1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49
50 /* As long as the interface is active, we keep the timestamping counter enabled
51 * with fine resolution and binary rollover. This avoid non-monotonic behavior
52 * (clock jumps) when changing timestamping settings at runtime.
53 */
54 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55 PTP_TCR_TSCTRLSSR)
56
57 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
75 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
76
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94
95 #define STMMAC_RX_COPYBREAK 256
96
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
109 */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115
116 #ifdef CONFIG_DEBUG_FS
117 static const struct net_device_ops stmmac_netdev_ops;
118 static void stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)124 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125 {
126 int ret = 0;
127
128 if (enabled) {
129 ret = clk_prepare_enable(priv->plat->stmmac_clk);
130 if (ret)
131 return ret;
132 ret = clk_prepare_enable(priv->plat->pclk);
133 if (ret) {
134 clk_disable_unprepare(priv->plat->stmmac_clk);
135 return ret;
136 }
137 } else {
138 clk_disable_unprepare(priv->plat->stmmac_clk);
139 clk_disable_unprepare(priv->plat->pclk);
140 }
141
142 return ret;
143 }
144 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145
146 /**
147 * stmmac_verify_args - verify the driver parameters.
148 * Description: it checks the driver parameters and set a default in case of
149 * errors.
150 */
stmmac_verify_args(void)151 static void stmmac_verify_args(void)
152 {
153 if (unlikely(watchdog < 0))
154 watchdog = TX_TIMEO;
155 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 buf_sz = DEFAULT_BUFSIZE;
157 if (unlikely(flow_ctrl > 1))
158 flow_ctrl = FLOW_AUTO;
159 else if (likely(flow_ctrl < 0))
160 flow_ctrl = FLOW_OFF;
161 if (unlikely((pause < 0) || (pause > 0xffff)))
162 pause = PAUSE_TIME;
163 if (eee_timer < 0)
164 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166
167 /**
168 * stmmac_disable_all_queues - Disable all queues
169 * @priv: driver private structure
170 */
stmmac_disable_all_queues(struct stmmac_priv * priv)171 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172 {
173 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176 u32 queue;
177
178 for (queue = 0; queue < maxq; queue++) {
179 struct stmmac_channel *ch = &priv->channel[queue];
180
181 if (queue < rx_queues_cnt)
182 napi_disable(&ch->rx_napi);
183 if (queue < tx_queues_cnt)
184 napi_disable(&ch->tx_napi);
185 }
186 }
187
188 /**
189 * stmmac_enable_all_queues - Enable all queues
190 * @priv: driver private structure
191 */
stmmac_enable_all_queues(struct stmmac_priv * priv)192 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193 {
194 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197 u32 queue;
198
199 for (queue = 0; queue < maxq; queue++) {
200 struct stmmac_channel *ch = &priv->channel[queue];
201
202 if (queue < rx_queues_cnt)
203 napi_enable(&ch->rx_napi);
204 if (queue < tx_queues_cnt)
205 napi_enable(&ch->tx_napi);
206 }
207 }
208
stmmac_service_event_schedule(struct stmmac_priv * priv)209 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210 {
211 if (!test_bit(STMMAC_DOWN, &priv->state) &&
212 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213 queue_work(priv->wq, &priv->service_task);
214 }
215
stmmac_global_err(struct stmmac_priv * priv)216 static void stmmac_global_err(struct stmmac_priv *priv)
217 {
218 netif_carrier_off(priv->dev);
219 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220 stmmac_service_event_schedule(priv);
221 }
222
223 /**
224 * stmmac_clk_csr_set - dynamically set the MDC clock
225 * @priv: driver private structure
226 * Description: this is to dynamically set the MDC clock according to the csr
227 * clock input.
228 * Note:
229 * If a specific clk_csr value is passed from the platform
230 * this means that the CSR Clock Range selection cannot be
231 * changed at run-time and it is fixed (as reported in the driver
232 * documentation). Viceversa the driver will try to set the MDC
233 * clock dynamically according to the actual clock input.
234 */
stmmac_clk_csr_set(struct stmmac_priv * priv)235 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236 {
237 u32 clk_rate;
238
239 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
240
241 /* Platform provided default clk_csr would be assumed valid
242 * for all other cases except for the below mentioned ones.
243 * For values higher than the IEEE 802.3 specified frequency
244 * we can not estimate the proper divider as it is not known
245 * the frequency of clk_csr_i. So we do not change the default
246 * divider.
247 */
248 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249 if (clk_rate < CSR_F_35M)
250 priv->clk_csr = STMMAC_CSR_20_35M;
251 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252 priv->clk_csr = STMMAC_CSR_35_60M;
253 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254 priv->clk_csr = STMMAC_CSR_60_100M;
255 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256 priv->clk_csr = STMMAC_CSR_100_150M;
257 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258 priv->clk_csr = STMMAC_CSR_150_250M;
259 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260 priv->clk_csr = STMMAC_CSR_250_300M;
261 }
262
263 if (priv->plat->has_sun8i) {
264 if (clk_rate > 160000000)
265 priv->clk_csr = 0x03;
266 else if (clk_rate > 80000000)
267 priv->clk_csr = 0x02;
268 else if (clk_rate > 40000000)
269 priv->clk_csr = 0x01;
270 else
271 priv->clk_csr = 0;
272 }
273
274 if (priv->plat->has_xgmac) {
275 if (clk_rate > 400000000)
276 priv->clk_csr = 0x5;
277 else if (clk_rate > 350000000)
278 priv->clk_csr = 0x4;
279 else if (clk_rate > 300000000)
280 priv->clk_csr = 0x3;
281 else if (clk_rate > 250000000)
282 priv->clk_csr = 0x2;
283 else if (clk_rate > 150000000)
284 priv->clk_csr = 0x1;
285 else
286 priv->clk_csr = 0x0;
287 }
288 }
289
print_pkt(unsigned char * buf,int len)290 static void print_pkt(unsigned char *buf, int len)
291 {
292 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294 }
295
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)296 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297 {
298 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299 u32 avail;
300
301 if (tx_q->dirty_tx > tx_q->cur_tx)
302 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303 else
304 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305
306 return avail;
307 }
308
309 /**
310 * stmmac_rx_dirty - Get RX queue dirty
311 * @priv: driver private structure
312 * @queue: RX queue index
313 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)314 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315 {
316 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317 u32 dirty;
318
319 if (rx_q->dirty_rx <= rx_q->cur_rx)
320 dirty = rx_q->cur_rx - rx_q->dirty_rx;
321 else
322 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323
324 return dirty;
325 }
326
327 /**
328 * stmmac_enable_eee_mode - check and enter in LPI mode
329 * @priv: driver private structure
330 * Description: this function is to verify and enter in LPI mode in case of
331 * EEE.
332 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)333 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334 {
335 u32 tx_cnt = priv->plat->tx_queues_to_use;
336 u32 queue;
337
338 /* check if all TX queues have the work finished */
339 for (queue = 0; queue < tx_cnt; queue++) {
340 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341
342 if (tx_q->dirty_tx != tx_q->cur_tx)
343 return; /* still unfinished work */
344 }
345
346 /* Check and enter in LPI mode */
347 if (!priv->tx_path_in_lpi_mode)
348 stmmac_set_eee_mode(priv, priv->hw,
349 priv->plat->en_tx_lpi_clockgating);
350 }
351
352 /**
353 * stmmac_disable_eee_mode - disable and exit from LPI mode
354 * @priv: driver private structure
355 * Description: this function is to exit and disable EEE in case of
356 * LPI state is true. This is called by the xmit.
357 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)358 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359 {
360 stmmac_reset_eee_mode(priv, priv->hw);
361 del_timer_sync(&priv->eee_ctrl_timer);
362 priv->tx_path_in_lpi_mode = false;
363 }
364
365 /**
366 * stmmac_eee_ctrl_timer - EEE TX SW timer.
367 * @t: timer_list struct containing private info
368 * Description:
369 * if there is no data transfer and if we are not in LPI state,
370 * then MAC Transmitter can be moved to LPI state.
371 */
stmmac_eee_ctrl_timer(struct timer_list * t)372 static void stmmac_eee_ctrl_timer(struct timer_list *t)
373 {
374 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375
376 stmmac_enable_eee_mode(priv);
377 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378 }
379
380 /**
381 * stmmac_eee_init - init EEE
382 * @priv: driver private structure
383 * Description:
384 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
385 * can also manage EEE, this function enable the LPI state and start related
386 * timer.
387 */
stmmac_eee_init(struct stmmac_priv * priv)388 bool stmmac_eee_init(struct stmmac_priv *priv)
389 {
390 int eee_tw_timer = priv->eee_tw_timer;
391
392 /* Using PCS we cannot dial with the phy registers at this stage
393 * so we do not support extra feature like EEE.
394 */
395 if (priv->hw->pcs == STMMAC_PCS_TBI ||
396 priv->hw->pcs == STMMAC_PCS_RTBI)
397 return false;
398
399 /* Check if MAC core supports the EEE feature. */
400 if (!priv->dma_cap.eee)
401 return false;
402
403 mutex_lock(&priv->lock);
404
405 /* Check if it needs to be deactivated */
406 if (!priv->eee_active) {
407 if (priv->eee_enabled) {
408 netdev_dbg(priv->dev, "disable EEE\n");
409 del_timer_sync(&priv->eee_ctrl_timer);
410 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411 }
412 mutex_unlock(&priv->lock);
413 return false;
414 }
415
416 if (priv->eee_active && !priv->eee_enabled) {
417 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 eee_tw_timer);
420 }
421
422 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423
424 mutex_unlock(&priv->lock);
425 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 return true;
427 }
428
429 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
430 * @priv: driver private structure
431 * @p : descriptor pointer
432 * @skb : the socket buffer
433 * Description :
434 * This function will read timestamp from the descriptor & pass it to stack.
435 * and also perform some sanity checks.
436 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)437 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438 struct dma_desc *p, struct sk_buff *skb)
439 {
440 struct skb_shared_hwtstamps shhwtstamp;
441 bool found = false;
442 u64 ns = 0;
443
444 if (!priv->hwts_tx_en)
445 return;
446
447 /* exit if skb doesn't support hw tstamp */
448 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449 return;
450
451 /* check tx tstamp status */
452 if (stmmac_get_tx_timestamp_status(priv, p)) {
453 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454 found = true;
455 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456 found = true;
457 }
458
459 if (found) {
460 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461 shhwtstamp.hwtstamp = ns_to_ktime(ns);
462
463 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464 /* pass tstamp to stack */
465 skb_tstamp_tx(skb, &shhwtstamp);
466 }
467 }
468
469 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
470 * @priv: driver private structure
471 * @p : descriptor pointer
472 * @np : next descriptor pointer
473 * @skb : the socket buffer
474 * Description :
475 * This function will read received packet's timestamp from the descriptor
476 * and pass it to stack. It also perform some sanity checks.
477 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)478 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479 struct dma_desc *np, struct sk_buff *skb)
480 {
481 struct skb_shared_hwtstamps *shhwtstamp = NULL;
482 struct dma_desc *desc = p;
483 u64 ns = 0;
484
485 if (!priv->hwts_rx_en)
486 return;
487 /* For GMAC4, the valid timestamp is from CTX next desc. */
488 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489 desc = np;
490
491 /* Check if timestamp is available */
492 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495 shhwtstamp = skb_hwtstamps(skb);
496 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497 shhwtstamp->hwtstamp = ns_to_ktime(ns);
498 } else {
499 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500 }
501 }
502
503 /**
504 * stmmac_hwtstamp_set - control hardware timestamping.
505 * @dev: device pointer.
506 * @ifr: An IOCTL specific structure, that can contain a pointer to
507 * a proprietary structure used to pass information to the driver.
508 * Description:
509 * This function configures the MAC to enable/disable both outgoing(TX)
510 * and incoming(RX) packets time stamping based on user input.
511 * Return Value:
512 * 0 on success and an appropriate -ve integer on failure.
