1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #ifndef CORE__GLTF__GLTF2_DATA_STRUCTURES_H
17 #define CORE__GLTF__GLTF2_DATA_STRUCTURES_H
18
19 #include <cstdint>
20
21 #include <base/containers/atomics.h>
22 #include <base/containers/string.h>
23 #include <base/containers/unique_ptr.h>
24 #include <base/containers/vector.h>
25 #include <base/math/matrix.h>
26 #include <base/math/quaternion.h>
27 #include <base/math/vector.h>
28 #include <core/namespace.h>
29
30 #define GLTF2_EXTENSION_IGFX_COMPRESSED
31 #define GLTF2_EXTENSION_KHR_LIGHTS
32 #define GLTF2_EXTENSION_KHR_LIGHTS_PBR
33 #define GLTF2_EXTENSION_KHR_MATERIALS_CLEARCOAT
34 #define GLTF2_EXTENSION_KHR_MATERIALS_EMISSIVE_STRENGTH
35 #define GLTF2_EXTENSION_KHR_MATERIALS_IOR
36 #define GLTF2_EXTENSION_KHR_MATERIALS_PBRSPECULARGLOSSINESS
37 #define GLTF2_EXTENSION_KHR_MATERIALS_SHEEN
38 #define GLTF2_EXTENSION_KHR_MATERIALS_SPECULAR
39 #define GLTF2_EXTENSION_KHR_MATERIALS_TRANSMISSION
40 #define GLTF2_EXTENSION_KHR_MATERIALS_UNLIT
41 #define GLTF2_EXTENSION_KHR_MESH_QUANTIZATION
42 #define GLTF2_EXTENSION_KHR_TEXTURE_BASISU
43 #define GLTF2_EXTENSION_KHR_TEXTURE_TRANSFORM
44 #define GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED
45 #define GLTF2_EXTRAS_CLEAR_COAT_MATERIAL
46 #define GLTF2_EXTENSION_HW_XR_EXT
47 #define GLTF2_EXTRAS_RSDZ
48
49 #ifdef OPAQUE
50 // hrpm win32 gdi..
51 #undef OPAQUE
52 #endif
53
CORE3D_BEGIN_NAMESPACE()54 CORE3D_BEGIN_NAMESPACE()
55 namespace GLTF2 {
56 constexpr const uint32_t GLTF_INVALID_INDEX = 0xFFFFFFFF;
57 constexpr const uint32_t GLTF_MAGIC = 0x46546C67; // ASCII string "glTF"
58
59 struct Skin;
60 struct AttributeBase;
61 struct Node;
62
63 // extensions
64 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
65 struct KHRLight;
66 #endif
67
68 enum class BufferTarget : int {
69 NOT_DEFINED = 0,
70 ARRAY_BUFFER = 34962,
71 ELEMENT_ARRAY_BUFFER = 34963,
72 };
73
74 enum class ChunkType : int {
75 JSON = 0x4E4F534A, // JSON
76 BIN = 0x004E4942, // BIN Binary buffer
77 };
78
79 enum class AttributeType : int {
80 NORMAL = 0,
81 POSITION = 1,
82 TANGENT = 2,
83 TEXCOORD = 3,
84 COLOR = 4,
85 JOINTS = 5,
86 WEIGHTS = 6,
87 INVALID = 0xff
88 };
89
90 enum class CompressionMode : int {
91 ATTRIBUTES = 0,
92 TRIANGLES = 1,
93 INDICES = 2,
94 INVALID = 0xff,
95 };
96
97 enum class CompressionFilter : int {
98 NONE = 0,
99 OCTAHEDRAL = 1,
100 QUATERNION = 2,
101 EXPONENTIAL = 3,
102 INVALID = 0xff,
103 };
104
105 enum class RenderMode : int { // WebGL enums
106 BEGIN = 0,
107 POINTS = 0,
108 LINES = 1,
109 LINE_LOOP = 2,
110 LINE_STRIP = 3,
111 TRIANGLES = 4,
112 TRIANGLE_STRIP = 5,
113 TRIANGLE_FAN = 6,
114 COUNT = 7,
115 INVALID = 0xff
116 };
117
118 constexpr const RenderMode DEFAULT_RENDER_MODE { RenderMode::TRIANGLES };
119
120 enum class ComponentType : int {
121 INVALID,
122 BYTE = 5120,
123 UNSIGNED_BYTE = 5121,
124 SHORT = 5122,
125 UNSIGNED_SHORT = 5123,
126 INT = 5124, // not used in GLTF2
127 UNSIGNED_INT = 5125,
128 FLOAT = 5126,
129 };
130
131 enum class DataType : int { INVALID, SCALAR, VEC2, VEC3, VEC4, MAT2, MAT3, MAT4 };
132
133 enum class AlphaMode : int {
134 // The alpha value is ignored and the rendered output is fully opaque.
