1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "mesh_util.h"
17
18 #include <algorithm>
19
20 #include <3d/ecs/components/material_component.h>
21 #include <3d/ecs/components/name_component.h>
22 #include <3d/ecs/components/render_mesh_component.h>
23 #include <3d/ecs/components/uri_component.h>
24 #include <3d/ecs/systems/intf_node_system.h>
25 #include <3d/implementation_uids.h>
26 #include <3d/render/default_material_constants.h>
27 #include <3d/util/intf_mesh_builder.h>
28 #include <base/containers/vector.h>
29 #include <base/math/quaternion_util.h>
30 #include <base/math/vector.h>
31 #include <core/ecs/intf_ecs.h>
32 #include <core/intf_engine.h>
33 #include <core/log.h>
34 #include <core/namespace.h>
35 #include <core/plugin/intf_class_factory.h>
36 #include <render/device/intf_shader_manager.h>
37 #include <render/implementation_uids.h>
38 #include <render/intf_render_context.h>
39
40 #include "util/uri_lookup.h"
41
42 CORE3D_BEGIN_NAMESPACE()
43 using namespace BASE_NS;
44 using namespace CORE_NS;
45 using namespace RENDER_NS;
46
47 namespace {
48 constexpr Math::Vec3 PLANE_NORM[6u] = {
49 Math::Vec3(0.0f, 1.0f, 0.0f),
50 Math::Vec3(0.0f, 1.0f, 0.0f),
51 Math::Vec3(0.0f, 1.0f, 0.0f),
52
53 Math::Vec3(0.0f, 1.0f, 0.0f),
54 Math::Vec3(0.0f, 1.0f, 0.0f),
55 Math::Vec3(0.0f, 1.0f, 0.0f),
56 };
57
58 constexpr Math::Vec2 PLANE_UV[6u] = {
59 Math::Vec2(1.0f, 1.0f),
60 Math::Vec2(1.0f, 0.0f),
61 Math::Vec2(0.0f, 1.0f),
62
63 Math::Vec2(1.0f, 0.0f),
64 Math::Vec2(0.0f, 0.0f),
65 Math::Vec2(0.0f, 1.0f),
66 };
67
68 constexpr uint16_t PLANE_IND[] = { 0u, 1u, 2u, 3u, 4u, 5u };
69
70 constexpr Math::Vec3 CUBE_POS[8u] = {
71 Math::Vec3(-0.5f, -0.5f, -0.5f), //
72 Math::Vec3(0.5f, -0.5f, -0.5f), //
73 Math::Vec3(0.5f, 0.5f, -0.5f), //
74 Math::Vec3(-0.5f, 0.5f, -0.5f), //
75 Math::Vec3(-0.5f, -0.5f, 0.5f), //
76 Math::Vec3(0.5f, -0.5f, 0.5f), //
77 Math::Vec3(0.5f, 0.5f, 0.5f), //
78 Math::Vec3(-0.5f, 0.5f, 0.5f) //
79 };
80
81 constexpr Math::Vec2 CUBE_UV[4u] = { Math::Vec2(1.0f, 1.0f), Math::Vec2(0.0f, 1.0f), Math::Vec2(0.0f, 0.0f),
82 Math::Vec2(1.0f, 0.0f) };
83
84 constexpr uint16_t CUBE_INDICES[6u * 6u] = {
85 0, 3, 1, 3, 2, 1, //
86 1, 2, 5, 2, 6, 5, //
87 5, 6, 4, 6, 7, 4, //
88 4, 7, 0, 7, 3, 0, //
89 3, 7, 2, 7, 6, 2, //
90 4, 0, 5, 0, 1, 5 //
91 };
92
93 constexpr uint32_t CUBE_UV_INDICES[6u] = { 0, 3, 1, 3, 2, 1 };
94
95 constexpr float TWO_PI = Math::PI * 2.0f;
96
97 template<typename IndexType>
98 struct Geometry {
99 vector<Math::Vec3>& vertices;
100 vector<Math::Vec3>& normals;
101 vector<Math::Vec2>& uvs;
102 vector<IndexType>& indices;
103 };
104
GenerateCubeGeometry(float width,float height,float depth,Geometry<uint16_t> geometry)105 void GenerateCubeGeometry(float width, float height, float depth, Geometry<uint16_t> geometry)
106 {
107 vector<Math::Vec3>& vertices = geometry.vertices;
108 vector<Math::Vec3>& normals = geometry.normals;
109 vector<Math::Vec2>& uvs = geometry.uvs;
110 vector<uint16_t>& indices = geometry.indices;
111
112 vertices.reserve(countof(CUBE_INDICES));
113 normals.reserve(countof(CUBE_INDICES));
114 uvs.reserve(countof(CUBE_INDICES));
115 indices.reserve(countof(CUBE_INDICES));
116
117 constexpr size_t triangleCount = countof(CUBE_INDICES) / 3u;
118 for (size_t i = 0; i < triangleCount; ++i) {
119 const size_t vertexIndex = i * 3u;
120
121 const Math::Vec3 v0 = CUBE_POS[CUBE_INDICES[vertexIndex + 0u]];
122 const Math::Vec3 v1 = CUBE_POS[CUBE_INDICES[vertexIndex + 1u]];
123 const Math::Vec3 v2 = CUBE_POS[CUBE_INDICES[vertexIndex + 2u]];
124
125 vertices.emplace_back(v0.x * width, v0.y * height, v0.z * depth);