513 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)514 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515 {
516 struct stmmac_priv *priv = netdev_priv(dev);
517 struct hwtstamp_config config;
518 u32 ptp_v2 = 0;
519 u32 tstamp_all = 0;
520 u32 ptp_over_ipv4_udp = 0;
521 u32 ptp_over_ipv6_udp = 0;
522 u32 ptp_over_ethernet = 0;
523 u32 snap_type_sel = 0;
524 u32 ts_master_en = 0;
525 u32 ts_event_en = 0;
526
527 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528 netdev_alert(priv->dev, "No support for HW time stamping\n");
529 priv->hwts_tx_en = 0;
530 priv->hwts_rx_en = 0;
531
532 return -EOPNOTSUPP;
533 }
534
535 if (copy_from_user(&config, ifr->ifr_data,
536 sizeof(config)))
537 return -EFAULT;
538
539 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540 __func__, config.flags, config.tx_type, config.rx_filter);
541
542 /* reserved for future extensions */
543 if (config.flags)
544 return -EINVAL;
545
546 if (config.tx_type != HWTSTAMP_TX_OFF &&
547 config.tx_type != HWTSTAMP_TX_ON)
548 return -ERANGE;
549
550 if (priv->adv_ts) {
551 switch (config.rx_filter) {
552 case HWTSTAMP_FILTER_NONE:
553 /* time stamp no incoming packet at all */
554 config.rx_filter = HWTSTAMP_FILTER_NONE;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558 /* PTP v1, UDP, any kind of event packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560 /* 'xmac' hardware can support Sync, Pdelay_Req and
561 * Pdelay_resp by setting bit14 and bits17/16 to 01
562 * This leaves Delay_Req timestamps out.
563 * Enable all events *and* general purpose message
564 * timestamping
565 */
566 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569 break;
570
571 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 /* PTP v1, UDP, Sync packet */
573 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574 /* take time stamp for SYNC messages only */
575 ts_event_en = PTP_TCR_TSEVNTENA;
576
577 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579 break;
580
581 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582 /* PTP v1, UDP, Delay_req packet */
583 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584 /* take time stamp for Delay_Req messages only */
585 ts_master_en = PTP_TCR_TSMSTRENA;
586 ts_event_en = PTP_TCR_TSEVNTENA;
587
588 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590 break;
591
592 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593 /* PTP v2, UDP, any kind of event packet */
594 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595 ptp_v2 = PTP_TCR_TSVER2ENA;
596 /* take time stamp for all event messages */
597 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598
599 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 break;
602
603 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 /* PTP v2, UDP, Sync packet */
605 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 ptp_v2 = PTP_TCR_TSVER2ENA;
607 /* take time stamp for SYNC messages only */
608 ts_event_en = PTP_TCR_TSEVNTENA;
609
610 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 break;
613
614 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 /* PTP v2, UDP, Delay_req packet */
616 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 ptp_v2 = PTP_TCR_TSVER2ENA;
618 /* take time stamp for Delay_Req messages only */
619 ts_master_en = PTP_TCR_TSMSTRENA;
620 ts_event_en = PTP_TCR_TSEVNTENA;
621
622 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 break;
625
626 case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 /* PTP v2/802.AS1 any layer, any kind of event packet */
628 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 ptp_v2 = PTP_TCR_TSVER2ENA;
630 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631 if (priv->synopsys_id < DWMAC_CORE_4_10)
632 ts_event_en = PTP_TCR_TSEVNTENA;
633 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 ptp_over_ethernet = PTP_TCR_TSIPENA;
636 break;
637
638 case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 /* PTP v2/802.AS1, any layer, Sync packet */
640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 ptp_v2 = PTP_TCR_TSVER2ENA;
642 /* take time stamp for SYNC messages only */
643 ts_event_en = PTP_TCR_TSEVNTENA;
644
645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 ptp_over_ethernet = PTP_TCR_TSIPENA;
648 break;
649
650 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 /* PTP v2/802.AS1, any layer, Delay_req packet */
652 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 ptp_v2 = PTP_TCR_TSVER2ENA;
654 /* take time stamp for Delay_Req messages only */
655 ts_master_en = PTP_TCR_TSMSTRENA;
656 ts_event_en = PTP_TCR_TSEVNTENA;
657
658 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 ptp_over_ethernet = PTP_TCR_TSIPENA;
661 break;
662
663 case HWTSTAMP_FILTER_NTP_ALL:
664 case HWTSTAMP_FILTER_ALL:
665 /* time stamp any incoming packet */
666 config.rx_filter = HWTSTAMP_FILTER_ALL;
667 tstamp_all = PTP_TCR_TSENALL;
668 break;
669
670 default:
671 return -ERANGE;
672 }
673 } else {
674 switch (config.rx_filter) {
675 case HWTSTAMP_FILTER_NONE:
676 config.rx_filter = HWTSTAMP_FILTER_NONE;
677 break;
678 default:
679 /* PTP v1, UDP, any kind of event packet */
680 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 break;
682 }
683 }
684 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687 priv->systime_flags = STMMAC_HWTS_ACTIVE;
688
689 if (priv->hwts_tx_en || priv->hwts_rx_en) {
690 priv->systime_flags |= tstamp_all | ptp_v2 |
691 ptp_over_ethernet | ptp_over_ipv6_udp |
692 ptp_over_ipv4_udp | ts_event_en |
693 ts_master_en | snap_type_sel;
694 }
695
696 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697
698 memcpy(&priv->tstamp_config, &config, sizeof(config));
699
700 return copy_to_user(ifr->ifr_data, &config,
701 sizeof(config)) ? -EFAULT : 0;
702 }
703
704 /**
705 * stmmac_hwtstamp_get - read hardware timestamping.
706 * @dev: device pointer.
707 * @ifr: An IOCTL specific structure, that can contain a pointer to
708 * a proprietary structure used to pass information to the driver.
709 * Description:
710 * This function obtain the current hardware timestamping settings
711 * as requested.
712 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)713 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714 {
715 struct stmmac_priv *priv = netdev_priv(dev);
716 struct hwtstamp_config *config = &priv->tstamp_config;
717
718 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719 return -EOPNOTSUPP;
720
721 return copy_to_user(ifr->ifr_data, config,
722 sizeof(*config)) ? -EFAULT : 0;
723 }
724
725 /**
726 * stmmac_init_tstamp_counter - init hardware timestamping counter
727 * @priv: driver private structure
728 * @systime_flags: timestamping flags
729 * Description:
730 * Initialize hardware counter for packet timestamping.
731 * This is valid as long as the interface is open and not suspended.
732 * Will be rerun after resuming from suspend, case in which the timestamping
733 * flags updated by stmmac_hwtstamp_set() also need to be restored.
734 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)735 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736 {
737 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738 struct timespec64 now;
739 u32 sec_inc = 0;
740 u64 temp = 0;
741
742 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 return -EOPNOTSUPP;
744
745 if (!priv->plat->clk_ptp_rate) {
746 netdev_err(priv->dev, "Invalid PTP clock rate");
747 return -EINVAL;
748 }
749
750 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
751 priv->systime_flags = systime_flags;
752
753 /* program Sub Second Increment reg */
754 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
755 priv->plat->clk_ptp_rate,
756 xmac, &sec_inc);
757 temp = div_u64(1000000000ULL, sec_inc);
758
759 /* Store sub second increment for later use */
760 priv->sub_second_inc = sec_inc;
761
762 /* calculate default added value:
763 * formula is :
764 * addend = (2^32)/freq_div_ratio;
765 * where, freq_div_ratio = 1e9ns/sec_inc
766 */
767 temp = (u64)(temp << 32);
768 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
769 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
770
771 /* initialize system time */
772 ktime_get_real_ts64(&now);
773
774 /* lower 32 bits of tv_sec are safe until y2106 */
775 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
776
777 return 0;
778 }
779 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
780
781 /**
782 * stmmac_init_ptp - init PTP
783 * @priv: driver private structure
784 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
785 * This is done by looking at the HW cap. register.
786 * This function also registers the ptp driver.
787 */
stmmac_init_ptp(struct stmmac_priv * priv)788 static int stmmac_init_ptp(struct stmmac_priv *priv)
789 {
790 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
791 int ret;
792
793 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
794 if (ret)
795 return ret;
796
797 priv->adv_ts = 0;
798 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
799 if (xmac && priv->dma_cap.atime_stamp)
800 priv->adv_ts = 1;
801 /* Dwmac 3.x core with extend_desc can support adv_ts */
802 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
803 priv->adv_ts = 1;
804
805 if (priv->dma_cap.time_stamp)
806 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
807
808 if (priv->adv_ts)
809 netdev_info(priv->dev,
810 "IEEE 1588-2008 Advanced Timestamp supported\n");
811
812 priv->hwts_tx_en = 0;
813 priv->hwts_rx_en = 0;
814
815 return 0;
816 }
817
stmmac_release_ptp(struct stmmac_priv * priv)818 static void stmmac_release_ptp(struct stmmac_priv *priv)
819 {
820 clk_disable_unprepare(priv->plat->clk_ptp_ref);
821 stmmac_ptp_unregister(priv);
822 }
823
824 /**
825 * stmmac_mac_flow_ctrl - Configure flow control in all queues
826 * @priv: driver private structure
827 * @duplex: duplex passed to the next function
828 * Description: It is used for configuring the flow control in all queues
829 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)830 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
831 {
832 u32 tx_cnt = priv->plat->tx_queues_to_use;
833
834 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
835 priv->pause, tx_cnt);
836 }
837
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)838 static void stmmac_validate(struct phylink_config *config,
839 unsigned long *supported,
840 struct phylink_link_state *state)
841 {
842 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
843 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
844 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
845 int tx_cnt = priv->plat->tx_queues_to_use;
846 int max_speed = priv->plat->max_speed;
847
848 phylink_set(mac_supported, 10baseT_Half);
849 phylink_set(mac_supported, 10baseT_Full);
850 phylink_set(mac_supported, 100baseT_Half);
851 phylink_set(mac_supported, 100baseT_Full);
852 phylink_set(mac_supported, 1000baseT_Half);
853 phylink_set(mac_supported, 1000baseT_Full);
854 phylink_set(mac_supported, 1000baseKX_Full);
855
856 phylink_set(mac_supported, Autoneg);
857 phylink_set(mac_supported, Pause);
858 phylink_set(mac_supported, Asym_Pause);
859 phylink_set_port_modes(mac_supported);
860
861 /* Cut down 1G if asked to */
862 if ((max_speed > 0) && (max_speed < 1000)) {
863 phylink_set(mask, 1000baseT_Full);
864 phylink_set(mask, 1000baseX_Full);
865 } else if (priv->plat->has_xgmac) {
866 if (!max_speed || (max_speed >= 2500)) {
867 phylink_set(mac_supported, 2500baseT_Full);
868 phylink_set(mac_supported, 2500baseX_Full);
869 }
870 if (!max_speed || (max_speed >= 5000)) {
871 phylink_set(mac_supported, 5000baseT_Full);
872 }
873 if (!max_speed || (max_speed >= 10000)) {
874 phylink_set(mac_supported, 10000baseSR_Full);
875 phylink_set(mac_supported, 10000baseLR_Full);
876 phylink_set(mac_supported, 10000baseER_Full);
877 phylink_set(mac_supported, 10000baseLRM_Full);
878 phylink_set(mac_supported, 10000baseT_Full);
879 phylink_set(mac_supported, 10000baseKX4_Full);
880 phylink_set(mac_supported, 10000baseKR_Full);
881 }
882 if (!max_speed || (max_speed >= 25000)) {
883 phylink_set(mac_supported, 25000baseCR_Full);
884 phylink_set(mac_supported, 25000baseKR_Full);
885 phylink_set(mac_supported, 25000baseSR_Full);
886 }
887 if (!max_speed || (max_speed >= 40000)) {
888 phylink_set(mac_supported, 40000baseKR4_Full);
889 phylink_set(mac_supported, 40000baseCR4_Full);
890 phylink_set(mac_supported, 40000baseSR4_Full);
891 phylink_set(mac_supported, 40000baseLR4_Full);
892 }
893 if (!max_speed || (max_speed >= 50000)) {
894 phylink_set(mac_supported, 50000baseCR2_Full);
895 phylink_set(mac_supported, 50000baseKR2_Full);
896 phylink_set(mac_supported, 50000baseSR2_Full);
897 phylink_set(mac_supported, 50000baseKR_Full);
898 phylink_set(mac_supported, 50000baseSR_Full);
899 phylink_set(mac_supported, 50000baseCR_Full);
900 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
901 phylink_set(mac_supported, 50000baseDR_Full);
902 }
903 if (!max_speed || (max_speed >= 100000)) {
