• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Using MindSpore Lite for Model Inference (C/C++)
2
3## When to Use
4
5MindSpore Lite is an AI engine that provides AI model inference for different hardware devices. It has been used in a wide range of fields, such as image classification, target recognition, facial recognition, and character recognition.
6
7This document describes the general development process for MindSpore Lite model inference.
8
9## Basic Concepts
10
11Before getting started, you need to understand the following basic concepts:
12
13**Tensor**: a special data structure that is similar to arrays and matrices. It is basic data structure used in MindSpore Lite network operations.
14
15**Float16 inference mode**: an inference mode in half-precision format, where a number is represented with 16 bits.
16
17
18
19## Available APIs
20
21APIs involved in MindSpore Lite model inference are categorized into context APIs, model APIs, and tensor APIs. For details about the APIs, see [MindSpore](../../reference/apis-mindspore-lite-kit/capi-mindspore.md).
22
23### Context APIs
24
25| API       | Description       |
26| ------------------ | ----------------- |
27|OH_AI_ContextHandle OH_AI_ContextCreate()|Creates a context object. This API must be used together with **OH_AI_ContextDestroy**.|
28|void OH_AI_ContextSetThreadNum(OH_AI_ContextHandle context, int32_t thread_num)|Sets the number of runtime threads.|
29|void OH_AI_ContextSetThreadAffinityMode(OH_AI_ContextHandle context, int mode)|Sets the affinity mode for binding runtime threads to CPU cores, which are classified into large, medium, and small cores based on the CPU frequency. You only need to bind the large or medium cores, but not small cores.|
30|OH_AI_DeviceInfoHandle OH_AI_DeviceInfoCreate(OH_AI_DeviceType device_type)|Creates a runtime device information object.|
31|void OH_AI_ContextDestroy(OH_AI_ContextHandle *context)|Destroys a context object.|
32|void OH_AI_DeviceInfoSetEnableFP16(OH_AI_DeviceInfoHandle device_info, bool is_fp16)|Sets whether to enable float16 inference. This function is available only for CPU and GPU devices.|
33|void OH_AI_ContextAddDeviceInfo(OH_AI_ContextHandle context, OH_AI_DeviceInfoHandle device_info)|Adds a runtime device information object.|
34
35### Model APIs
36
37| API       | Description       |
38| ------------------ | ----------------- |
39|OH_AI_ModelHandle OH_AI_ModelCreate()|Creates a model object.|
40|OH_AI_Status OH_AI_ModelBuildFromFile(OH_AI_ModelHandle model, const char *model_path,OH_AI_ModelType model_type, const OH_AI_ContextHandle model_context)|Loads and builds a MindSpore model from a model file.|
41|void OH_AI_ModelDestroy(OH_AI_ModelHandle *model)|Destroys a model object.|
42
43### Tensor APIs
44
45| API       | Description       |
46| ------------------ | ----------------- |
47|OH_AI_TensorHandleArray OH_AI_ModelGetInputs(const OH_AI_ModelHandle model)|Obtains the input tensor array structure of a model.|
48|int64_t OH_AI_TensorGetElementNum(const OH_AI_TensorHandle tensor)|Obtains the number of tensor elements.|
49|const char *OH_AI_TensorGetName(const OH_AI_TensorHandle tensor)|Obtains the name of a tensor.|
50|OH_AI_DataType OH_AI_TensorGetDataType(const OH_AI_TensorHandle tensor)|Obtains the tensor data type.|
51|void *OH_AI_TensorGetMutableData(const OH_AI_TensorHandle tensor)|Obtains the pointer to mutable tensor data.|
52
53## How to Develop
54
55The following figure shows the development process for MindSpore Lite model inference.
56
57**Figure 1** Development process for MindSpore Lite model inference
58
59![how-to-use-mindspore-lite](figures/01.png)
60
61Before moving to the development process, you need to reference related header files and compile functions to generate random input. The sample code is as follows:
62
63```c
64#include <stdlib.h>
65#include <stdio.h>
66#include <unistd.h>
67#include "mindspore/model.h"
68
69// Generate random input.
70int GenerateInputDataWithRandom(OH_AI_TensorHandleArray inputs) {
71  for (size_t i = 0; i < inputs.handle_num; ++i) {
72    float *input_data = (float *)OH_AI_TensorGetMutableData(inputs.handle_list[i]);
73    if (input_data == NULL) {
74      printf("MSTensorGetMutableData failed.\n");
75      return OH_AI_STATUS_LITE_ERROR;
76    }
77    int64_t num = OH_AI_TensorGetElementNum(inputs.handle_list[i]);
78    const int divisor = 10;
79    for (size_t j = 0; j < num; j++) {
80      input_data[j] = (float)(rand() % divisor) / divisor;  // 0--0.9f
81    }
82  }
83  return OH_AI_STATUS_SUCCESS;
84}
85```
86
87The development process consists of the following main steps:
88
891. Prepare the required model.
90
91    The required model can be downloaded directly or obtained using the model conversion tool.
92
93     - If the downloaded model is in the `.ms` format, you can use it directly for inference. The following uses the **mobilenetv2.ms** model as an example.
