ns->sc_semopm = SEMOPM;
251 ns->sc_semmni = SEMMNI;
252 ns->used_sems = 0;
253 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
254 }
255
256 #ifdef CONFIG_IPC_NS
sem_exit_ns(struct ipc_namespace * ns)257 void sem_exit_ns(struct ipc_namespace *ns)
258 {
259 free_ipcs(ns, &sem_ids(ns), freeary);
260 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
261 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
262 }
263 #endif
264
sem_init(void)265 void __init sem_init(void)
266 {
267 sem_init_ns(&init_ipc_ns);
268 ipc_init_proc_interface("sysvipc/sem",
269 " key semid perms nsems uid gid cuid cgid otime ctime\n",
270 IPC_SEM_IDS, sysvipc_sem_proc_show);
271 }
272
273 /**
274 * unmerge_queues - unmerge queues, if possible.
275 * @sma: semaphore array
276 *
277 * The function unmerges the wait queues if complex_count is 0.
278 * It must be called prior to dropping the global semaphore array lock.
279 */
unmerge_queues(struct sem_array * sma)280 static void unmerge_queues(struct sem_array *sma)
281 {
282 struct sem_queue *q, *tq;
283
284 /* complex operations still around? */
285 if (sma->complex_count) {
286 return;
287 }
288 /*
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
292 */
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list)
294 {
295 struct sem *curr;
296 curr = &sma->sems[q->sops[0].sem_num];
297
298 list_add_tail(&q->list, &curr->pending_alter);
299 }
300 INIT_LIST_HEAD(&sma->pending_alter);
301 }
302
303 /**
304 * merge_queues - merge single semop queues into global queue
305 * @sma: semaphore array
306 *
307 * This function merges all per-semaphore queues into the global queue.
308 * It is necessary to achieve FIFO ordering for the pending single-sop
309 * operations when a multi-semop operation must sleep.
310 * Only the alter operations must be moved, the const operations can stay.
311 */
merge_queues(struct sem_array * sma)312 static void merge_queues(struct sem_array *sma)
313 {
314 int i;
315 for (i = 0; i < sma->sem_nsems; i++) {
316 struct sem *sem = &sma->sems[i];
317
318 list_splice_init(&sem->pending_alter, &sma->pending_alter);
319 }
320 }
321
sem_rcu_free(struct rcu_head * head)322 static void sem_rcu_free(struct rcu_head *head)
323 {
324 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
325 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
326
327 security_sem_free(&sma->sem_perm);
328 kvfree(sma);
329 }
330
331 /*
332 * Enter the mode suitable for non-simple operations:
333 * Caller must own sem_perm.lock.
334 */
complexmode_enter(struct sem_array * sma)335 static void complexmode_enter(struct sem_array *sma)
336 {
337 int i;
338 struct sem *sem;
339
340 if (sma->use_global_lock > 0) {
341 /*
342 * We are already in global lock mode.
343 * Nothing to do, just reset the
344 * counter until we return to simple mode.
345 */
346 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
347 return;
348 }
349 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
350
351 for (i = 0; i < sma->sem_nsems; i++) {
352 sem = &sma->sems[i];
353 spin_lock(&sem->lock);
354 spin_unlock(&sem->lock);
355 }
356 }
357
358 /*
359 * Try to leave the mode that disallows simple operations:
360 * Caller must own sem_perm.lock.
361 */
complexmode_tryleave(struct sem_array * sma)362 static void complexmode_tryleave(struct sem_array *sma)
363 {
364 if (sma->complex_count) {
365 /* Complex ops are sleeping.
366 * We must stay in complex mode
367 */
368 return;
369 }
370 if (sma->use_global_lock == 1) {
371 /* See SEM_BARRIER_1 for purpose/pairing */
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
375 }
376 }
377
378 #define SEM_GLOBAL_LOCK (-1)
379 /*
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
385 */
sem_lock(struct sem_array * sma,struct sembuf * sops,int nsops)386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, int nsops)
387 {
388 struct sem *sem;
389 int idx;
390
391 if (nsops != 1) {
392 /* Complex operation - acquire a full lock */
393 ipc_lock_object(&sma->sem_perm);
394
395 /* Prevent parallel simple ops */
396 complexmode_enter(sma);
397 return SEM_GLOBAL_LOCK;
398 }
399
400 /*
401 * Only one semaphore affected - try to optimize locking.
402 * Optimized locking is possible if no complex operation
403 * is either enqueued or processed right now.
404 *
405 * Both facts are tracked by use_global_mode.
406 */
407 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
408 sem = &sma->sems[idx];
409
410 /*
411 * Initial check for use_global_lock. Just an optimization,
412 * no locking, no memory barrier.
413 */
414 if (!sma->use_global_lock) {
415 /*
416 * It appears that no complex operation is around.
417 * Acquire the per-semaphore lock.
418 */
419 spin_lock(&sem->lock);
420
421 /* see SEM_BARRIER_1 for purpose/pairing */
422 if (!smp_load_acquire(&sma->use_global_lock)) {
423 /* fast path successful! */
424 return sops->sem_num;
425 }
426 spin_unlock(&sem->lock);
427 }
428
429 /* slow path: acquire the full lock */
430 ipc_lock_object(&sma->sem_perm);
431
432 if (sma->use_global_lock == 0) {
433 /*
434 * The use_global_lock mode ended while we waited for
435 * sma->sem_perm.lock. Thus we must switch to locking
436 * with sem->lock.
437 * Unlike in the fast path, there is no need to recheck
438 * sma->use_global_lock after we have acquired sem->lock:
439 * We own sma->sem_perm.lock, thus use_global_lock cannot
440 * change.
441 */
442 spin_lock(&sem->lock);
443
444 ipc_unlock_object(&sma->sem_perm);
445 return sops->sem_num;
446 } else {
447 /*
448 * Not a false alarm, thus continue to use the global lock
449 * mode. No need for complexmode_enter(), this was done by
450 * the caller that has set use_global_mode to non-zero.
451 */
452 return SEM_GLOBAL_LOCK;
453 }
454 }
455
sem_unlock(struct sem_array * sma,int locknum)456 static inline void sem_unlock(struct sem_array *sma, int locknum)
457 {
458 if (locknum == SEM_GLOBAL_LOCK) {
459 unmerge_queues(sma);
460 complexmode_tryleave(sma);
461 ipc_unlock_object(&sma->sem_perm);
462 } else {
463 struct sem *sem = &sma->sems[locknum];
464 spin_unlock(&sem->lock);
465 }
466 }
467
468 /*
469 * sem_lock_(check_) routines are called in the paths where the rwsem
470 * is not held.
471 *
472 * The caller holds the RCU read lock.
473 */
sem_obtain_object(struct ipc_namespace * ns,int id)474 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
475 {
476 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
477
478 if (IS_ERR(ipcp)) {
479 return ERR_CAST(ipcp);
480 }
481
482 return container_of(ipcp, struct sem_array, sem_perm);
483 }
484
sem_obtain_object_check(struct ipc_namespace * ns,int id)485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, int id)
486 {
487 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
488
489 if (IS_ERR(ipcp)) {
490 return ERR_CAST(ipcp);
491 }
492
493 return container_of(ipcp, struct sem_array, sem_perm);
494 }
495
sem_lock_and_putref(struct sem_array * sma)496 static inline void sem_lock_and_putref(struct sem_array *sma)
497 {
498 sem_lock(sma, NULL, -1);
499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
500 }
501
sem_rmid(struct ipc_namespace * ns,struct sem_array * s)502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503 {
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
505 }
506
sem_alloc(size_t nsems)507 static struct sem_array *sem_alloc(size_t nsems)
508 {
509 struct sem_array *sma;
510
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) {
512 return NULL;
513 }
514
515 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
516 if (unlikely(!sma)) {
517 return NULL;
518 }
519
520 return sma;
521 }
522
523 /**
524 * newary - Create a new semaphore set
525 * @ns: namespace
526 * @params: ptr to the structure that contains key, semflg and nsems
527 *
528 * Called with sem_ids.rwsem held (as a writer)
529 */
newary(struct ipc_namespace * ns,struct ipc_params * params)530 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
531 {
532 int retval;
533 struct sem_array *sma;
534 key_t key = params->key;
535 int nsems = params->u.nsems;
536 int semflg = params->flg;
537 int i;
538
539 if (!nsems) {
540 return -EINVAL;
541 }
542 if (ns->used_sems + nsems > ns->sc_semmns) {
543 return -ENOSPC;
544 }
545
546 sma = sem_alloc(nsems);
547 if (!sma) {
548 return -ENOMEM;
549 }
550
551 sma->sem_perm.mode = (semflg & S_IRWXUGO);
552 sma->sem_perm.key = key;
553
554 sma->sem_perm.security = NULL;
555 retval = security_sem_alloc(&sma->sem_perm);
556 if (retval) {
557 kvfree(sma);
558 return retval;
559 }
560
561 for (i = 0; i < nsems; i++) {
562 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
563 INIT_LIST_HEAD(&sma->sems[i].pending_const);
564 spin_lock_init(&sma->sems[i].lock);
565 }
566
567 sma->complex_count = 0;
568 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
569 INIT_LIST_HEAD(&sma->pending_alter);
570 INIT_LIST_HEAD(&sma->pending_const);
571 INIT_LIST_HEAD(&sma->list_id);
572 sma->sem_nsems = nsems;
573 sma->sem_ctime = ktime_get_real_seconds();
574
575 /* ipc_addid() locks sma upon success. */
576 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
577 if (retval < 0) {
578 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
579 return retval;
580 }
581 ns->used_sems += nsems;
582
583 sem_unlock(sma, -1);
584 rcu_read_unlock();
585
586 return sma->sem_perm.id;
587 }
588
589 /*
590 * Called with sem_ids.rwsem and ipcp locked.