135 OPAQUE,
136 // The rendered output is either fully opaque or fully transparent
137 // depending on the alpha value and the specified alpha cutoff value.
138 MASK,
139 // The alpha value is used to composite the source and destination areas.
140 // The rendered output is combined with the background using the normal
141 // painting operation (i.e. the Porter and Duff over operator).
142 BLEND,
143 };
144
145 enum class MimeType : int { INVALID, JPEG, PNG, KTX, DDS, KTX2 };
146
147 enum class CameraType : int { INVALID, PERSPECTIVE, ORTHOGRAPHIC };
148
149 enum class LightType : int { INVALID, DIRECTIONAL, POINT, SPOT, AMBIENT };
150
151 enum class FilterMode : int {
152 NEAREST = 9728,
153 LINEAR = 9729,
154 NEAREST_MIPMAP_NEAREST = 9984,
155 LINEAR_MIPMAP_NEAREST = 9985,
156 NEAREST_MIPMAP_LINEAR = 9986,
157 LINEAR_MIPMAP_LINEAR = 9987
158 };
159
160 enum class WrapMode : int { CLAMP_TO_EDGE = 33071, MIRRORED_REPEAT = 33648, REPEAT = 10497 };
161
162 enum class AnimationInterpolation : int { INVALID, STEP, LINEAR, SPLINE };
163
164 enum class AnimationPath : int {
165 INVALID,
166 TRANSLATION,
167 ROTATION,
168 SCALE,
169 WEIGHTS,
170 // RDSZ specific
171 VISIBLE,
172 OPACITY,
173 };
174
175 struct GLBHeader {
176 uint32_t magic = 0;
177 uint32_t version = 0;
178 uint32_t length = 0;
179 };
180
181 struct GLBChunk {
182 uint32_t chunkLength = 0;
183 uint32_t chunkType = 0;
184 };
185
186 struct Buffer {
187 // [required field]
188 size_t byteLength = 0;
189
190 // either empty (indicating GLB buffer)
191 // or path to file
192 // or data:[<mediatype>][;base64],<data> as defined
193 // in https://tools.ietf.org/html/rfc2397
194 BASE_NS::string uri;
195
196 // Data for this buffer.
197 BASE_NS::vector<uint8_t> data;
198 };
199
200 struct BufferView {
201 // [required field], with the index to the buffer.
202 // Note: referenced buffers needs to be loaded first.
203 Buffer* buffer { nullptr };
204
205 // required, "minimum": 1
206 size_t byteLength = 0;
207
208 // "minimum": 0, "default": 0
209 size_t byteOffset = 0;
210
211 // "minimum": 4, "maximum": 252, "multipleOf": 4
212 // The stride, in bytes, between vertex attributes.
213 // When this is not defined (0), data is tightly packed.
214 // When two or more accessors use the same bufferView, this field must be defined.
215 size_t byteStride = 0;
216
217 BufferTarget target = BufferTarget::NOT_DEFINED; // ARRAY_BUFFER, ELEMENT_ARRAY_BUFFER
218
219 // Data for this buffer view.
220 const uint8_t* data { nullptr };
221 };
222
223 struct SparseIndices {
224 // The bufferView with sparse indices.
225 // Referenced bufferView can't have ARRAY_BUFFER or
226 // ELEMENT_ARRAY_BUFFER target.
227 BufferView* bufferView { nullptr };
228
229 // The offset relative to the start of the bufferView in bytes.
230 // Must be aligned.
231 // "minimum": 0,
232 // "default": 0
233 uint32_t byteOffset = 0;
234
235 // The indices data type.
236 // Valid values correspond to WebGL enums:
237 // `5121` means UNSIGNED_BYTE, `5123` means UNSIGNED_SHORT
238 // `5125` means UNSIGNED_INT.
239 ComponentType componentType = ComponentType::UNSIGNED_INT;
240 };
241
242 struct SparseValues {
243 // The bufferView with sparse values.
