1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX "verity"
23
24 #define DM_VERITY_ENV_LENGTH 42
25 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
33 #define DM_VERITY_OPT_PANIC "panic_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX (3 + DM_VERITY_OPTS_FEC + \
38 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
39
40 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
41
42 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
43
44 struct dm_verity_prefetch_work {
45 struct work_struct work;
46 struct dm_verity *v;
47 sector_t block;
48 unsigned n_blocks;
49 };
50
51 /*
52 * Auxiliary structure appended to each dm-bufio buffer. If the value
53 * hash_verified is nonzero, hash of the block has been verified.
54 *
55 * The variable hash_verified is set to 0 when allocating the buffer, then
56 * it can be changed to 1 and it is never reset to 0 again.
57 *
58 * There is no lock around this value, a race condition can at worst cause
59 * that multiple processes verify the hash of the same buffer simultaneously
60 * and write 1 to hash_verified simultaneously.
61 * This condition is harmless, so we don't need locking.
62 */
63 struct buffer_aux {
64 int hash_verified;
65 };
66
67 /*
68 * Initialize struct buffer_aux for a freshly created buffer.
69 */
dm_bufio_alloc_callback(struct dm_buffer * buf)70 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
71 {
72 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
73
74 aux->hash_verified = 0;
75 }
76
77 /*
78 * Translate input sector number to the sector number on the target device.
79 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)80 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
81 {
82 return v->data_start + dm_target_offset(v->ti, bi_sector);
83 }
84
85 /*
86 * Return hash position of a specified block at a specified tree level
87 * (0 is the lowest level).
88 * The lowest "hash_per_block_bits"-bits of the result denote hash position
89 * inside a hash block. The remaining bits denote location of the hash block.
90 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)91 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
92 int level)
93 {
94 return block >> (level * v->hash_per_block_bits);
95 }
96
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)97 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
98 const u8 *data, size_t len,
99 struct crypto_wait *wait)
100 {
101 struct scatterlist sg;
102
103 if (likely(!is_vmalloc_addr(data))) {
104 sg_init_one(&sg, data, len);
105 ahash_request_set_crypt(req, &sg, NULL, len);
106 return crypto_wait_req(crypto_ahash_update(req), wait);
107 } else {
108 do {
109 int r;
110 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
111 flush_kernel_vmap_range((void *)data, this_step);
112 sg_init_table(&sg, 1);
113 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
114 ahash_request_set_crypt(req, &sg, NULL, this_step);
115 r = crypto_wait_req(crypto_ahash_update(req), wait);
116 if (unlikely(r))
117 return r;
118 data += this_step;
119 len -= this_step;
120 } while (len);
121 return 0;
122 }
123 }
124
125 /*
126 * Wrapper for crypto_ahash_init, which handles verity salting.
127 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)128 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
129 struct crypto_wait *wait)
130 {
131 int r;
132
133 ahash_request_set_tfm(req, v->tfm);
134 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
135 CRYPTO_TFM_REQ_MAY_BACKLOG,
136 crypto_req_done, (void *)wait);
137 crypto_init_wait(wait);
138
139 r = crypto_wait_req(crypto_ahash_init(req), wait);
140
141 if (unlikely(r < 0)) {
142 DMERR("crypto_ahash_init failed: %d", r);
143 return r;
144 }
145
146 if (likely(v->salt_size && (v->version >= 1)))
147 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
148
149 return r;
150 }
151
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)152 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
153 u8 *digest, struct crypto_wait *wait)
154 {
155 int r;
156
157 if (unlikely(v->salt_size && (!v->version))) {
158 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
159
160 if (r < 0) {
161 DMERR("verity_hash_final failed updating salt: %d", r);
162 goto out;
163 }
164 }
165
166 ahash_request_set_crypt(req, NULL, digest, 0);
167 r = crypto_wait_req(crypto_ahash_final(req), wait);
168 out:
169 return r;
170 }
171
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)172 int verity_hash(struct dm_verity *v, struct ahash_request *req,
173 const u8 *data, size_t len, u8 *digest)
174 {
175 int r;
176 struct crypto_wait wait;
177
178 r = verity_hash_init(v, req, &wait);
179 if (unlikely(r < 0))
180 goto out;
181
182 r = verity_hash_update(v, req, data, len, &wait);
183 if (unlikely(r < 0))
184 goto out;
185
186 r = verity_hash_final(v, req, digest, &wait);
187
188 out:
189 return r;
190 }
191
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)192 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
193 sector_t *hash_block, unsigned *offset)
194 {
195 sector_t position = verity_position_at_level(v, block, level);
196 unsigned idx;
197
198 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
199
200 if (!offset)
201 return;
202
203 idx = position & ((1 << v->hash_per_block_bits) - 1);
204 if (!v->version)
205 *offset = idx * v->digest_size;
206 else
207 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
208 }
209
210 /*
211 * Handle verification errors.