904 phylink_set(mac_supported, 100000baseKR4_Full);
905 phylink_set(mac_supported, 100000baseSR4_Full);
906 phylink_set(mac_supported, 100000baseCR4_Full);
907 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
908 phylink_set(mac_supported, 100000baseKR2_Full);
909 phylink_set(mac_supported, 100000baseSR2_Full);
910 phylink_set(mac_supported, 100000baseCR2_Full);
911 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
912 phylink_set(mac_supported, 100000baseDR2_Full);
913 }
914 }
915
916 /* Half-Duplex can only work with single queue */
917 if (tx_cnt > 1) {
918 phylink_set(mask, 10baseT_Half);
919 phylink_set(mask, 100baseT_Half);
920 phylink_set(mask, 1000baseT_Half);
921 }
922
923 linkmode_and(supported, supported, mac_supported);
924 linkmode_andnot(supported, supported, mask);
925
926 linkmode_and(state->advertising, state->advertising, mac_supported);
927 linkmode_andnot(state->advertising, state->advertising, mask);
928
929 /* If PCS is supported, check which modes it supports. */
930 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
931 }
932
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)933 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
934 struct phylink_link_state *state)
935 {
936 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
937
938 state->link = 0;
939 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
940 }
941
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)942 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
943 const struct phylink_link_state *state)
944 {
945 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946
947 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
948 }
949
stmmac_mac_an_restart(struct phylink_config * config)950 static void stmmac_mac_an_restart(struct phylink_config *config)
951 {
952 /* Not Supported */
953 }
954
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)955 static void stmmac_mac_link_down(struct phylink_config *config,
956 unsigned int mode, phy_interface_t interface)
957 {
958 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
959
960 stmmac_mac_set(priv, priv->ioaddr, false);
961 priv->eee_active = false;
962 priv->tx_lpi_enabled = false;
963 stmmac_eee_init(priv);
964 stmmac_set_eee_pls(priv, priv->hw, false);
965 }
966
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)967 static void stmmac_mac_link_up(struct phylink_config *config,
968 struct phy_device *phy,
969 unsigned int mode, phy_interface_t interface,
970 int speed, int duplex,
971 bool tx_pause, bool rx_pause)
972 {
973 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
974 u32 ctrl;
975
976 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
977
978 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
979 ctrl &= ~priv->hw->link.speed_mask;
980
981 if (interface == PHY_INTERFACE_MODE_USXGMII) {
982 switch (speed) {
983 case SPEED_10000:
984 ctrl |= priv->hw->link.xgmii.speed10000;
985 break;
986 case SPEED_5000:
987 ctrl |= priv->hw->link.xgmii.speed5000;
988 break;
989 case SPEED_2500:
990 ctrl |= priv->hw->link.xgmii.speed2500;
991 break;
992 default:
993 return;
994 }
995 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
996 switch (speed) {
997 case SPEED_100000:
998 ctrl |= priv->hw->link.xlgmii.speed100000;
999 break;
1000 case SPEED_50000:
1001 ctrl |= priv->hw->link.xlgmii.speed50000;
1002 break;
1003 case SPEED_40000:
1004 ctrl |= priv->hw->link.xlgmii.speed40000;
1005 break;
1006 case SPEED_25000:
1007 ctrl |= priv->hw->link.xlgmii.speed25000;
1008 break;
1009 case SPEED_10000:
1010 ctrl |= priv->hw->link.xgmii.speed10000;
1011 break;
1012 case SPEED_2500:
1013 ctrl |= priv->hw->link.speed2500;
1014 break;
1015 case SPEED_1000:
1016 ctrl |= priv->hw->link.speed1000;
1017 break;
1018 default:
1019 return;
1020 }
1021 } else {
1022 switch (speed) {
1023 case SPEED_2500:
1024 ctrl |= priv->hw->link.speed2500;
1025 break;
1026 case SPEED_1000:
1027 ctrl |= priv->hw->link.speed1000;
1028 break;
1029 case SPEED_100:
1030 ctrl |= priv->hw->link.speed100;
1031 break;
1032 case SPEED_10:
1033 ctrl |= priv->hw->link.speed10;
1034 break;
1035 default:
1036 return;
1037 }
1038 }
1039
1040 priv->speed = speed;
1041
1042 if (priv->plat->fix_mac_speed)
1043 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1044
1045 if (!duplex)
1046 ctrl &= ~priv->hw->link.duplex;
1047 else
1048 ctrl |= priv->hw->link.duplex;
1049
1050 /* Flow Control operation */
1051 if (rx_pause && tx_pause)
1052 priv->flow_ctrl = FLOW_AUTO;
1053 else if (rx_pause && !tx_pause)
1054 priv->flow_ctrl = FLOW_RX;
1055 else if (!rx_pause && tx_pause)
1056 priv->flow_ctrl = FLOW_TX;
1057 else
1058 priv->flow_ctrl = FLOW_OFF;
1059
1060 stmmac_mac_flow_ctrl(priv, duplex);
1061
1062 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1063
1064 stmmac_mac_set(priv, priv->ioaddr, true);
1065 if (phy && priv->dma_cap.eee) {
1066 priv->eee_active =
1067 phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1068 priv->eee_enabled = stmmac_eee_init(priv);
1069 priv->tx_lpi_enabled = priv->eee_enabled;
1070 stmmac_set_eee_pls(priv, priv->hw, true);
1071 }
1072 }
1073
1074 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1075 .validate = stmmac_validate,
1076 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1077 .mac_config = stmmac_mac_config,
1078 .mac_an_restart = stmmac_mac_an_restart,
1079 .mac_link_down = stmmac_mac_link_down,
1080 .mac_link_up = stmmac_mac_link_up,
1081 };
1082
1083 /**
1084 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1085 * @priv: driver private structure
1086 * Description: this is to verify if the HW supports the PCS.
1087 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1088 * configured for the TBI, RTBI, or SGMII PHY interface.
1089 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1090 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1091 {
1092 int interface = priv->plat->interface;
1093
1094 if (priv->dma_cap.pcs) {
1095 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1096 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1097 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1098 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1099 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1100 priv->hw->pcs = STMMAC_PCS_RGMII;
1101 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1102 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1103 priv->hw->pcs = STMMAC_PCS_SGMII;
1104 }
1105 }
1106 }
1107
1108 /**
1109 * stmmac_init_phy - PHY initialization
1110 * @dev: net device structure
1111 * Description: it initializes the driver's PHY state, and attaches the PHY
1112 * to the mac driver.
1113 * Return value:
1114 * 0 on success
1115 */
stmmac_init_phy(struct net_device * dev)1116 static int stmmac_init_phy(struct net_device *dev)
1117 {
1118 struct stmmac_priv *priv = netdev_priv(dev);
1119 struct device_node *node;
1120 int ret;
1121
1122 node = priv->plat->phylink_node;
1123
1124 if (node)
1125 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1126
1127 /* Some DT bindings do not set-up the PHY handle. Let's try to
1128 * manually parse it
1129 */
1130 if (!node || ret) {
1131 int addr = priv->plat->phy_addr;
1132 struct phy_device *phydev;
1133
1134 if (addr < 0) {
1135 netdev_err(priv->dev, "no phy found\n");
1136 return -ENODEV;
1137 }
1138
1139 phydev = mdiobus_get_phy(priv->mii, addr);
1140 if (!phydev) {
1141 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1142 return -ENODEV;
1143 }
1144
1145 ret = phylink_connect_phy(priv->phylink, phydev);
1146 }
1147
1148 if (!priv->plat->pmt) {
1149 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1150
1151 phylink_ethtool_get_wol(priv->phylink, &wol);
1152 device_set_wakeup_capable(priv->device, !!wol.supported);
1153 device_set_wakeup_enable(priv->device, !!wol.wolopts);
1154 }
1155
1156 return ret;
1157 }
1158
stmmac_phy_setup(struct stmmac_priv * priv)1159 static int stmmac_phy_setup(struct stmmac_priv *priv)
1160 {
1161 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1162 int mode = priv->plat->phy_interface;
1163 struct phylink *phylink;
1164
1165 priv->phylink_config.dev = &priv->dev->dev;
1166 priv->phylink_config.type = PHYLINK_NETDEV;
1167 priv->phylink_config.pcs_poll = true;
1168
1169 if (!fwnode)
1170 fwnode = dev_fwnode(priv->device);
1171
1172 phylink = phylink_create(&priv->phylink_config, fwnode,
1173 mode, &stmmac_phylink_mac_ops);
1174 if (IS_ERR(phylink))
1175 return PTR_ERR(phylink);
1176
1177 priv->phylink = phylink;
1178 return 0;
1179 }
1180
stmmac_display_rx_rings(struct stmmac_priv * priv)1181 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1182 {
1183 u32 rx_cnt = priv->plat->rx_queues_to_use;
1184 unsigned int desc_size;
1185 void *head_rx;
1186 u32 queue;
1187
1188 /* Display RX rings */
1189 for (queue = 0; queue < rx_cnt; queue++) {
1190 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1191
1192 pr_info("\tRX Queue %u rings\n", queue);
1193
1194 if (priv->extend_desc) {
1195 head_rx = (void *)rx_q->dma_erx;
1196 desc_size = sizeof(struct dma_extended_desc);
1197 } else {
1198 head_rx = (void *)rx_q->dma_rx;
1199 desc_size = sizeof(struct dma_desc);
1200 }
1201
1202 /* Display RX ring */
1203 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1204 rx_q->dma_rx_phy, desc_size);
1205 }
1206 }
1207
stmmac_display_tx_rings(struct stmmac_priv * priv)1208 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1209 {
1210 u32 tx_cnt = priv->plat->tx_queues_to_use;
1211 unsigned int desc_size;
1212 void *head_tx;
1213 u32 queue;
1214
1215 /* Display TX rings */
1216 for (queue = 0; queue < tx_cnt; queue++) {
1217 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1218
1219 pr_info("\tTX Queue %d rings\n", queue);
1220
1221 if (priv->extend_desc) {
1222 head_tx = (void *)tx_q->dma_etx;
1223 desc_size = sizeof(struct dma_extended_desc);
1224 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1225 head_tx = (void *)tx_q->dma_entx;
1226 desc_size = sizeof(struct dma_edesc);
1227 } else {
1228 head_tx = (void *)tx_q->dma_tx;
1229 desc_size = sizeof(struct dma_desc);
1230 }
1231
1232 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1233 tx_q->dma_tx_phy, desc_size);
1234 }
1235 }
1236
stmmac_display_rings(struct stmmac_priv * priv)1237 static void stmmac_display_rings(struct stmmac_priv *priv)
1238 {
1239 /* Display RX ring */
1240 stmmac_display_rx_rings(priv);
1241
1242 /* Display TX ring */
1243 stmmac_display_tx_rings(priv);
1244 }
1245
stmmac_set_bfsize(int mtu,int bufsize)1246 static int stmmac_set_bfsize(int mtu, int bufsize)
1247 {
1248 int ret = bufsize;
1249
1250 if (mtu >= BUF_SIZE_8KiB)
1251 ret = BUF_SIZE_16KiB;
1252 else if (mtu >= BUF_SIZE_4KiB)
1253 ret = BUF_SIZE_8KiB;
1254 else if (mtu >= BUF_SIZE_2KiB)
1255 ret = BUF_SIZE_4KiB;
1256 else if (mtu > DEFAULT_BUFSIZE)
1257 ret = BUF_SIZE_2KiB;
1258 else
1259 ret = DEFAULT_BUFSIZE;
1260
1261 return ret;
1262 }
1263
1264 /**
1265 * stmmac_clear_rx_descriptors - clear RX descriptors
1266 * @priv: driver private structure
1267 * @queue: RX queue index
1268 * Description: this function is called to clear the RX descriptors
1269 * in case of both basic and extended descriptors are used.
1270 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1271 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1272 {
1273 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1274 int i;
1275
1276 /* Clear the RX descriptors */
1277 for (i = 0; i < priv->dma_rx_size; i++)
1278 if (priv->extend_desc)
1279 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1280 priv->use_riwt, priv->mode,
1281 (i == priv->dma_rx_size - 1),
1282 priv->dma_buf_sz);
1283 else
1284 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1285 priv->use_riwt, priv->mode,
1286 (i == priv->dma_rx_size - 1),
1287 priv->dma_buf_sz);
1288 }
1289
1290 /**
1291 * stmmac_clear_tx_descriptors - clear tx descriptors
1292 * @priv: driver private structure
1293 * @queue: TX queue index.
1294 * Description: this function is called to clear the TX descriptors
1295 * in case of both basic and extended descriptors are used.
1296 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1297 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1298 {
1299 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1300 int i;
1301
1302 /* Clear the TX descriptors */
1303 for (i = 0; i < priv->dma_tx_size; i++) {
1304 int last = (i == (priv->dma_tx_size - 1));
1305 struct dma_desc *p;
1306
1307 if (priv->extend_desc)
1308 p = &tx_q->dma_etx[i].basic;
1309 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1310 p = &tx_q->dma_entx[i].basic;
1311 else
1312 p = &tx_q->dma_tx[i];
1313
1314 stmmac_init_tx_desc(priv, p, priv->mode, last);
1315 }
1316 }
1317
1318 /**
1319 * stmmac_clear_descriptors - clear descriptors
1320 * @priv: driver private structure
1321 * Description: this function is called to clear the TX and RX descriptors
1322 * in case of both basic and extended descriptors are used.