244 // Referenced bufferView can't have ARRAY_BUFFER or
245 // ELEMENT_ARRAY_BUFFER target."
246 BufferView* bufferView { nullptr };
247
248 // The offset relative to the start of the bufferView in bytes.
249 // Must be aligned.
250 uint32_t byteOffset = 0;
251 };
252
253 struct Sparse {
254 // The number of attributes encoded in this sparse accessor.
255 uint32_t count = 0;
256
257 // Index array of size `count` that points to those accessor attributes
258 // that deviate from their initialization value. Indices must strictly increase.
259 SparseIndices indices;
260
261 // Array of size `count` times number of components,
262 // storing the displaced accessor attributes pointed by `indices`.
263 // Substituted values must have the same `componentType` and
264 // number of components as the base accessor."
265 SparseValues values;
266 };
267
268 struct Accessor {
269 // The bufferView.
270 // When not defined, accessor must be initialized with zeros;
271 // `sparse` property or extensions could override zeros with actual values.
272 BufferView* bufferView { nullptr };
273
274 // [required] The datatype of components in the attribute.
275 // All valid values correspond to WebGL enums.
276 // The corresponding typed arrays are
277 // `Int8Array`, `Uint8Array`, `Int16Array`, `Uint16Array`,
278 // `Uint32Array`, and `Float32Array`, respectively.
279 // 5125 (UNSIGNED_INT) is only allowed when the accessor contains indices,
280 // i.e., the accessor is only referenced by `primitive.indices`.
281 ComponentType componentType = ComponentType::UNSIGNED_INT;
282
283 // [required] The number of attributes referenced by this accessor,
284 // not to be confused with the number of bytes or number of components.
285 // "minimum": 1
286 uint32_t count = 0;
287
288 // [required] Specifies if the attribute is a scalar, vector, or matrix.
289 DataType type = DataType::INVALID;
290
291 // The offset relative to the start of the bufferView in bytes.
292 // This must be a multiple of the size of the component datatype.
293 // minimum: 0
294 // default: 0
295 uint32_t byteOffset = 0;
296
297 // Specifies whether integer data values should be normalized
298 // (`true`) to [0, 1] (for unsigned types) or [-1, 1] (for signed types),
299 // or converted directly (`false`) when they are accessed.
300 // This property is defined only for accessors that contain vertex attributes
301 // or animation output data.
302 // "default": false
303 bool normalized = false;
304
305 // Maximum value of each component in this attribute.
306 // Array elements must be treated as having the same data type as
307 // accessor's `componentType`. Both min and max arrays have the same length.
308 // The length is determined by the value of the type property;
309 // it can be 1, 2, 3, 4, 9, or 16.
310 // `normalized` property has no effect on array values:
311 // they always correspond to the actual values stored in the buffer.
312 // When accessor is sparse, this property must contain max values of
313 // accessor data with sparse substitution applied.
314 // "minItems": 1,
315 // "maxItems": 16,
316 BASE_NS::vector<float> max;
317
318 // Minimum value of each component in this attribute.
319 // Array elements must be treated as having the same data type as
320 // accessor's `componentType`. Both min and max arrays have the same length.
321 // The length is determined by the value of the type property;
322 // it can be 1, 2, 3, 4, 9, or 16.
323 // `normalized` property has no effect on array values:
324 // they always correspond to the actual values stored in the buffer.
325 // When accessor is sparse, this property must contain min values of
326 // accessor data with sparse substitution applied.
327 // "minItems": 1,
328 // "maxItems": 16,
329 BASE_NS::vector<float> min;
330
331 // Sparse storage of attributes that deviate from their initialization value.
332 Sparse sparse;
333 };
334
335 struct AttributeBase {
336 AttributeType type;
337 uint32_t index; // for example texcoord 0,1,2...
338 };
339
340 struct Attribute {
341 AttributeBase attribute;
342 Accessor* accessor { nullptr };
343 };
344
345 struct Image {
346 // The uri of the image.
347 // Relative paths are relative to the .gltf file.
348 // Instead of referencing an external file,
349 // the uri can also be a data-uri.
350 // The image format must be jpg or png.
351 BASE_NS::string uri;
352
353 // The bufferView that contains the image.
354 // Use this instead of the image's uri property.
355 BufferView* bufferView { nullptr };
356
357 // The image's MIME type. Needed when BufferView is used.