94     - If the downloaded model uses a third-party framework, such as TensorFlow, TensorFlow Lite, Caffe, or ONNX, you can use the [model conversion tool](https://www.mindspore.cn/lite/docs/en/master/use/downloads.html#2-3-0) to convert it to the `.ms` format.
95
962. Create a context, and set parameters such as the number of runtime threads and device type.
97
98    The following describes two typical scenarios:
99
100    Scenario 1: Only the CPU inference context is created.
101
102    ```c
103    // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first).
104    OH_AI_ContextHandle context = OH_AI_ContextCreate();
105    if (context == NULL) {
106      printf("OH_AI_ContextCreate failed.\n");
107      return OH_AI_STATUS_LITE_ERROR;
108    }
109    const int thread_num = 2;
110    OH_AI_ContextSetThreadNum(context, thread_num);
111    OH_AI_ContextSetThreadAffinityMode(context, 1);
112    // Set the device type to CPU, and disable Float16 inference.
113    OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
114    if (cpu_device_info == NULL) {
115      printf("OH_AI_DeviceInfoCreate failed.\n");
116      OH_AI_ContextDestroy(&context);
117      return OH_AI_STATUS_LITE_ERROR;
118    }
119    OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false);
120    OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
121    ```
122
123    Scenario 2: The neural network runtime (NNRT) and CPU heterogeneous inference contexts are created.
124
125    NNRT is the runtime for cross-chip inference computing in the AI field. Generally, the acceleration hardware connected to NNRT, such as the NPU, has strong inference capabilities but supports only a limited number of operators, whereas the general-purpose CPU has weak inference capabilities but supports a wide range of operators. MindSpore Lite supports NNRT and CPU heterogeneous inference. Model operators are preferentially scheduled to NNRT for inference. If certain operators are not supported by NNRT, then they are scheduled to the CPU for inference. The following is the sample code for configuring NNRT/CPU heterogeneous inference:
126   <!--Del-->
127   > **NOTE**
128   >
129   > NNRT/CPU heterogeneous inference requires access of NNRT hardware. For details, see [OpenHarmony/ai_neural_network_runtime](https://gitee.com/openharmony/ai_neural_network_runtime).
130   <!--DelEnd-->
131    ```c
132    // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first).
133    OH_AI_ContextHandle context = OH_AI_ContextCreate();
134    if (context == NULL) {
135      printf("OH_AI_ContextCreate failed.\n");
136      return OH_AI_STATUS_LITE_ERROR;
137    }
138    // Preferentially use NNRT inference.
139    // Use the NNRT hardware of the first ACCELERATORS class to create the NNRT device information and configure the high-performance inference mode for the NNRT hardware. You can also use OH_AI_GetAllNNRTDeviceDescs() to obtain the list of NNRT devices in the current environment, search for a specific device by device name or type, and use the device as the NNRT inference hardware.
140    OH_AI_DeviceInfoHandle nnrt_device_info = OH_AI_CreateNNRTDeviceInfoByType(OH_AI_NNRTDEVICE_ACCELERATOR);
141    if (nnrt_device_info == NULL) {
142      printf("OH_AI_DeviceInfoCreate failed.\n");
143      OH_AI_ContextDestroy(&context);
144      return OH_AI_STATUS_LITE_ERROR;
145    }
146    OH_AI_DeviceInfoSetPerformanceMode(nnrt_device_info, OH_AI_PERFORMANCE_HIGH);
147    OH_AI_ContextAddDeviceInfo(context, nnrt_device_info);
148
149    // Configure CPU inference.
150    OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
151    if (cpu_device_info == NULL) {
152      printf("OH_AI_DeviceInfoCreate failed.\n");
153      OH_AI_ContextDestroy(&context);
154      return OH_AI_STATUS_LITE_ERROR;
155    }
156    OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
157    ```
158
159
160
1613. Create, load, and build the model.
162
163    Call **OH_AI_ModelBuildFromFile** to load and build the model.
164
165    In this example, the **argv[1]** parameter passed to **OH_AI_ModelBuildFromFile** indicates the specified model file path.
166
167    ```c
168    // Create a model.
169    OH_AI_ModelHandle model = OH_AI_ModelCreate();
170    if (model == NULL) {
171      printf("OH_AI_ModelCreate failed.\n");
172      OH_AI_ContextDestroy(&context);
173      return OH_AI_STATUS_LITE_ERROR;
174    }
175
176    // Load and build the inference model. The model type is OH_AI_MODELTYPE_MINDIR.