591 */
sem_more_checks(struct kern_ipc_perm * ipcp,struct ipc_params * params)592 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
593 {
594 struct sem_array *sma;
595
596 sma = container_of(ipcp, struct sem_array, sem_perm);
597 if (params->u.nsems > sma->sem_nsems) {
598 return -EINVAL;
599 }
600
601 return 0;
602 }
603
ksys_semget(key_t key,int nsems,int semflg)604 long ksys_semget(key_t key, int nsems, int semflg)
605 {
606 struct ipc_namespace *ns;
607 static const struct ipc_ops sem_ops = {
608 .getnew = newary,
609 .associate = security_sem_associate,
610 .more_checks = sem_more_checks,
611 };
612 struct ipc_params sem_params;
613
614 ns = current->nsproxy->ipc_ns;
615
616 if (nsems < 0 || nsems > ns->sc_semmsl) {
617 return -EINVAL;
618 }
619
620 sem_params.key = key;
621 sem_params.flg = semflg;
622 sem_params.u.nsems = nsems;
623
624 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
625 }
626
SYSCALL_DEFINE3(semget,key_t,key,int,nsems,int,semflg)627 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
628 {
629 return ksys_semget(key, nsems, semflg);
630 }
631
632 /**
633 * perform_atomic_semop[_slow] - Attempt to perform semaphore
634 * operations on a given array.
635 * @sma: semaphore array
636 * @q: struct sem_queue that describes the operation
637 *
638 * Caller blocking are as follows, based the value
639 * indicated by the semaphore operation (sem_op):
640 *
641 * (1) >0 never blocks.
642 * (2) 0 (wait-for-zero operation): semval is non-zero.
643 * (3) <0 attempting to decrement semval to a value smaller than zero.
644 *
645 * Returns 0 if the operation was possible.
646 * Returns 1 if the operation is impossible, the caller must sleep.
647 * Returns <0 for error codes.
648 */
perform_atomic_semop_slow(struct sem_array * sma,struct sem_queue * q)649 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
650 {
651 int result, sem_op, nsops;
652 struct pid *pid;
653 struct sembuf *sop;
654 struct sem *curr;
655 struct sembuf *sops;
656 struct sem_undo *un;
657
658 sops = q->sops;
659 nsops = q->nsops;
660 un = q->undo;
661
662 for (sop = sops; sop < sops + nsops; sop++) {
663 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
664 curr = &sma->sems[idx];
665 sem_op = sop->sem_op;
666 result = curr->semval;
667
668 if (!sem_op && result) {
669 goto would_block;
670 }
671
672 result += sem_op;
673 if (result < 0) {
674 goto would_block;
675 }
676 if (result > SEMVMX) {
677 goto out_of_range;
678 }
679
680 if (sop->sem_flg & SEM_UNDO) {
681 int undo = un->semadj[sop->sem_num] - sem_op;
682 /* Exceeding the undo range is an error. */
683 if (undo < (-SEMAEM - 1) || undo > SEMAEM) {
684 goto out_of_range;
685 }
686 un->semadj[sop->sem_num] = undo;
687 }
688
689 curr->semval = result;
690 }
691
692 sop--;
693 pid = q->pid;
694 while (sop >= sops) {
695 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
696 sop--;
697 }
698
699 return 0;
700
701 out_of_range:
702 result = -ERANGE;
703 goto undo;
704
705 would_block:
706 q->blocking = sop;
707
708 if (sop->sem_flg & IPC_NOWAIT) {
709 result = -EAGAIN;
710 } else {
711 result = 1;
712 }
713
714 undo:
715 sop--;
716 while (sop >= sops) {
717 sem_op = sop->sem_op;
718 sma->sems[sop->sem_num].semval -= sem_op;
719 if (sop->sem_flg & SEM_UNDO) {
720 un->semadj[sop->sem_num] += sem_op;
721 }
722 sop--;
723 }
724
725 return result;
726 }
727
perform_atomic_semop(struct sem_array * sma,struct sem_queue * q)728 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
729 {
730 int result, sem_op, nsops;
731 struct sembuf *sop;
732 struct sem *curr;
733 struct sembuf *sops;
734 struct sem_undo *un;
735
736 sops = q->sops;
737 nsops = q->nsops;
738 un = q->undo;
739
740 if (unlikely(q->dupsop)) {
741 return perform_atomic_semop_slow(sma, q);
742 }
743
744 /*
745 * We scan the semaphore set twice, first to ensure that the entire
746 * operation can succeed, therefore avoiding any pointless writes
747 * to shared memory and having to undo such changes in order to block
748 * until the operations can go through.
749 */
750 for (sop = sops; sop < sops + nsops; sop++) {
751 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
752
753 curr = &sma->sems[idx];
754 sem_op = sop->sem_op;
755 result = curr->semval;
756
757 if (!sem_op && result) {
758 goto would_block; /* wait-for-zero */
759 }
760
761 result += sem_op;
762 if (result < 0) {
763 goto would_block;
764 }
765
766 if (result > SEMVMX) {
767 return -ERANGE;
768 }
769
770 if (sop->sem_flg & SEM_UNDO) {
771 int undo = un->semadj[sop->sem_num] - sem_op;
772
773 /* Exceeding the undo range is an error. */
774 if (undo < (-SEMAEM - 1) || undo > SEMAEM) {
775 return -ERANGE;
776 }
777 }
778 }
779
780 for (sop = sops; sop < sops + nsops; sop++) {
781 curr = &sma->sems[sop->sem_num];
782 sem_op = sop->sem_op;
783 result = curr->semval;
784
785 if (sop->sem_flg & SEM_UNDO) {
786 int undo = un->semadj[sop->sem_num] - sem_op;
787
788 un->semadj[sop->sem_num] = undo;
789 }
790 curr->semval += sem_op;
791 ipc_update_pid(&curr->sempid, q->pid);
792 }
793
794 return 0;
795
796 would_block:
797 q->blocking = sop;
798 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
799 }
800
wake_up_sem_queue_prepare(struct sem_queue * q,int error,struct wake_q_head * wake_q)801 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, struct wake_q_head *wake_q)
802 {
803 struct task_struct *sleeper;
804
805 sleeper = get_task_struct(q->sleeper);
806
807 /* see SEM_BARRIER_2 for purpuse/pairing */
808 smp_store_release(&q->status, error);
809
810 wake_q_add_safe(wake_q, sleeper);
811 }
812
unlink_queue(struct sem_array * sma,struct sem_queue * q)813 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
814 {
815 list_del(&q->list);
816 if (q->nsops > 1) {
817 sma->complex_count--;
818 }
819 }
820
821 /** check_restart(sma, q)
822 * @sma: semaphore array
823 * @q: the operation that just completed
824 *
825 * update_queue is O(N^2) when it restarts scanning the whole queue of
826 * waiting operations. Therefore this function checks if the restart is
827 * really necessary. It is called after a previously waiting operation
828 * modified the array.
829 * Note that wait-for-zero operations are handled without restart.
830 */
check_restart(struct sem_array * sma,struct sem_queue * q)831 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
832 {
833 /* pending complex alter operations are too difficult to analyse */
834 if (!list_empty(&sma->pending_alter)) {
835 return 1;
836 }
837
838 /* we were a sleeping complex operation. Too difficult */
839 if (q->nsops > 1) {
840 return 1;
841 }
842
843 /* It is impossible that someone waits for the new value:
844 * - complex operations always restart.
845 * - wait-for-zero are handled seperately.
846 * - q is a previously sleeping simple operation that
847 * altered the array. It must be a decrement, because
848 * simple increments never sleep.
849 * - If there are older (higher priority) decrements
850 * in the queue, then they have observed the original
851 * semval value and couldn't proceed. The operation
852 * decremented to value - thus they won't proceed either.
853 */
854 return 0;
855 }
856
857 /**
858 * wake_const_ops - wake up non-alter tasks
859 * @sma: semaphore array.
860 * @semnum: semaphore that was modified.
861 * @wake_q: lockless wake-queue head.
862 *
863 * wake_const_ops must be called after a semaphore in a semaphore array
864 * was set to 0. If complex const operations are pending, wake_const_ops must
865 * be called with semnum = -1, as well as with the number of each modified
866 * semaphore.