358 MimeType type;
359 };
360
361 struct Sampler {
362 FilterMode magFilter = FilterMode::LINEAR;
363 FilterMode minFilter = FilterMode::LINEAR;
364
365 WrapMode wrapS = WrapMode::REPEAT;
366 WrapMode wrapT = WrapMode::REPEAT;
367 };
368
369 struct Texture {
370 // The sampler used by this texture.
371 // When nullptr, a sampler with repeat wrapping
372 // and auto filtering should be used.
373 Sampler* sampler { nullptr };
374
375 // The image used by this texture.
376 Image* image { nullptr };
377 };
378
379 struct TextureInfo {
380 // The texture.
381 Texture* texture { nullptr };
382
383 // index defined in gltf.
384 uint32_t index = GLTF_INVALID_INDEX;
385
386 // The set index of texture's TEXCOORD attribute
387 // used for texture coordinate mapping.
388 // "default": 0
389 uint32_t texCoordIndex = 0;
390
391 #if defined(GLTF2_EXTENSION_KHR_TEXTURE_TRANSFORM)
392 struct TextureTransform {
393 BASE_NS::Math::Vec2 offset { 0.0f, 0.0f };
394 BASE_NS::Math::Vec2 scale { 1.f, 1.f };
395 float rotation = 0.0f;
396 uint32_t texCoordIndex = GLTF_INVALID_INDEX;
397 } transform;
398 #endif
399 };
400
401 struct MetallicRoughness {
402 // The RGBA components of the base color of the material.
403 // The fourth component (A) is the alpha coverage of the material.
404 // The `alphaMode` property specifies how alpha is interpreted.
405 // These values are linear. If a baseColorTexture is specified,
406 // this value is multiplied with the texel values.
407 // "default": [ 1.0, 1.0, 1.0, 1.0 ]
408 BASE_NS::Math::Vec4 baseColorFactor { 1.f, 1.f, 1.f, 1.f };
409
410 // The base color texture.
411 // This texture contains RGB(A) components in sRGB color space.
412 // The first three components (RGB) specify the base color of the
413 // material. If the fourth component (A) is present, it represents
414 // the alpha coverage of the material. Otherwise, an alpha of 1.0 is
415 // assumed. The `alphaMode` property specifies how alpha is
416 // interpreted. The stored texels must not be premultiplied.
417 // "default": 1.0
418 TextureInfo baseColorTexture;
419
420 // The metalness of the material.
421 // A value of 1.0 means the material is a metal.
422 // A value of 0.0 means the material is a dielectric.
423 // Values in between are for blending between metals
424 // and dielectrics such as dirty metallic surfaces.
425 // This value is linear. If a metallicRoughnessTexture is specified,
426 // this value is multiplied with the metallic texel values.
427 float metallicFactor { 1.f };
428
429 // The roughness of the material.
430 // A value of 1.0 means the material is completely rough.
431 // A value of 0.0 means the material is completely smooth.
432 // This value is linear. If a metallicRoughnessTexture is specified,
433 // this value is multiplied with the roughness texel values.
434 // "default": 1.0
435 float roughnessFactor { 1.f };
436
437 // The metallic-roughness texture.
438 // The metalness values are sampled from the B channel.
439 // The roughness values are sampled from the G channel.
440 // These values are linear. If other channels are present (R or A),
441 // they are ignored for metallic-roughness calculations.
442 TextureInfo metallicRoughnessTexture;
443 };
444
445 struct NormalTexture {
446 TextureInfo textureInfo;
447 float scale = 1.0f;
448 };
449
450 struct OcclusionTexture {
451 TextureInfo textureInfo;
452 float strength = 1.0f;
453 };
454
455 struct Material {
456 enum class Type { MetallicRoughness, SpecularGlossiness, Unlit };
457
458 Type type { Type::MetallicRoughness };
459
460 BASE_NS::string name; // name
461 MetallicRoughness metallicRoughness;
462
463 // "The scalar multiplier applied to each normal vector of the texture.
464 // This value scales the normal vector using the formula:
465 // `scaledNormal = normalize((normalize(<sampled normal texture value>) * 2.0
466 // - 1.0) * vec3(<normal scale>, <normal scale>, 1.0))`. This value is ignored if
467 // normalTexture is not specified. This value is linear."
468 NormalTexture normalTexture;
469
470 // A scalar multiplier controlling the amount of occlusion applied.
471 // A value of 0.0 means no occlusion. A value of 1.0 means full occlusion.