126 vertices.emplace_back(v1.x * width, v1.y * height, v1.z * depth);
127 vertices.emplace_back(v2.x * width, v2.y * height, v2.z * depth);
128
129 const Math::Vec3 normal = Math::Normalize(Math::Cross((v1 - v0), (v2 - v0)));
130 normals.append(3u, normal);
131
132 uvs.emplace_back(
133 CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 0u) % 6u]].x, CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 0u) % 6u]].y);
134 uvs.emplace_back(
135 CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 1u) % 6u]].x, CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 1u) % 6u]].y);
136 uvs.emplace_back(
137 CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 2u) % 6u]].x, CUBE_UV[CUBE_UV_INDICES[(vertexIndex + 2u) % 6u]].y);
138 }
139
140 for (uint16_t i = 0u; i < countof(CUBE_INDICES); ++i) {
141 indices.push_back(i);
142 }
143 }
144
GenerateSphereGeometry(float radius,uint32_t rings,uint32_t sectors,Geometry<uint32_t> geometry)145 void GenerateSphereGeometry(float radius, uint32_t rings, uint32_t sectors, Geometry<uint32_t> geometry)
146 {
147 vector<Math::Vec3>& vertices = geometry.vertices;
148 vector<Math::Vec3>& normals = geometry.normals;
149 vector<Math::Vec2>& uvs = geometry.uvs;
150 vector<uint32_t>& indices = geometry.indices;
151
152 const size_t maxVertexCount = rings * sectors;
153 const size_t maxIndexCount = (rings - 1) * sectors * 6u;
154
155 vertices.reserve(maxVertexCount);
156 normals.reserve(maxVertexCount);
157 uvs.reserve(maxVertexCount);
158 indices.reserve(maxIndexCount);
159
160 const float r = 1.0f / static_cast<float>(rings - 1);
161 const float s = 1.0f / static_cast<float>(sectors - 1);
162
163 constexpr float pi = Math::PI;
164 constexpr float halfPi = Math::PI * 0.5f;
165
166 for (uint32_t ring = 0; ring < rings; ++ring) {
167 const auto ringF = static_cast<float>(ring);
168 for (uint32_t sector = 0; sector < sectors; ++sector) {
169 const auto sectorF = static_cast<float>(sector);
170 const float y = Math::sin(-halfPi + pi * ringF * r);
171 const float x = Math::cos(TWO_PI * sectorF * s) * Math::sin(pi * ringF * r);
172 const float z = Math::sin(TWO_PI * sectorF * s) * Math::sin(pi * ringF * r);
173
174 vertices.emplace_back(x * radius, y * radius, z * radius);
175 normals.emplace_back(x, y, z);
176 uvs.emplace_back(sectorF * s, ringF * r);
177
178 if (ring < rings - 1) {
179 const uint32_t curRow = ring * sectors;
180 const uint32_t nextRow = (ring + 1) * sectors;
181 const uint32_t nextS = (sector + 1) % sectors;
182
183 indices.push_back(curRow + sector);
184 indices.push_back(nextRow + sector);
185 indices.push_back(nextRow + nextS);
186
187 indices.push_back(curRow + sector);
188 indices.push_back(nextRow + nextS);
189 indices.push_back(curRow + nextS);
190 }
191 }
192 }
193 }
194
GenerateConeCap(float radius,float length,uint32_t sectors,Geometry<uint32_t> geometry,const vector<Math::Vec2> & unitCoords)195 void GenerateConeCap(
196 float radius, float length, uint32_t sectors, Geometry<uint32_t> geometry, const vector<Math::Vec2>& unitCoords)
197 {
198 vector<Math::Vec3>& vertices = geometry.vertices;
199 vector<Math::Vec3>& normals = geometry.normals;
200 vector<Math::Vec2>& uvs = geometry.uvs;
201 vector<uint32_t>& indices = geometry.indices;
202
203 // Already generated vertices: tip + sectors
204 uint32_t startVertex = 1U + sectors;
205
206 // Cap center vert.
207 const uint32_t bottomIndex = startVertex;
208 vertices.emplace_back(0.0f, 0.0f, length);
209 normals.emplace_back(0.0f, 0.0f, 1.0f);
210 uvs.emplace_back(0.5f, 0.5f);
211
212 ++startVertex;
213
214 // Cap ring and triangles.
