1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "image/loaders/image_loader_ktx.h"
17
18 #include <algorithm>
19 #include <cstdint>
20 #include <cstring>
21
22 #include <base/containers/allocator.h>
23 #include <base/containers/array_view.h>
24 #include <base/containers/string_view.h>
25 #include <base/containers/type_traits.h>
26 #include <base/containers/unique_ptr.h>
27 #include <base/containers/vector.h>
28 #include <base/namespace.h>
29 #include <base/util/formats.h>
30 #include <core/image/intf_image_container.h>
31 #include <core/image/intf_image_loader_manager.h>
32 #include <core/io/intf_file.h>
33 #include <core/log.h>
34 #include <core/namespace.h>
35
36 #include "image/image_loader_manager.h"
37 #include "image/loaders/gl_util.h"
38
39 CORE_BEGIN_NAMESPACE()
40 namespace {
41 using BASE_NS::array_view;
42 using BASE_NS::CloneData;
43 using BASE_NS::Format;
44 using BASE_NS::make_unique;
45 using BASE_NS::move;
46 using BASE_NS::string_view;
47 using BASE_NS::unique_ptr;
48 using BASE_NS::vector;
49
ReadU32(const uint8_t ** data)50 uint32_t ReadU32(const uint8_t** data)
51 {
52 CORE_ASSERT(data);
53 CORE_ASSERT(*data);
54
55 uint32_t value = *(*data)++;
56 value |= static_cast<uint32_t>(*(*data)++) << 8;
57 value |= static_cast<uint32_t>(*(*data)++) << 16;
58 value |= static_cast<uint32_t>(*(*data)++) << 24;
59 return value;
60 }
61
ReadU32FlipEndian(const uint8_t ** data)62 uint32_t ReadU32FlipEndian(const uint8_t** data)
63 {
64 CORE_ASSERT(data);
65 CORE_ASSERT(*data);
66
67 uint32_t value = static_cast<uint32_t>(*(*data)++) << 24;
68 value |= static_cast<uint32_t>(*(*data)++) << 16;
69 value |= static_cast<uint32_t>(*(*data)++) << 8;
70 value |= static_cast<uint32_t>(*(*data)++);
71 return value;
72 }
73
74 #ifdef CORE_READ_KTX_HEADER_STRING
75 // NOTE: Returns null if the value is not a valid null terminated string.
76 // (i.e. maxBytes was reached before a null was found)
ReadStringZ(const uint8_t ** data,size_t maxBytes,size_t * bytesReadOut)77 string_view ReadStringZ(const uint8_t** data, size_t maxBytes, size_t* bytesReadOut)
78 {
79 CORE_ASSERT(data);
80 CORE_ASSERT(*data);
81 CORE_ASSERT(bytesReadOut);
82
83 *bytesReadOut = 0;
84
85 if (maxBytes == 0) {
86 return {};
87 }
88
89 const auto start = *data;
90 const auto end = start + maxBytes;
91
92 if (auto const pos = std::find(start, end, 0); pos != end) {
93 *data = pos + 1;
94 *bytesReadOut = static_cast<size_t>(std::distance(start, pos + 1));
95 return { reinterpret_cast<const char*>(start), *bytesReadOut };
96 }
97
98 return {};
99 }
100 #endif
101 // On desktop typical dimension limit for GPU images is 16k. On mobile even less.
102 constexpr const uint32_t MAX_DIMENSIONS = 16384U;
103
104 // 12 byte ktx identifier.