212 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)213 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
214 unsigned long long block)
215 {
216 char verity_env[DM_VERITY_ENV_LENGTH];
217 char *envp[] = { verity_env, NULL };
218 const char *type_str = "";
219 struct mapped_device *md = dm_table_get_md(v->ti->table);
220
221 /* Corruption should be visible in device status in all modes */
222 v->hash_failed = 1;
223
224 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
225 goto out;
226
227 v->corrupted_errs++;
228
229 switch (type) {
230 case DM_VERITY_BLOCK_TYPE_DATA:
231 type_str = "data";
232 break;
233 case DM_VERITY_BLOCK_TYPE_METADATA:
234 type_str = "metadata";
235 break;
236 default:
237 BUG();
238 }
239
240 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
241 type_str, block);
242
243 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
244 DMERR("%s: reached maximum errors", v->data_dev->name);
245
246 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
247 DM_VERITY_ENV_VAR_NAME, type, block);
248
249 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
250
251 out:
252 if (v->mode == DM_VERITY_MODE_LOGGING)
253 return 0;
254
255 if (v->mode == DM_VERITY_MODE_RESTART)
256 kernel_restart("dm-verity device corrupted");
257
258 if (v->mode == DM_VERITY_MODE_PANIC)
259 panic("dm-verity device corrupted");
260
261 return 1;
262 }
263
264 /*
265 * Verify hash of a metadata block pertaining to the specified data block
266 * ("block" argument) at a specified level ("level" argument).
267 *
268 * On successful return, verity_io_want_digest(v, io) contains the hash value
269 * for a lower tree level or for the data block (if we're at the lowest level).
270 *
271 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
272 * If "skip_unverified" is false, unverified buffer is hashed and verified
273 * against current value of verity_io_want_digest(v, io).
274 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)275 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
276 sector_t block, int level, bool skip_unverified,
277 u8 *want_digest)
278 {
279 struct dm_buffer *buf;
280 struct buffer_aux *aux;
281 u8 *data;
282 int r;
283 sector_t hash_block;
284 unsigned offset;
285
286 verity_hash_at_level(v, block, level, &hash_block, &offset);
287
288 data = dm_bufio_read(v->bufio, hash_block, &buf);
289 if (IS_ERR(data))
290 return PTR_ERR(data);
291
292 aux = dm_bufio_get_aux_data(buf);
293
294 if (!aux->hash_verified) {
295 if (skip_unverified) {
296 r = 1;
297 goto release_ret_r;
298 }
299
300 r = verity_hash(v, verity_io_hash_req(v, io),
301 data, 1 << v->hash_dev_block_bits,
302 verity_io_real_digest(v, io));
303 if (unlikely(r < 0))
304 goto release_ret_r;
305
306 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
307 v->digest_size) == 0))
308 aux->hash_verified = 1;
309 else if (verity_fec_decode(v, io,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block, data, NULL) == 0)
312 aux->hash_verified = 1;
313 else if (verity_handle_err(v,
314 DM_VERITY_BLOCK_TYPE_METADATA,
315 hash_block)) {
316 r = -EIO;
317 goto release_ret_r;
318 }
319 }
320
321 data += offset;
322 memcpy(want_digest, data, v->digest_size);
323 r = 0;
324
325 release_ret_r:
326 dm_bufio_release(buf);
327 return r;
328 }
329
330 /*
331 * Find a hash for a given block, write it to digest and verify the integrity
332 * of the hash tree if necessary.
333 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)334 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
335 sector_t block, u8 *digest, bool *is_zero)
336 {
337 int r = 0, i;
338
339 if (likely(v->levels)) {
340 /*
341 * First, we try to get the requested hash for
342 * the current block. If the hash block itself is
343 * verified, zero is returned. If it isn't, this
344 * function returns 1 and we fall back to whole
345 * chain verification.