867 * The tasks that must be woken up are added to @wake_q. The return code
868 * is stored in q->pid.
869 * The function returns 1 if at least one operation was completed successfully.
870 */
wake_const_ops(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)871 static int wake_const_ops(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
872 {
873 struct sem_queue *q, *tmp;
874 struct list_head *pending_list;
875 int semop_completed = 0;
876
877 if (semnum == -1) {
878 pending_list = &sma->pending_const;
879 } else {
880 pending_list = &sma->sems[semnum].pending_const;
881 }
882
883 list_for_each_entry_safe(q, tmp, pending_list, list)
884 {
885 int error = perform_atomic_semop(sma, q);
886 if (error > 0) {
887 continue;
888 }
889 /* operation completed, remove from queue & wakeup */
890 unlink_queue(sma, q);
891
892 wake_up_sem_queue_prepare(q, error, wake_q);
893 if (error == 0) {
894 semop_completed = 1;
895 }
896 }
897
898 return semop_completed;
899 }
900
901 /**
902 * do_smart_wakeup_zero - wakeup all wait for zero tasks
903 * @sma: semaphore array
904 * @sops: operations that were performed
905 * @nsops: number of operations
906 * @wake_q: lockless wake-queue head
907 *
908 * Checks all required queue for wait-for-zero operations, based
909 * on the actual changes that were performed on the semaphore array.
910 * The function returns 1 if at least one operation was completed successfully.
911 */
do_smart_wakeup_zero(struct sem_array * sma,struct sembuf * sops,int nsops,struct wake_q_head * wake_q)912 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, int nsops, struct wake_q_head *wake_q)
913 {
914 int i;
915 int semop_completed = 0;
916 int got_zero = 0;
917
918 /* first: the per-semaphore queues, if known */
919 if (sops) {
920 for (i = 0; i < nsops; i++) {
921 int num = sops[i].sem_num;
922
923 if (sma->sems[num].semval == 0) {
924 got_zero = 1;
925 semop_completed |= wake_const_ops(sma, num, wake_q);
926 }
927 }
928 } else {
929 /*
930 * No sops means modified semaphores not known.
931 * Assume all were changed.
932 */
933 for (i = 0; i < sma->sem_nsems; i++) {
934 if (sma->sems[i].semval == 0) {
935 got_zero = 1;
936 semop_completed |= wake_const_ops(sma, i, wake_q);
937 }
938 }
939 }
940 /*
941 * If one of the modified semaphores got 0,
942 * then check the global queue, too.
943 */
944 if (got_zero) {
945 semop_completed |= wake_const_ops(sma, -1, wake_q);
946 }
947
948 return semop_completed;
949 }
950
951 /**
952 * update_queue - look for tasks that can be completed.
953 * @sma: semaphore array.
954 * @semnum: semaphore that was modified.
955 * @wake_q: lockless wake-queue head.
956 *
957 * update_queue must be called after a semaphore in a semaphore array
958 * was modified. If multiple semaphores were modified, update_queue must
959 * be called with semnum = -1, as well as with the number of each modified
960 * semaphore.
961 * The tasks that must be woken up are added to @wake_q. The return code
962 * is stored in q->pid.
963 * The function internally checks if const operations can now succeed.
964 *
965 * The function return 1 if at least one semop was completed successfully.
966 */
update_queue(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)967 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
968 {
969 struct sem_queue *q, *tmp;
970 struct list_head *pending_list;
971 int semop_completed = 0;
972
973 if (semnum == -1) {
974 pending_list = &sma->pending_alter;
975 } else {
976 pending_list = &sma->sems[semnum].pending_alter;
977 }
978
979 again:
980 list_for_each_entry_safe(q, tmp, pending_list, list)
981 {
982 int error, restart;
983
984 /* If we are scanning the single sop, per-semaphore list of
985 * one semaphore and that semaphore is 0, then it is not
986 * necessary to scan further: simple increments
987 * that affect only one entry succeed immediately and cannot
988 * be in the per semaphore pending queue, and decrements
989 * cannot be successful if the value is already 0.
990 */
991 if (semnum != -1 && sma->sems[semnum].semval == 0) {
992 break;
993 }
994 error = perform_atomic_semop(sma, q);
995 /* Does q->sleeper still need to sleep? */
996 if (error > 0) {
997 continue;
998 }
999
1000 unlink_queue(sma, q);
1001
1002 if (error) {
1003 restart = 0;
1004 } else {
1005 semop_completed = 1;
1006 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
1007 restart = check_restart(sma, q);
1008 }
1009
1010 wake_up_sem_queue_prepare(q, error, wake_q);
1011 if (restart) {
1012 goto again;
1013 }
1014 }
1015 return semop_completed;
1016 }
1017
1018 /**
1019 * set_semotime - set sem_otime
1020 * @sma: semaphore array
1021 * @sops: operations that modified the array, may be NULL
1022 *
1023 * sem_otime is replicated to avoid cache line trashing.
1024 * This function sets one instance to the current time.
1025 */
set_semotime(struct sem_array * sma,struct sembuf * sops)1026 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1027 {
1028 if (sops == NULL) {
1029 sma->sems[0].sem_otime = ktime_get_real_seconds();
1030 } else {
1031 sma->sems[sops[0].sem_num].sem_otime = ktime_get_real_seconds();
1032 }
1033 }
1034
1035 /**
1036 * do_smart_update - optimized update_queue
1037 * @sma: semaphore array
1038 * @sops: operations that were performed
1039 * @nsops: number of operations
1040 * @otime: force setting otime
1041 * @wake_q: lockless wake-queue head
1042 *
1043 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1044 * based on the actual changes that were performed on the semaphore array.
1045 * Note that the function does not do the actual wake-up: the caller is
1046 * responsible for calling wake_up_q().
1047 * It is safe to perform this call after dropping all locks.
1048 */
do_smart_update(struct sem_array * sma,struct sembuf * sops,int nsops,int otime,struct wake_q_head * wake_q)1049 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, int otime,
1050 struct wake_q_head *wake_q)
1051 {
1052 int i;
1053
1054 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1055
1056 if (!list_empty(&sma->pending_alter)) {
1057 /* semaphore array uses the global queue - just process it. */
1058 otime |= update_queue(sma, -1, wake_q);
1059 } else {
1060 if (!sops) {
1061 /*
1062 * No sops, thus the modified semaphores are not
1063 * known. Check all.
1064 */
1065 for (i = 0; i < sma->sem_nsems; i++) {
1066 otime |= update_queue(sma, i, wake_q);
1067 }
1068 } else {
1069 /*
1070 * Check the semaphores that were increased:
1071 * - No complex ops, thus all sleeping ops are
1072 * decrease.
1073 * - if we decreased the value, then any sleeping
1074 * semaphore ops wont be able to run: If the
1075 * previous value was too small, then the new
1076 * value will be too small, too.
1077 */
1078 for (i = 0; i < nsops; i++) {
1079 if (sops[i].sem_op > 0) {
1080 otime |= update_queue(sma, sops[i].sem_num, wake_q);
1081 }
1082 }
1083 }
1084 }
1085 if (otime) {
1086 set_semotime(sma, sops);
1087 }
1088 }
1089
1090 /*
1091 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1092 */
check_qop(struct sem_array * sma,int semnum,struct sem_queue * q,bool count_zero)1093 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, bool count_zero)
1094 {
1095 struct sembuf *sop = q->blocking;
1096
1097 /*
1098 * Linux always (since 0.99.10) reported a task as sleeping on all
1099 * semaphores. This violates SUS, therefore it was changed to the
1100 * standard compliant behavior.
1101 * Give the administrators a chance to notice that an application
1102 * might misbehave because it relies on the Linux behavior.
1103 */
1104 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1105 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1106 current->comm, task_pid_nr(current));
1107
1108 if (sop->sem_num != semnum) {
1109 return 0;
1110 }
1111
1112 if (count_zero && sop->sem_op == 0) {
1113 return 1;
1114 }
1115 if (!count_zero && sop->sem_op < 0) {
1116 return 1;
1117 }
1118
1119 return 0;
1120 }
1121
1122 /* The following counts are associated to each semaphore:
1123 * semncnt number of tasks waiting on semval being nonzero
1124 * semzcnt number of tasks waiting on semval being zero
1125 *
1126 * Per definition, a task waits only on the semaphore of the first semop
1127 * that cannot proceed, even if additional operation would block, too.
1128 */
count_semcnt(struct sem_array * sma,ushort semnum,bool count_zero)1129 static int count_semcnt(struct sem_array *sma, ushort semnum, bool count_zero)
1130 {
1131 struct list_head *l;
1132 struct sem_queue *q;
1133 int semcnt;
1134
1135 semcnt = 0;
1136 /* First: check the simple operations. They are easy to evaluate */
1137 if (count_zero) {
1138 l = &sma->sems[semnum].pending_const;
1139 } else {
1140 l = &sma->sems[semnum].pending_alter;
1141 }
1142
1143 list_for_each_entry(q, l, list)
1144 {
1145 /* all task on a per-semaphore list sleep on exactly
1146 * that semaphore
1147 */
1148 semcnt++;
1149 }
1150
1151 /* Then: check the complex operations. */
1152 list_for_each_entry(q, &sma->pending_alter, list)
1153 {
1154 semcnt += check_qop(sma, semnum, q, count_zero);
1155 }
1156 if (count_zero) {
1157 list_for_each_entry(q, &sma->pending_const, list)
1158 {
1159 semcnt += check_qop(sma, semnum, q, count_zero);
1160 }
1161 }
1162 return semcnt;
1163 }
1164
1165 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1166 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1167 * remains locked on exit.