472 // This value affects the resulting color using the formula:
473 // `occludedColor = lerp(color, color * <sampled occlusion texture value>,
474 // <occlusion strength>)`. This value is ignored if the corresponding texture
475 // is not specified. This value is linear. "default": 1.0, "minimum": 0.0,
476 // "maximum": 1.0,
477 OcclusionTexture occlusionTexture;
478
479 TextureInfo emissiveTexture;
480
481 BASE_NS::Math::Vec4 emissiveFactor = BASE_NS::Math::Vec4(0.f, 0.f, 0.f, 1.f); // "default": [ 0.0, 0.0, 0.0 ],
482
483 AlphaMode alphaMode = AlphaMode::OPAQUE;
484
485 float alphaCutoff = 0.5f; // "minimum": 0.0,
486
487 // default": false,
488 // Specifies whether the material is double sided.
489 // When this value is false, back-face culling is enabled.
490 // When this value is true, back-face culling is disabled
491 // and double sided lighting is enabled.
492 // The back-face must have its normals reversed before
493 // the lighting equation is evaluated.
494 bool doubleSided = false;
495
496 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_CLEARCOAT) || defined(GLTF2_EXTRAS_CLEAR_COAT_MATERIAL)
497 struct Clearcoat {
498 // The clearcoat layer intensity.
499 float factor = 0.0f;
500 // The clearcoat layer intensity texture.
501 TextureInfo texture;
502 // The clearcoat layer roughness.
503 float roughness = 0.0f;
504 // The clearcoat layer roughness texture.
505 TextureInfo roughnessTexture;
506 // The clearcoat normal map texture.
507 NormalTexture normalTexture;
508 } clearcoat;
509 #endif
510
511 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_IOR)
512 struct Ior {
513 // Material's index of refraction.
514 float ior = 1.5f;
515 } ior;
516 #endif
517
518 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_PBRSPECULARGLOSSINESS)
519 struct SpecularGlossiness {
520 // The RGBA components of the reflected diffuse color of the material.
521 // Metals have a diffuse value of `[0.0, 0.0, 0.0]`. The fourth component (A) is the alpha coverage of the
522 // material. The 'alphaMode' property specifies how alpha is interpreted. The values are linear.
523 BASE_NS::Math::Vec4 diffuseFactor { 1.f, 1.f, 1.f, 1.f }; // "default": [ 1.0, 1.0, 1.0, 1.0 ]
524
525 // The diffuse texture. This texture contains RGB(A) components of the reflected diffuse color of the material
526 // in sRGB color space. If the fourth component (A) is present, it represents the alpha coverage of the
527 // material. Otherwise, an alpha of 1.0 is assumed. The `alphaMode` property specifies how alpha is interpreted.
528 // The stored texels must not be premultiplied.
529 TextureInfo diffuseTexture;
530
531 // The specular RGB color of the material. This value is linear.
532 BASE_NS::Math::Vec3 specularFactor { 1.f, 1.f, 1.f }; // "default": [ 1.0, 1.0, 1.0 ]
533
534 // The glossiness or smoothness of the material.A value of 1.0 means the material has full glossiness
535 // or is perfectly smooth.A value of 0.0 means the material has no glossiness or is completely rough.This value
536 // is linear.
537 float glossinessFactor = 1.0f;
538
539 // The specular-glossiness texture is RGBA texture, containing the specular color of the material (RGB
540 // components) and its glossiness (A component). The values are in sRGB space.
541 TextureInfo specularGlossinessTexture;
542 } specularGlossiness;
543 #endif
544
545 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_SHEEN)
546 struct Sheen {
547 // The sheen color in linear space
548 BASE_NS::Math::Vec3 factor;
549 // The sheen color (sRGB)
550 TextureInfo texture;
551 // The sheen roughness.
552 float roughness = 0.0f;
553 // The sheen roughness texture, stored in the alpha channel.
554 TextureInfo roughnessTexture;
555 } sheen;
556 #endif
557
558 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_SPECULAR)
559 struct Specular {
560 // The specular reflection strength.
561 float factor = 1.f;
562 // The specular reflection strength texture, stored in the alpha channel.
563 TextureInfo texture;
564 // The specular color in linear space.
565 BASE_NS::Math::Vec3 color { 1.f, 1.f, 1.f };
566 // The specular color texture. The values are in sRGB space.