177    if (access(argv[1], F_OK) != 0) {
178        printf("model file not exists.\n");
179        OH_AI_ModelDestroy(&model);
180        OH_AI_ContextDestroy(&context);
181        return OH_AI_STATUS_LITE_ERROR;
182    }
183    int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_MODELTYPE_MINDIR, context);
184    if (ret != OH_AI_STATUS_SUCCESS) {
185      printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret);
186      OH_AI_ModelDestroy(&model);
187      OH_AI_ContextDestroy(&context);
188      return ret;
189    }
190    ```
191
1924. Input data.
193
194    Before executing model inference, you need to populate data to the input tensor. In this example, random data is used to populate the model.
195
196    ```c
197    // Obtain the input tensor.
198    OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model);
199    if (inputs.handle_list == NULL) {
200      printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret);
201      OH_AI_ModelDestroy(&model);
202      OH_AI_ContextDestroy(&context);
203      return ret;
204    }
205    // Use random data to populate the tensor.
206    ret = GenerateInputDataWithRandom(inputs);
207    if (ret != OH_AI_STATUS_SUCCESS) {
208      printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret);
209      OH_AI_ModelDestroy(&model);
210      OH_AI_ContextDestroy(&context);
211      return ret;
212    }
213   ```
214
2155. Execute model inference.
216
217    Call **OH_AI_ModelPredict** to perform model inference.
218
219    ```c
220    // Execute model inference.
221    OH_AI_TensorHandleArray outputs;
222    ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL);
223    if (ret != OH_AI_STATUS_SUCCESS) {
224      printf("OH_AI_ModelPredict failed, ret: %d.\n", ret);
225      OH_AI_ModelDestroy(&model);
226      OH_AI_ContextDestroy(&context);
227      return ret;
228    }
229    ```
230
2316. Obtain the output.
232
233    After model inference is complete, you can obtain the inference result through the output tensor.
234
235    ```c
236    // Obtain the output tensor and print the information.
237    for (size_t i = 0; i < outputs.handle_num; ++i) {
238      OH_AI_TensorHandle tensor = outputs.handle_list[i];
239      long long element_num = OH_AI_TensorGetElementNum(tensor);
240      printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor),
241            OH_AI_TensorGetDataSize(tensor), element_num);
242      const float *data = (const float *)OH_AI_TensorGetData(tensor);
243      if (data == NULL) {
244        printf("OH_AI_TensorGetData failed.\n");
245        OH_AI_ModelDestroy(&model);
246        OH_AI_ContextDestroy(&context);
247        return OH_AI_STATUS_LITE_ERROR;
248      }
249      printf("output data is:\n");
250      const int max_print_num = 50;
251      for (int j = 0; j < element_num && j <= max_print_num; ++j) {
252        printf("%f ", data[j]);
253      }
254      printf("\n");
255    }
256    ```
257
2587. Destroy the model.
259
260    If the MindSpore Lite inference framework is no longer needed, you need to destroy the created model.
261
262    ```c
263    // Release the model and context.
264    OH_AI_ModelDestroy(&model);
265    OH_AI_ContextDestroy(&context);
266    ```
267
268## Verification
269
2701. Write **CMakeLists.txt**.
271
272    ```cmake
273    cmake_minimum_required(VERSION 3.14)
274    project(Demo)
275
276    add_executable(demo main.c)
277
278    target_link_libraries(
279            demo
280            mindspore_lite_ndk
281            pthread
282            dl
283    )
284    ```
285   - To use ohos-sdk for cross compilation, you need to set the toolchain path for the CMake tool as follows: `-DCMAKE_TOOLCHAIN_FILE="/{sdkPath}/native/build/cmake/ohos.toolchain.cmake"`.
286
287     Where, **sdkPath** indicates the SDK path in the DevEco Studio installation directory. To obtain the SDK path, go to the project page on DevEco Studio, choose **File** > **Settings...** > **OpenHarmony SDK**, and view the information in **Location**.
288
289   - The toolchain builds a 64-bit application by default. To build a 32-bit application, add the following configuration: `-DOHOS_ARCH="armeabi-v7a"`.
290
2912. Run the CMake tool.
292
293    - Use hdc_std to connect to the device and put **demo** and **mobilenetv2.ms** to the same directory on the device.
294    - Run the hdc_std shell command to access the device, go to the directory where **demo** is located, and run the following command:
295
296    ```shell
297    ./demo mobilenetv2.ms
298    ```
299
300    The inference is successful if the output is similar to the following:
301
302    ```shell
303    # ./demo ./mobilenetv2.ms
304    Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001.
305    output data is:
306    0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023
307    ```
308
309## Samples
310
311The following sample is provided to help you better understand how to use MindSpore Lite:
312
313- [Simple MindSpore Lite Tutorial](https://gitee.com/openharmony/third_party_mindspore/tree/OpenHarmony-3.2-Release/mindspore/lite/examples/quick_start_c)
314