1168 */
freeary(struct ipc_namespace * ns,struct kern_ipc_perm * ipcp)1169 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1170 {
1171 struct sem_undo *un, *tu;
1172 struct sem_queue *q, *tq;
1173 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1174 int i;
1175 DEFINE_WAKE_Q(wake_q);
1176
1177 /* Free the existing undo structures for this semaphore set. */
1178 ipc_assert_locked_object(&sma->sem_perm);
1179 list_for_each_entry_safe(un, tu, &sma->list_id, list_id)
1180 {
1181 list_del(&un->list_id);
1182 spin_lock(&un->ulp->lock);
1183 un->semid = -1;
1184 list_del_rcu(&un->list_proc);
1185 spin_unlock(&un->ulp->lock);
1186 kfree_rcu(un, rcu);
1187 }
1188
1189 /* Wake up all pending processes and let them fail with EIDRM. */
1190 list_for_each_entry_safe(q, tq, &sma->pending_const, list)
1191 {
1192 unlink_queue(sma, q);
1193 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1194 }
1195
1196 list_for_each_entry_safe(q, tq, &sma->pending_alter, list)
1197 {
1198 unlink_queue(sma, q);
1199 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1200 }
1201 for (i = 0; i < sma->sem_nsems; i++) {
1202 struct sem *sem = &sma->sems[i];
1203 list_for_each_entry_safe(q, tq, &sem->pending_const, list)
1204 {
1205 unlink_queue(sma, q);
1206 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1207 }
1208 list_for_each_entry_safe(q, tq, &sem->pending_alter, list)
1209 {
1210 unlink_queue(sma, q);
1211 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1212 }
1213 ipc_update_pid(&sem->sempid, NULL);
1214 }
1215
1216 /* Remove the semaphore set from the IDR */
1217 sem_rmid(ns, sma);
1218 sem_unlock(sma, -1);
1219 rcu_read_unlock();
1220
1221 wake_up_q(&wake_q);
1222 ns->used_sems -= sma->sem_nsems;
1223 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1224 }
1225
copy_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1226 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1227 {
1228 switch (version) {
1229 case IPC_64:
1230 return copy_to_user(buf, in, sizeof(*in));
1231 case IPC_OLD: {
1232 struct semid_ds out;
1233
1234 memset(&out, 0, sizeof(out));
1235
1236 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1237
1238 out.sem_otime = in->sem_otime;
1239 out.sem_ctime = in->sem_ctime;
1240 out.sem_nsems = in->sem_nsems;
1241
1242 return copy_to_user(buf, &out, sizeof(out));
1243 }
1244 default:
1245 return -EINVAL;
1246 }
1247 }
1248
get_semotime(struct sem_array * sma)1249 static time64_t get_semotime(struct sem_array *sma)
1250 {
1251 int i;
1252 time64_t res;
1253
1254 res = sma->sems[0].sem_otime;
1255 for (i = 1; i < sma->sem_nsems; i++) {
1256 time64_t to = sma->sems[i].sem_otime;
1257
1258 if (to > res) {
1259 res = to;
1260 }
1261 }
1262 return res;
1263 }
1264
semctl_stat(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1265 static int semctl_stat(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64)
1266 {
1267 struct sem_array *sma;
1268 time64_t semotime;
1269 int err;
1270
1271 memset(semid64, 0, sizeof(*semid64));
1272
1273 rcu_read_lock();
1274 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1275 sma = sem_obtain_object(ns, semid);
1276 if (IS_ERR(sma)) {
1277 err = PTR_ERR(sma);
1278 goto out_unlock;
1279 }
1280 } else { /* IPC_STAT */
1281 sma = sem_obtain_object_check(ns, semid);
1282 if (IS_ERR(sma)) {
1283 err = PTR_ERR(sma);
1284 goto out_unlock;
1285 }
1286 }
1287
1288 /* see comment for SHM_STAT_ANY */
1289 if (cmd == SEM_STAT_ANY) {
1290 audit_ipc_obj(&sma->sem_perm);
1291 } else {
1292 err = -EACCES;
1293 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) {
1294 goto out_unlock;
1295 }
1296 }
1297
1298 err = security_sem_semctl(&sma->sem_perm, cmd);
1299 if (err) {
1300 goto out_unlock;
1301 }
1302
1303 ipc_lock_object(&sma->sem_perm);
1304
1305 if (!ipc_valid_object(&sma->sem_perm)) {
1306 ipc_unlock_object(&sma->sem_perm);
1307 err = -EIDRM;
1308 goto out_unlock;
1309 }
1310
1311 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1312 semotime = get_semotime(sma);
1313 semid64->sem_otime = semotime;
1314 semid64->sem_ctime = sma->sem_ctime;
1315 #ifndef CONFIG_64BIT
1316 semid64->sem_otime_high = semotime >> 0x20;
1317 semid64->sem_ctime_high = sma->sem_ctime >> 0x20;
1318 #endif
1319 semid64->sem_nsems = sma->sem_nsems;
1320
1321 if (cmd == IPC_STAT) {
1322 /*
1323 * As defined in SUS:
1324 * Return 0 on success
1325 */
1326 err = 0;
1327 } else {
1328 /*
1329 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1330 * Return the full id, including the sequence number
1331 */
1332 err = sma->sem_perm.id;
1333 }
1334 ipc_unlock_object(&sma->sem_perm);
1335 out_unlock:
1336 rcu_read_unlock();
1337 return err;
1338 }
1339
semctl_info(struct ipc_namespace * ns,int semid,int cmd,void __user * p)1340 static int semctl_info(struct ipc_namespace *ns, int semid, int cmd, void __user *p)
1341 {
1342 struct seminfo seminfo;
1343 int max_idx;
1344 int err;
1345
1346 err = security_sem_semctl(NULL, cmd);
1347 if (err) {
1348 return err;
1349 }
1350
1351 memset(&seminfo, 0, sizeof(seminfo));
1352 seminfo.semmni = ns->sc_semmni;
1353 seminfo.semmns = ns->sc_semmns;
1354 seminfo.semmsl = ns->sc_semmsl;
1355 seminfo.semopm = ns->sc_semopm;
1356 seminfo.semvmx = SEMVMX;
1357 seminfo.semmnu = SEMMNU;
1358 seminfo.semmap = SEMMAP;
1359 seminfo.semume = SEMUME;
1360 down_read(&sem_ids(ns).rwsem);
1361 if (cmd == SEM_INFO) {
1362 seminfo.semusz = sem_ids(ns).in_use;
1363 seminfo.semaem = ns->used_sems;
1364 } else {
1365 seminfo.semusz = SEMUSZ;
1366 seminfo.semaem = SEMAEM;
1367 }
1368 max_idx = ipc_get_maxidx(&sem_ids(ns));
1369 up_read(&sem_ids(ns).rwsem);
1370 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) {
1371 return -EFAULT;
1372 }
1373 return (max_idx < 0) ? 0 : max_idx;
1374 }
1375
semctl_setval(struct ipc_namespace * ns,int semid,int semnum,int val)1376 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, int val)
1377 {
1378 struct sem_undo *un;
1379 struct sem_array *sma;
1380 struct sem *curr;
1381 int err;
1382 DEFINE_WAKE_Q(wake_q);
1383
1384 if (val > SEMVMX || val < 0) {
1385 return -ERANGE;
1386 }
1387
1388 rcu_read_lock();
1389 sma = sem_obtain_object_check(ns, semid);
1390 if (IS_ERR(sma)) {