567 TextureInfo colorTexture;
568 } specular;
569 #endif
570
571 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_TRANSMISSION)
572 struct Transmission {
573 // Percentage of light that is transmitted through the surface
574 float factor = 0.0f;
575 // Transmission percentage of the surface, stored in the R channel. This will be multiplied by
576 // transmissionFactor.
577 TextureInfo texture;
578 } transmission;
579 #endif
580 };
581
582 struct MorphTarget {
583 // extension of spec
584 // see https://github.com/KhronosGroup/glTF-Blender-Exporter/pull/153)
585 // https://github.com/KhronosGroup/glTF/issues/1036
586 BASE_NS::string name;
587 BASE_NS::vector<Attribute> target;
588 #if defined(GLTF2_EXTENSION_IGFX_COMPRESSED)
589 // true when morph target is using IGFX_compressed extension.
590 bool iGfxCompressed = false;
591 #endif
592 };
593
594 struct MeshPrimitive {
595 // [required fields]
596 // A dictionary object, where each key corresponds
597 // to mesh attribute semantic and each value is the index
598 // of the accessor containing attribute's data.
599 BASE_NS::vector<Attribute> attributes;
600
601 // "The index of the accessor that contains mesh indices.
602 // When this is not defined, the primitives should be rendered
603 // without indices using drawArrays.
604 // When defined, the accessor must contain indices:
605 // the `bufferView` referenced by the accessor should have
606 // a `target` equal to 34963 (ELEMENT_ARRAY_BUFFER)
607 // `componentType` must be 5121 (UNSIGNED_BYTE),
608 // 5123 (UNSIGNED_SHORT) or 5125 (UNSIGNED_INT),
609 // the latter may require enabling additional hardware support;
610 // `type` must be `\"SCALAR\"`.
611 // For triangle primitives, the front face has
612 // a counter-clockwise (CCW) winding order."
613 Accessor* indices { nullptr };
614
615 // "The index of the material to apply to this primitive when rendering.
616 Material* material { nullptr };
617
618 // index defined in gltf.
619 uint32_t materialIndex = GLTF_INVALID_INDEX;
620
621 // The type of primitives to render. All valid values correspond to WebGL enums.
622 RenderMode mode = DEFAULT_RENDER_MODE;
623
624 // An array of Morph Targets,
625 // each Morph Target is a dictionary mapping attributes
626 // (only `POSITION`, `NORMAL`, and `TANGENT` supported)
627 // to their deviations in the Morph Target.
628 BASE_NS::vector<MorphTarget> targets;
629 };
630
631 struct Mesh {
632 // Name.
633 BASE_NS::string name;
634 // [required field], primitives
635 BASE_NS::vector<MeshPrimitive> primitives;
636 // Array of weights to be applied to the Morph Targets.
637 BASE_NS::vector<float> weights;
638 };
639
640 struct Camera {
641 // Name.
642 BASE_NS::string name;
643
644 CameraType type;
645
646 union Attributes {
647 struct Perspective {
648 // PERSPECTIVE
649 // minimum value for each is 0
650 // => in this implementation negative is used to disable parameter
651 float aspect;
652 float yfov; // required
653 float zfar;
654 float znear; // required
655 } perspective;
656
657 struct Ortho {
658 // ORTHOGRAPHIC
659 // xmag, ymag cant't be zero
660 // zfar, znear : minimum is zero
661 // all are required
662 float xmag;
663 float ymag;
664 float zfar;
665 float znear;
666 } ortho;
667 } attributes;
668 };
669
670 struct Skin {
671 BASE_NS::string name;
672
673 // The accessor containing the floating-point 4X4 inverse-bind matrices.
674 // The default is that each matrix is a 4X4 identity matrix,
675 // which implies that inverse-bind matrices were pre-applied.
676 Accessor* inverseBindMatrices { nullptr };
677
678 // The node used as a skeleton root. When undefined, joints transforms resolve to scene root.
679 Node* skeleton { nullptr };
680
681 // The skeleton nodes, used as joints in this skin.