215 for (uint32_t idx = 0; idx < sectors; ++idx) {
216 const uint32_t vertexIndex = startVertex + idx;
217
218 const Math::Vec2& coords = unitCoords[idx];
219
220 vertices.emplace_back(coords.x * radius, coords.y * radius, length);
221 normals.emplace_back(0.0f, 0.0f, 1.0f);
222
223 float uvx = (coords.x + 1.0f) * 0.5f;
224 float uvy = 1.0f - (coords.y + 1.0f) * 0.5f;
225 uvs.emplace_back(uvx, uvy);
226
227 const uint32_t nextVertexIndex = startVertex + ((idx + 1) % sectors);
228
229 indices.push_back(vertexIndex);
230 indices.push_back(nextVertexIndex);
231 indices.push_back(bottomIndex);
232 }
233 }
234
GenerateConeGeometry(float radius,float length,uint32_t sectors,Geometry<uint32_t> geometry)235 void GenerateConeGeometry(float radius, float length, uint32_t sectors, Geometry<uint32_t> geometry)
236 {
237 vector<Math::Vec3>& vertices = geometry.vertices;
238 vector<Math::Vec3>& normals = geometry.normals;
239 vector<Math::Vec2>& uvs = geometry.uvs;
240 vector<uint32_t>& indices = geometry.indices;
241
242 const float s = (sectors > 0U) ? (1.0f / static_cast<float>(sectors)) : 1.0f;
243
244 const size_t maxVertexCount = (2 * static_cast<size_t>(sectors)) + 2u;
245 const size_t maxIndexCount = static_cast<size_t>(sectors) * 6u;
246
247 vertices.reserve(maxVertexCount);
248 normals.reserve(maxVertexCount);
249 uvs.reserve(maxVertexCount);
250 indices.reserve(maxIndexCount);
251
252 vector<Math::Vec2> unitCoords;
253 unitCoords.reserve(sectors);
254
255 vertices.emplace_back(0.0f, 0.0f, 0.0f);
256 normals.emplace_back(0.0f, 0.0f, -1.0f);
257 uvs.emplace_back(0.5f, 0.5f);
258
259 // Bottom ring vertices and side triangles, with given radius
260 const uint32_t startVertex = 1U;
261 for (uint32_t idx = 0; idx < sectors; ++idx) {
262 const auto idxF = static_cast<float>(idx);
263 const float x = Math::cos(idxF * s * TWO_PI);
264 const float y = Math::sin(idxF * s * TWO_PI);
265 unitCoords.emplace_back(x, y);
266
267 vertices.emplace_back(x * radius, y * radius, length);
268 normals.emplace_back(x, y, 0.f);
269
270 float uvx = (x + 1.0f) * 0.5f;
271 float uvy = 1.0f - (y + 1.0f) * 0.5f;
272 uvs.emplace_back(uvx, uvy);
273
274 const uint32_t v0 = 0;
275 const uint32_t v1 = startVertex + idx;
276 const uint32_t v2 = startVertex + ((idx + 1) % sectors);
277
278 indices.push_back(v0);
279 indices.push_back(v2);
280 indices.push_back(v1);
281 }
282
283 constexpr bool generateCapping = true;
284 if constexpr (generateCapping) {
285 GenerateConeCap(radius, length, sectors, geometry, unitCoords);
286 }
287 }
288
GenerateTorusSlices(float minorRadius,uint32_t minorSectors,float minorStep)289 vector<Math::Vec3> GenerateTorusSlices(float minorRadius, uint32_t minorSectors, float minorStep)
290 {
291 vector<Math::Vec3> tubeSlice;
292 tubeSlice.reserve(minorSectors);
293 for (uint32_t tube = 0; tube < minorSectors; tube++) {
294 const float minorRadians = static_cast<float>(tube) * minorStep;
295 const float x = 0.0f;
296 const float y = Math::cos(minorRadians) * minorRadius;
297 const float z = Math::sin(minorRadians) * minorRadius;
298 tubeSlice.emplace_back(x, y, z);
299 }
300 return tubeSlice;
301 }
302
GenerateTorusGeometry(float majorRadius,float minorRadius,uint32_t majorSectors,uint32_t minorSectors,Geometry<uint32_t> geometry)303 void GenerateTorusGeometry(
304 float majorRadius, float minorRadius, uint32_t majorSectors, uint32_t minorSectors, Geometry<uint32_t> geometry)
305 {
306 vector<Math::Vec3>& vertices = geometry.vertices;
307 vector<Math::Vec3>& normals = geometry.normals;
308 vector<Math::Vec2>& uvs = geometry.uvs;
309 vector<uint32_t>& indices = geometry.indices;
310
311 const float majorStep = TWO_PI / static_cast<float>(majorSectors);
312 const float minorStep = TWO_PI / static_cast<float>(minorSectors);
313
314 const size_t maxVertexCount = static_cast<size_t>(majorSectors) * static_cast<size_t>(minorSectors);
315 const size_t maxIndexCount = maxVertexCount * 6u;
316
317 vertices.reserve(maxVertexCount);
318 normals.reserve(maxVertexCount);
319 uvs.reserve(maxVertexCount);
320 indices.reserve(maxIndexCount);
321
322 const vector<Math::Vec3> tubeSlice = GenerateTorusSlices(minorRadius, minorSectors, minorStep);
323
324 uint32_t currentVertexIndex = 0;
325 for (uint32_t ring = 0; ring < majorSectors; ring++) {
326 const float majorRadians = static_cast<float>(ring) * majorStep;
327 const auto rotation = Math::AngleAxis(majorRadians, { 0.0f, 1.0f, 0.0f });
328 const auto translation = Math::Vec3(0.0f, 0.0f, 1.0f) * majorRadius;