1391 rcu_read_unlock();
1392 return PTR_ERR(sma);
1393 }
1394
1395 if (semnum < 0 || semnum >= sma->sem_nsems) {
1396 rcu_read_unlock();
1397 return -EINVAL;
1398 }
1399
1400 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1401 rcu_read_unlock();
1402 return -EACCES;
1403 }
1404
1405 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1406 if (err) {
1407 rcu_read_unlock();
1408 return -EACCES;
1409 }
1410
1411 sem_lock(sma, NULL, -1);
1412
1413 if (!ipc_valid_object(&sma->sem_perm)) {
1414 sem_unlock(sma, -1);
1415 rcu_read_unlock();
1416 return -EIDRM;
1417 }
1418
1419 semnum = array_index_nospec(semnum, sma->sem_nsems);
1420 curr = &sma->sems[semnum];
1421
1422 ipc_assert_locked_object(&sma->sem_perm);
1423 list_for_each_entry(un, &sma->list_id, list_id) un->semadj[semnum] = 0;
1424
1425 curr->semval = val;
1426 ipc_update_pid(&curr->sempid, task_tgid(current));
1427 sma->sem_ctime = ktime_get_real_seconds();
1428 /* maybe some queued-up processes were waiting for this */
1429 do_smart_update(sma, NULL, 0, 0, &wake_q);
1430 sem_unlock(sma, -1);
1431 rcu_read_unlock();
1432 wake_up_q(&wake_q);
1433 return 0;
1434 }
1435
semctl_main(struct ipc_namespace * ns,int semid,int semnum,int cmd,void __user * p)1436 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, int cmd, void __user *p)
1437 {
1438 struct sem_array *sma;
1439 struct sem *curr;
1440 int err, nsems;
1441 ushort fast_sem_io[SEMMSL_FAST];
1442 ushort *sem_io = fast_sem_io;
1443 DEFINE_WAKE_Q(wake_q);
1444
1445 rcu_read_lock();
1446 sma = sem_obtain_object_check(ns, semid);
1447 if (IS_ERR(sma)) {
1448 rcu_read_unlock();
1449 return PTR_ERR(sma);
1450 }
1451
1452 nsems = sma->sem_nsems;
1453
1454 err = -EACCES;
1455 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) {
1456 goto out_rcu_wakeup;
1457 }
1458
1459 err = security_sem_semctl(&sma->sem_perm, cmd);
1460 if (err) {
1461 goto out_rcu_wakeup;
1462 }
1463
1464 err = -EACCES;
1465 switch (cmd) {
1466 case GETALL: {
1467 ushort __user *array = p;
1468 int i;
1469
1470 sem_lock(sma, NULL, -1);
1471 if (!ipc_valid_object(&sma->sem_perm)) {
1472 err = -EIDRM;
1473 goto out_unlock;
1474 }
1475 if (nsems > SEMMSL_FAST) {
1476 if (!ipc_rcu_getref(&sma->sem_perm)) {
1477 err = -EIDRM;
1478 goto out_unlock;
1479 }
1480 sem_unlock(sma, -1);
1481 rcu_read_unlock();
1482 sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL);
1483 if (sem_io == NULL) {
1484 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1485 return -ENOMEM;
1486 }
1487
1488 rcu_read_lock();
1489 sem_lock_and_putref(sma);
1490 if (!ipc_valid_object(&sma->sem_perm)) {
1491 err = -EIDRM;
1492 goto out_unlock;
1493 }
1494 }
1495 for (i = 0; i < sma->sem_nsems; i++) {
1496 sem_io[i] = sma->sems[i].semval;
1497 }
1498 sem_unlock(sma, -1);
1499 rcu_read_unlock();
1500 err = 0;
1501 if (copy_to_user(array, sem_io, nsems * sizeof(ushort))) {
1502 err = -EFAULT;
1503 }
1504 goto out_free;
1505 }
1506 case SETALL: {
1507 int i;
1508 struct sem_undo *un;
1509
1510 if (!ipc_rcu_getref(&sma->sem_perm)) {
1511 err = -EIDRM;
1512 goto out_rcu_wakeup;
1513 }
1514 rcu_read_unlock();
1515
1516 if (nsems > SEMMSL_FAST) {
1517 sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL);
1518 if (sem_io == NULL) {
1519 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1520 return -ENOMEM;
1521 }
1522 }
1523
1524 if (copy_from_user(sem_io, p, nsems * sizeof(ushort))) {
1525 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1526 err = -EFAULT;
1527 goto out_free;
1528 }
1529
1530 for (i = 0; i < nsems; i++) {
1531 if (sem_io[i] > SEMVMX) {
1532 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1533 err = -ERANGE;
1534 goto out_free;
1535 }
1536 }
1537 rcu_read_lock();
1538 sem_lock_and_putref(sma);
1539 if (!ipc_valid_object(&sma->sem_perm)) {
1540 err = -EIDRM;
1541 goto out_unlock;
1542 }
1543
1544 for (i = 0; i < nsems; i++) {
1545 sma->sems[i].semval = sem_io[i];
1546 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1547 }
1548
1549 ipc_assert_locked_object(&sma->sem_perm);
1550 list_for_each_entry(un, &sma->list_id, list_id)
1551 {
1552 for (i = 0; i < nsems; i++) {
1553 un->semadj[i] = 0;
1554 }
1555 }
1556 sma->sem_ctime = ktime_get_real_seconds();
1557 /* maybe some queued-up processes were waiting for this */
1558 do_smart_update(sma, NULL, 0, 0, &wake_q);
1559 err = 0;
1560 goto out_unlock;
1561 }
1562 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1563 }
1564 err = -EINVAL;
1565 if (semnum < 0 || semnum >= nsems) {
1566 goto out_rcu_wakeup;
1567 }
1568
1569 sem_lock(sma, NULL, -1);
1570 if (!ipc_valid_object(&sma->sem_perm)) {
1571 err = -EIDRM;
1572 goto out_unlock;
1573 }
1574
1575 semnum = array_index_nospec(semnum, nsems);
1576 curr = &sma->sems[semnum];
1577
1578 switch (cmd) {
1579 case GETVAL:
1580 err = curr->semval;
1581 goto out_unlock;
1582 case GETPID:
1583 err = pid_vnr(curr->sempid);
1584 goto out_unlock;
1585 case GETNCNT:
1586 err = count_semcnt(sma, semnum, 0);
1587 goto out_unlock;
1588 case GETZCNT:
1589 err = count_semcnt(sma, semnum, 1);
1590 goto out_unlock;
1591 }
1592
1593 out_unlock:
1594 sem_unlock(sma, -1);
1595 out_rcu_wakeup:
1596 rcu_read_unlock();
1597 wake_up_q(&wake_q);
1598 out_free:
1599 if (sem_io != fast_sem_io) {
1600 kvfree(sem_io);
1601 }
1602 return err;
1603 }
1604
copy_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1605 static inline unsigned long copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1606 {
1607 switch (version) {
1608 case IPC_64:
1609 if (copy_from_user(out, buf, sizeof(*out))) {
1610 return -EFAULT;
1611 }
1612 return 0;
1613 case IPC_OLD: {
1614 struct semid_ds tbuf_old;
1615
1616 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) {
1617 return -EFAULT;
1618 }
1619
1620 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1621 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1622 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1623
1624 return 0;
1625 }
1626 default:
1627 return -EINVAL;
1628 }
1629 }
1630
1631 /*
1632 * This function handles some semctl commands which require the rwsem
1633 * to be held in write mode.
1634 * NOTE: no locks must be held, the rwsem is taken inside this function.