682 BASE_NS::vector<Node*> joints;
683 };
684
685 struct Node {
686 BASE_NS::string name;
687
688 Mesh* mesh { nullptr };
689
690 Camera* camera { nullptr };
691
692 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
693 KHRLight* light { nullptr };
694 #endif
695
696 #if defined(GLTF2_EXTRAS_RSDZ)
697 BASE_NS::string modelIdRSDZ;
698 #endif
699
700 // Helpers mostly for skeleton support
701 Node* parent { nullptr };
702 bool isJoint = false;
703
704 BASE_NS::vector<Node*> children;
705 BASE_NS::vector<size_t> tmpChildren; // indices, used when gltf is parsed. (NOTE: move outside of node)
706
707 Skin* skin { nullptr };
708 uint32_t tmpSkin; // index to skin (NOTE: move outside of node)
709
710 bool usesTRS = true;
711
712 BASE_NS::Math::Vec3 translation { 0.f, 0.f, 0.f };
713 BASE_NS::Math::Quat rotation { 0.f, 0.f, 0.f, 1.f };
714 BASE_NS::Math::Vec3 scale { 1.f, 1.f, 1.f };
715
716 BASE_NS::Math::Mat4X4 matrix;
717
718 BASE_NS::vector<float> weights;
719 };
720
721 struct Scene {
722 BASE_NS::string name;
723 BASE_NS::vector<Node*> nodes;
724
725 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
726 KHRLight* light { nullptr }; // Ambient light
727 #endif
728
729 #if defined(GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED)
730 size_t imageBasedLightIndex = GLTF_INVALID_INDEX;
731 #endif
732 };
733
734 struct AnimationSampler {
735 Accessor* input { nullptr };
736 Accessor* output { nullptr };
737 AnimationInterpolation interpolation;
738 };
739
740 struct AnimationChannel // = animation.channel.target
741 {
742 Node* node { nullptr };
743 AnimationPath path;
744 };
745
746 struct AnimationTrack // = animation.channel
747 {
748 AnimationChannel channel;
749 AnimationSampler* sampler { nullptr };
750 };
751
752 struct Animation {
753 BASE_NS::string name;
754 BASE_NS::vector<AnimationTrack> tracks;
755 BASE_NS::vector<BASE_NS::unique_ptr<AnimationSampler>> samplers;
756 };
757
758 // extensions
759 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
760 struct KHRLight {
761 BASE_NS::string name;
762 LightType type = LightType::DIRECTIONAL;
763 BASE_NS::Math::Vec3 color = BASE_NS::Math::Vec3(1.f, 1.f, 1.f); // RGB
764 float intensity = 1.0f; // Intensity of the light source in lumens. default 1.0
765
766 struct {
767 float range = .0f;
768
769 struct {
770 // SPOT
771 float innerAngle = 0.f;
772 float outerAngle = 0.785398163397448f; // PI / 4
773 } spot;
774
775 } positional;
776
777 struct {
778 bool shadowCaster = false;
779 float nearClipDistance = 100.f;
780 float farClipDistance = 10000.f;
781 } shadow;
782 };
783 #endif
784
785 #if defined(GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED)
786 struct ImageBasedLight {
787 // Represents one mip level of a cube map.
788 using CubemapMipLevel = BASE_NS::vector<size_t>;
789 // Represents one set of irrandiance coefficients.
790 using LightingCoeff = BASE_NS::vector<float>;
791
792 // Name of the light.
793 BASE_NS::string name;
794 // Quaternion that represents the rotation of the IBL environment.
795 BASE_NS::Math::Quat rotation { 0.0f, 0.0f, 0.0f, 1.0f };
796 // Brightness multiplier for environment.
797 float intensity { 1.0f };
798 // Declares spherical harmonic coefficients for irradiance up to l=2. This is a 9x3 array.
799 BASE_NS::vector<LightingCoeff> irradianceCoefficients;
800 // Declares an array of the first N mips of the prefiltered cubemap.
801 // Each mip is, in turn, defined with an array of 6 images, one for each cube face. i.e. this is an Nx6 array.
802 BASE_NS::vector<CubemapMipLevel> specularImages;
803 // The dimension (in pixels) of the first specular mip. This is needed to determine, pre-load, the total number of
804 // mips needed.
805 uint32_t specularImageSize { 0 };
806 // Specular cubemap image, optional.
807 size_t specularCubeImage { GLTF_INVALID_INDEX };
808 // Skymap cubemap image, optional.
809 size_t skymapImage { GLTF_INVALID_INDEX };
810 // Skymap image lod level, optional.
811 float skymapImageLodLevel { 0.0f };
812 };
813 #endif
814
815 } // namespace GLTF2
816 CORE3D_END_NAMESPACE()
817
818 #endif // CORE__GLTF__GLTF2_DATA_STRUCTURES_H