346 */
347 r = verity_verify_level(v, io, block, 0, true, digest);
348 if (likely(r <= 0))
349 goto out;
350 }
351
352 memcpy(digest, v->root_digest, v->digest_size);
353
354 for (i = v->levels - 1; i >= 0; i--) {
355 r = verity_verify_level(v, io, block, i, false, digest);
356 if (unlikely(r))
357 goto out;
358 }
359 out:
360 if (!r && v->zero_digest)
361 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
362 else
363 *is_zero = false;
364
365 return r;
366 }
367
368 /*
369 * Calculates the digest for the given bio
370 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)371 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
372 struct bvec_iter *iter, struct crypto_wait *wait)
373 {
374 unsigned int todo = 1 << v->data_dev_block_bits;
375 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
376 struct scatterlist sg;
377 struct ahash_request *req = verity_io_hash_req(v, io);
378
379 do {
380 int r;
381 unsigned int len;
382 struct bio_vec bv = bio_iter_iovec(bio, *iter);
383
384 sg_init_table(&sg, 1);
385
386 len = bv.bv_len;
387
388 if (likely(len >= todo))
389 len = todo;
390 /*
391 * Operating on a single page at a time looks suboptimal
392 * until you consider the typical block size is 4,096B.
393 * Going through this loops twice should be very rare.
394 */
395 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
396 ahash_request_set_crypt(req, &sg, NULL, len);
397 r = crypto_wait_req(crypto_ahash_update(req), wait);
398
399 if (unlikely(r < 0)) {
400 DMERR("verity_for_io_block crypto op failed: %d", r);
401 return r;
402 }
403
404 bio_advance_iter(bio, iter, len);
405 todo -= len;
406 } while (todo);
407
408 return 0;
409 }
410
411 /*
412 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
413 * starting from iter.
414 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))415 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
416 struct bvec_iter *iter,
417 int (*process)(struct dm_verity *v,
418 struct dm_verity_io *io, u8 *data,
419 size_t len))
420 {
421 unsigned todo = 1 << v->data_dev_block_bits;
422 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
423
424 do {
425 int r;
426 u8 *page;
427 unsigned len;
428 struct bio_vec bv = bio_iter_iovec(bio, *iter);
429
430 page = kmap_atomic(bv.bv_page);
431 len = bv.bv_len;
432
433 if (likely(len >= todo))
434 len = todo;
435
436 r = process(v, io, page + bv.bv_offset, len);
437 kunmap_atomic(page);
438
439 if (r < 0)
440 return r;
441
442 bio_advance_iter(bio, iter, len);
443 todo -= len;
444 } while (todo);
445
446 return 0;
447 }
448
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)449 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
450 u8 *data, size_t len)
451 {
452 memset(data, 0, len);
453 return 0;
454 }
455
456 /*
457 * Moves the bio iter one data block forward.
458 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)459 static inline void verity_bv_skip_block(struct dm_verity *v,
460 struct dm_verity_io *io,
461 struct bvec_iter *iter)
462 {
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
466 }
467
468 /*
469 * Verify one "dm_verity_io" structure.
470 */
verity_verify_io(struct dm_verity_io * io)471 static int verity_verify_io(struct dm_verity_io *io)
472 {
473 bool is_zero;
474 struct dm_verity *v = io->v;
475 struct bvec_iter start;
476 unsigned b;
477 struct crypto_wait wait;
478 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
479
480 for (b = 0; b < io->n_blocks; b++) {
481 int r;
482 sector_t cur_block = io->block + b;
483 struct ahash_request *req = verity_io_hash_req(v, io);
484
485 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
486 likely(test_bit(cur_block, v->validated_blocks))) {
487 verity_bv_skip_block(v, io, &io->iter);
488 continue;
489 }
490
491 r = verity_hash_for_block(v, io, cur_block,
492 verity_io_want_digest(v, io),
493 &is_zero);
494 if (unlikely(r < 0))
495 return r;
496
497 if (is_zero) {
498 /*
499 * If we expect a zero block, don't validate, just
500 * return zeros.
