• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2025 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #ifndef OHOS_DISTRIBUTED_DATA_FRAMEWORKS_COMMON_TASK_SCHEDULER_H
17 #define OHOS_DISTRIBUTED_DATA_FRAMEWORKS_COMMON_TASK_SCHEDULER_H
18 #include <atomic>
19 #include <chrono>
20 #include <condition_variable>
21 #include <functional>
22 #include <limits>
23 #include <map>
24 #include <memory>
25 #include <mutex>
26 #include <set>
27 #include <thread>
28 
29 namespace OHOS {
30 class TaskScheduler {
31 public:
32     using TaskId = uint64_t;
33     using Time = std::chrono::steady_clock::time_point;
34     using Duration = std::chrono::steady_clock::duration;
35     using Clock = std::chrono::steady_clock;
36     using Task = std::function<void()>;
37     inline static constexpr TaskId INVALID_TASK_ID = static_cast<uint64_t>(0l);
38     inline static constexpr Duration INVALID_INTERVAL = std::chrono::milliseconds(0);
39     inline static constexpr uint64_t UNLIMITED_TIMES = std::numeric_limits<uint64_t>::max();
TaskScheduler(size_t capacity,const std::string & name)40     TaskScheduler(size_t capacity, const std::string &name)
41     {
42         capacity_ = capacity;
43         isRunning_ = true;
44         taskId_ = INVALID_TASK_ID;
45         running_ = InnerTask();
46         thread_ = std::make_unique<std::thread>([this, name]() {
47             auto realName = std::string("scheduler_") + name;
48             pthread_setname_np(pthread_self(), realName.c_str());
49             Loop();
50         });
51     }
TaskScheduler(const std::string & name)52     TaskScheduler(const std::string &name) : TaskScheduler(std::numeric_limits<size_t>::max(), name) {}
53     TaskScheduler(size_t capacity = std::numeric_limits<size_t>::max()) : TaskScheduler(capacity, "") {}
~TaskScheduler()54     ~TaskScheduler()
55     {
56         isRunning_ = false;
57         Clean();
58         Execute([]() {});
59         thread_->join();
60     }
61     // execute task at specific time
62     TaskId At(const Time &begin, Task task, Duration interval = INVALID_INTERVAL, uint64_t times = UNLIMITED_TIMES)
63     {
64         std::unique_lock<decltype(mutex_)> lock(mutex_);
65         if (tasks_.size() >= capacity_) {
66             return INVALID_TASK_ID;
67         }
68         InnerTask innerTask;
69         innerTask.times = times;
70         innerTask.taskId = GenTaskId();
71         innerTask.interval = interval;
72         innerTask.exec = std::move(task);
73         auto it = tasks_.insert({ begin, innerTask});
74         if (it == tasks_.begin()) {
75             condition_.notify_one();
76         }
77         indexes_[innerTask.taskId] = it;
78         return innerTask.taskId;
79     }
Reset(TaskId taskId,const Duration & interval)80     TaskId Reset(TaskId taskId, const Duration &interval)
81     {
82         std::unique_lock<decltype(mutex_)> lock(mutex_);
83         if (running_.taskId == taskId && running_.interval != INVALID_INTERVAL) {
84             running_.interval = interval;
85             return running_.taskId;
86         }
87         auto index = indexes_.find(taskId);
88         if (index == indexes_.end()) {
89             return INVALID_TASK_ID;
90         }
91         auto &innerTask = index->second->second;
92         if (innerTask.interval != INVALID_INTERVAL) {
93             innerTask.interval = interval;
94         }
95         auto it = tasks_.insert({ std::chrono::steady_clock::now() + interval, std::move(innerTask) });
96         if (it == tasks_.begin() || index->second == tasks_.begin()) {
97             condition_.notify_one();
98         }
99         tasks_.erase(index->second);
100         indexes_[taskId] = it;
101         return taskId;
102     }
Clean()103     void Clean()
104     {
105         std::unique_lock<decltype(mutex_)> lock(mutex_);
106         indexes_.clear();
107         tasks_.clear();
108     }