329
330 for (uint32_t vertexIndex = 0; vertexIndex < minorSectors; vertexIndex++) {
331 const auto& ringVertex = tubeSlice[vertexIndex];
332
333 const auto tubeCenter = rotation * translation;
334
335 vertices.push_back(rotation * ringVertex + tubeCenter);
336
337 normals.push_back(Math::Normalize(rotation * ringVertex));
338
339 const float minorRadians = static_cast<float>(vertexIndex) * minorStep;
340 const float tx = 1.0f - Math::abs(majorRadians / TWO_PI * 2.0f - 1.0f);
341 const float ty = 1.0f - Math::abs(minorRadians / TWO_PI * 2.0f - 1.0f);
342 uvs.emplace_back(tx, ty);
343
344 const uint32_t i0 = currentVertexIndex;
345 const uint32_t i1 = (i0 + 1) % maxVertexCount;
346 const uint32_t i2 = (i0 + minorSectors) % maxVertexCount;
347 const uint32_t i3 = (i2 + 1) % maxVertexCount;
348
349 indices.push_back(i0);
350 indices.push_back(i1);
351 indices.push_back(i2);
352
353 indices.push_back(i1);
354 indices.push_back(i3);
355 indices.push_back(i2);
356
357 currentVertexIndex++;
358 }
359 }
360 }
361 } // namespace
362
363 template<typename IndexType>
CalculateTangentBitangent(const array_view<const IndexType> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec2> & uvs,array_view<Math::Vec3> outTan,array_view<Math::Vec3> outBitan)364 void CalculateTangentBitangent(const array_view<const IndexType>& indices,
365 const array_view<const Math::Vec3>& positions, const array_view<const Math::Vec2>& uvs,
366 array_view<Math::Vec3> outTan, array_view<Math::Vec3> outBitan)
367 {
368 const auto indexCount = (indices.size() / 3U) * 3U;
369 for (size_t i = 0; i < indexCount; i += 3U) {
370 const IndexType aa = indices[i + 0U];
371 const IndexType bb = indices[i + 1U];
372 const IndexType cc = indices[i + 2U];
373
374 const Math::Vec2& uv1 = uvs[aa];
375 const Math::Vec2& uv2 = uvs[bb];
376 const Math::Vec2& uv3 = uvs[cc];
377
378 const auto st1 = uv2 - uv1;
379 const auto st2 = uv3 - uv1;
380
381 auto d = Math::Cross(st1, st2);
382 if (Math::abs(d) < Math::EPSILON) {
383 d = Math::EPSILON;
384 }
385 const float r = 1.0f / d;
386
387 const Math::Vec3& v1 = positions[aa];
388 const Math::Vec3& v2 = positions[bb];
389 const Math::Vec3& v3 = positions[cc];
390
391 const auto e1 = v2 - v1;
392 const auto e2 = v3 - v1;
393
394 const Math::Vec3 sdir { (e1 * st2.y - e2 * st1.y) * r };
395 outTan[aa] += sdir;
396 outTan[bb] += sdir;
397 outTan[cc] += sdir;
398
399 const Math::Vec3 tdir { (e2 * st1.x - e1 * st2.x) * r };
400
401 outBitan[aa] += tdir;
402 outBitan[bb] += tdir;
403 outBitan[cc] += tdir;
404 }
405 }
CalculateFinalTangent(const array_view<const Math::Vec3> & normals,array_view<const Math::Vec3> tan,array_view<const Math::Vec3> bitan,array_view<Math::Vec4> & outTangents)406 void CalculateFinalTangent(const array_view<const Math::Vec3>& normals, array_view<const Math::Vec3> tan,
407 array_view<const Math::Vec3> bitan, array_view<Math::Vec4>& outTangents)
408 {
409 for (size_t i = 0; i < normals.size(); i++) {
410 const Math::Vec3& n = normals[i];
411 const Math::Vec3& t = tan[i];
412
413 // Gram-Schmidt orthogonalize
414 const Math::Vec3 tmp = Math::Normalize(t - n * Math::Dot(n, t));
415
416 // Calculate handedness
417 const float w = (Math::Dot(Math::Cross(n, t), bitan[i]) < 0.0F) ? 1.0F : -1.0F;
418
419 outTangents[i] = Math::Vec4(tmp.x, tmp.y, tmp.z, w);
420 }
421 }
422
423 template<typename IndexType>
CalculateTangentImpl(const array_view<const IndexType> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec3> & normals,const array_view<const Math::Vec2> & uvs,array_view<Math::Vec4> & outTangents)424 void CalculateTangentImpl(const array_view<const IndexType>& indices, const array_view<const Math::Vec3>& positions,
425 const array_view<const Math::Vec3>& normals, const array_view<const Math::Vec2>& uvs,
426 array_view<Math::Vec4>& outTangents)
427 {
428 if (indices.size() < 3U) {
429 return;
430 }
431
432 // http://www.terathon.com/code/tangent.html
433 vector<Math::Vec3> tan(positions.size(), { 0, 0, 0 });
434 vector<Math::Vec3> bitan(positions.size(), { 0, 0, 0 });
435
436 CalculateTangentBitangent(indices, positions, uvs, tan, bitan);
437 CalculateFinalTangent(normals, tan, bitan, outTangents);
438 }
439
440 template<typename IndexType>
CalculateTangentImplStrip(const array_view<const IndexType> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec3> & normals,const array_view<const Math::Vec2> & uvs,array_view<Math::Vec4> & outTangents)441 void CalculateTangentImplStrip(const array_view<const IndexType>& indices,