1323 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1324 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1325 {
1326 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1327 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1328 u32 queue;
1329
1330 /* Clear the RX descriptors */
1331 for (queue = 0; queue < rx_queue_cnt; queue++)
1332 stmmac_clear_rx_descriptors(priv, queue);
1333
1334 /* Clear the TX descriptors */
1335 for (queue = 0; queue < tx_queue_cnt; queue++)
1336 stmmac_clear_tx_descriptors(priv, queue);
1337 }
1338
1339 /**
1340 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1341 * @priv: driver private structure
1342 * @p: descriptor pointer
1343 * @i: descriptor index
1344 * @flags: gfp flag
1345 * @queue: RX queue index
1346 * Description: this function is called to allocate a receive buffer, perform
1347 * the DMA mapping and init the descriptor.
1348 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1349 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1350 int i, gfp_t flags, u32 queue)
1351 {
1352 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1353 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1354
1355 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1356 if (!buf->page)
1357 return -ENOMEM;
1358
1359 if (priv->sph) {
1360 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1361 if (!buf->sec_page)
1362 return -ENOMEM;
1363
1364 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1365 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1366 } else {
1367 buf->sec_page = NULL;
1368 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1369 }
1370
1371 buf->addr = page_pool_get_dma_addr(buf->page);
1372 stmmac_set_desc_addr(priv, p, buf->addr);
1373 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1374 stmmac_init_desc3(priv, p);
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * stmmac_free_rx_buffer - free RX dma buffers
1381 * @priv: private structure
1382 * @queue: RX queue index
1383 * @i: buffer index.
1384 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1385 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1386 {
1387 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1388 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1389
1390 if (buf->page)
1391 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1392 buf->page = NULL;
1393
1394 if (buf->sec_page)
1395 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1396 buf->sec_page = NULL;
1397 }
1398
1399 /**
1400 * stmmac_free_tx_buffer - free RX dma buffers
1401 * @priv: private structure
1402 * @queue: RX queue index
1403 * @i: buffer index.
1404 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1405 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1406 {
1407 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1408
1409 if (tx_q->tx_skbuff_dma[i].buf) {
1410 if (tx_q->tx_skbuff_dma[i].map_as_page)
1411 dma_unmap_page(priv->device,
1412 tx_q->tx_skbuff_dma[i].buf,
1413 tx_q->tx_skbuff_dma[i].len,
1414 DMA_TO_DEVICE);
1415 else
1416 dma_unmap_single(priv->device,
1417 tx_q->tx_skbuff_dma[i].buf,
1418 tx_q->tx_skbuff_dma[i].len,
1419 DMA_TO_DEVICE);
1420 }
1421
1422 if (tx_q->tx_skbuff[i]) {
1423 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1424 tx_q->tx_skbuff[i] = NULL;
1425 tx_q->tx_skbuff_dma[i].buf = 0;
1426 tx_q->tx_skbuff_dma[i].map_as_page = false;
1427 }
1428 }
1429
1430 /**
1431 * init_dma_rx_desc_rings - init the RX descriptor rings
1432 * @dev: net device structure
1433 * @flags: gfp flag.
1434 * Description: this function initializes the DMA RX descriptors
1435 * and allocates the socket buffers. It supports the chained and ring
1436 * modes.
1437 */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1438 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1439 {
1440 struct stmmac_priv *priv = netdev_priv(dev);
1441 u32 rx_count = priv->plat->rx_queues_to_use;
1442 int ret = -ENOMEM;
1443 int queue;
1444 int i;
1445
1446 /* RX INITIALIZATION */
1447 netif_dbg(priv, probe, priv->dev,
1448 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1449
1450 for (queue = 0; queue < rx_count; queue++) {
1451 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1452
1453 netif_dbg(priv, probe, priv->dev,
1454 "(%s) dma_rx_phy=0x%08x\n", __func__,
1455 (u32)rx_q->dma_rx_phy);
1456
1457 stmmac_clear_rx_descriptors(priv, queue);
1458
1459 for (i = 0; i < priv->dma_rx_size; i++) {
1460 struct dma_desc *p;
1461
1462 if (priv->extend_desc)
1463 p = &((rx_q->dma_erx + i)->basic);
1464 else
1465 p = rx_q->dma_rx + i;
1466
1467 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1468 queue);
1469 if (ret)
1470 goto err_init_rx_buffers;
1471 }
1472
1473 rx_q->cur_rx = 0;
1474 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1475
1476 /* Setup the chained descriptor addresses */
1477 if (priv->mode == STMMAC_CHAIN_MODE) {
1478 if (priv->extend_desc)
1479 stmmac_mode_init(priv, rx_q->dma_erx,
1480 rx_q->dma_rx_phy,
1481 priv->dma_rx_size, 1);
1482 else
1483 stmmac_mode_init(priv, rx_q->dma_rx,
1484 rx_q->dma_rx_phy,
1485 priv->dma_rx_size, 0);
1486 }
1487 }
1488
1489 return 0;
1490
1491 err_init_rx_buffers:
1492 while (queue >= 0) {
1493 while (--i >= 0)
1494 stmmac_free_rx_buffer(priv, queue, i);
1495
1496 if (queue == 0)
1497 break;
1498
1499 i = priv->dma_rx_size;
1500 queue--;
1501 }
1502
1503 return ret;
1504 }
1505
1506 /**
1507 * init_dma_tx_desc_rings - init the TX descriptor rings
1508 * @dev: net device structure.
1509 * Description: this function initializes the DMA TX descriptors
1510 * and allocates the socket buffers. It supports the chained and ring
1511 * modes.
1512 */
init_dma_tx_desc_rings(struct net_device * dev)1513 static int init_dma_tx_desc_rings(struct net_device *dev)
1514 {
1515 struct stmmac_priv *priv = netdev_priv(dev);
1516 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1517 u32 queue;
1518 int i;
1519
1520 for (queue = 0; queue < tx_queue_cnt; queue++) {
1521 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1522
1523 netif_dbg(priv, probe, priv->dev,
1524 "(%s) dma_tx_phy=0x%08x\n", __func__,
1525 (u32)tx_q->dma_tx_phy);
1526
1527 /* Setup the chained descriptor addresses */
1528 if (priv->mode == STMMAC_CHAIN_MODE) {
1529 if (priv->extend_desc)
1530 stmmac_mode_init(priv, tx_q->dma_etx,
1531 tx_q->dma_tx_phy,
1532 priv->dma_tx_size, 1);
1533 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1534 stmmac_mode_init(priv, tx_q->dma_tx,
1535 tx_q->dma_tx_phy,
1536 priv->dma_tx_size, 0);
1537 }
1538
1539 for (i = 0; i < priv->dma_tx_size; i++) {
1540 struct dma_desc *p;
1541 if (priv->extend_desc)
1542 p = &((tx_q->dma_etx + i)->basic);
1543 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1544 p = &((tx_q->dma_entx + i)->basic);
1545 else
1546 p = tx_q->dma_tx + i;
1547
1548 stmmac_clear_desc(priv, p);
1549
1550 tx_q->tx_skbuff_dma[i].buf = 0;
1551 tx_q->tx_skbuff_dma[i].map_as_page = false;
1552 tx_q->tx_skbuff_dma[i].len = 0;
1553 tx_q->tx_skbuff_dma[i].last_segment = false;
1554 tx_q->tx_skbuff[i] = NULL;
1555 }
1556
1557 tx_q->dirty_tx = 0;
1558 tx_q->cur_tx = 0;
1559 tx_q->mss = 0;
1560
1561 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1562 }
1563
1564 return 0;
1565 }
1566
1567 /**
1568 * init_dma_desc_rings - init the RX/TX descriptor rings
1569 * @dev: net device structure
1570 * @flags: gfp flag.
1571 * Description: this function initializes the DMA RX/TX descriptors
1572 * and allocates the socket buffers. It supports the chained and ring
1573 * modes.
1574 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1575 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1576 {
1577 struct stmmac_priv *priv = netdev_priv(dev);
1578 int ret;
1579
1580 ret = init_dma_rx_desc_rings(dev, flags);
1581 if (ret)
1582 return ret;
1583
1584 ret = init_dma_tx_desc_rings(dev);
1585
1586 stmmac_clear_descriptors(priv);
1587
1588 if (netif_msg_hw(priv))
1589 stmmac_display_rings(priv);
1590
1591 return ret;
1592 }
1593
1594 /**
1595 * dma_free_rx_skbufs - free RX dma buffers
1596 * @priv: private structure
1597 * @queue: RX queue index
1598 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1599 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1600 {
1601 int i;
1602
1603 for (i = 0; i < priv->dma_rx_size; i++)
1604 stmmac_free_rx_buffer(priv, queue, i);
1605 }
1606
1607 /**
1608 * dma_free_tx_skbufs - free TX dma buffers
1609 * @priv: private structure
1610 * @queue: TX queue index
1611 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1612 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1613 {
1614 int i;
1615
1616 for (i = 0; i < priv->dma_tx_size; i++)
1617 stmmac_free_tx_buffer(priv, queue, i);
1618 }
1619
1620 /**
1621 * stmmac_free_tx_skbufs - free TX skb buffers
1622 * @priv: private structure
1623 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1624 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1625 {
1626 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1627 u32 queue;
1628
1629 for (queue = 0; queue < tx_queue_cnt; queue++)
1630 dma_free_tx_skbufs(priv, queue);
1631 }
1632
1633 /**
1634 * free_dma_rx_desc_resources - free RX dma desc resources
1635 * @priv: private structure
1636 */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1637 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1638 {
1639 u32 rx_count = priv->plat->rx_queues_to_use;
1640 u32 queue;
1641
1642 /* Free RX queue resources */
1643 for (queue = 0; queue < rx_count; queue++) {
1644 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1645
1646 /* Release the DMA RX socket buffers */
1647 dma_free_rx_skbufs(priv, queue);
1648
1649 /* Free DMA regions of consistent memory previously allocated */
1650 if (!priv->extend_desc)
1651 dma_free_coherent(priv->device, priv->dma_rx_size *
1652 sizeof(struct dma_desc),
1653 rx_q->dma_rx, rx_q->dma_rx_phy);
1654 else
1655 dma_free_coherent(priv->device, priv->dma_rx_size *
1656 sizeof(struct dma_extended_desc),
1657 rx_q->dma_erx, rx_q->dma_rx_phy);
1658
1659 kfree(rx_q->buf_pool);
1660 if (rx_q->page_pool)
1661 page_pool_destroy(rx_q->page_pool);
1662 }
1663 }
1664
1665 /**
1666 * free_dma_tx_desc_resources - free TX dma desc resources
1667 * @priv: private structure
1668 */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1669 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1670 {
1671 u32 tx_count = priv->plat->tx_queues_to_use;
1672 u32 queue;
1673
1674 /* Free TX queue resources */
1675 for (queue = 0; queue < tx_count; queue++) {
1676 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1677 size_t size;
1678 void *addr;
1679
1680 /* Release the DMA TX socket buffers */
1681 dma_free_tx_skbufs(priv, queue);
1682
1683 if (priv->extend_desc) {
1684 size = sizeof(struct dma_extended_desc);
1685 addr = tx_q->dma_etx;
1686 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1687 size = sizeof(struct dma_edesc);
1688 addr = tx_q->dma_entx;
1689 } else {
1690 size = sizeof(struct dma_desc);
1691 addr = tx_q->dma_tx;
1692 }
1693
1694 size *= priv->dma_tx_size;
1695
1696 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1697
1698 kfree(tx_q->tx_skbuff_dma);
1699 kfree(tx_q->tx_skbuff);
1700 }
1701 }
1702
1703 /**
1704 * alloc_dma_rx_desc_resources - alloc RX resources.
1705 * @priv: private structure
1706 * Description: according to which descriptor can be used (extend or basic)
1707 * this function allocates the resources for TX and RX paths. In case of
1708 * reception, for example, it pre-allocated the RX socket buffer in order to
1709 * allow zero-copy mechanism.