105 constexpr const size_t KTX_IDENTIFIER_LENGTH = 12;
106 constexpr const char KTX_IDENTIFIER_REFERENCE[KTX_IDENTIFIER_LENGTH] = { '\xAB', 'K', 'T', 'X', ' ', '1', '1', '\xBB',
107 '\r', '\n', '\x1A', '\n' };
108 constexpr const uint32_t KTX_FILE_ENDIANNESS = 0x04030201;
109 constexpr const uint32_t KTX_FILE_ENDIANNESS_FLIPPED = 0x01020304;
110
111 struct KtxHeader {
112 int8_t identifier[KTX_IDENTIFIER_LENGTH];
113 uint32_t endianness;
114 uint32_t glType;
115 uint32_t glTypeSize;
116 uint32_t glFormat;
117 uint32_t glInternalFormat;
118 uint32_t glBaseInternalFormat;
119 uint32_t pixelWidth;
120 uint32_t pixelHeight;
121 uint32_t pixelDepth;
122 uint32_t numberOfArrayElements;
123 uint32_t numberOfFaces;
124 uint32_t numberOfMipmapLevels;
125 uint32_t bytesOfKeyValueData;
126 };
127
128 constexpr const size_t KTX_HEADER_LENGTH = sizeof(KtxHeader);
129
GetImageType(const KtxHeader & header)130 IImageContainer::ImageType GetImageType(const KtxHeader& header)
131 {
132 if (header.pixelHeight == 0 && header.pixelDepth == 0) {
133 return IImageContainer::ImageType::TYPE_1D;
134 }
135 if (header.pixelDepth == 0) {
136 return IImageContainer::ImageType::TYPE_2D;
137 }
138
139 return IImageContainer::ImageType::TYPE_3D;
140 }
141
GetImageViewType(const KtxHeader & header,IImageContainer::ImageType imageType)142 IImageContainer::ImageViewType GetImageViewType(const KtxHeader& header, IImageContainer::ImageType imageType)
143 {
144 const bool isArray = (header.numberOfArrayElements != 0);
145 const bool isCubeMap = (header.numberOfFaces == 6);
146
147 if (isCubeMap) {
148 if (imageType == IImageContainer::ImageType::TYPE_3D || imageType == IImageContainer::ImageType::TYPE_1D) {
149 // Cubemaps must be 2d textures.
150 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
151 }
152 return (isArray ? IImageContainer::ImageViewType::VIEW_TYPE_CUBE_ARRAY
153 : IImageContainer::ImageViewType::VIEW_TYPE_CUBE);
154 }
155 if (isArray) {
156 switch (imageType) {
157 case IImageContainer::ImageType::TYPE_1D:
158 return IImageContainer::ImageViewType::VIEW_TYPE_1D_ARRAY;
159 case IImageContainer::ImageType::TYPE_2D:
160 return IImageContainer::ImageViewType::VIEW_TYPE_2D_ARRAY;
161 case IImageContainer::ImageType::TYPE_3D:
162 // 3d arrays are not supported.
163 [[fallthrough]];
164 case IImageContainer::ImageType::TYPE_MAX_ENUM:
165 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
166 }
167 } else {
168 switch (imageType) {
169 case IImageContainer::ImageType::TYPE_1D:
170 return IImageContainer::ImageViewType::VIEW_TYPE_1D;
171 case IImageContainer::ImageType::TYPE_2D:
172 return IImageContainer::ImageViewType::VIEW_TYPE_2D;
173 case IImageContainer::ImageType::TYPE_3D:
174 return IImageContainer::ImageViewType::VIEW_TYPE_3D;
175 case IImageContainer::ImageType::TYPE_MAX_ENUM:
176 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
177 }
178 }
179
180 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
181 }
182
183 class KtxImage final : public IImageContainer {
184 public:
185 KtxImage() = default;
186
KtxImage(unique_ptr<uint8_t[]> && fileBytes,size_t fileBytesLength)187 KtxImage(unique_ptr<uint8_t[]>&& fileBytes, size_t fileBytesLength)
188 : fileBytes_(CORE_NS::move(fileBytes)), fileBytesLength_(fileBytesLength)
189 {}
190
191 using Ptr = BASE_NS::unique_ptr<KtxImage, Deleter>;
192
GetImageDesc() const193 const ImageDesc& GetImageDesc() const override
194 {
195 return imageDesc_;
196 }
197
GetData() const198 array_view<const uint8_t> GetData() const override
199 {
200 return { imageBytes_, imageBytesLength_ };
201 }
202
GetBufferImageCopies() const203 array_view<const SubImageDesc> GetBufferImageCopies() const override
204 {
205 return imageBuffers_;
206 }
207
ProcessMipmapLevel(KtxImage::Ptr & image,const size_t imageBufferIndex,const uint32_t currentImageElementOffset,const GlImageFormatInfo & formatInfo,const uint32_t elementWidth,const uint32_t elementHeight,const uint32_t mipmapLevel,const uint32_t faceCount,const uint32_t arrayElementCount,const uint32_t elementDepth,const size_t subelementLength)208 static void ProcessMipmapLevel(KtxImage::Ptr& image, const size_t imageBufferIndex,
209 const uint32_t currentImageElementOffset, const GlImageFormatInfo& formatInfo, const uint32_t elementWidth,
210 const uint32_t elementHeight, const uint32_t mipmapLevel, const uint32_t faceCount,
211 const uint32_t arrayElementCount, const uint32_t elementDepth, const size_t subelementLength)
212 {
213 image->imageBuffers_[imageBufferIndex].bufferOffset = currentImageElementOffset;
214
215 // Vulkan requires the bufferRowLength and bufferImageHeight to be multiple of block width / height.