109     // execute task periodically with duration
Every(Duration interval,Task task)110     TaskId Every(Duration interval, Task task)
111     {
112         return At(std::chrono::steady_clock::now() + interval, task, interval);
113     }
114     // remove task in SchedulerTask
115     void Remove(TaskId taskId, bool wait = false)
116     {
117         std::unique_lock<decltype(mutex_)> lock(mutex_);
118         cond_.wait(lock, [this, taskId, wait]() {
119             return (!wait || running_.taskId != taskId);
120         });
121         auto index = indexes_.find(taskId);
122         if (index == indexes_.end()) {
123             return;
124         }
125         tasks_.erase(index->second);
126         indexes_.erase(index);
127         condition_.notify_one();
128     }
129     // execute task periodically with duration after delay
Every(Duration delay,Duration interval,Task task)130     TaskId Every(Duration delay, Duration interval, Task task)
131     {
132         return At(std::chrono::steady_clock::now() + delay, task, interval);
133     }
134     // execute task for some times periodically with duration after delay
Every(int32_t times,Duration delay,Duration interval,Task task)135     TaskId Every(int32_t times, Duration delay, Duration interval, Task task)
136     {
137         return At(std::chrono::steady_clock::now() + delay, task, interval, times);
138     }
Execute(Task task)139     TaskId Execute(Task task)
140     {
141         return At(std::chrono::steady_clock::now(), std::move(task));
142     }
143 private:
144     struct InnerTask {
145         TaskId taskId = INVALID_TASK_ID;
146         Duration interval = INVALID_INTERVAL;
147         uint64_t times = UNLIMITED_TIMES;
148         std::function<void()> exec;
149     };
Loop()150     void Loop()
151     {
152         while (isRunning_) {
153             std::function<void()> exec;
154             {
155                 std::unique_lock<decltype(mutex_)> lock(mutex_);
156                 condition_.wait(lock, [this] {
157                     return !tasks_.empty();
158                 });
159                 if (tasks_.begin()->first > std::chrono::steady_clock::now()) {
160                     auto time = tasks_.begin()->first;
161                     condition_.wait_until(lock, time);
162                     continue;
163                 }
164                 auto it = tasks_.begin();
165                 running_ = it->second;
166                 exec = running_.exec;
167                 indexes_.erase(running_.taskId);
168                 tasks_.erase(it);
169                 running_.times--;
170             }
171             if (exec) {
172                 exec();
173             }
174             {
175                 std::unique_lock<decltype(mutex_)> lock(mutex_);
176                 if (running_.interval != INVALID_INTERVAL && running_.times > 0) {
177                     auto it = tasks_.insert({ std::chrono::steady_clock::now() + running_.interval, running_ });
178                     indexes_[running_.taskId] = it;
179                 }
180                 running_ = InnerTask();
181                 cond_.notify_all();
182             }
183         }
184     }
185 
GenTaskId()186     TaskId GenTaskId()
187     {
188         auto taskId = ++taskId_;
189         if (taskId == INVALID_TASK_ID) {
190             return ++taskId_;
191         }
192         return taskId;
193     }
194 
195     volatile bool isRunning_;
196     size_t capacity_;
197     std::multimap<Time, InnerTask> tasks_;
198     std::map<TaskId, decltype(tasks_)::iterator> indexes_;
199     InnerTask running_;
200     std::mutex mutex_;
201     std::unique_ptr<std::thread> thread_;
202     std::condition_variable condition_;
203     std::condition_variable cond_;
204     std::atomic<uint64_t> taskId_;
205 };
206 } // namespace OHOS
207 #endif // OHOS_DISTRIBUTED_DATA_FRAMEWORKS_COMMON_TASK_SCHEDULER_H
208