1710 */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1711 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1712 {
1713 u32 rx_count = priv->plat->rx_queues_to_use;
1714 int ret = -ENOMEM;
1715 u32 queue;
1716
1717 /* RX queues buffers and DMA */
1718 for (queue = 0; queue < rx_count; queue++) {
1719 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1720 struct page_pool_params pp_params = { 0 };
1721 unsigned int num_pages;
1722
1723 rx_q->queue_index = queue;
1724 rx_q->priv_data = priv;
1725
1726 pp_params.flags = PP_FLAG_DMA_MAP;
1727 pp_params.pool_size = priv->dma_rx_size;
1728 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1729 pp_params.order = ilog2(num_pages);
1730 pp_params.nid = dev_to_node(priv->device);
1731 pp_params.dev = priv->device;
1732 pp_params.dma_dir = DMA_FROM_DEVICE;
1733
1734 rx_q->page_pool = page_pool_create(&pp_params);
1735 if (IS_ERR(rx_q->page_pool)) {
1736 ret = PTR_ERR(rx_q->page_pool);
1737 rx_q->page_pool = NULL;
1738 goto err_dma;
1739 }
1740
1741 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1742 sizeof(*rx_q->buf_pool),
1743 GFP_KERNEL);
1744 if (!rx_q->buf_pool)
1745 goto err_dma;
1746
1747 if (priv->extend_desc) {
1748 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1749 priv->dma_rx_size *
1750 sizeof(struct dma_extended_desc),
1751 &rx_q->dma_rx_phy,
1752 GFP_KERNEL);
1753 if (!rx_q->dma_erx)
1754 goto err_dma;
1755
1756 } else {
1757 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1758 priv->dma_rx_size *
1759 sizeof(struct dma_desc),
1760 &rx_q->dma_rx_phy,
1761 GFP_KERNEL);
1762 if (!rx_q->dma_rx)
1763 goto err_dma;
1764 }
1765 }
1766
1767 return 0;
1768
1769 err_dma:
1770 free_dma_rx_desc_resources(priv);
1771
1772 return ret;
1773 }
1774
1775 /**
1776 * alloc_dma_tx_desc_resources - alloc TX resources.
1777 * @priv: private structure
1778 * Description: according to which descriptor can be used (extend or basic)
1779 * this function allocates the resources for TX and RX paths. In case of
1780 * reception, for example, it pre-allocated the RX socket buffer in order to
1781 * allow zero-copy mechanism.
1782 */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1783 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1784 {
1785 u32 tx_count = priv->plat->tx_queues_to_use;
1786 int ret = -ENOMEM;
1787 u32 queue;
1788
1789 /* TX queues buffers and DMA */
1790 for (queue = 0; queue < tx_count; queue++) {
1791 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1792 size_t size;
1793 void *addr;
1794
1795 tx_q->queue_index = queue;
1796 tx_q->priv_data = priv;
1797
1798 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1799 sizeof(*tx_q->tx_skbuff_dma),
1800 GFP_KERNEL);
1801 if (!tx_q->tx_skbuff_dma)
1802 goto err_dma;
1803
1804 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1805 sizeof(struct sk_buff *),
1806 GFP_KERNEL);
1807 if (!tx_q->tx_skbuff)
1808 goto err_dma;
1809
1810 if (priv->extend_desc)
1811 size = sizeof(struct dma_extended_desc);
1812 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1813 size = sizeof(struct dma_edesc);
1814 else
1815 size = sizeof(struct dma_desc);
1816
1817 size *= priv->dma_tx_size;
1818
1819 addr = dma_alloc_coherent(priv->device, size,
1820 &tx_q->dma_tx_phy, GFP_KERNEL);
1821 if (!addr)
1822 goto err_dma;
1823
1824 if (priv->extend_desc)
1825 tx_q->dma_etx = addr;
1826 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1827 tx_q->dma_entx = addr;
1828 else
1829 tx_q->dma_tx = addr;
1830 }
1831
1832 return 0;
1833
1834 err_dma:
1835 free_dma_tx_desc_resources(priv);
1836 return ret;
1837 }
1838
1839 /**
1840 * alloc_dma_desc_resources - alloc TX/RX resources.
1841 * @priv: private structure
1842 * Description: according to which descriptor can be used (extend or basic)
1843 * this function allocates the resources for TX and RX paths. In case of
1844 * reception, for example, it pre-allocated the RX socket buffer in order to
1845 * allow zero-copy mechanism.
1846 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1847 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1848 {
1849 /* RX Allocation */
1850 int ret = alloc_dma_rx_desc_resources(priv);
1851
1852 if (ret)
1853 return ret;
1854
1855 ret = alloc_dma_tx_desc_resources(priv);
1856
1857 return ret;
1858 }
1859
1860 /**
1861 * free_dma_desc_resources - free dma desc resources
1862 * @priv: private structure
1863 */
free_dma_desc_resources(struct stmmac_priv * priv)1864 static void free_dma_desc_resources(struct stmmac_priv *priv)
1865 {
1866 /* Release the DMA RX socket buffers */
1867 free_dma_rx_desc_resources(priv);
1868
1869 /* Release the DMA TX socket buffers */
1870 free_dma_tx_desc_resources(priv);
1871 }
1872
1873 /**
1874 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1875 * @priv: driver private structure
1876 * Description: It is used for enabling the rx queues in the MAC
1877 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1878 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1879 {
1880 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1881 int queue;
1882 u8 mode;
1883
1884 for (queue = 0; queue < rx_queues_count; queue++) {
1885 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1886 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1887 }
1888 }
1889
1890 /**
1891 * stmmac_start_rx_dma - start RX DMA channel
1892 * @priv: driver private structure
1893 * @chan: RX channel index
1894 * Description:
1895 * This starts a RX DMA channel
1896 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1897 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1898 {
1899 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1900 stmmac_start_rx(priv, priv->ioaddr, chan);
1901 }
1902
1903 /**
1904 * stmmac_start_tx_dma - start TX DMA channel
1905 * @priv: driver private structure
1906 * @chan: TX channel index
1907 * Description:
1908 * This starts a TX DMA channel
1909 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1910 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1911 {
1912 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1913 stmmac_start_tx(priv, priv->ioaddr, chan);
1914 }
1915
1916 /**
1917 * stmmac_stop_rx_dma - stop RX DMA channel
1918 * @priv: driver private structure
1919 * @chan: RX channel index
1920 * Description:
1921 * This stops a RX DMA channel
1922 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1923 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1924 {
1925 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1926 stmmac_stop_rx(priv, priv->ioaddr, chan);
1927 }
1928
1929 /**
1930 * stmmac_stop_tx_dma - stop TX DMA channel
1931 * @priv: driver private structure
1932 * @chan: TX channel index
1933 * Description:
1934 * This stops a TX DMA channel
1935 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1936 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1937 {
1938 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1939 stmmac_stop_tx(priv, priv->ioaddr, chan);
1940 }
1941
1942 /**
1943 * stmmac_start_all_dma - start all RX and TX DMA channels
1944 * @priv: driver private structure
1945 * Description:
1946 * This starts all the RX and TX DMA channels
1947 */
stmmac_start_all_dma(struct stmmac_priv * priv)1948 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1949 {
1950 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1951 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1952 u32 chan = 0;
1953
1954 for (chan = 0; chan < rx_channels_count; chan++)
1955 stmmac_start_rx_dma(priv, chan);
1956
1957 for (chan = 0; chan < tx_channels_count; chan++)
1958 stmmac_start_tx_dma(priv, chan);
1959 }
1960
1961 /**
1962 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1963 * @priv: driver private structure
1964 * Description:
1965 * This stops the RX and TX DMA channels
1966 */
stmmac_stop_all_dma(struct stmmac_priv * priv)1967 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1968 {
1969 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1970 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1971 u32 chan = 0;
1972
1973 for (chan = 0; chan < rx_channels_count; chan++)
1974 stmmac_stop_rx_dma(priv, chan);
1975
1976 for (chan = 0; chan < tx_channels_count; chan++)
1977 stmmac_stop_tx_dma(priv, chan);
1978 }
1979
1980 /**
1981 * stmmac_dma_operation_mode - HW DMA operation mode
1982 * @priv: driver private structure
1983 * Description: it is used for configuring the DMA operation mode register in
1984 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1985 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1986 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1987 {
1988 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1989 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1990 int rxfifosz = priv->plat->rx_fifo_size;
1991 int txfifosz = priv->plat->tx_fifo_size;
1992 u32 txmode = 0;
1993 u32 rxmode = 0;
1994 u32 chan = 0;
1995 u8 qmode = 0;
1996
1997 if (rxfifosz == 0)
1998 rxfifosz = priv->dma_cap.rx_fifo_size;
1999 if (txfifosz == 0)
2000 txfifosz = priv->dma_cap.tx_fifo_size;
2001
2002 /* Adjust for real per queue fifo size */
2003 rxfifosz /= rx_channels_count;
2004 txfifosz /= tx_channels_count;
2005
2006 if (priv->plat->force_thresh_dma_mode) {
2007 txmode = tc;
2008 rxmode = tc;
2009 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2010 /*
2011 * In case of GMAC, SF mode can be enabled
2012 * to perform the TX COE in HW. This depends on:
2013 * 1) TX COE if actually supported
2014 * 2) There is no bugged Jumbo frame support
2015 * that needs to not insert csum in the TDES.
2016 */
2017 txmode = SF_DMA_MODE;
2018 rxmode = SF_DMA_MODE;
2019 priv->xstats.threshold = SF_DMA_MODE;
2020 } else {
2021 txmode = tc;
2022 rxmode = SF_DMA_MODE;
2023 }
2024
2025 /* configure all channels */
2026 for (chan = 0; chan < rx_channels_count; chan++) {
2027 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2028
2029 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2030 rxfifosz, qmode);
2031 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2032 chan);
2033 }
2034
2035 for (chan = 0; chan < tx_channels_count; chan++) {
2036 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2037
2038 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2039 txfifosz, qmode);
2040 }
2041 }
2042
2043 /**
2044 * stmmac_tx_clean - to manage the transmission completion
2045 * @priv: driver private structure
2046 * @budget: napi budget limiting this functions packet handling
2047 * @queue: TX queue index
2048 * Description: it reclaims the transmit resources after transmission completes.
2049 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2050 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2051 {
2052 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2053 unsigned int bytes_compl = 0, pkts_compl = 0;
2054 unsigned int entry, count = 0;
2055
2056 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2057
2058 priv->xstats.tx_clean++;
2059
2060 entry = tx_q->dirty_tx;
2061 while ((entry != tx_q->cur_tx) && (count < budget)) {
2062 struct sk_buff *skb = tx_q->tx_skbuff[entry];
2063 struct dma_desc *p;
2064 int status;
2065
2066 if (priv->extend_desc)
2067 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2068 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2069 p = &tx_q->dma_entx[entry].basic;
2070 else
2071 p = tx_q->dma_tx + entry;
2072
2073 status = stmmac_tx_status(priv, &priv->dev->stats,
2074 &priv->xstats, p, priv->ioaddr);
2075 /* Check if the descriptor is owned by the DMA */
2076 if (unlikely(status & tx_dma_own))
2077 break;
2078
2079 count++;
2080
2081 /* Make sure descriptor fields are read after reading
2082 * the own bit.
2083 */
2084 dma_rmb();
2085
2086 /* Just consider the last segment and ...*/
2087 if (likely(!(status & tx_not_ls))) {
2088 /* ... verify the status error condition */
2089 if (unlikely(status & tx_err)) {
2090 priv->dev->stats.tx_errors++;
2091 } else {
2092 priv->dev->stats.tx_packets++;
2093 priv->xstats.tx_pkt_n++;
2094 }
2095 stmmac_get_tx_hwtstamp(priv, p, skb);
2096 }
2097
2098 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2099 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2100 dma_unmap_page(priv->device,
2101 tx_q->tx_skbuff_dma[entry].buf,
2102 tx_q->tx_skbuff_dma[entry].len,
2103 DMA_TO_DEVICE);
2104 else
2105 dma_unmap_single(priv->device,
2106 tx_q->tx_skbuff_dma[entry].buf,
2107 tx_q->tx_skbuff_dma[entry].len,
2108 DMA_TO_DEVICE);
2109 tx_q->tx_skbuff_dma[entry].buf = 0;
2110 tx_q->tx_skbuff_dma[entry].len = 0;
2111 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2112 }
2113
2114 stmmac_clean_desc3(priv, tx_q, p);
2115
2116 tx_q->tx_skbuff_dma[entry].last_segment = false;
2117 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2118
2119 if (likely(skb != NULL)) {
2120 pkts_compl++;
2121 bytes_compl += skb->len;
2122 dev_consume_skb_any(skb);
2123 tx_q->tx_skbuff[entry] = NULL;
2124 }
2125
2126 stmmac_release_tx_desc(priv, p, priv->mode);
2127
2128 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2129 }
2130 tx_q->dirty_tx = entry;
2131
2132 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2133 pkts_compl, bytes_compl);
2134
2135 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2136 queue))) &&
2137 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2138
2139 netif_dbg(priv, tx_done, priv->dev,
2140 "%s: restart transmit\n", __func__);
2141 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2142 }
2143
2144 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2145 stmmac_enable_eee_mode(priv);
2146 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2147 }
2148
2149 /* We still have pending packets, let's call for a new scheduling */
2150 if (tx_q->dirty_tx != tx_q->cur_tx)
2151 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2152
2153 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2154
2155 return count;
2156 }
2157
2158 /**
2159 * stmmac_tx_err - to manage the tx error
2160 * @priv: driver private structure
2161 * @chan: channel index
2162 * Description: it cleans the descriptors and restarts the transmission
2163 * in case of transmission errors.