216 const auto blockWidth = formatInfo.blockWidth;
217 const auto blockHeight = formatInfo.blockHeight;
218 const auto widthBlockCount = (elementWidth + (blockWidth - 1)) / blockWidth;
219 const auto heightBlockCount = (elementHeight + (blockHeight - 1)) / blockHeight;
220 image->imageBuffers_[imageBufferIndex].bufferRowLength = widthBlockCount * blockWidth;
221 image->imageBuffers_[imageBufferIndex].bufferImageHeight = heightBlockCount * blockHeight;
222
223 image->imageBuffers_[imageBufferIndex].mipLevel = mipmapLevel;
224
225 image->imageBuffers_[imageBufferIndex].layerCount = faceCount * arrayElementCount;
226
227 image->imageBuffers_[imageBufferIndex].width = elementWidth;
228 image->imageBuffers_[imageBufferIndex].height = elementHeight;
229 image->imageBuffers_[imageBufferIndex].depth = elementDepth;
230
231 //
232 // Vulkan requires that: "If the calling command's VkImage parameter's
233 // format is not a depth/stencil format or a multi-planar format, then
234 // bufferOffset must be a multiple of the format's texel block size."
235 //
236 // This is a bit problematic as the ktx format requires padding only to
237 // 4 bytes and contains a 4 byte "lodsize" value between each data section.
238 // this causes all formats with bytesPerBlock > 4 to be misaligned.
239 //
240 // NOTE: try to figure out if there is a better way.
241 //
242 const uint32_t bytesPerBlock = formatInfo.bitsPerBlock / 8u;
243 if (mipmapLevel > 0 && bytesPerBlock > 4u) {
244 // We can assume that moving the data to the previous valid position
245 // is ok as it will only overwrite the now unnecessary "lodsize" value.
246 const auto validOffset = static_cast<uint32_t>(currentImageElementOffset / bytesPerBlock * bytesPerBlock);
247 auto* imageBytes = const_cast<uint8_t*>(image->imageBytes_);
248 if (memmove_s(imageBytes + validOffset, image->imageBytesLength_ - validOffset,
249 imageBytes + currentImageElementOffset, subelementLength) != EOK) {
250 CORE_LOG_E("memmove failed.");
251 }
252 image->imageBuffers_[imageBufferIndex].bufferOffset = validOffset;
253 }
254 }
255
ResolveGpuImageDesc(ImageDesc & desc,const KtxHeader & ktx,const CORE_NS::GlImageFormatInfo & formatInfo,const uint32_t loadFlags,const uint32_t inputMipCount,const uint32_t arrayElementCount,const uint32_t faceCount)256 static bool ResolveGpuImageDesc(ImageDesc& desc, const KtxHeader& ktx, const CORE_NS::GlImageFormatInfo& formatInfo,
257 const uint32_t loadFlags, const uint32_t inputMipCount, const uint32_t arrayElementCount,
258 const uint32_t faceCount)
259 {
260 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_SRGB_BIT) != 0) {
261 desc.format = formatInfo.coreFormatForceSrgb;
262 } else if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_LINEAR_RGB_BIT) != 0) {
263 desc.format = formatInfo.coreFormatForceLinear;
264 } else {
265 desc.format = formatInfo.coreFormat;
266 }
267
268 if ((desc.imageFlags & ImageFlags::FLAGS_CUBEMAP_BIT) != 0) {
269 }
270
271 desc.imageType = GetImageType(ktx);
272 desc.imageViewType = GetImageViewType(ktx, desc.imageType);
273 if (desc.format == Format::BASE_FORMAT_UNDEFINED || desc.imageType == ImageType::TYPE_MAX_ENUM ||
274 desc.imageViewType == ImageViewType::VIEW_TYPE_MAX_ENUM) {
275 CORE_LOG_D(
276 "glFormat=%u imageType=%u imageViewType=%u", ktx.glInternalFormat, desc.imageType, desc.imageViewType);
277 return false;
278 }
279
280 desc.mipCount = inputMipCount;
281
282 // NOTE: depth here means 3D textures, not color channels.