1635 */
semctl_down(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1636 static int semctl_down(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64)
1637 {
1638 struct sem_array *sma;
1639 int err;
1640 struct kern_ipc_perm *ipcp;
1641
1642 down_write(&sem_ids(ns).rwsem);
1643 rcu_read_lock();
1644
1645 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, &semid64->sem_perm, 0);
1646 if (IS_ERR(ipcp)) {
1647 err = PTR_ERR(ipcp);
1648 goto out_unlock1;
1649 }
1650
1651 sma = container_of(ipcp, struct sem_array, sem_perm);
1652
1653 err = security_sem_semctl(&sma->sem_perm, cmd);
1654 if (err) {
1655 goto out_unlock1;
1656 }
1657
1658 switch (cmd) {
1659 case IPC_RMID:
1660 sem_lock(sma, NULL, -1);
1661 /* freeary unlocks the ipc object and rcu */
1662 freeary(ns, ipcp);
1663 goto out_up;
1664 case IPC_SET:
1665 sem_lock(sma, NULL, -1);
1666 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1667 if (err) {
1668 goto out_unlock0;
1669 }
1670 sma->sem_ctime = ktime_get_real_seconds();
1671 break;
1672 default:
1673 err = -EINVAL;
1674 goto out_unlock1;
1675 }
1676
1677 out_unlock0:
1678 sem_unlock(sma, -1);
1679 out_unlock1:
1680 rcu_read_unlock();
1681 out_up:
1682 up_write(&sem_ids(ns).rwsem);
1683 return err;
1684 }
1685
ksys_semctl(int semid,int semnum,int cmd,unsigned long arg,int version)1686 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1687 {
1688 struct ipc_namespace *ns;
1689 void __user *p = (void __user *)arg;
1690 struct semid64_ds semid64;
1691 int err;
1692
1693 if (semid < 0) {
1694 return -EINVAL;
1695 }
1696
1697 ns = current->nsproxy->ipc_ns;
1698
1699 switch (cmd) {
1700 case IPC_INFO:
1701 case SEM_INFO:
1702 return semctl_info(ns, semid, cmd, p);
1703 case IPC_STAT:
1704 case SEM_STAT:
1705 case SEM_STAT_ANY:
1706 err = semctl_stat(ns, semid, cmd, &semid64);
1707 if (err < 0) {
1708 return err;
1709 }
1710 if (copy_semid_to_user(p, &semid64, version)) {
1711 err = -EFAULT;
1712 }
1713 return err;
1714 case GETALL:
1715 case GETVAL:
1716 case GETPID:
1717 case GETNCNT:
1718 case GETZCNT:
1719 case SETALL:
1720 return semctl_main(ns, semid, semnum, cmd, p);
1721 case SETVAL: {
1722 int val;
1723 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1724 /* big-endian 64bit */
1725 val = arg >> 0x20;
1726 #else
1727 /* 32bit or little-endian 64bit */
1728 val = arg;
1729 #endif
1730 return semctl_setval(ns, semid, semnum, val);
1731 }
1732 case IPC_SET:
1733 if (copy_semid_from_user(&semid64, p, version)) {
1734 return -EFAULT;
1735 }
1736 fallthrough;
1737 case IPC_RMID:
1738 return semctl_down(ns, semid, cmd, &semid64);
1739 default:
1740 return -EINVAL;
1741 }
1742 }
1743
SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1744 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1745 {
1746 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1747 }
1748
1749 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
ksys_old_semctl(int semid,int semnum,int cmd,unsigned long arg)1750 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1751 {
1752 int version = ipc_parse_version(&cmd);
1753
1754 return ksys_semctl(semid, semnum, cmd, arg, version);
1755 }
1756
SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1757 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1758 {
1759 return ksys_old_semctl(semid, semnum, cmd, arg);
1760 }
1761 #endif
1762
1763 #ifdef CONFIG_COMPAT
1764
1765 struct compat_semid_ds {
1766 struct compat_ipc_perm sem_perm;
1767 old_time32_t sem_otime;
1768 old_time32_t sem_ctime;
1769 compat_uptr_t sem_base;
1770 compat_uptr_t sem_pending;
1771 compat_uptr_t sem_pending_last;
1772 compat_uptr_t undo;
1773 unsigned short sem_nsems;
1774 };
1775
copy_compat_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1776 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1777 {
1778 memset(out, 0, sizeof(*out));
1779 if (version == IPC_64) {
1780 struct compat_semid64_ds __user *p = buf;
1781 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1782 } else {
1783 struct compat_semid_ds __user *p = buf;
1784 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1785 }
1786 }
1787
copy_compat_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1788 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1789 {
1790 if (version == IPC_64) {
1791 struct compat_semid64_ds v;
1792 memset(&v, 0, sizeof(v));
1793 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1794 v.sem_otime = lower_32_bits(in->sem_otime);
1795 v.sem_otime_high = upper_32_bits(in->sem_otime);
1796 v.sem_ctime = lower_32_bits(in->sem_ctime);
1797 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1798 v.sem_nsems = in->sem_nsems;
1799 return copy_to_user(buf, &v, sizeof(v));
1800 } else {
1801 struct compat_semid_ds v;
1802 memset(&v, 0, sizeof(v));
1803 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1804 v.sem_otime = in->sem_otime;
1805 v.sem_ctime = in->sem_ctime;
1806 v.sem_nsems = in->sem_nsems;
1807 return copy_to_user(buf, &v, sizeof(v));
1808 }
1809 }
1810
compat_ksys_semctl(int semid,int semnum,int cmd,int arg,int version)1811 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1812 {
1813 void __user *p = compat_ptr(arg);
1814 struct ipc_namespace *ns;
1815 struct semid64_ds semid64;
1816 int err;
1817
1818 ns = current->nsproxy->ipc_ns;
1819
1820 if (semid < 0) {
1821 return -EINVAL;
1822 }
1823
1824 switch (cmd & (~IPC_64)) {
1825 case IPC_INFO:
1826 case SEM_INFO:
1827 return semctl_info(ns, semid, cmd, p);
1828 case IPC_STAT:
1829 case SEM_STAT:
1830 case SEM_STAT_ANY:
1831 err = semctl_stat(ns, semid, cmd, &semid64);
1832 if (err < 0) {
1833 return err;
1834 }
1835 if (copy_compat_semid_to_user(p, &semid64, version)) {
1836 err = -EFAULT;
1837 }
1838 return err;
1839 case GETVAL:
1840 case GETPID:
1841 case GETNCNT:
1842 case GETZCNT:
1843 case GETALL:
1844 case SETALL:
1845 return semctl_main(ns, semid, semnum, cmd, p);
1846 case SETVAL:
1847 return semctl_setval(ns, semid, semnum, arg);
1848 case IPC_SET:
1849 if (copy_compat_semid_from_user(&semid64, p, version)) {
1850 return -EFAULT;
1851 }
1852 fallthrough;
1853 case IPC_RMID:
1854 return semctl_down(ns, semid, cmd, &semid64);
1855 default:
1856 return -EINVAL;
1857 }
1858 }
1859
COMPAT_SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,int,arg)1860 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1861 {
1862 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1863 }
1864
1865 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
compat_ksys_old_semctl(int semid,int semnum,int cmd,int arg)1866 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1867 {
1868 int version = compat_ipc_parse_version(&cmd);
1869
1870 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1871 }
1872
COMPAT_SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,int,arg)1873 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1874 {
1875 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1876 }
1877 #endif
1878 #endif
1879
1880 /* If the task doesn't already have a undo_list, then allocate one
1881 * here. We guarantee there is only one thread using this undo list,
1882 * and current is THE ONE
1883 *
1884 * If this allocation and assignment succeeds, but later
1885 * portions of this code fail, there is no need to free the sem_undo_list.
1886 * Just let it stay associated with the task, and it'll be freed later
1887 * at exit time.
1888 *
1889 * This can block, so callers must hold no locks.
1890 */
get_undo_list(struct sem_undo_list ** undo_listp)1891 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1892 {
1893 struct sem_undo_list *undo_list;
1894
1895 undo_list = current->sysvsem.undo_list;
1896 if (!undo_list) {
1897 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1898 if (undo_list == NULL) {
1899 return -ENOMEM;
1900 }
1901 spin_lock_init(&undo_list->lock);
1902 refcount_set(&undo_list->refcnt, 1);
1903 INIT_LIST_HEAD(&undo_list->list_proc);
1904
1905 current->sysvsem.undo_list = undo_list;
1906 }
1907 *undo_listp = undo_list;
1908 return 0;
1909 }
1910
__lookup_undo(struct sem_undo_list * ulp,int semid)1911 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1912 {
1913 struct sem_undo *un;
1914
1915 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, spin_is_locked(&ulp->lock))
1916 {
1917 if (un->semid == semid) {
1918 return un;
1919 }
1920 }
1921 return NULL;
1922 }
1923
lookup_undo(struct sem_undo_list * ulp,int semid)1924 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1925 {
1926 struct sem_undo *un;
1927
1928 assert_spin_locked(&ulp->lock);
1929
1930 un = __lookup_undo(ulp, semid);
1931 if (un) {
1932 list_del_rcu(&un->list_proc);
1933 list_add_rcu(&un->list_proc, &ulp->list_proc);
1934 }
1935 return un;
1936 }
1937
1938 /**
1939 * find_alloc_undo - lookup (and if not present create) undo array
1940 * @ns: namespace
1941 * @semid: semaphore array id
1942 *
1943 * The function looks up (and if not present creates) the undo structure.
1944 * The size of the undo structure depends on the size of the semaphore
1945 * array, thus the alloc path is not that straightforward.
1946 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1947 * performs a rcu_read_lock().
1948 */
find_alloc_undo(struct ipc_namespace * ns,int semid)1949 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1950 {
1951 struct sem_array *sma;
1952 struct sem_undo_list *ulp;
1953 struct sem_undo *un, *new;
1954 int nsems, error;
1955
1956 error = get_undo_list(&ulp);
1957 if (error) {
1958 return ERR_PTR(error);
1959 }
1960
1961 rcu_read_lock();
1962 spin_lock(&ulp->lock);
1963 un = lookup_undo(ulp, semid);
1964 spin_unlock(&ulp->lock);
1965 if (likely(un != NULL)) {
1966 goto out;
1967 }
1968
1969 /* no undo structure around - allocate one. */
1970 /* step 1: figure out the size of the semaphore array */
1971 sma = sem_obtain_object_check(ns, semid);
1972 if (IS_ERR(sma)) {
1973 rcu_read_unlock();
1974 return ERR_CAST(sma);
1975 }
1976
1977 nsems = sma->sem_nsems;
1978 if (!ipc_rcu_getref(&sma->sem_perm)) {
1979 rcu_read_unlock();
1980 un = ERR_PTR(-EIDRM);
1981 goto out;
1982 }
1983 rcu_read_unlock();
1984
1985 /* step 2: allocate new undo structure */
1986 new = kzalloc(sizeof(struct sem_undo) + sizeof(short) * nsems, GFP_KERNEL);
1987 if (!new) {
1988 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1989 return ERR_PTR(-ENOMEM);
1990 }
1991
1992 /* step 3: Acquire the lock on semaphore array */
1993 rcu_read_lock();
1994 sem_lock_and_putref(sma);
1995 if (!ipc_valid_object(&sma->sem_perm)) {
1996 sem_unlock(sma, -1);
1997 rcu_read_unlock();
1998 kfree(new);
1999 un = ERR_PTR(-EIDRM);
2000 goto out;
2001 }
2002 spin_lock(&ulp->lock);
2003
2004 /*
2005 * step 4: check for races: did someone else allocate the undo struct?