501 */
502 r = verity_for_bv_block(v, io, &io->iter,
503 verity_bv_zero);
504 if (unlikely(r < 0))
505 return r;
506
507 continue;
508 }
509
510 r = verity_hash_init(v, req, &wait);
511 if (unlikely(r < 0))
512 return r;
513
514 start = io->iter;
515 r = verity_for_io_block(v, io, &io->iter, &wait);
516 if (unlikely(r < 0))
517 return r;
518
519 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
520 &wait);
521 if (unlikely(r < 0))
522 return r;
523
524 if (likely(memcmp(verity_io_real_digest(v, io),
525 verity_io_want_digest(v, io), v->digest_size) == 0)) {
526 if (v->validated_blocks)
527 set_bit(cur_block, v->validated_blocks);
528 continue;
529 }
530 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
531 cur_block, NULL, &start) == 0)
532 continue;
533 else {
534 if (bio->bi_status) {
535 /*
536 * Error correction failed; Just return error
537 */
538 return -EIO;
539 }
540 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
541 cur_block))
542 return -EIO;
543 }
544 }
545
546 return 0;
547 }
548
549 /*
550 * Skip verity work in response to I/O error when system is shutting down.
551 */
verity_is_system_shutting_down(void)552 static inline bool verity_is_system_shutting_down(void)
553 {
554 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
555 || system_state == SYSTEM_RESTART;
556 }
557
558 /*
559 * End one "io" structure with a given error.
560 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)561 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
562 {
563 struct dm_verity *v = io->v;
564 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
565
566 bio->bi_end_io = io->orig_bi_end_io;
567 bio->bi_status = status;
568
569 verity_fec_finish_io(io);
570
571 bio_endio(bio);
572 }
573
verity_work(struct work_struct * w)574 static void verity_work(struct work_struct *w)
575 {
576 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
577
578 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
579 }
580
verity_end_io(struct bio * bio)581 static void verity_end_io(struct bio *bio)
582 {
583 struct dm_verity_io *io = bio->bi_private;
584
585 if (bio->bi_status &&
586 (!verity_fec_is_enabled(io->v) ||
587 verity_is_system_shutting_down() ||
588 (bio->bi_opf & REQ_RAHEAD))) {
589 verity_finish_io(io, bio->bi_status);
590 return;
591 }
592
593 INIT_WORK(&io->work, verity_work);
594 queue_work(io->v->verify_wq, &io->work);
595 }
596
597 /*
598 * Prefetch buffers for the specified io.
599 * The root buffer is not prefetched, it is assumed that it will be cached
600 * all the time.
601 */
verity_prefetch_io(struct work_struct * work)602 static void verity_prefetch_io(struct work_struct *work)
603 {
604 struct dm_verity_prefetch_work *pw =
605 container_of(work, struct dm_verity_prefetch_work, work);
606 struct dm_verity *v = pw->v;
607 int i;
608
609 for (i = v->levels - 2; i >= 0; i--) {
610 sector_t hash_block_start;
611 sector_t hash_block_end;
612 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
613 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
614 if (!i) {
615 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
616
617 cluster >>= v->data_dev_block_bits;
618 if (unlikely(!cluster))
619 goto no_prefetch_cluster;
620
621 if (unlikely(cluster & (cluster - 1)))
622 cluster = 1 << __fls(cluster);
623
624 hash_block_start &= ~(sector_t)(cluster - 1);
625 hash_block_end |= cluster - 1;
626 if (unlikely(hash_block_end >= v->hash_blocks))
627 hash_block_end = v->hash_blocks - 1;
628 }
629 no_prefetch_cluster:
630 dm_bufio_prefetch(v->bufio, hash_block_start,
631 hash_block_end - hash_block_start + 1);
632 }
633
634 kfree(pw);
635 }
636
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)637 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
638 {
639 sector_t block = io->block;
640 unsigned int n_blocks = io->n_blocks;
641 struct dm_verity_prefetch_work *pw;
642
643 if (v->validated_blocks) {
644 while (n_blocks && test_bit(block, v->validated_blocks)) {
645 block++;
646 n_blocks--;
647 }
648 while (n_blocks && test_bit(block + n_blocks - 1,
649 v->validated_blocks))
650 n_blocks--;
651 if (!n_blocks)
652 return;
653 }
654
655 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
656 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
657
658 if (!pw)
659 return;
660
661 INIT_WORK(&pw->work, verity_prefetch_io);
662 pw->v = v;
663 pw->block = block;
664 pw->n_blocks = n_blocks;
665 queue_work(v->verify_wq, &pw->work);
666 }
667
668 /*
669 * Bio map function. It allocates dm_verity_io structure and bio vector and
670 * fills them. Then it issues prefetches and the I/O.