2164 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2165 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2166 {
2167 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2168
2169 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2170
2171 stmmac_stop_tx_dma(priv, chan);
2172 dma_free_tx_skbufs(priv, chan);
2173 stmmac_clear_tx_descriptors(priv, chan);
2174 tx_q->dirty_tx = 0;
2175 tx_q->cur_tx = 0;
2176 tx_q->mss = 0;
2177 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2178 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2179 tx_q->dma_tx_phy, chan);
2180 stmmac_start_tx_dma(priv, chan);
2181
2182 priv->dev->stats.tx_errors++;
2183 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2184 }
2185
2186 /**
2187 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2188 * @priv: driver private structure
2189 * @txmode: TX operating mode
2190 * @rxmode: RX operating mode
2191 * @chan: channel index
2192 * Description: it is used for configuring of the DMA operation mode in
2193 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2194 * mode.
2195 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2196 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2197 u32 rxmode, u32 chan)
2198 {
2199 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2200 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2201 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2202 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2203 int rxfifosz = priv->plat->rx_fifo_size;
2204 int txfifosz = priv->plat->tx_fifo_size;
2205
2206 if (rxfifosz == 0)
2207 rxfifosz = priv->dma_cap.rx_fifo_size;
2208 if (txfifosz == 0)
2209 txfifosz = priv->dma_cap.tx_fifo_size;
2210
2211 /* Adjust for real per queue fifo size */
2212 rxfifosz /= rx_channels_count;
2213 txfifosz /= tx_channels_count;
2214
2215 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2216 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2217 }
2218
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2219 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2220 {
2221 int ret;
2222
2223 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2224 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2225 if (ret && (ret != -EINVAL)) {
2226 stmmac_global_err(priv);
2227 return true;
2228 }
2229
2230 return false;
2231 }
2232
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2233 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2234 {
2235 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2236 &priv->xstats, chan);
2237 struct stmmac_channel *ch = &priv->channel[chan];
2238 unsigned long flags;
2239
2240 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2241 if (napi_schedule_prep(&ch->rx_napi)) {
2242 spin_lock_irqsave(&ch->lock, flags);
2243 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2244 spin_unlock_irqrestore(&ch->lock, flags);
2245 __napi_schedule(&ch->rx_napi);
2246 }
2247 }
2248
2249 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2250 if (napi_schedule_prep(&ch->tx_napi)) {
2251 spin_lock_irqsave(&ch->lock, flags);
2252 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2253 spin_unlock_irqrestore(&ch->lock, flags);
2254 __napi_schedule(&ch->tx_napi);
2255 }
2256 }
2257
2258 return status;
2259 }
2260
2261 /**
2262 * stmmac_dma_interrupt - DMA ISR
2263 * @priv: driver private structure
2264 * Description: this is the DMA ISR. It is called by the main ISR.
2265 * It calls the dwmac dma routine and schedule poll method in case of some
2266 * work can be done.
2267 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2268 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2269 {
2270 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2271 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2272 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2273 tx_channel_count : rx_channel_count;
2274 u32 chan;
2275 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2276
2277 /* Make sure we never check beyond our status buffer. */
2278 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2279 channels_to_check = ARRAY_SIZE(status);
2280
2281 for (chan = 0; chan < channels_to_check; chan++)
2282 status[chan] = stmmac_napi_check(priv, chan);
2283
2284 for (chan = 0; chan < tx_channel_count; chan++) {
2285 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2286 /* Try to bump up the dma threshold on this failure */
2287 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2288 (tc <= 256)) {
2289 tc += 64;
2290 if (priv->plat->force_thresh_dma_mode)
2291 stmmac_set_dma_operation_mode(priv,
2292 tc,
2293 tc,
2294 chan);
2295 else
2296 stmmac_set_dma_operation_mode(priv,
2297 tc,
2298 SF_DMA_MODE,
2299 chan);
2300 priv->xstats.threshold = tc;
2301 }
2302 } else if (unlikely(status[chan] == tx_hard_error)) {
2303 stmmac_tx_err(priv, chan);
2304 }
2305 }
2306 }
2307
2308 /**
2309 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2310 * @priv: driver private structure
2311 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2312 */
stmmac_mmc_setup(struct stmmac_priv * priv)2313 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2314 {
2315 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2316 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2317
2318 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2319
2320 if (priv->dma_cap.rmon) {
2321 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2322 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2323 } else
2324 netdev_info(priv->dev, "No MAC Management Counters available\n");
2325 }
2326
2327 /**
2328 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2329 * @priv: driver private structure
2330 * Description:
2331 * new GMAC chip generations have a new register to indicate the
2332 * presence of the optional feature/functions.
2333 * This can be also used to override the value passed through the
2334 * platform and necessary for old MAC10/100 and GMAC chips.
2335 */
stmmac_get_hw_features(struct stmmac_priv * priv)2336 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2337 {
2338 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2339 }
2340
2341 /**
2342 * stmmac_check_ether_addr - check if the MAC addr is valid
2343 * @priv: driver private structure
2344 * Description:
2345 * it is to verify if the MAC address is valid, in case of failures it
2346 * generates a random MAC address
2347 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2348 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2349 {
2350 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2351 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2352 if (!is_valid_ether_addr(priv->dev->dev_addr))
2353 eth_hw_addr_random(priv->dev);
2354 dev_info(priv->device, "device MAC address %pM\n",
2355 priv->dev->dev_addr);
2356 }
2357 }
2358
2359 /**
2360 * stmmac_init_dma_engine - DMA init.
2361 * @priv: driver private structure
2362 * Description:
2363 * It inits the DMA invoking the specific MAC/GMAC callback.
2364 * Some DMA parameters can be passed from the platform;
2365 * in case of these are not passed a default is kept for the MAC or GMAC.
2366 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2367 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2368 {
2369 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2370 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2371 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2372 struct stmmac_rx_queue *rx_q;
2373 struct stmmac_tx_queue *tx_q;
2374 u32 chan = 0;
2375 int atds = 0;
2376 int ret = 0;
2377
2378 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2379 dev_err(priv->device, "Invalid DMA configuration\n");
2380 return -EINVAL;
2381 }
2382
2383 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2384 atds = 1;
2385
2386 ret = stmmac_reset(priv, priv->ioaddr);
2387 if (ret) {
2388 dev_err(priv->device, "Failed to reset the dma\n");
2389 return ret;
2390 }
2391
2392 /* DMA Configuration */
2393 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2394
2395 if (priv->plat->axi)
2396 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2397
2398 /* DMA CSR Channel configuration */
2399 for (chan = 0; chan < dma_csr_ch; chan++)
2400 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2401
2402 /* DMA RX Channel Configuration */
2403 for (chan = 0; chan < rx_channels_count; chan++) {
2404 rx_q = &priv->rx_queue[chan];
2405
2406 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2407 rx_q->dma_rx_phy, chan);
2408
2409 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2410 (priv->dma_rx_size *
2411 sizeof(struct dma_desc));
2412 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2413 rx_q->rx_tail_addr, chan);
2414 }
2415
2416 /* DMA TX Channel Configuration */
2417 for (chan = 0; chan < tx_channels_count; chan++) {
2418 tx_q = &priv->tx_queue[chan];
2419
2420 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2421 tx_q->dma_tx_phy, chan);
2422
2423 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2424 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2425 tx_q->tx_tail_addr, chan);
2426 }
2427
2428 return ret;
2429 }
2430
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2431 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2432 {
2433 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2434
2435 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2436 }
2437
2438 /**
2439 * stmmac_tx_timer - mitigation sw timer for tx.
2440 * @t: data pointer
2441 * Description:
2442 * This is the timer handler to directly invoke the stmmac_tx_clean.
2443 */
stmmac_tx_timer(struct timer_list * t)2444 static void stmmac_tx_timer(struct timer_list *t)
2445 {
2446 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2447 struct stmmac_priv *priv = tx_q->priv_data;
2448 struct stmmac_channel *ch;
2449
2450 ch = &priv->channel[tx_q->queue_index];
2451
2452 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2453 unsigned long flags;
2454
2455 spin_lock_irqsave(&ch->lock, flags);
2456 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2457 spin_unlock_irqrestore(&ch->lock, flags);
2458 __napi_schedule(&ch->tx_napi);
2459 }
2460 }
2461
2462 /**
2463 * stmmac_init_coalesce - init mitigation options.
2464 * @priv: driver private structure
2465 * Description:
2466 * This inits the coalesce parameters: i.e. timer rate,
2467 * timer handler and default threshold used for enabling the
2468 * interrupt on completion bit.
2469 */
stmmac_init_coalesce(struct stmmac_priv * priv)2470 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2471 {
2472 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2473 u32 chan;
2474
2475 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2476 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2477 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2478
2479 for (chan = 0; chan < tx_channel_count; chan++) {
2480 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2481
2482 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2483 }
2484 }
2485
stmmac_set_rings_length(struct stmmac_priv * priv)2486 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2487 {
2488 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2489 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2490 u32 chan;
2491
2492 /* set TX ring length */
2493 for (chan = 0; chan < tx_channels_count; chan++)
2494 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2495 (priv->dma_tx_size - 1), chan);
2496
2497 /* set RX ring length */
2498 for (chan = 0; chan < rx_channels_count; chan++)
2499 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2500 (priv->dma_rx_size - 1), chan);
2501 }
2502
2503 /**
2504 * stmmac_set_tx_queue_weight - Set TX queue weight
2505 * @priv: driver private structure
2506 * Description: It is used for setting TX queues weight
2507 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2508 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2509 {
2510 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2511 u32 weight;
2512 u32 queue;
2513
2514 for (queue = 0; queue < tx_queues_count; queue++) {
2515 weight = priv->plat->tx_queues_cfg[queue].weight;
2516 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2517 }
2518 }
2519
2520 /**
2521 * stmmac_configure_cbs - Configure CBS in TX queue
2522 * @priv: driver private structure
2523 * Description: It is used for configuring CBS in AVB TX queues
2524 */
stmmac_configure_cbs(struct stmmac_priv * priv)2525 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2526 {
2527 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2528 u32 mode_to_use;
2529 u32 queue;
2530
2531 /* queue 0 is reserved for legacy traffic */
2532 for (queue = 1; queue < tx_queues_count; queue++) {
2533 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2534 if (mode_to_use == MTL_QUEUE_DCB)
2535 continue;
2536
2537 stmmac_config_cbs(priv, priv->hw,
2538 priv->plat->tx_queues_cfg[queue].send_slope,
2539 priv->plat->tx_queues_cfg[queue].idle_slope,
2540 priv->plat->tx_queues_cfg[queue].high_credit,
2541 priv->plat->tx_queues_cfg[queue].low_credit,
2542 queue);
2543 }
2544 }
2545
2546 /**
2547 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2548 * @priv: driver private structure
2549 * Description: It is used for mapping RX queues to RX dma channels
2550 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2551 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2552 {
2553 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2554 u32 queue;
2555 u32 chan;
2556
2557 for (queue = 0; queue < rx_queues_count; queue++) {
2558 chan = priv->plat->rx_queues_cfg[queue].chan;
2559 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2560 }
2561 }
2562
2563 /**
2564 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2565 * @priv: driver private structure
2566 * Description: It is used for configuring the RX Queue Priority
2567 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2568 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2569 {
2570 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2571 u32 queue;
2572 u32 prio;
2573
2574 for (queue = 0; queue < rx_queues_count; queue++) {
2575 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2576 continue;
2577
2578 prio = priv->plat->rx_queues_cfg[queue].prio;
2579 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2580 }
2581 }
2582
2583 /**
2584 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2585 * @priv: driver private structure
2586 * Description: It is used for configuring the TX Queue Priority
2587 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2588 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2589 {
2590 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2591 u32 queue;
2592 u32 prio;
2593
2594 for (queue = 0; queue < tx_queues_count; queue++) {
2595 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2596 continue;
2597
2598 prio = priv->plat->tx_queues_cfg[queue].prio;
2599 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2600 }
2601 }
2602
2603 /**
2604 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2605 * @priv: driver private structure
2606 * Description: It is used for configuring the RX queue routing
2607 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2608 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2609 {
2610 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2611 u32 queue;
2612 u8 packet;
2613
2614 for (queue = 0; queue < rx_queues_count; queue++) {
2615 /* no specific packet type routing specified for the queue */
2616 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2617 continue;
2618
2619 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2620 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2621 }
2622 }
2623
stmmac_mac_config_rss(struct stmmac_priv * priv)2624 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2625 {
2626 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2627 priv->rss.enable = false;
2628 return;
2629 }
2630
2631 if (priv->dev->features & NETIF_F_RXHASH)
2632 priv->rss.enable = true;
2633 else
2634 priv->rss.enable = false;
2635
2636 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2637 priv->plat->rx_queues_to_use);
2638 }
2639
2640 /**
2641 * stmmac_mtl_configuration - Configure MTL
2642 * @priv: driver private structure
2643 * Description: It is used for configurring MTL
2644 */
stmmac_mtl_configuration(struct stmmac_priv * priv)2645 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2646 {
2647 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2648 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2649
2650 if (tx_queues_count > 1)
2651 stmmac_set_tx_queue_weight(priv);
2652
2653 /* Configure MTL RX algorithms */
2654 if (rx_queues_count > 1)
2655 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2656 priv->plat->rx_sched_algorithm);
2657
2658 /* Configure MTL TX algorithms */
2659 if (tx_queues_count > 1)
2660 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2661 priv->plat->tx_sched_algorithm);
2662
2663 /* Configure CBS in AVB TX queues */
2664 if (tx_queues_count > 1)
2665 stmmac_configure_cbs(priv);
2666
2667 /* Map RX MTL to DMA channels */
2668 stmmac_rx_queue_dma_chan_map(priv);
2669
2670 /* Enable MAC RX Queues */
2671 stmmac_mac_enable_rx_queues(priv);
2672
2673 /* Set RX priorities */
2674 if (rx_queues_count > 1)
2675 stmmac_mac_config_rx_queues_prio(priv);
2676
2677 /* Set TX priorities */
2678 if (tx_queues_count > 1)
2679 stmmac_mac_config_tx_queues_prio(priv);
2680
2681 /* Set RX routing */
2682 if (rx_queues_count > 1)
2683 stmmac_mac_config_rx_queues_routing(priv);
2684
2685 /* Receive Side Scaling */
2686 if (rx_queues_count > 1)
2687 stmmac_mac_config_rss(priv);
2688 }
2689
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2690 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2691 {
2692 if (priv->dma_cap.asp) {
2693 netdev_info(priv->dev, "Enabling Safety Features\n");
2694 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2695 } else {
2696 netdev_info(priv->dev, "No Safety Features support found\n");
2697 }
2698 }
2699
2700 /**
2701 * stmmac_hw_setup - setup mac in a usable state.