2006 */
2007 un = lookup_undo(ulp, semid);
2008 if (un) {
2009 kfree(new);
2010 goto success;
2011 }
2012 /* step 5: initialize & link new undo structure */
2013 new->semadj = (short *)&new[1];
2014 new->ulp = ulp;
2015 new->semid = semid;
2016 assert_spin_locked(&ulp->lock);
2017 list_add_rcu(&new->list_proc, &ulp->list_proc);
2018 ipc_assert_locked_object(&sma->sem_perm);
2019 list_add(&new->list_id, &sma->list_id);
2020 un = new;
2021
2022 success:
2023 spin_unlock(&ulp->lock);
2024 sem_unlock(sma, -1);
2025 out:
2026 return un;
2027 }
2028
do_semtimedop(int semid,struct sembuf __user * tsops,unsigned nsops,const struct timespec64 * timeout)2029 static long do_semtimedop(int semid, struct sembuf __user *tsops, unsigned nsops, const struct timespec64 *timeout)
2030 {
2031 int error = -EINVAL;
2032 struct sem_array *sma;
2033 struct sembuf fast_sops[SEMOPM_FAST];
2034 struct sembuf *sops = fast_sops, *sop;
2035 struct sem_undo *un;
2036 int max, locknum;
2037 bool undos = false, alter = false, dupsop = false;
2038 struct sem_queue queue;
2039 unsigned long dup = 0, jiffies_left = 0;
2040 struct ipc_namespace *ns;
2041
2042 ns = current->nsproxy->ipc_ns;
2043
2044 if (nsops < 1 || semid < 0) {
2045 return -EINVAL;
2046 }
2047 if (nsops > ns->sc_semopm) {
2048 return -E2BIG;
2049 }
2050 if (nsops > SEMOPM_FAST) {
2051 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2052 if (sops == NULL) {
2053 return -ENOMEM;
2054 }
2055 }
2056
2057 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2058 error = -EFAULT;
2059 goto out_free;
2060 }
2061
2062 if (timeout) {
2063 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || timeout->tv_nsec >= 1000000000L) {
2064 error = -EINVAL;
2065 goto out_free;
2066 }
2067 jiffies_left = timespec64_to_jiffies(timeout);
2068 }
2069
2070 max = 0;
2071 for (sop = sops; sop < sops + nsops; sop++) {
2072 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2073
2074 if (sop->sem_num >= max) {
2075 max = sop->sem_num;
2076 }
2077 if (sop->sem_flg & SEM_UNDO) {
2078 undos = true;
2079 }
2080 if (dup & mask) {
2081 /*
2082 * There was a previous alter access that appears
2083 * to have accessed the same semaphore, thus use
2084 * the dupsop logic. "appears", because the detection
2085 * can only check % BITS_PER_LONG.
2086 */
2087 dupsop = true;
2088 }
2089 if (sop->sem_op != 0) {
2090 alter = true;
2091 dup |= mask;
2092 }
2093 }
2094
2095 if (undos) {
2096 /* On success, find_alloc_undo takes the rcu_read_lock */
2097 un = find_alloc_undo(ns, semid);
2098 if (IS_ERR(un)) {
2099 error = PTR_ERR(un);
2100 goto out_free;
2101 }
2102 } else {
2103 un = NULL;
2104 rcu_read_lock();
2105 }
2106
2107 sma = sem_obtain_object_check(ns, semid);
2108 if (IS_ERR(sma)) {
2109 rcu_read_unlock();
2110 error = PTR_ERR(sma);
2111 goto out_free;
2112 }
2113
2114 error = -EFBIG;
2115 if (max >= sma->sem_nsems) {
2116 rcu_read_unlock();
2117 goto out_free;
2118 }
2119
2120 error = -EACCES;
2121 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2122 rcu_read_unlock();
2123 goto out_free;
2124 }
2125
2126 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2127 if (error) {
2128 rcu_read_unlock();
2129 goto out_free;
2130 }
2131
2132 error = -EIDRM;
2133 locknum = sem_lock(sma, sops, nsops);
2134 /*
2135 * We eventually might perform the following check in a lockless
2136 * fashion, considering ipc_valid_object() locking constraints.
2137 * If nsops == 1 and there is no contention for sem_perm.lock, then
2138 * only a per-semaphore lock is held and it's OK to proceed with the
2139 * check below. More details on the fine grained locking scheme
2140 * entangled here and why it's RMID race safe on comments at sem_lock()
2141 */
2142 if (!ipc_valid_object(&sma->sem_perm)) {
2143 goto out_unlock_free;
2144 }
2145 /*
2146 * semid identifiers are not unique - find_alloc_undo may have
2147 * allocated an undo structure, it was invalidated by an RMID
2148 * and now a new array with received the same id. Check and fail.
2149 * This case can be detected checking un->semid. The existence of
2150 * "un" itself is guaranteed by rcu.
2151 */
2152 if (un && un->semid == -1) {
2153 goto out_unlock_free;
2154 }
2155
2156 queue.sops = sops;
2157 queue.nsops = nsops;
2158 queue.undo = un;
2159 queue.pid = task_tgid(current);
2160 queue.alter = alter;
2161 queue.dupsop = dupsop;
2162
2163 error = perform_atomic_semop(sma, &queue);
2164 if (error == 0) { /* non-blocking succesfull path */
2165 DEFINE_WAKE_Q(wake_q);
2166
2167 /*
2168 * If the operation was successful, then do
2169 * the required updates.
2170 */
2171 if (alter) {
2172 do_smart_update(sma, sops, nsops, 1, &wake_q);
2173 } else {
2174 set_semotime(sma, sops);
2175 }
2176
2177 sem_unlock(sma, locknum);
2178 rcu_read_unlock();
2179 wake_up_q(&wake_q);
2180
2181 goto out_free;
2182 }
2183 if (error < 0) { /* non-blocking error path */
2184 goto out_unlock_free;
2185 }
2186
2187 /*
2188 * We need to sleep on this operation, so we put the current
2189 * task into the pending queue and go to sleep.
2190 */
2191 if (nsops == 1) {
2192 struct sem *curr;
2193 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2194 curr = &sma->sems[idx];
2195
2196 if (alter) {
2197 if (sma->complex_count) {
2198 list_add_tail(&queue.list, &sma->pending_alter);
2199 } else {
2200
2201 list_add_tail(&queue.list, &curr->pending_alter);
2202 }
2203 } else {
2204 list_add_tail(&queue.list, &curr->pending_const);
2205 }
2206 } else {
2207 if (!sma->complex_count) {
2208 merge_queues(sma);
2209 }
2210
2211 if (alter) {
2212 list_add_tail(&queue.list, &sma->pending_alter);
2213 } else {
2214 list_add_tail(&queue.list, &sma->pending_const);
2215 }
2216
2217 sma->complex_count++;
2218 }
2219
2220 do {
2221 /* memory ordering ensured by the lock in sem_lock() */
2222 WRITE_ONCE(queue.status, -EINTR);
2223 queue.sleeper = current;
2224
2225 /* memory ordering is ensured by the lock in sem_lock() */
2226 __set_current_state(TASK_INTERRUPTIBLE);
2227 sem_unlock(sma, locknum);
2228 rcu_read_unlock();
2229
2230 if (timeout) {
2231 jiffies_left = schedule_timeout(jiffies_left);
2232 } else {
2233 schedule();
2234 }
2235
2236 /*
2237 * fastpath: the semop has completed, either successfully or
2238 * not, from the syscall pov, is quite irrelevant to us at this
2239 * point; we're done.
2240 *
2241 * We _do_ care, nonetheless, about being awoken by a signal or
2242 * spuriously. The queue.status is checked again in the
2243 * slowpath (aka after taking sem_lock), such that we can detect
2244 * scenarios where we were awakened externally, during the
2245 * window between wake_q_add() and wake_up_q().
2246 */
2247 error = READ_ONCE(queue.status);
2248 if (error != -EINTR) {
2249 /* see SEM_BARRIER_2 for purpose/pairing */
2250 smp_acquire__after_ctrl_dep();
2251 goto out_free;
2252 }
2253
2254 rcu_read_lock();
2255 locknum = sem_lock(sma, sops, nsops);
2256
2257 if (!ipc_valid_object(&sma->sem_perm)) {
2258 goto out_unlock_free;
2259 }
2260
2261 /*
2262 * No necessity for any barrier: We are protect by sem_lock()
2263 */
2264 error = READ_ONCE(queue.status);
2265
2266 /*
2267 * If queue.status != -EINTR we are woken up by another process.
2268 * Leave without unlink_queue(), but with sem_unlock().
2269 */
2270 if (error != -EINTR) {
2271 goto out_unlock_free;
2272 }
2273
2274 /*
2275 * If an interrupt occurred we have to clean up the queue.