671 */
verity_map(struct dm_target * ti,struct bio * bio)672 static int verity_map(struct dm_target *ti, struct bio *bio)
673 {
674 struct dm_verity *v = ti->private;
675 struct dm_verity_io *io;
676
677 bio_set_dev(bio, v->data_dev->bdev);
678 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
679
680 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
681 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
682 DMERR_LIMIT("unaligned io");
683 return DM_MAPIO_KILL;
684 }
685
686 if (bio_end_sector(bio) >>
687 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
688 DMERR_LIMIT("io out of range");
689 return DM_MAPIO_KILL;
690 }
691
692 if (bio_data_dir(bio) == WRITE)
693 return DM_MAPIO_KILL;
694
695 io = dm_per_bio_data(bio, ti->per_io_data_size);
696 io->v = v;
697 io->orig_bi_end_io = bio->bi_end_io;
698 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
699 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
700
701 bio->bi_end_io = verity_end_io;
702 bio->bi_private = io;
703 io->iter = bio->bi_iter;
704
705 verity_fec_init_io(io);
706
707 verity_submit_prefetch(v, io);
708
709 submit_bio_noacct(bio);
710
711 return DM_MAPIO_SUBMITTED;
712 }
713
714 /*
715 * Status: V (valid) or C (corruption found)
716 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)717 static void verity_status(struct dm_target *ti, status_type_t type,
718 unsigned status_flags, char *result, unsigned maxlen)
719 {
720 struct dm_verity *v = ti->private;
721 unsigned args = 0;
722 unsigned sz = 0;
723 unsigned x;
724
725 switch (type) {
726 case STATUSTYPE_INFO:
727 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
728 break;
729 case STATUSTYPE_TABLE:
730 DMEMIT("%u %s %s %u %u %llu %llu %s ",
731 v->version,
732 v->data_dev->name,
733 v->hash_dev->name,
734 1 << v->data_dev_block_bits,
735 1 << v->hash_dev_block_bits,
736 (unsigned long long)v->data_blocks,
737 (unsigned long long)v->hash_start,
738 v->alg_name
739 );
740 for (x = 0; x < v->digest_size; x++)
741 DMEMIT("%02x", v->root_digest[x]);
742 DMEMIT(" ");
743 if (!v->salt_size)
744 DMEMIT("-");
745 else
746 for (x = 0; x < v->salt_size; x++)
747 DMEMIT("%02x", v->salt[x]);
748 if (v->mode != DM_VERITY_MODE_EIO)
749 args++;
750 if (verity_fec_is_enabled(v))
751 args += DM_VERITY_OPTS_FEC;
752 if (v->zero_digest)
753 args++;
754 if (v->validated_blocks)
755 args++;
756 if (v->signature_key_desc)
757 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
758 if (!args)
759 return;
760 DMEMIT(" %u", args);
761 if (v->mode != DM_VERITY_MODE_EIO) {
762 DMEMIT(" ");
763 switch (v->mode) {
764 case DM_VERITY_MODE_LOGGING:
765 DMEMIT(DM_VERITY_OPT_LOGGING);
766 break;
767 case DM_VERITY_MODE_RESTART:
768 DMEMIT(DM_VERITY_OPT_RESTART);
769 break;
770 case DM_VERITY_MODE_PANIC:
771 DMEMIT(DM_VERITY_OPT_PANIC);
772 break;
773 default:
774 BUG();
775 }
776 }
777 if (v->zero_digest)
778 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
779 if (v->validated_blocks)
780 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
781 sz = verity_fec_status_table(v, sz, result, maxlen);
782 if (v->signature_key_desc)
783 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
784 " %s", v->signature_key_desc);
785 break;
786 }
787 }
788
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)789 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
790 {
791 struct dm_verity *v = ti->private;
792
793 *bdev = v->data_dev->bdev;
794
795 if (v->data_start ||
796 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
797 return 1;
798 return 0;
799 }
800
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)801 static int verity_iterate_devices(struct dm_target *ti,
802 iterate_devices_callout_fn fn, void *data)
803 {
804 struct dm_verity *v = ti->private;
805
806 return fn(ti, v->data_dev, v->data_start, ti->len, data);
807 }
808
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)809 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
810 {
811 struct dm_verity *v = ti->private;
812
813 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
814 limits->logical_block_size = 1 << v->data_dev_block_bits;
815
816 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
817 limits->physical_block_size = 1 << v->data_dev_block_bits;
818
819 blk_limits_io_min(limits, limits->logical_block_size);
820 }
821
verity_dtr(struct dm_target * ti)822 static void verity_dtr(struct dm_target *ti)
823 {
824 struct dm_verity *v = ti->private;
825
826 if (v->verify_wq)