2702 * @dev : pointer to the device structure.
2703 * @ptp_register: register PTP if set
2704 * Description:
2705 * this is the main function to setup the HW in a usable state because the
2706 * dma engine is reset, the core registers are configured (e.g. AXI,
2707 * Checksum features, timers). The DMA is ready to start receiving and
2708 * transmitting.
2709 * Return value:
2710 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2711 * file on failure.
2712 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)2713 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2714 {
2715 struct stmmac_priv *priv = netdev_priv(dev);
2716 u32 rx_cnt = priv->plat->rx_queues_to_use;
2717 u32 tx_cnt = priv->plat->tx_queues_to_use;
2718 u32 chan;
2719 int ret;
2720
2721 /* DMA initialization and SW reset */
2722 ret = stmmac_init_dma_engine(priv);
2723 if (ret < 0) {
2724 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2725 __func__);
2726 return ret;
2727 }
2728
2729 /* Copy the MAC addr into the HW */
2730 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2731
2732 /* PS and related bits will be programmed according to the speed */
2733 if (priv->hw->pcs) {
2734 int speed = priv->plat->mac_port_sel_speed;
2735
2736 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2737 (speed == SPEED_1000)) {
2738 priv->hw->ps = speed;
2739 } else {
2740 dev_warn(priv->device, "invalid port speed\n");
2741 priv->hw->ps = 0;
2742 }
2743 }
2744
2745 /* Initialize the MAC Core */
2746 stmmac_core_init(priv, priv->hw, dev);
2747
2748 /* Initialize MTL*/
2749 stmmac_mtl_configuration(priv);
2750
2751 /* Initialize Safety Features */
2752 stmmac_safety_feat_configuration(priv);
2753
2754 ret = stmmac_rx_ipc(priv, priv->hw);
2755 if (!ret) {
2756 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2757 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2758 priv->hw->rx_csum = 0;
2759 }
2760
2761 /* Enable the MAC Rx/Tx */
2762 stmmac_mac_set(priv, priv->ioaddr, true);
2763
2764 /* Set the HW DMA mode and the COE */
2765 stmmac_dma_operation_mode(priv);
2766
2767 stmmac_mmc_setup(priv);
2768
2769 if (ptp_register) {
2770 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2771 if (ret < 0)
2772 netdev_warn(priv->dev,
2773 "failed to enable PTP reference clock: %pe\n",
2774 ERR_PTR(ret));
2775 }
2776
2777 ret = stmmac_init_ptp(priv);
2778 if (ret == -EOPNOTSUPP)
2779 netdev_warn(priv->dev, "PTP not supported by HW\n");
2780 else if (ret)
2781 netdev_warn(priv->dev, "PTP init failed\n");
2782 else if (ptp_register)
2783 stmmac_ptp_register(priv);
2784
2785 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2786
2787 /* Convert the timer from msec to usec */
2788 if (!priv->tx_lpi_timer)
2789 priv->tx_lpi_timer = eee_timer * 1000;
2790
2791 if (priv->use_riwt) {
2792 if (!priv->rx_riwt)
2793 priv->rx_riwt = DEF_DMA_RIWT;
2794
2795 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2796 }
2797
2798 if (priv->hw->pcs)
2799 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2800
2801 /* set TX and RX rings length */
2802 stmmac_set_rings_length(priv);
2803
2804 /* Enable TSO */
2805 if (priv->tso) {
2806 for (chan = 0; chan < tx_cnt; chan++) {
2807 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2808
2809 /* TSO and TBS cannot co-exist */
2810 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2811 continue;
2812
2813 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2814 }
2815 }
2816
2817 /* Enable Split Header */
2818 if (priv->sph && priv->hw->rx_csum) {
2819 for (chan = 0; chan < rx_cnt; chan++)
2820 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2821 }
2822
2823 /* VLAN Tag Insertion */
2824 if (priv->dma_cap.vlins)
2825 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2826
2827 /* TBS */
2828 for (chan = 0; chan < tx_cnt; chan++) {
2829 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2830 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2831
2832 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2833 }
2834
2835 /* Configure real RX and TX queues */
2836 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2837 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2838
2839 /* Start the ball rolling... */
2840 stmmac_start_all_dma(priv);
2841
2842 return 0;
2843 }
2844
stmmac_hw_teardown(struct net_device * dev)2845 static void stmmac_hw_teardown(struct net_device *dev)
2846 {
2847 struct stmmac_priv *priv = netdev_priv(dev);
2848
2849 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2850 }
2851
2852 /**
2853 * stmmac_open - open entry point of the driver
2854 * @dev : pointer to the device structure.
2855 * Description:
2856 * This function is the open entry point of the driver.
2857 * Return value:
2858 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2859 * file on failure.
2860 */
stmmac_open(struct net_device * dev)2861 static int stmmac_open(struct net_device *dev)
2862 {
2863 struct stmmac_priv *priv = netdev_priv(dev);
2864 int bfsize = 0;
2865 u32 chan;
2866 int ret;
2867
2868 ret = pm_runtime_get_sync(priv->device);
2869 if (ret < 0) {
2870 pm_runtime_put_noidle(priv->device);
2871 return ret;
2872 }
2873
2874 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2875 priv->hw->pcs != STMMAC_PCS_RTBI &&
2876 priv->hw->xpcs == NULL) {
2877 ret = stmmac_init_phy(dev);
2878 if (ret) {
2879 netdev_err(priv->dev,
2880 "%s: Cannot attach to PHY (error: %d)\n",
2881 __func__, ret);
2882 goto init_phy_error;
2883 }
2884 }
2885
2886 /* Extra statistics */
2887 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2888 priv->xstats.threshold = tc;
2889
2890 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2891 if (bfsize < 0)
2892 bfsize = 0;
2893
2894 if (bfsize < BUF_SIZE_16KiB)
2895 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2896
2897 priv->dma_buf_sz = bfsize;
2898 buf_sz = bfsize;
2899
2900 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2901
2902 if (!priv->dma_tx_size)
2903 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2904 if (!priv->dma_rx_size)
2905 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2906
2907 /* Earlier check for TBS */
2908 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2909 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2910 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2911
2912 /* Setup per-TXQ tbs flag before TX descriptor alloc */
2913 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2914 }
2915
2916 ret = alloc_dma_desc_resources(priv);
2917 if (ret < 0) {
2918 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2919 __func__);
2920 goto dma_desc_error;
2921 }
2922
2923 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2924 if (ret < 0) {
2925 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2926 __func__);
2927 goto init_error;
2928 }
2929
2930 if (priv->plat->serdes_powerup) {
2931 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
2932 if (ret < 0) {
2933 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
2934 __func__);
2935 goto init_error;
2936 }
2937 }
2938
2939 ret = stmmac_hw_setup(dev, true);
2940 if (ret < 0) {
2941 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2942 goto init_error;
2943 }
2944
2945 stmmac_init_coalesce(priv);
2946
2947 phylink_start(priv->phylink);
2948 /* We may have called phylink_speed_down before */
2949 phylink_speed_up(priv->phylink);
2950
2951 /* Request the IRQ lines */
2952 ret = request_irq(dev->irq, stmmac_interrupt,
2953 IRQF_SHARED, dev->name, dev);
2954 if (unlikely(ret < 0)) {
2955 netdev_err(priv->dev,
2956 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2957 __func__, dev->irq, ret);
2958 goto irq_error;
2959 }
2960
2961 /* Request the Wake IRQ in case of another line is used for WoL */
2962 if (priv->wol_irq != dev->irq) {
2963 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2964 IRQF_SHARED, dev->name, dev);
2965 if (unlikely(ret < 0)) {
2966 netdev_err(priv->dev,
2967 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2968 __func__, priv->wol_irq, ret);
2969 goto wolirq_error;
2970 }
2971 }
2972
2973 /* Request the IRQ lines */
2974 if (priv->lpi_irq > 0) {
2975 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2976 dev->name, dev);
2977 if (unlikely(ret < 0)) {
2978 netdev_err(priv->dev,
2979 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2980 __func__, priv->lpi_irq, ret);
2981 goto lpiirq_error;
2982 }
2983 }
2984
2985 stmmac_enable_all_queues(priv);
2986 netif_tx_start_all_queues(priv->dev);
2987
2988 return 0;
2989
2990 lpiirq_error:
2991 if (priv->wol_irq != dev->irq)
2992 free_irq(priv->wol_irq, dev);
2993 wolirq_error:
2994 free_irq(dev->irq, dev);
2995 irq_error:
2996 phylink_stop(priv->phylink);
2997
2998 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2999 del_timer_sync(&priv->tx_queue[chan].txtimer);
3000
3001 stmmac_hw_teardown(dev);
3002 init_error:
3003 free_dma_desc_resources(priv);
3004 dma_desc_error:
3005 phylink_disconnect_phy(priv->phylink);
3006 init_phy_error:
3007 pm_runtime_put(priv->device);
3008 return ret;
3009 }
3010
3011 /**
3012 * stmmac_release - close entry point of the driver
3013 * @dev : device pointer.
3014 * Description:
3015 * This is the stop entry point of the driver.