283 // In 1D and 2D textures the height and depth might be 0.
284 desc.width = ktx.pixelWidth;
285 desc.height = ((ktx.pixelHeight == 0) ? 1 : ktx.pixelHeight);
286 desc.depth = ((ktx.pixelDepth == 0) ? 1 : ktx.pixelDepth);
287 desc.layerCount = arrayElementCount * faceCount;
288
289 const bool compressed = (desc.imageFlags & ImageFlags::FLAGS_COMPRESSED_BIT) != 0;
290 const bool imageRequestingMips = (desc.imageFlags & ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT) != 0;
291 const bool loaderRequestingMips = (loadFlags & IImageLoaderManager::IMAGE_LOADER_GENERATE_MIPS) != 0;
292 if (!compressed && (imageRequestingMips || loaderRequestingMips)) {
293 desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
294 uint32_t mipsize = (desc.width > desc.height) ? desc.width : desc.height;
295 desc.mipCount = 0;
296 while (mipsize > 0) {
297 desc.mipCount++;
298 mipsize >>= 1;
299 }
300 } else {
301 desc.imageFlags &= ~ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
302 }
303
304 return true;
305 }
306
ResolveImageDesc(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo,uint32_t loadFlags,uint32_t inputMipCount,const uint32_t arrayElementCount,uint32_t faceCount,ImageDesc & outImageDesc)307 static bool ResolveImageDesc(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo, uint32_t loadFlags,
308 uint32_t inputMipCount, const uint32_t arrayElementCount, uint32_t faceCount, ImageDesc& outImageDesc)
309 {
310 ImageDesc desc;
311
312 desc.blockPixelWidth = formatInfo.blockWidth;
313 desc.blockPixelHeight = formatInfo.blockHeight;
314 desc.blockPixelDepth = formatInfo.blockDepth;
315 desc.bitsPerBlock = formatInfo.bitsPerBlock;
316
317 // If there are six faces this is a cube.
318 if (faceCount == 6u) {
319 desc.imageFlags |= ImageFlags::FLAGS_CUBEMAP_BIT;
320 }
321
322 // Is compressed?
323 if ((ktx.glType == 0) && (ktx.glFormat == 0)) {
324 desc.imageFlags |= ImageFlags::FLAGS_COMPRESSED_BIT;
325 } else {
326 // Mipmap generation works only if image is not using a compressed format.
327 // In ktx mip count of 0 (instead of 1) means requesting generating full chain of mipmaps.