827 destroy_workqueue(v->verify_wq);
828
829 if (v->bufio)
830 dm_bufio_client_destroy(v->bufio);
831
832 kvfree(v->validated_blocks);
833 kfree(v->salt);
834 kfree(v->root_digest);
835 kfree(v->zero_digest);
836
837 if (v->tfm)
838 crypto_free_ahash(v->tfm);
839
840 kfree(v->alg_name);
841
842 if (v->hash_dev)
843 dm_put_device(ti, v->hash_dev);
844
845 if (v->data_dev)
846 dm_put_device(ti, v->data_dev);
847
848 verity_fec_dtr(v);
849
850 kfree(v->signature_key_desc);
851
852 kfree(v);
853 }
854
verity_alloc_most_once(struct dm_verity * v)855 static int verity_alloc_most_once(struct dm_verity *v)
856 {
857 struct dm_target *ti = v->ti;
858
859 /* the bitset can only handle INT_MAX blocks */
860 if (v->data_blocks > INT_MAX) {
861 ti->error = "device too large to use check_at_most_once";
862 return -E2BIG;
863 }
864
865 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
866 sizeof(unsigned long),
867 GFP_KERNEL);
868 if (!v->validated_blocks) {
869 ti->error = "failed to allocate bitset for check_at_most_once";
870 return -ENOMEM;
871 }
872
873 return 0;
874 }
875
verity_alloc_zero_digest(struct dm_verity * v)876 static int verity_alloc_zero_digest(struct dm_verity *v)
877 {
878 int r = -ENOMEM;
879 struct ahash_request *req;
880 u8 *zero_data;
881
882 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
883
884 if (!v->zero_digest)
885 return r;
886
887 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
888
889 if (!req)
890 return r; /* verity_dtr will free zero_digest */
891
892 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
893
894 if (!zero_data)
895 goto out;
896
897 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
898 v->zero_digest);
899
900 out:
901 kfree(req);
902 kfree(zero_data);
903
904 return r;
905 }
906
verity_is_verity_mode(const char * arg_name)907 static inline bool verity_is_verity_mode(const char *arg_name)
908 {
909 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
910 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
911 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
912 }
913
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)914 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
915 {
916 if (v->mode)
917 return -EINVAL;
918
919 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
920 v->mode = DM_VERITY_MODE_LOGGING;
921 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
922 v->mode = DM_VERITY_MODE_RESTART;
923 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
924 v->mode = DM_VERITY_MODE_PANIC;
925
926 return 0;
927 }
928
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)929 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
930 struct dm_verity_sig_opts *verify_args)
931 {
932 int r;
933 unsigned argc;
934 struct dm_target *ti = v->ti;
935 const char *arg_name;
936
937 static const struct dm_arg _args[] = {
938 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
939 };
940
941 r = dm_read_arg_group(_args, as, &argc, &ti->error);
942 if (r)
943 return -EINVAL;
944
945 if (!argc)
946 return 0;
947
948 do {
949 arg_name = dm_shift_arg(as);
950 argc--;
951
952 if (verity_is_verity_mode(arg_name)) {
953 r = verity_parse_verity_mode(v, arg_name);
954 if (r) {
955 ti->error = "Conflicting error handling parameters";
956 return r;
957 }
958 continue;
959
960 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
961 r = verity_alloc_zero_digest(v);
962 if (r) {
963 ti->error = "Cannot allocate zero digest";
964 return r;
965 }
966 continue;
967
968 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
969 r = verity_alloc_most_once(v);
970 if (r)
971 return r;
972 continue;
973
974 } else if (verity_is_fec_opt_arg(arg_name)) {
975 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
976 if (r)
977 return r;
978 continue;
979 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
980 r = verity_verify_sig_parse_opt_args(as, v,
981 verify_args,
982 &argc, arg_name);
983 if (r)
984 return r;
985 continue;
986
987 }
988
989 ti->error = "Unrecognized verity feature request";
990 return -EINVAL;
991 } while (argc && !r);
992
993 return r;
994 }
995
996 /*
997 * Target parameters:
998 * <version> The current format is version 1.
999 * Vsn 0 is compatible with original Chromium OS releases.
1000 * <data device>
1001 * <hash device>
1002 * <data block size>
1003 * <hash block size>
1004 * <the number of data blocks>
1005 * <hash start block>
1006 * <algorithm>
1007 * <digest>
1008 * <salt> Hex string or "-" if no salt.
