1# CPU Intensive Task Development (TaskPool and Worker) 2 3 4CPU intensive tasks are those that require significant computational resources and can run for extended periods. If executed in the UI main thread, these tasks can block other events. Examples include image processing, video encoding, and data analysis. 5 6 7To improve CPU utilization and enhance application responsiveness, you can use multithreaded concurrency in processing CPU intensive tasks. 8 9 10When tasks are discrete and do not need to occupy a background thread for an extended period (3 minutes), TaskPool is recommended. For tasks that require long-running background processing, Worker is more suitable. 11 12The following examples illustrate how to handle image histogram processing using TaskPool and long-running model prediction tasks using Worker. 13 14 15## Using TaskPool for Image Histogram Processing 16 171. Implement the logic of image processing. 18 192. Segment the data, and schedule related tasks using a TaskGroup. 20 21 Create a [task group](../reference/apis-arkts/js-apis-taskpool.md#taskgroup10), call [addTask()](../reference/apis-arkts/js-apis-taskpool.md#addtask10) to add tasks, and call [execute()](../reference/apis-arkts/js-apis-taskpool.md#taskpoolexecute10) to execute the tasks in the task group, specifying [high priority](../reference/apis-arkts/js-apis-taskpool.md#priority). After all the tasks in the group are complete, the histogram processing result is returned collectively. 22 233. Aggregate and process the result arrays. 24 25```ts 26import { taskpool } from '@kit.ArkTS'; 27 28@Concurrent 29function imageProcessing(dataSlice: ArrayBuffer): ArrayBuffer { 30 // Step 1: Perform specific image processing operations and other time-consuming operations. 31 return dataSlice; 32} 33 34function histogramStatistic(pixelBuffer: ArrayBuffer): void { 35 // Step 2: Segment the data and schedule tasks concurrently. 36 let number: number = pixelBuffer.byteLength / 3; 37 let buffer1: ArrayBuffer = pixelBuffer.slice(0, number); 38 let buffer2: ArrayBuffer = pixelBuffer.slice(number, number * 2); 39 let buffer3: ArrayBuffer = pixelBuffer.slice(number * 2); 40 41 let group: taskpool.TaskGroup = new taskpool.TaskGroup(); 42 group.addTask(imageProcessing, buffer1); 43 group.addTask(imageProcessing, buffer2); 44 group.addTask(imageProcessing, buffer3); 45 46 taskpool.execute(group, taskpool.Priority.HIGH).then((ret: Object) => { 47 // Step 3: Aggregate and process the result arrays. 48 }) 49} 50 51@Entry 52@Component 53struct Index { 54 @State message: string = 'Hello World' 55 56 build() { 57 Row() { 58 Column() { 59 Text(this.message) 60 .fontSize(50) 61 .fontWeight(FontWeight.Bold) 62 .onClick(() => { 63 let buffer: ArrayBuffer = new ArrayBuffer(24); 64 histogramStatistic(buffer); 65 }) 66 } 67 .width('100%') 68 } 69 .height('100%') 70 } 71} 72``` 73<!-- @[process_image_histogram](https://gitee.com/openharmony/applications_app_samples/blob/master/code/DocsSample/ArkTS/ArkTsConcurrent/ApplicationMultithreadingDevelopment/ApplicationMultithreading/entry/src/main/ets/managers/CpuIntensiveTaskDevelopment.ets) --> 74 75 76## Using Worker for Time-Consuming Data Analysis 77 78This example demonstrates training a simple housing price prediction model using housing data from a specific region. The model supports predicting housing prices based on input parameters like house size and number of rooms. Since the model requires long-running execution and the prediction relies on the model's previous results, Worker is the appropriate choice. 79 801. In DevEco Studio, add a Worker thread named **MyWorker** to your project. 81 82  83 842. In the host thread, call [constructor()](../reference/apis-arkts/js-apis-worker.md#constructor9) of **ThreadWorker** to create a Worker object. 85 86 ```ts 87 // Index.ets 88 import { worker } from '@kit.ArkTS'; 89 90 const workerInstance: worker.ThreadWorker = new worker.ThreadWorker('entry/ets/workers/MyWorker.ets'); 91 ``` 92 933. In the host thread, call [onmessage()](../reference/apis-arkts/js-apis-worker.md#onmessage9) to receive messages from the Worker thread, and call [postMessage()](../reference/apis-arkts/js-apis-worker.md#postmessage9) to send messages to the Worker thread. 