442 const array_view<const Math::Vec3>& positions, const array_view<const Math::Vec3>& normals,
443 const array_view<const Math::Vec2>& uvs, array_view<Math::Vec4>& outTangents)
444 {
445 if (indices.size() < 3U) {
446 return;
447 }
448 // http://www.terathon.com/code/tangent.html
449 vector<Math::Vec3> tan(positions.size(), { 0, 0, 0 });
450 vector<Math::Vec3> bitan(positions.size(), { 0, 0, 0 });
451
452 CalculateTangentBitangent(array_view(indices.data(), 3U), positions, uvs, tan, bitan);
453
454 for (size_t i = 2U; i < indices.size(); ++i) {
455 const IndexType aa = (i % 2U) ? indices[i - 1U] : indices[i - 2U];
456 const IndexType bb = (i % 2U) ? indices[i - 2U] : indices[i - 1U];
457 const IndexType cc = indices[i];
458
459 const Math::Vec2& uv1 = uvs[aa];
460 const Math::Vec2& uv2 = uvs[bb];
461 const Math::Vec2& uv3 = uvs[cc];
462
463 const auto st1 = uv2 - uv1;
464 const auto st2 = uv3 - uv1;
465
466 auto d = Math::Cross(st1, st2);
467 if (Math::abs(d) < Math::EPSILON) {
468 d = Math::EPSILON;
469 }
470 const float r = 1.0f / d;
471
472 const Math::Vec3& v1 = positions[aa];
473 const Math::Vec3& v2 = positions[bb];
474 const Math::Vec3& v3 = positions[cc];
475
476 const auto e1 = v2 - v1;
477 const auto e2 = v3 - v1;
478
479 const Math::Vec3 sdir { (e1 * st2.y - e2 * st1.y) * r };
480 tan[aa] += sdir;
481 tan[bb] += sdir;
482 tan[cc] += sdir;
483
484 const Math::Vec3 tdir { (e2 * st1.x - e1 * st2.x) * r };
485
486 bitan[aa] += tdir;
487 bitan[bb] += tdir;
488 bitan[cc] += tdir;
489 }
490 CalculateFinalTangent(normals, tan, bitan, outTangents);
491 }
492
CalculateTangents(const array_view<const uint32_t> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec3> & normals,const array_view<const Math::Vec2> & uvs,PrimitiveTopology topology,array_view<Math::Vec4> outTangents)493 void MeshUtil::CalculateTangents(const array_view<const uint32_t>& indices,
494 const array_view<const Math::Vec3>& positions, const array_view<const Math::Vec3>& normals,
495 const array_view<const Math::Vec2>& uvs, PrimitiveTopology topology, array_view<Math::Vec4> outTangents)
496 {
497 if (topology == PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP) {
498 CalculateTangentImplStrip(indices, positions, normals, uvs, outTangents);
499 } else {
500 CalculateTangentImpl(indices, positions, normals, uvs, outTangents);
501 }
502 }
503
CalculateTangents(const array_view<const uint16_t> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec3> & normals,const array_view<const Math::Vec2> & uvs,PrimitiveTopology topology,array_view<Math::Vec4> outTangents)504 void MeshUtil::CalculateTangents(const array_view<const uint16_t>& indices,
505 const array_view<const Math::Vec3>& positions, const array_view<const Math::Vec3>& normals,
506 const array_view<const Math::Vec2>& uvs, PrimitiveTopology topology, array_view<Math::Vec4> outTangents)
507 {
508 if (topology == PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP) {
509 CalculateTangentImplStrip(indices, positions, normals, uvs, outTangents);
510 } else {
511 CalculateTangentImpl(indices, positions, normals, uvs, outTangents);
512 }
513 }
514
CalculateTangents(const array_view<const uint8_t> & indices,const array_view<const Math::Vec3> & positions,const array_view<const Math::Vec3> & normals,const array_view<const Math::Vec2> & uvs,PrimitiveTopology topology,array_view<Math::Vec4> outTangents)515 void MeshUtil::CalculateTangents(const array_view<const uint8_t>& indices,
516 const array_view<const Math::Vec3>& positions, const array_view<const Math::Vec3>& normals,
517 const array_view<const Math::Vec2>& uvs, PrimitiveTopology topology, array_view<Math::Vec4> outTangents)
518 {
519 if (topology == PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP) {
520 CalculateTangentImplStrip(indices, positions, normals, uvs, outTangents);
521 } else {
522 CalculateTangentImpl(indices, positions, normals, uvs, outTangents);
523 }
524 }
525
526 template<typename T>
FillData(array_view<const T> c)527 constexpr inline IMeshBuilder::DataBuffer FillData(array_view<const T> c) noexcept
528 {
529 Format format = BASE_FORMAT_UNDEFINED;
530 if constexpr (is_same_v<T, Math::Vec2>) {
531 format = BASE_FORMAT_R32G32_SFLOAT;
532 } else if constexpr (is_same_v<T, Math::Vec3>) {
533 format = BASE_FORMAT_R32G32B32_SFLOAT;
534 } else if constexpr (is_same_v<T, Math::Vec4>) {
535 format = BASE_FORMAT_R32G32B32A32_SFLOAT;
536 } else if constexpr (is_same_v<T, uint16_t>) {