328 if ((ktx.numberOfMipmapLevels == 0)) {
329 desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
330 }
331 }
332
333 if (!ResolveGpuImageDesc(desc, ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, faceCount)) {
334 return false;
335 }
336
337 outImageDesc = desc;
338 return true;
339 }
340
VerifyKtxInfo(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo)341 static bool VerifyKtxInfo(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo)
342 {
343 if (formatInfo.compressed) {
344 if (ktx.glTypeSize != 1) {
345 CORE_LOG_D("Invalid typesize for a compressed image.");
346 return false;
347 }
348 if (ktx.glFormat != 0) {
349 CORE_LOG_D("Invalid glFormat for a compressed image.");
350 return false;
351 }
352 if (ktx.glType != 0) {
353 CORE_LOG_D("Invalid glType for a compressed image.");
354 return false;
355 }
356 }
357
358 if (ktx.pixelDepth != 0 && ktx.pixelHeight == 0) {
359 CORE_LOG_D("No pixelHeight defined for a 3d texture.");
360 return false;
361 }
362
363 return true;
364 }
365
CreateImage(KtxImage::Ptr image,const KtxHeader & ktx,uint32_t loadFlags,const uint8_t * data,bool isEndianFlipped)366 static ImageLoaderManager::LoadResult CreateImage(
367 KtxImage::Ptr image, const KtxHeader& ktx, uint32_t loadFlags, const uint8_t* data, bool isEndianFlipped)
368 {
369 // Mark this as the image data starting position.
370 const uint8_t* ktxDataSection = data;
371
372 const uint32_t inputMipCount = ktx.numberOfMipmapLevels == 0 ? 1 : ktx.numberOfMipmapLevels;
373 const uint32_t arrayElementCount = ktx.numberOfArrayElements == 0 ? 1 : ktx.numberOfArrayElements;
374
375 //
376 // Populate the image descriptor.
377 //
378 const GlImageFormatInfo formatInfo = GetFormatInfo(ktx.glInternalFormat);
379 if (!ResolveImageDesc(
380 ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, ktx.numberOfFaces, image->imageDesc_)) {
381 return ImageLoaderManager::ResultFailure("Image not supported.");
382 }
383
384 if (!VerifyKtxInfo(ktx, formatInfo)) {
385 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
386 }
387
388 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
389 uint32_t elementWidth = image->imageDesc_.width;
390 uint32_t elementHeight = image->imageDesc_.height;
391 uint32_t elementDepth = image->imageDesc_.depth;
392
393 // Create buffer info for each mipmap level.
394 // NOTE: One BufferImageCopy can copy all the layers and faces in one step.
395 image->imageBuffers_.resize(static_cast<size_t>(inputMipCount));
396
397 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
398
399 // for non-array cubemaps imageSize is the size of one face, but for other types the total size.
400 const auto iterations = (ktx.numberOfArrayElements == 0 && ktx.numberOfFaces == 6u) ? 6u : 1u;
401
402 // Fill the image subelement buffer info.
403 size_t imageBufferIndex = 0;
404 for (uint32_t mipmapLevel = 0; mipmapLevel < inputMipCount; ++mipmapLevel) {
405 if (data < ktxDataSection) {
406 CORE_LOG_D("Trying to jump out of the parsed data.");
407 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
408 }
409 if (sizeof(uint32_t) >=
410 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
411 CORE_LOG_D("Not enough data in the bytearray.");
412 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
413 }
414
415 const size_t lodSize = myReadU32(&data);
416 // Pad to to a multiple of 4.
417 const size_t lodSizePadded = lodSize + ((~lodSize + 1) & (4u - 1u));
418
419 const uint64_t totalSizePadded = static_cast<uint64_t>(lodSizePadded) * iterations;
420 if (totalSizePadded >= UINT32_MAX) {
421 CORE_LOG_D("imageSize too big");
422 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
423 }
424
425 const auto fileBytesLeft =
426 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get());
427 if (totalSizePadded > fileBytesLeft) {
428 CORE_LOG_D("Not enough data for the element");
429 CORE_LOG_V(
430 " mips=%u faces=%u arrayElements=%u", inputMipCount, ktx.numberOfFaces, arrayElementCount);
431 CORE_LOG_V(" mipmapLevel=%u lodsize=%zu end=%zu filesize=%zu.", mipmapLevel, lodSize,
432 static_cast<size_t>(data - image->fileBytes_.get() + static_cast<ptrdiff_t>(lodSize)),
433 image->fileBytesLength_);
434 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
435 }
436
437 const auto currentImageElementOffset = static_cast<uint32_t>(data - image->imageBytes_);
438 CORE_ASSERT_MSG(currentImageElementOffset % 4u == 0, "Offset must be aligned to 4 bytes");
439 ProcessMipmapLevel(image, imageBufferIndex, currentImageElementOffset, formatInfo, elementWidth,
440 elementHeight, mipmapLevel, ktx.numberOfFaces, arrayElementCount, elementDepth,
441 static_cast<uint32_t>(totalSizePadded));
442
443 // Move to the next buffer if any.