2276 */
2277 if (timeout && jiffies_left == 0) {
2278 error = -EAGAIN;
2279 }
2280 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2281
2282 unlink_queue(sma, &queue);
2283
2284 out_unlock_free:
2285 sem_unlock(sma, locknum);
2286 rcu_read_unlock();
2287 out_free:
2288 if (sops != fast_sops) {
2289 kvfree(sops);
2290 }
2291 return error;
2292 }
2293
ksys_semtimedop(int semid,struct sembuf __user * tsops,unsigned int nsops,const struct __kernel_timespec __user * timeout)2294 long ksys_semtimedop(int semid, struct sembuf __user *tsops, unsigned int nsops,
2295 const struct __kernel_timespec __user *timeout)
2296 {
2297 if (timeout) {
2298 struct timespec64 ts;
2299 if (get_timespec64(&ts, timeout)) {
2300 return -EFAULT;
2301 }
2302 return do_semtimedop(semid, tsops, nsops, &ts);
2303 }
2304 return do_semtimedop(semid, tsops, nsops, NULL);
2305 }
2306
SYSCALL_DEFINE4(semtimedop,int,semid,struct sembuf __user *,tsops,unsigned int,nsops,const struct __kernel_timespec __user *,timeout)2307 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, unsigned int, nsops,
2308 const struct __kernel_timespec __user *, timeout)
2309 {
2310 return ksys_semtimedop(semid, tsops, nsops, timeout);
2311 }
2312
2313 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_ksys_semtimedop(int semid,struct sembuf __user * tsems,unsigned int nsops,const struct old_timespec32 __user * timeout)2314 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, unsigned int nsops,
2315 const struct old_timespec32 __user *timeout)
2316 {
2317 if (timeout) {
2318 struct timespec64 ts;
2319 if (get_old_timespec32(&ts, timeout)) {
2320 return -EFAULT;
2321 }
2322 return do_semtimedop(semid, tsems, nsops, &ts);
2323 }
2324 return do_semtimedop(semid, tsems, nsops, NULL);
2325 }
2326
SYSCALL_DEFINE4(semtimedop_time32,int,semid,struct sembuf __user *,tsems,unsigned int,nsops,const struct old_timespec32 __user *,timeout)2327 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, unsigned int, nsops,
2328 const struct old_timespec32 __user *, timeout)
2329 {
2330 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2331 }
2332 #endif
2333
SYSCALL_DEFINE3(semop,int,semid,struct sembuf __user *,tsops,unsigned,nsops)2334 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, unsigned, nsops)
2335 {
2336 return do_semtimedop(semid, tsops, nsops, NULL);
2337 }
2338
2339 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2340 * parent and child tasks.
2341 */
2342
copy_semundo(unsigned long clone_flags,struct task_struct * tsk)2343 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2344 {
2345 struct sem_undo_list *undo_list;
2346 int error;
2347
2348 if (clone_flags & CLONE_SYSVSEM) {
2349 error = get_undo_list(&undo_list);
2350 if (error) {
2351 return error;
2352 }
2353 refcount_inc(&undo_list->refcnt);
2354 tsk->sysvsem.undo_list = undo_list;
2355 } else {
2356 tsk->sysvsem.undo_list = NULL;
2357 }
2358
2359 return 0;
2360 }
2361
2362 /*
2363 * add semadj values to semaphores, free undo structures.
2364 * undo structures are not freed when semaphore arrays are destroyed
2365 * so some of them may be out of date.
2366 * IMPLEMENTATION NOTE: There is some confusion over whether the
2367 * set of adjustments that needs to be done should be done in an atomic
2368 * manner or not. That is, if we are attempting to decrement the semval
2369 * should we queue up and wait until we can do so legally?
2370 * The original implementation attempted to do this (queue and wait).
2371 * The current implementation does not do so. The POSIX standard
2372 * and SVID should be consulted to determine what behavior is mandated.
2373 */
exit_sem(struct task_struct * tsk)2374 void exit_sem(struct task_struct *tsk)
2375 {
2376 struct sem_undo_list *ulp;
2377
2378 ulp = tsk->sysvsem.undo_list;
2379 if (!ulp) {
2380 return;
2381 }
2382 tsk->sysvsem.undo_list = NULL;
2383
2384 if (!refcount_dec_and_test(&ulp->refcnt)) {
2385 return;
2386 }
2387
2388 for (;;) {
2389 struct sem_array *sma;
2390 struct sem_undo *un;
2391 int semid, i;
2392 DEFINE_WAKE_Q(wake_q);
2393
2394 cond_resched();
2395
2396 rcu_read_lock();
2397 un = list_entry_rcu(ulp->list_proc.next, struct sem_undo, list_proc);
2398 if (&un->list_proc == &ulp->list_proc) {
2399 /*
2400 * We must wait for freeary() before freeing this ulp,
2401 * in case we raced with last sem_undo. There is a small
2402 * possibility where we exit while freeary() didn't
2403 * finish unlocking sem_undo_list.
2404 */
2405 spin_lock(&ulp->lock);
2406 spin_unlock(&ulp->lock);
2407 rcu_read_unlock();
2408 break;
2409 }
2410 spin_lock(&ulp->lock);
2411 semid = un->semid;
2412 spin_unlock(&ulp->lock);
2413
2414 /* exit_sem raced with IPC_RMID, nothing to do */
2415 if (semid == -1) {
2416 rcu_read_unlock();
2417 continue;
2418 }
2419
2420 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2421 /* exit_sem raced with IPC_RMID, nothing to do */
2422 if (IS_ERR(sma)) {
2423 rcu_read_unlock();
2424 continue;
2425 }
2426
2427 sem_lock(sma, NULL, -1);
2428 /* exit_sem raced with IPC_RMID, nothing to do */
2429 if (!ipc_valid_object(&sma->sem_perm)) {
2430 sem_unlock(sma, -1);
2431 rcu_read_unlock();
2432 continue;
2433 }
2434 un = __lookup_undo(ulp, semid);
2435 if (un == NULL) {
2436 /* exit_sem raced with IPC_RMID+semget() that created
2437 * exactly the same semid. Nothing to do.
2438 */
2439 sem_unlock(sma, -1);
2440 rcu_read_unlock();
2441 continue;
2442 }
2443
2444 /* remove un from the linked lists */
2445 ipc_assert_locked_object(&sma->sem_perm);
2446 list_del(&un->list_id);
2447
2448 spin_lock(&ulp->lock);
2449 list_del_rcu(&un->list_proc);
2450 spin_unlock(&ulp->lock);
2451
2452 /* perform adjustments registered in un */
2453 for (i = 0; i < sma->sem_nsems; i++) {
2454 struct sem *semaphore = &sma->sems[i];
2455 if (un->semadj[i]) {
2456 semaphore->semval += un->semadj[i];
2457 /*
2458 * Range checks of the new semaphore value,
2459 * not defined by sus:
2460 * - Some unices ignore the undo entirely
2461 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2462 * - some cap the value (e.g. FreeBSD caps
2463 * at 0, but doesn't enforce SEMVMX)
2464 *
2465 * Linux caps the semaphore value, both at 0
2466 * and at SEMVMX.
2467 *
2468 * Manfred <manfred@colorfullife.com>
2469 */
2470 if (semaphore->semval < 0) {
2471 semaphore->semval = 0;
2472 }
2473 if (semaphore->semval > SEMVMX) {
2474 semaphore->semval = SEMVMX;
2475 }
2476 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2477 }
2478 }
2479 /* maybe some queued-up processes were waiting for this */
2480 do_smart_update(sma, NULL, 0, 1, &wake_q);
2481 sem_unlock(sma, -1);
2482 rcu_read_unlock();
2483 wake_up_q(&wake_q);
2484
2485 kfree_rcu(un, rcu);
2486 }
2487 kfree(ulp);
2488 }
2489
2490 #ifdef CONFIG_PROC_FS
sysvipc_sem_proc_show(struct seq_file * s,void * it)2491 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2492 {
2493 struct user_namespace *user_ns = seq_user_ns(s);
2494 struct kern_ipc_perm *ipcp = it;
2495 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2496 time64_t sem_otime;
2497
2498 /*
2499 * The proc interface isn't aware of sem_lock(), it calls
2500 * ipc_lock_object() directly (in sysvipc_find_ipc).
2501 * In order to stay compatible with sem_lock(), we must
2502 * enter / leave complex_mode.
2503 */
2504 complexmode_enter(sma);
2505
2506 sem_otime = get_semotime(sma);
2507
2508 seq_printf(s, "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", sma->sem_perm.key, sma->sem_perm.id,
2509 sma->sem_perm.mode, sma->sem_nsems, from_kuid_munged(user_ns, sma->sem_perm.uid),
2510 from_kgid_munged(user_ns, sma->sem_perm.gid), from_kuid_munged(user_ns, sma->sem_perm.cuid),
2511 from_kgid_munged(user_ns, sma->sem_perm.cgid), sem_otime, sma->sem_ctime);
2512
2513 complexmode_tryleave(sma);
2514
2515 return 0;
2516 }
2517 #endif
2518