537 format = BASE_FORMAT_R16_UINT;
538 } else if constexpr (is_same_v<T, uint32_t>) {
539 format = BASE_FORMAT_R32_UINT;
540 }
541 return IMeshBuilder::DataBuffer { format, sizeof(T),
542 { reinterpret_cast<const uint8_t*>(c.data()), c.size() * sizeof(T) } };
543 }
544
545 template<typename T, size_t N>
FillData(const T (& c)[N])546 constexpr inline IMeshBuilder::DataBuffer FillData(const T (&c)[N]) noexcept
547 {
548 return FillData(array_view(c, N));
549 }
550
551 template<typename T>
FillData(const vector<T> & c)552 constexpr inline IMeshBuilder::DataBuffer FillData(const vector<T>& c) noexcept
553 {
554 return FillData(array_view<const T> { c });
555 }
556
GeneratePlaneMesh(const IEcs & ecs,const string_view name,Entity material,float width,float depth)557 Entity MeshUtil::GeneratePlaneMesh(const IEcs& ecs, const string_view name, Entity material, float width, float depth)
558 {
559 const float extentX = width * 0.5f;
560 const float extentZ = depth * 0.5f;
561
562 const Math::Vec3 pos[6u] = {
563 Math::Vec3(-extentX, 0.0f, -extentZ),
564 Math::Vec3(-extentX, 0.0f, extentZ),
565 Math::Vec3(extentX, 0.0f, -extentZ),
566
567 Math::Vec3(-extentX, 0.0f, extentZ),
568 Math::Vec3(extentX, 0.0f, extentZ),
569 Math::Vec3(extentX, 0.0f, -extentZ),
570 };
571 vector<Math::Vec4> tangents(countof(pos));
572 {
573 constexpr auto indicesView = array_view(PLANE_IND);
574 const auto positionsView = array_view(pos);
575 constexpr auto normalsView = array_view(PLANE_NORM);
576 constexpr auto uvsView = array_view(PLANE_UV);
577
578 CalculateTangents(indicesView, positionsView, normalsView, uvsView,
579 PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, tangents);
580 }
581
582 IMeshBuilder::Submesh submesh;
583 submesh.material = material;
584 submesh.vertexCount = 6u;
585 submesh.indexCount = 6u;
586 submesh.indexType = CORE_INDEX_TYPE_UINT16;
587 submesh.tangents = true;
588
589 auto builder = InitializeBuilder(submesh);
590
591 auto positionData = FillData(pos);
592 auto normalData = FillData(PLANE_NORM);
593 auto uvData = FillData(PLANE_UV);
594 auto tangentData = FillData(tangents);
595 IMeshBuilder::DataBuffer dummy {};
596 builder->SetVertexData(0, positionData, normalData, uvData, dummy, tangentData, dummy);
597
598 builder->CalculateAABB(0, positionData);
599
600 auto indices = FillData(PLANE_IND);
601 builder->SetIndexData(0, indices);
602
603 return CreateMesh(ecs, *builder, name);
604 }
605
GenerateSphereMesh(const IEcs & ecs,const string_view name,Entity material,float radius,uint32_t rings,uint32_t sectors)606 Entity MeshUtil::GenerateSphereMesh(
607 const IEcs& ecs, const string_view name, Entity material, float radius, uint32_t rings, uint32_t sectors)
608 {
609 vector<Math::Vec3> vertices;
610 vector<Math::Vec3> normals;
611 vector<Math::Vec2> uvs;
612 vector<uint32_t> indices;
613 GenerateSphereGeometry(radius, rings, sectors, { vertices, normals, uvs, indices });
614
615 vector<Math::Vec4> tangents(vertices.size());
616 CalculateTangents(
617 indices, vertices, normals, uvs, PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, tangents);
618
619 IMeshBuilder::Submesh submesh;
620 submesh.material = material;
621 submesh.vertexCount = static_cast<uint32_t>(vertices.size());
622 submesh.indexCount = static_cast<uint32_t>(indices.size());
623 submesh.indexType = submesh.vertexCount <= UINT16_MAX ? CORE_INDEX_TYPE_UINT16 : CORE_INDEX_TYPE_UINT32;
624 submesh.tangents = true;
625
626 auto builder = InitializeBuilder(submesh);
627
628 auto positionData = FillData(vertices);
629 auto normalData = FillData(normals);
630 auto uvData = FillData(uvs);
631 auto tangentData = FillData(tangents);
632 IMeshBuilder::DataBuffer dummy {};
633 builder->SetVertexData(0, positionData, normalData, uvData, dummy, tangentData, dummy);
634
635 builder->CalculateAABB(0, positionData);
636
637 auto indexData = FillData(indices);
638 builder->SetIndexData(0, indexData);
639
640 return CreateMesh(ecs, *builder, name);
641 }
642
GenerateConeMesh(const IEcs & ecs,const string_view name,Entity material,float radius,float length,uint32_t sectors)643 Entity MeshUtil::GenerateConeMesh(
644 const IEcs& ecs, const string_view name, Entity material, float radius, float length, uint32_t sectors)
645 {
646 vector<Math::Vec3> vertices;
647 vector<Math::Vec3> normals;
648 vector<Math::Vec2> uvs;
649 vector<uint32_t> indices;
650 GenerateConeGeometry(radius, length, sectors, { vertices, normals, uvs, indices });
651