94 95 For example, the host thread sends training and prediction messages to the Worker thread and receive responses. 96 97 ```ts 98 // Index.ets 99 let done = false; 100 101 // Receive results from the Worker thread. 102 workerInstance.onmessage = (() => { 103 console.info('MyWorker.ets onmessage'); 104 if (!done) { 105 workerInstance.postMessage({ 'type': 1, 'value': 0 }); 106 done = true; 107 } 108 }) 109 110 workerInstance.onAllErrors = (() => { 111 // Receive error messages from the Worker thread. 112 }) 113 114 // Send a training message to the Worker thread. 115 workerInstance.postMessage({ 'type': 0 }); 116 ``` 117 <!-- @[call_worker_message](https://gitee.com/openharmony/applications_app_samples/blob/master/code/DocsSample/ArkTS/ArkTsConcurrent/ApplicationMultithreadingDevelopment/ApplicationMultithreading/entry/src/main/ets/managers/CpuIntensiveTaskDevelopment.ets) --> 118 1194. Bind the Worker object in the **MyWorker.ets** file. The calling thread is the Worker thread. 120 121 ```ts 122 // MyWorker.ets 123 import { worker, ThreadWorkerGlobalScope, MessageEvents, ErrorEvent } from '@kit.ArkTS'; 124 125 let workerPort: ThreadWorkerGlobalScope = worker.workerPort; 126 ``` 127 1285. In the Worker thread, call [onmessage()](../reference/apis-arkts/js-apis-worker.md#onmessage9-1) to receive messages sent by the host thread, and call [postMessage()](../reference/apis-arkts/js-apis-worker.md#postmessage9-2) to send messages to the host thread. 129 130 For example, define the prediction model and training process in the Worker thread and interact with the host thread. 131 132 ```ts 133 // MyWorker.ets 134 // Define the training model and results. 135 let result: Array<number>; 136 // Define the prediction function. 137 function predict(x: number): number { 138 return result[x]; 139 } 140 // Define the optimizer training process. 141 function optimize(): void { 142 result = [0]; 143 } 144 // onmessage logic of the Worker thread. 145 workerPort.onmessage = (e: MessageEvents): void => { 146 // Perform operations based on the type of data to transmit. 147 switch (e.data.type as number) { 148 case 0: 149 // Perform training. 150 optimize(); 151 // Send a training success message to the host thread after training. 152 workerPort.postMessage({ type: 'message', value: 'train success.' }); 153 break; 154 case 1: 155 // Perform prediction. 156 const output: number = predict(e.data.value as number); 157 // Send the prediction result to the host thread. 158 workerPort.postMessage({ type: 'predict', value: output }); 159 break; 160 default: 161 workerPort.postMessage({ type: 'message', value: 'send message is invalid' }); 162 break; 163 } 164 } 165 ``` 166 <!-- @[interact_main_thread](https://gitee.com/openharmony/applications_app_samples/blob/master/code/DocsSample/ArkTS/ArkTsConcurrent/ApplicationMultithreadingDevelopment/ApplicationMultithreading/entry/src/main/ets/workers/MyWorker1.ts) --> 167 1686. After the task is completed, destroy the Worker thread. The Worker thread can be destroyed by itself or the host thread. 169 170 After the Worker thread is destroyed, call [onexit()](../reference/apis-arkts/js-apis-worker.md#onexit9) in the host thread to define the logic for handling the destruction. 171 172 ```ts 173 // Index.ets 174 // After the Worker thread is destroyed, execute the onexit callback. 175 workerInstance.onexit = (): void => { 176 console.info("main thread terminate"); 177 } 178 ``` 179 180 Method 1: In the host thread, call [terminate()](../reference/apis-arkts/js-apis-worker.md#terminate9) to destroy the Worker thread and stop it from receiving messages. 181 182 ```ts 183 // Index.ets 184 // Destroy the Worker thread. 185 workerInstance.terminate(); 186 ``` 187 188 Method 2: In the Worker thread, call [close()](../reference/apis-arkts/js-apis-worker.md#close9) to destroy the Worker thread and stop it from receiving messages. 189 190 ```ts 191 // MyWorker.ets 192 // Destroy the Worker thread. 193 workerPort.close(); 194 ``` 195 <!-- @[after_destroy_callback](https://gitee.com/openharmony/applications_app_samples/blob/master/code/DocsSample/ArkTS/ArkTsConcurrent/ApplicationMultithreadingDevelopment/ApplicationMultithreading/entry/src/main/ets/managers/CpuIntensiveTaskDevelopment.ets) --> 196