444 imageBufferIndex++;
445
446 // Figure out the next mipmap level sizes. The dimentions of each level are half of the previous.
447 elementWidth /= 2u;
448 elementWidth = (elementWidth <= 1) ? 1 : elementWidth;
449
450 elementHeight /= 2u;
451 elementHeight = (elementHeight <= 1) ? 1 : elementHeight;
452
453 elementDepth /= 2u;
454 elementDepth = (elementDepth <= 1) ? 1 : elementDepth;
455
456 // Skip to the next lod level.
457 // NOTE: in theory there could be packing here for each face. in that case we would need to
458 // make a separate subelement of each face.
459 data += totalSizePadded;
460 }
461
462 if (data != (image->fileBytes_.get() + image->fileBytesLength_)) {
463 CORE_LOG_D("File data left over.");
464 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
465 }
466 }
467 return ImageLoaderManager::ResultSuccess(CORE_NS::move(image));
468 }
469
470 // Actual ktx loading implementation.
Load(unique_ptr<uint8_t[]> fileBytes,uint64_t fileBytesLength,uint32_t loadFlags)471 static ImageLoaderManager::LoadResult Load(
472 unique_ptr<uint8_t[]> fileBytes, uint64_t fileBytesLength, uint32_t loadFlags)
473 {
474 if (!fileBytes) {
475 return ImageLoaderManager::ResultFailure("Input data must not be null.");
476 }
477 if (fileBytesLength < KTX_HEADER_LENGTH) {
478 return ImageLoaderManager::ResultFailure("Not enough data for parsing ktx.");
479 }
480
481 // Populate the image object.
482 auto image = KtxImage::Ptr(new KtxImage(move(fileBytes), static_cast<size_t>(fileBytesLength)));
483 if (!image) {
484 return ImageLoaderManager::ResultFailure("Loading image failed.");
485 }
486
487 const uint8_t* data = image->fileBytes_.get();
488 const auto ktxHeader = ReadHeader(&data);
489 // Check that the header values make sense.
490 if (memcmp(ktxHeader.identifier, KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) != 0) {
491 CORE_LOG_D("Ktx invalid file identifier.");
492 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
493 }
494 if (ktxHeader.endianness != KTX_FILE_ENDIANNESS && ktxHeader.endianness != KTX_FILE_ENDIANNESS_FLIPPED) {
495 CORE_LOG_D("Ktx invalid endian marker.");
496 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
497 }
498 if (ktxHeader.numberOfFaces != 1U && ktxHeader.numberOfFaces != 6U) { // 1 for regular, 6 for cubemaps
499 CORE_LOG_D("Ktx invalid numberOfFaces.");
500 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
501 }
502 if ((ktxHeader.pixelWidth == 0) || (ktxHeader.pixelDepth > 0 && ktxHeader.pixelHeight == 0)) {
503 CORE_LOG_D("Ktx pixelWidth can't be 0.");
504 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
505 }
506 if ((ktxHeader.pixelWidth > MAX_DIMENSIONS) || (ktxHeader.pixelHeight > MAX_DIMENSIONS) ||
507 (ktxHeader.pixelDepth > MAX_DIMENSIONS)) {
508 CORE_LOG_D("Ktx pixel dimensions too big.");
509 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
510 }
511 if (ktxHeader.numberOfMipmapLevels) {
512 if (ktxHeader.numberOfMipmapLevels > 32U) { // 2^32 - 1, limit to
513 CORE_LOG_D("Ktx numberOfMipmapLevels suspiciously large.");
514 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
515 }
516 const uint32_t maxSize =
517 std::max(std::max(ktxHeader.pixelWidth, ktxHeader.pixelHeight), ktxHeader.pixelDepth);
518 const auto maxMipSize = 1U << (ktxHeader.numberOfMipmapLevels - 1U);
519 if (maxSize < maxMipSize) {
520 CORE_LOG_D("Ktx numberOfMipmapLevels too big for dimensions.");
521 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
522 }