652 IMeshBuilder::Submesh submesh;
653 submesh.material = material;
654 submesh.vertexCount = static_cast<uint32_t>(vertices.size());
655 submesh.indexCount = static_cast<uint32_t>(indices.size());
656 submesh.indexType = submesh.vertexCount <= UINT16_MAX ? CORE_INDEX_TYPE_UINT16 : CORE_INDEX_TYPE_UINT32;
657 submesh.tangents = true;
658
659 vector<Math::Vec4> tangents(vertices.size());
660 CalculateTangents(
661 indices, vertices, normals, uvs, PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, tangents);
662
663 auto builder = InitializeBuilder(submesh);
664
665 auto positionData = FillData(vertices);
666 auto normalData = FillData(normals);
667 auto uvData = FillData(uvs);
668 auto tangentData = FillData(tangents);
669 IMeshBuilder::DataBuffer dummy {};
670 builder->SetVertexData(0, positionData, normalData, uvData, dummy, tangentData, dummy);
671
672 builder->CalculateAABB(0, positionData);
673
674 auto indexData = FillData(indices);
675 builder->SetIndexData(0, indexData);
676
677 return CreateMesh(ecs, *builder, name);
678 }
679
GenerateTorusMesh(const IEcs & ecs,const string_view name,Entity material,float majorRadius,float minorRadius,uint32_t majorSectors,uint32_t minorSectors)680 Entity MeshUtil::GenerateTorusMesh(const IEcs& ecs, const string_view name, Entity material, float majorRadius,
681 float minorRadius, uint32_t majorSectors, uint32_t minorSectors)
682 {
683 vector<Math::Vec3> vertices;
684 vector<Math::Vec3> normals;
685 vector<Math::Vec2> uvs;
686 vector<uint32_t> indices;
687 GenerateTorusGeometry(majorRadius, minorRadius, majorSectors, minorSectors, { vertices, normals, uvs, indices });
688
689 vector<Math::Vec4> tangents(vertices.size());
690 CalculateTangents(
691 indices, vertices, normals, uvs, PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, tangents);
692
693 IMeshBuilder::Submesh submesh;
694 submesh.material = material;
695 submesh.vertexCount = static_cast<uint32_t>(vertices.size());
696 submesh.indexCount = static_cast<uint32_t>(indices.size());
697 submesh.indexType = submesh.vertexCount <= UINT16_MAX ? CORE_INDEX_TYPE_UINT16 : CORE_INDEX_TYPE_UINT32;
698 submesh.tangents = true;
699
700 auto builder = InitializeBuilder(submesh);
701
702 auto positionData = FillData(vertices);
703 auto normalData = FillData(normals);
704 auto uvData = FillData(uvs);
705 auto tangentData = FillData(tangents);
706 IMeshBuilder::DataBuffer dummy {};
707 builder->SetVertexData(0, positionData, normalData, uvData, dummy, tangentData, dummy);
708
709 builder->CalculateAABB(0, positionData);
710
711 auto indexData = FillData(indices);
712 builder->SetIndexData(0, indexData);
713
714 return CreateMesh(ecs, *builder, name);
715 }
716
GenerateCubeMesh(const IEcs & ecs,const string_view name,Entity material,float width,float height,float depth)717 Entity MeshUtil::GenerateCubeMesh(
718 const IEcs& ecs, const string_view name, Entity material, float width, float height, float depth)
719 {
720 vector<Math::Vec3> positions;
721 vector<Math::Vec3> normals;
722 vector<Math::Vec2> uvs;
723 vector<uint16_t> indices;
724 GenerateCubeGeometry(width, height, depth, { positions, normals, uvs, indices });
725
726 vector<Math::Vec4> tangents(positions.size());
727 CalculateTangents(
728 indices, positions, normals, uvs, PrimitiveTopology::CORE_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, tangents);
729
730 IMeshBuilder::Submesh submesh;
731 submesh.material = material;
732 submesh.vertexCount = static_cast<uint32_t>(countof(CUBE_INDICES));
733 submesh.indexCount = static_cast<uint32_t>(countof(CUBE_INDICES));
734 submesh.indexType = CORE_INDEX_TYPE_UINT16;
735 submesh.tangents = true;
736
737 auto builder = InitializeBuilder(submesh);
738
739 auto positionData = FillData(positions);
740 auto normalData = FillData(normals);
741 auto uvData = FillData(uvs);
742 auto tangentData = FillData(tangents);
743 IMeshBuilder::DataBuffer dummy {};
744 builder->SetVertexData(0, positionData, normalData, uvData, dummy, tangentData, dummy);
745
746 builder->CalculateAABB(0, positionData);
747
748 auto indexData = FillData(indices);
749 builder->SetIndexData(0, indexData);
750
751 return CreateMesh(ecs, *builder, name);
752 }
753
GenerateEntity(const IEcs & ecs,const string_view name,Entity meshHandle)754 Entity MeshUtil::GenerateEntity(const IEcs& ecs, const string_view name, Entity meshHandle)
755 {
756 INodeSystem* nodesystem = GetSystem<INodeSystem>(ecs);
757 CORE_ASSERT(nodesystem);
758
759 // Create node to scene.