1009 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)1010 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1011 {
1012 struct dm_verity *v;
1013 struct dm_verity_sig_opts verify_args = {0};
1014 struct dm_arg_set as;
1015 unsigned int num;
1016 unsigned long long num_ll;
1017 int r;
1018 int i;
1019 sector_t hash_position;
1020 char dummy;
1021 char *root_hash_digest_to_validate;
1022
1023 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1024 if (!v) {
1025 ti->error = "Cannot allocate verity structure";
1026 return -ENOMEM;
1027 }
1028 ti->private = v;
1029 v->ti = ti;
1030
1031 r = verity_fec_ctr_alloc(v);
1032 if (r)
1033 goto bad;
1034
1035 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1036 ti->error = "Device must be readonly";
1037 r = -EINVAL;
1038 goto bad;
1039 }
1040
1041 if (argc < 10) {
1042 ti->error = "Not enough arguments";
1043 r = -EINVAL;
1044 goto bad;
1045 }
1046
1047 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1048 num > 1) {
1049 ti->error = "Invalid version";
1050 r = -EINVAL;
1051 goto bad;
1052 }
1053 v->version = num;
1054
1055 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1056 if (r) {
1057 ti->error = "Data device lookup failed";
1058 goto bad;
1059 }
1060
1061 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1062 if (r) {
1063 ti->error = "Hash device lookup failed";
1064 goto bad;
1065 }
1066
1067 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1068 !num || (num & (num - 1)) ||
1069 num < bdev_logical_block_size(v->data_dev->bdev) ||
1070 num > PAGE_SIZE) {
1071 ti->error = "Invalid data device block size";
1072 r = -EINVAL;
1073 goto bad;
1074 }
1075 v->data_dev_block_bits = __ffs(num);
1076
1077 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1078 !num || (num & (num - 1)) ||
1079 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1080 num > INT_MAX) {
1081 ti->error = "Invalid hash device block size";
1082 r = -EINVAL;
1083 goto bad;
1084 }
1085 v->hash_dev_block_bits = __ffs(num);
1086
1087 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1088 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1089 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1090 ti->error = "Invalid data blocks";
1091 r = -EINVAL;
1092 goto bad;
1093 }
1094 v->data_blocks = num_ll;
1095
1096 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1097 ti->error = "Data device is too small";
1098 r = -EINVAL;
1099 goto bad;
1100 }
1101
1102 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1103 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1104 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1105 ti->error = "Invalid hash start";
1106 r = -EINVAL;
1107 goto bad;
1108 }
1109 v->hash_start = num_ll;
1110
1111 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1112 if (!v->alg_name) {
1113 ti->error = "Cannot allocate algorithm name";
1114 r = -ENOMEM;
1115 goto bad;
1116 }
1117
1118 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1119 if (IS_ERR(v->tfm)) {
1120 ti->error = "Cannot initialize hash function";
1121 r = PTR_ERR(v->tfm);
1122 v->tfm = NULL;
1123 goto bad;
1124 }
1125
1126 /*
1127 * dm-verity performance can vary greatly depending on which hash
1128 * algorithm implementation is used. Help people debug performance
1129 * problems by logging the ->cra_driver_name.