523 }
524 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
525 if (ktxHeader.bytesOfKeyValueData >
526 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
527 CORE_LOG_D("Ktx bytesOfKeyValueData too large.");
528 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
529 }
530
531 ReadKeyValueData(ktxHeader, &data);
532 // NOTE: Point to the start of the actual data of the first texture
533 // (Jump over the first lod offset uint32_t (4 bytes)
534 const size_t headerLength = static_cast<size_t>(data - image->fileBytes_.get()) + sizeof(uint32_t);
535 image->imageBytes_ = data + sizeof(uint32_t);
536 image->imageBytesLength_ = image->fileBytesLength_ - headerLength;
537 }
538 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
539 if (isEndianFlipped && ktxHeader.glTypeSize > 1) {
540 CORE_ASSERT_MSG(true, "NOTE: must convert all data to correct endianness");
541 return ImageLoaderManager::ResultFailure("Image not supported.");
542 }
543
544 return CreateImage(move(image), ktxHeader, loadFlags, data, isEndianFlipped);
545 }
546
547 protected:
Destroy()548 void Destroy() override
549 {
550 delete this;
551 }
552
553 private:
ReadHeader(const uint8_t ** data)554 static KtxHeader ReadHeader(const uint8_t** data)
555 {
556 // Read the identifier.
557 KtxHeader ktxHeader = {};
558
559 CloneData(ktxHeader.identifier, sizeof(ktxHeader.identifier), *data, KTX_IDENTIFIER_LENGTH);
560 *data += KTX_IDENTIFIER_LENGTH;
561
562 // Check file endianness.
563 ktxHeader.endianness = ReadU32(data);
564
565 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
566
567 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
568
569 ktxHeader.glType = myReadU32(data);
570 ktxHeader.glTypeSize = myReadU32(data);
571 ktxHeader.glFormat = myReadU32(data);
572 ktxHeader.glInternalFormat = myReadU32(data);
573 ktxHeader.glBaseInternalFormat = myReadU32(data);
574 ktxHeader.pixelWidth = myReadU32(data);
575 ktxHeader.pixelHeight = myReadU32(data);
576 ktxHeader.pixelDepth = myReadU32(data);
577 ktxHeader.numberOfArrayElements = myReadU32(data);
578 ktxHeader.numberOfFaces = myReadU32(data);
579 ktxHeader.numberOfMipmapLevels = myReadU32(data);
580 ktxHeader.bytesOfKeyValueData = myReadU32(data);
581
582 return ktxHeader;
583 }
584
ReadKeyValueData(const KtxHeader & ktxHeader,const uint8_t ** data)585 static void ReadKeyValueData(const KtxHeader& ktxHeader, const uint8_t** data)
586 {
587 #ifndef CORE_READ_KTX_HEADER_STRING
588 // Skip reading the key-value data for now.
589 *data += ktxHeader.bytesOfKeyValueData;
590 #else
591 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
592 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
593
594 // Read KTX key-value data.
595 size_t keyValueDataRead = 0;
596 while (keyValueDataRead < ktxHeader.bytesOfKeyValueData) {
597 const uint32_t keyAndValueByteSize = myReadU32(data);
598 keyValueDataRead += sizeof(uint32_t);
599 if ((keyValueDataRead + keyAndValueByteSize) >= ktxHeader.bytesOfKeyValueData) {
600 CORE_LOG_E("Invalid KTX metadata.");
601 return;
602 }
603
604 size_t keyBytesRead;
605 const auto key = ReadStringZ(data, keyAndValueByteSize, &keyBytesRead);
606 keyValueDataRead += keyBytesRead;
607
608 size_t valueBytesRead;
609 const auto value = ReadStringZ(data, keyAndValueByteSize - keyBytesRead, &valueBytesRead);
610 keyValueDataRead += valueBytesRead;
611
612 if (!key.empty() && !value.empty()) {
613 // NOTE: The key-value data is not used for anything. Just printing to log.