760 ISceneNode* node = nodesystem->CreateNode();
761 if (!node) {
762 return Entity {};
763 }
764
765 node->SetName(name);
766
767 // Add render mesh component.
768 IRenderMeshComponentManager* renderMeshManager = GetManager<IRenderMeshComponentManager>(ecs);
769 CORE_ASSERT(renderMeshManager);
770
771 RenderMeshComponent component = CreateComponent(*renderMeshManager, node->GetEntity());
772 component.mesh = meshHandle;
773 renderMeshManager->Set(node->GetEntity(), component);
774
775 return node->GetEntity();
776 }
777
GenerateCube(const IEcs & ecs,const string_view name,Entity material,float width,float height,float depth)778 Entity MeshUtil::GenerateCube(
779 const IEcs& ecs, const string_view name, Entity material, float width, float height, float depth)
780 {
781 const Entity meshHandle = GenerateCubeMesh(ecs, name, material, width, height, depth);
782 return GenerateEntity(ecs, name, meshHandle);
783 }
784
GeneratePlane(const IEcs & ecs,const string_view name,Entity material,float width,float depth)785 Entity MeshUtil::GeneratePlane(const IEcs& ecs, const string_view name, Entity material, float width, float depth)
786 {
787 const Entity meshHandle = GeneratePlaneMesh(ecs, name, material, width, depth);
788 return GenerateEntity(ecs, name, meshHandle);
789 }
790
GenerateSphere(const IEcs & ecs,const string_view name,Entity material,float radius,uint32_t rings,uint32_t sectors)791 Entity MeshUtil::GenerateSphere(
792 const IEcs& ecs, const string_view name, Entity material, float radius, uint32_t rings, uint32_t sectors)
793 {
794 const Entity meshHandle = GenerateSphereMesh(ecs, name, material, radius, rings, sectors);
795 return GenerateEntity(ecs, name, meshHandle);
796 }
797
GenerateCone(const IEcs & ecs,const string_view name,Entity material,float radius,float length,uint32_t sectors)798 Entity MeshUtil::GenerateCone(
799 const IEcs& ecs, const string_view name, Entity material, float radius, float length, uint32_t sectors)
800 {
801 const Entity meshHandle = GenerateConeMesh(ecs, name, material, radius, length, sectors);
802 return GenerateEntity(ecs, name, meshHandle);
803 }
804
GenerateTorus(const IEcs & ecs,const string_view name,Entity material,float majorRadius,float minorRadius,uint32_t majorSectors,uint32_t minorSectors)805 Entity MeshUtil::GenerateTorus(const IEcs& ecs, const string_view name, Entity material, float majorRadius,
806 float minorRadius, uint32_t majorSectors, uint32_t minorSectors)
807 {
808 const Entity meshHandle =
809 GenerateTorusMesh(ecs, name, material, majorRadius, minorRadius, majorSectors, minorSectors);
810 return GenerateEntity(ecs, name, meshHandle);
811 }
812
InitializeBuilder(const IMeshBuilder::Submesh & submesh) const813 IMeshBuilder::Ptr MeshUtil::InitializeBuilder(const IMeshBuilder::Submesh& submesh) const
814 {
815 IMeshBuilder::Ptr builder;
816 if (IClassRegister* classRegister = factory_.GetInterface<IClassRegister>(); classRegister) {
817 auto renderContext = GetInstance<IRenderContext>(*classRegister, UID_RENDER_CONTEXT);
818 IShaderManager& shaderManager = renderContext->GetDevice().GetShaderManager();
819 const VertexInputDeclarationView vertexInputDeclaration =
820 shaderManager.GetVertexInputDeclarationView(shaderManager.GetVertexInputDeclarationHandle(
821 DefaultMaterialShaderConstants::VERTEX_INPUT_DECLARATION_FORWARD));
822 builder = CreateInstance<IMeshBuilder>(*renderContext, UID_MESH_BUILDER);
823 builder->Initialize(vertexInputDeclaration, 1);
824
825 builder->AddSubmesh(submesh);
826 builder->Allocate();
827 }
828
829 return builder;
830 }
831
CreateMesh(const IEcs & ecs,const IMeshBuilder & builder,const string_view name) const832 Entity MeshUtil::CreateMesh(const IEcs& ecs, const IMeshBuilder& builder, const string_view name) const
833 {
834 auto meshEntity = builder.CreateMesh(const_cast<IEcs&>(ecs));
835 if (!name.empty()) {
836 GetManager<IUriComponentManager>(ecs)->Set(meshEntity, { string(name) });
837 GetManager<INameComponentManager>(ecs)->Set(meshEntity, { string(name) });
838 }
839 return meshEntity;
840 }
841
MeshUtil(IClassFactory & factory)842 MeshUtil::MeshUtil(IClassFactory& factory) : factory_(factory) {}
843 CORE3D_END_NAMESPACE()
844