1130 */
1131 DMINFO("%s using implementation \"%s\"", v->alg_name,
1132 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1133
1134 v->digest_size = crypto_ahash_digestsize(v->tfm);
1135 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1136 ti->error = "Digest size too big";
1137 r = -EINVAL;
1138 goto bad;
1139 }
1140 v->ahash_reqsize = sizeof(struct ahash_request) +
1141 crypto_ahash_reqsize(v->tfm);
1142
1143 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1144 if (!v->root_digest) {
1145 ti->error = "Cannot allocate root digest";
1146 r = -ENOMEM;
1147 goto bad;
1148 }
1149 if (strlen(argv[8]) != v->digest_size * 2 ||
1150 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1151 ti->error = "Invalid root digest";
1152 r = -EINVAL;
1153 goto bad;
1154 }
1155 root_hash_digest_to_validate = argv[8];
1156
1157 if (strcmp(argv[9], "-")) {
1158 v->salt_size = strlen(argv[9]) / 2;
1159 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1160 if (!v->salt) {
1161 ti->error = "Cannot allocate salt";
1162 r = -ENOMEM;
1163 goto bad;
1164 }
1165 if (strlen(argv[9]) != v->salt_size * 2 ||
1166 hex2bin(v->salt, argv[9], v->salt_size)) {
1167 ti->error = "Invalid salt";
1168 r = -EINVAL;
1169 goto bad;
1170 }
1171 }
1172
1173 argv += 10;
1174 argc -= 10;
1175
1176 /* Optional parameters */
1177 if (argc) {
1178 as.argc = argc;
1179 as.argv = argv;
1180
1181 r = verity_parse_opt_args(&as, v, &verify_args);
1182 if (r < 0)
1183 goto bad;
1184 }
1185
1186 /* Root hash signature is a optional parameter*/
1187 r = verity_verify_root_hash(root_hash_digest_to_validate,
1188 strlen(root_hash_digest_to_validate),
1189 verify_args.sig,
1190 verify_args.sig_size);
1191 if (r < 0) {
1192 ti->error = "Root hash verification failed";
1193 goto bad;
1194 }
1195 v->hash_per_block_bits =
1196 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1197
1198 v->levels = 0;
1199 if (v->data_blocks)
1200 while (v->hash_per_block_bits * v->levels < 64 &&
1201 (unsigned long long)(v->data_blocks - 1) >>
1202 (v->hash_per_block_bits * v->levels))
1203 v->levels++;
1204
1205 if (v->levels > DM_VERITY_MAX_LEVELS) {
1206 ti->error = "Too many tree levels";
1207 r = -E2BIG;
1208 goto bad;
1209 }
1210
1211 hash_position = v->hash_start;
1212 for (i = v->levels - 1; i >= 0; i--) {
1213 sector_t s;
1214 v->hash_level_block[i] = hash_position;
1215 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1216 >> ((i + 1) * v->hash_per_block_bits);
1217 if (hash_position + s < hash_position) {
1218 ti->error = "Hash device offset overflow";
1219 r = -E2BIG;
1220 goto bad;
1221 }
1222 hash_position += s;
1223 }
1224 v->hash_blocks = hash_position;
1225
1226 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1227 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1228 dm_bufio_alloc_callback, NULL);
1229 if (IS_ERR(v->bufio)) {
1230 ti->error = "Cannot initialize dm-bufio";
1231 r = PTR_ERR(v->bufio);
1232 v->bufio = NULL;
1233 goto bad;
1234 }
1235
1236 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1237 ti->error = "Hash device is too small";
1238 r = -E2BIG;
1239 goto bad;
1240 }
1241
1242 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1243 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1244 if (!v->verify_wq) {
1245 ti->error = "Cannot allocate workqueue";
1246 r = -ENOMEM;
1247 goto bad;
1248 }
1249
1250 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1251 v->ahash_reqsize + v->digest_size * 2;
1252
1253 r = verity_fec_ctr(v);
1254 if (r)
1255 goto bad;
1256
1257 ti->per_io_data_size = roundup(ti->per_io_data_size,
1258 __alignof__(struct dm_verity_io));
1259
1260 verity_verify_sig_opts_cleanup(&verify_args);
1261
1262 return 0;
1263
1264 bad:
1265
1266 verity_verify_sig_opts_cleanup(&verify_args);
1267 verity_dtr(ti);
1268
1269 return r;
1270 }
1271
1272 static struct target_type verity_target = {
1273 .name = "verity",
1274 .features = DM_TARGET_IMMUTABLE,
1275 .version = {1, 8, 0},
1276 .module = THIS_MODULE,
1277 .ctr = verity_ctr,
1278 .dtr = verity_dtr,
1279 .map = verity_map,
1280 .status = verity_status,
1281 .prepare_ioctl = verity_prepare_ioctl,
1282 .iterate_devices = verity_iterate_devices,
1283 .io_hints = verity_io_hints,
1284 };
1285
dm_verity_init(void)1286 static int __init dm_verity_init(void)
1287 {
1288 int r;
1289
1290 r = dm_register_target(&verity_target);
1291 if (r < 0)
1292 DMERR("register failed %d", r);
1293
1294 return r;
1295 }
1296
dm_verity_exit(void)1297 static void __exit dm_verity_exit(void)
1298 {
1299 dm_unregister_target(&verity_target);
1300 }
1301
1302 module_init(dm_verity_init);
1303 module_exit(dm_verity_exit);
1304
1305 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1306 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1307 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1308 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1309 MODULE_LICENSE("GPL");
1310