614 CORE_LOG_V("KTX metadata: '%s' : '%s'", key.data(), value.data());
615 }
616
617 // Pad to a multiple of 4 bytes.
618 const size_t padding = (~keyAndValueByteSize + 1) & (4u - 1u);
619 keyValueDataRead += padding;
620 *data += padding;
621 }
622 #endif
623 }
624
625 // Saving the whole image file data in one big chunk. This way we don't
626 // need to copy the data to a separate buffer after reading the file. We
627 // will be pointing to the file data anyway. Only downside is the wasted
628 // memory for the file header.
629 unique_ptr<uint8_t[]> fileBytes_;
630 size_t fileBytesLength_ { 0 };
631
632 // The actual image data part of the file;
633 const uint8_t* imageBytes_ { nullptr };
634 size_t imageBytesLength_ { 0 };
635
636 ImageDesc imageDesc_;
637 vector<SubImageDesc> imageBuffers_;
638 };
639
640 class ImageLoaderKtx final : public IImageLoaderManager::IImageLoader {
641 public:
642 // Inherited via ImageManager::IImageLoader
Load(IFile & file,uint32_t loadFlags) const643 ImageLoaderManager::LoadResult Load(IFile& file, uint32_t loadFlags) const override
644 {
645 auto byteLength = static_cast<size_t>(file.GetLength());
646 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) != 0) {
647 // Only load header
648 byteLength = KTX_HEADER_LENGTH;
649 }
650
651 // Read the file to a buffer.
652 unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(byteLength);
653 const uint64_t read = file.Read(buffer.get(), byteLength);
654 if (read != byteLength) {
655 CORE_LOG_D("Error loading image");
656 return ImageLoaderManager::ResultFailure("Reading file failed.");
657 }
658
659 return KtxImage::Load(move(buffer), byteLength, loadFlags);
660 }
661
Load(array_view<const uint8_t> imageFileBytes,uint32_t loadFlags) const662 ImageLoaderManager::LoadResult Load(array_view<const uint8_t> imageFileBytes, uint32_t loadFlags) const override
663 {
664 // NOTE: could reuse this and remove the extra copy here if the data would be given as a unique_ptr.
665 unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(static_cast<size_t>(imageFileBytes.size()));
666 if (buffer) {
667 std::copy(imageFileBytes.begin(), imageFileBytes.end(), buffer.get());
668 }
669
670 return KtxImage::Load(move(buffer), imageFileBytes.size(), loadFlags);
671 }
672
CanLoad(array_view<const uint8_t> imageFileBytes) const673 bool CanLoad(array_view<const uint8_t> imageFileBytes) const override
674 {
675 // Check for KTX
676 return (imageFileBytes.size() >= KTX_IDENTIFIER_LENGTH) &&
677 (memcmp(imageFileBytes.data(), KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) == 0);
678 }
679
680 // No animated KTX
LoadAnimatedImage(IFile &,uint32_t)681 ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(IFile& /* file */, uint32_t /* loadFlags */) override
682 {
683 return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
684 }
685
LoadAnimatedImage(array_view<const uint8_t>,uint32_t)686 ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(
687 array_view<const uint8_t> /* imageFileBytes */, uint32_t /* loadFlags */) override
688 {
689 return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
690 }
691
GetSupportedTypes() const692 vector<IImageLoaderManager::ImageType> GetSupportedTypes() const override
693 {
694 return { std::begin(KTX_IMAGE_TYPES), std::end(KTX_IMAGE_TYPES) };
695 }
696
697 protected:
Destroy()698 void Destroy() final
699 {
700 delete this;
701 }
702 };
703 } // namespace
704
CreateImageLoaderKtx(PluginToken)705 IImageLoaderManager::IImageLoader::Ptr CreateImageLoaderKtx(PluginToken)
706 {
707 return ImageLoaderManager::IImageLoader::Ptr { new ImageLoaderKtx() };
708 }
709 CORE_END_NAMESPACE()
710