3016 */
stmmac_release(struct net_device * dev)3017 static int stmmac_release(struct net_device *dev)
3018 {
3019 struct stmmac_priv *priv = netdev_priv(dev);
3020 u32 chan;
3021
3022 netif_tx_disable(dev);
3023
3024 if (device_may_wakeup(priv->device))
3025 phylink_speed_down(priv->phylink, false);
3026 /* Stop and disconnect the PHY */
3027 phylink_stop(priv->phylink);
3028 phylink_disconnect_phy(priv->phylink);
3029
3030 stmmac_disable_all_queues(priv);
3031
3032 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3033 del_timer_sync(&priv->tx_queue[chan].txtimer);
3034
3035 /* Free the IRQ lines */
3036 free_irq(dev->irq, dev);
3037 if (priv->wol_irq != dev->irq)
3038 free_irq(priv->wol_irq, dev);
3039 if (priv->lpi_irq > 0)
3040 free_irq(priv->lpi_irq, dev);
3041
3042 if (priv->eee_enabled) {
3043 priv->tx_path_in_lpi_mode = false;
3044 del_timer_sync(&priv->eee_ctrl_timer);
3045 }
3046
3047 /* Stop TX/RX DMA and clear the descriptors */
3048 stmmac_stop_all_dma(priv);
3049
3050 /* Release and free the Rx/Tx resources */
3051 free_dma_desc_resources(priv);
3052
3053 /* Disable the MAC Rx/Tx */
3054 stmmac_mac_set(priv, priv->ioaddr, false);
3055
3056 /* Powerdown Serdes if there is */
3057 if (priv->plat->serdes_powerdown)
3058 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3059
3060 netif_carrier_off(dev);
3061
3062 stmmac_release_ptp(priv);
3063
3064 pm_runtime_put(priv->device);
3065
3066 return 0;
3067 }
3068
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3069 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3070 struct stmmac_tx_queue *tx_q)
3071 {
3072 u16 tag = 0x0, inner_tag = 0x0;
3073 u32 inner_type = 0x0;
3074 struct dma_desc *p;
3075
3076 if (!priv->dma_cap.vlins)
3077 return false;
3078 if (!skb_vlan_tag_present(skb))
3079 return false;
3080 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3081 inner_tag = skb_vlan_tag_get(skb);
3082 inner_type = STMMAC_VLAN_INSERT;
3083 }
3084
3085 tag = skb_vlan_tag_get(skb);
3086
3087 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3088 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3089 else
3090 p = &tx_q->dma_tx[tx_q->cur_tx];
3091
3092 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3093 return false;
3094
3095 stmmac_set_tx_owner(priv, p);
3096 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3097 return true;
3098 }
3099
3100 /**
3101 * stmmac_tso_allocator - close entry point of the driver
3102 * @priv: driver private structure
3103 * @des: buffer start address
3104 * @total_len: total length to fill in descriptors
3105 * @last_segment: condition for the last descriptor
3106 * @queue: TX queue index
3107 * Description:
3108 * This function fills descriptor and request new descriptors according to
3109 * buffer length to fill
3110 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3111 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3112 int total_len, bool last_segment, u32 queue)
3113 {
3114 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3115 struct dma_desc *desc;
3116 u32 buff_size;
3117 int tmp_len;
3118
3119 tmp_len = total_len;
3120
3121 while (tmp_len > 0) {
3122 dma_addr_t curr_addr;
3123
3124 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3125 priv->dma_tx_size);
3126 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3127
3128 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3129 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3130 else
3131 desc = &tx_q->dma_tx[tx_q->cur_tx];
3132
3133 curr_addr = des + (total_len - tmp_len);
3134 if (priv->dma_cap.addr64 <= 32)
3135 desc->des0 = cpu_to_le32(curr_addr);
3136 else
3137 stmmac_set_desc_addr(priv, desc, curr_addr);
3138
3139 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3140 TSO_MAX_BUFF_SIZE : tmp_len;
3141
3142 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3143 0, 1,
3144 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3145 0, 0);
3146
3147 tmp_len -= TSO_MAX_BUFF_SIZE;
3148 }
3149 }
3150
3151 /**
3152 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3153 * @skb : the socket buffer
3154 * @dev : device pointer
3155 * Description: this is the transmit function that is called on TSO frames
3156 * (support available on GMAC4 and newer chips).
3157 * Diagram below show the ring programming in case of TSO frames:
3158 *
3159 * First Descriptor
3160 * --------
3161 * | DES0 |---> buffer1 = L2/L3/L4 header
3162 * | DES1 |---> TCP Payload (can continue on next descr...)
3163 * | DES2 |---> buffer 1 and 2 len
3164 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3165 * --------
3166 * |
3167 * ...
3168 * |
3169 * --------
3170 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3171 * | DES1 | --|
3172 * | DES2 | --> buffer 1 and 2 len
3173 * | DES3 |
3174 * --------
3175 *
3176 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3177 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3178 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3179 {
3180 struct dma_desc *desc, *first, *mss_desc = NULL;
3181 struct stmmac_priv *priv = netdev_priv(dev);
3182 int desc_size, tmp_pay_len = 0, first_tx;
3183 int nfrags = skb_shinfo(skb)->nr_frags;
3184 u32 queue = skb_get_queue_mapping(skb);
3185 unsigned int first_entry, tx_packets;
3186 struct stmmac_tx_queue *tx_q;
3187 bool has_vlan, set_ic;
3188 dma_addr_t tso_des, des;
3189 u8 proto_hdr_len, hdr;
3190 u32 pay_len, mss;
3191 int i;
3192
3193 tx_q = &priv->tx_queue[queue];
3194 first_tx = tx_q->cur_tx;
3195
3196 /* Compute header lengths */
3197 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3198 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3199 hdr = sizeof(struct udphdr);
3200 } else {
3201 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3202 hdr = tcp_hdrlen(skb);
3203 }
3204
3205 /* Desc availability based on threshold should be enough safe */
3206 if (unlikely(stmmac_tx_avail(priv, queue) <
3207 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3208 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3209 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3210 queue));
3211 /* This is a hard error, log it. */
3212 netdev_err(priv->dev,
3213 "%s: Tx Ring full when queue awake\n",
3214 __func__);
3215 }
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3220
3221 mss = skb_shinfo(skb)->gso_size;
3222
3223 /* set new MSS value if needed */
3224 if (mss != tx_q->mss) {
3225 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3226 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3227 else
3228 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3229
3230 stmmac_set_mss(priv, mss_desc, mss);
3231 tx_q->mss = mss;
3232 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3233 priv->dma_tx_size);
3234 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3235 }
3236
3237 if (netif_msg_tx_queued(priv)) {
3238 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3239 __func__, hdr, proto_hdr_len, pay_len, mss);
3240 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3241 skb->data_len);
3242 }
3243
3244 /* Check if VLAN can be inserted by HW */
3245 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3246
3247 first_entry = tx_q->cur_tx;
3248 WARN_ON(tx_q->tx_skbuff[first_entry]);
3249
3250 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3251 desc = &tx_q->dma_entx[first_entry].basic;
3252 else
3253 desc = &tx_q->dma_tx[first_entry];
3254 first = desc;
3255
3256 if (has_vlan)
3257 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3258
3259 /* first descriptor: fill Headers on Buf1 */
3260 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3261 DMA_TO_DEVICE);
3262 if (dma_mapping_error(priv->device, des))
3263 goto dma_map_err;
3264
3265 if (priv->dma_cap.addr64 <= 32) {
3266 first->des0 = cpu_to_le32(des);
3267
3268 /* Fill start of payload in buff2 of first descriptor */
3269 if (pay_len)
3270 first->des1 = cpu_to_le32(des + proto_hdr_len);
3271
3272 /* If needed take extra descriptors to fill the remaining payload */
3273 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3274 tso_des = des;
3275 } else {
3276 stmmac_set_desc_addr(priv, first, des);
3277 tmp_pay_len = pay_len;
3278 tso_des = des + proto_hdr_len;
3279 pay_len = 0;
3280 }
3281
3282 stmmac_tso_allocator(priv, tso_des, tmp_pay_len, (nfrags == 0), queue);
3283
3284 /* In case two or more DMA transmit descriptors are allocated for this
3285 * non-paged SKB data, the DMA buffer address should be saved to
3286 * tx_q->tx_skbuff_dma[].buf corresponding to the last descriptor,
3287 * and leave the other tx_q->tx_skbuff_dma[].buf as NULL to guarantee
3288 * that stmmac_tx_clean() does not unmap the entire DMA buffer too early
3289 * since the tail areas of the DMA buffer can be accessed by DMA engine
3290 * sooner or later.
3291 * By saving the DMA buffer address to tx_q->tx_skbuff_dma[].buf
3292 * corresponding to the last descriptor, stmmac_tx_clean() will unmap
3293 * this DMA buffer right after the DMA engine completely finishes the
3294 * full buffer transmission.
3295 */
3296 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3297 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_headlen(skb);
3298
3299 /* Prepare fragments */
3300 for (i = 0; i < nfrags; i++) {
3301 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3302
3303 des = skb_frag_dma_map(priv->device, frag, 0,
3304 skb_frag_size(frag),
3305 DMA_TO_DEVICE);
3306 if (dma_mapping_error(priv->device, des))
3307 goto dma_map_err;
3308
3309 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3310 (i == nfrags - 1), queue);
3311
3312 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3313 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3314 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3315 }
3316
3317 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3318
3319 /* Only the last descriptor gets to point to the skb. */
3320 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3321
3322 /* Manage tx mitigation */
3323 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3324 tx_q->tx_count_frames += tx_packets;
3325
3326 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3327 set_ic = true;
3328 else if (!priv->tx_coal_frames)
3329 set_ic = false;
3330 else if (tx_packets > priv->tx_coal_frames)
3331 set_ic = true;
3332 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3333 set_ic = true;
3334 else
3335 set_ic = false;
3336
3337 if (set_ic) {
3338 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3339 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3340 else
3341 desc = &tx_q->dma_tx[tx_q->cur_tx];
3342
3343 tx_q->tx_count_frames = 0;
3344 stmmac_set_tx_ic(priv, desc);
3345 priv->xstats.tx_set_ic_bit++;
3346 }
3347
3348 /* We've used all descriptors we need for this skb, however,
3349 * advance cur_tx so that it references a fresh descriptor.
3350 * ndo_start_xmit will fill this descriptor the next time it's
3351 * called and stmmac_tx_clean may clean up to this descriptor.
3352 */
3353 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3354
3355 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3356 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3357 __func__);
3358 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3359 }
3360
3361 dev->stats.tx_bytes += skb->len;
3362 priv->xstats.tx_tso_frames++;
3363 priv->xstats.tx_tso_nfrags += nfrags;
3364
3365 if (priv->sarc_type)
3366 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3367
3368 skb_tx_timestamp(skb);
3369
3370 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3371 priv->hwts_tx_en)) {
3372 /* declare that device is doing timestamping */
3373 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3374 stmmac_enable_tx_timestamp(priv, first);
3375 }
3376
3377 /* Complete the first descriptor before granting the DMA */
3378 stmmac_prepare_tso_tx_desc(priv, first, 1,
3379 proto_hdr_len,
3380 pay_len,
3381 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3382 hdr / 4, (skb->len - proto_hdr_len));
3383
3384 /* If context desc is used to change MSS */
3385 if (mss_desc) {
3386 /* Make sure that first descriptor has been completely
3387 * written, including its own bit. This is because MSS is
3388 * actually before first descriptor, so we need to make
3389 * sure that MSS's own bit is the last thing written.
3390 */
3391 dma_wmb();
3392 stmmac_set_tx_owner(priv, mss_desc);
3393 }
3394
3395 /* The own bit must be the latest setting done when prepare the
3396 * descriptor and then barrier is needed to make sure that
3397 * all is coherent before granting the DMA engine.
3398 */
3399 wmb();
3400
3401 if (netif_msg_pktdata(priv)) {
3402 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3403 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3404 tx_q->cur_tx, first, nfrags);
3405 pr_info(">>> frame to be transmitted: ");
3406 print_pkt(skb->data, skb_headlen(skb));
3407 }
3408
3409 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3410
3411 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3412 desc_size = sizeof(struct dma_edesc);
3413 else
3414 desc_size = sizeof(struct dma_desc);
3415
3416 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3417 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3418 stmmac_tx_timer_arm(priv, queue);
3419
3420 return NETDEV_TX_OK;
3421
3422 dma_map_err:
3423 dev_err(priv->device, "Tx dma map failed\n");
3424 dev_kfree_skb(skb);
3425 priv->dev->stats.tx_dropped++;
3426 return NETDEV_TX_OK;
3427 }
3428
3429 /**
3430 * stmmac_xmit - Tx entry point of the driver
3431 * @skb : the socket buffer
3432 * @dev : device pointer
3433 * Description : this is the tx entry point of the driver.
3434 * It programs the chain or the ring and supports oversized frames
3435 * and SG feature.
3436 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3437 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3438 {
3439 unsigned int first_entry, tx_packets, enh_desc;
3440 struct stmmac_priv *priv = netdev_priv(dev);
3441 unsigned int nopaged_len = skb_headlen(skb);
3442 int i, csum_insertion = 0, is_jumbo = 0;
3443 u32 queue = skb_get_queue_mapping(skb);
3444 int nfrags = skb_shinfo(skb)->nr_frags;
3445 int gso = skb_shinfo(skb)->gso_type;
3446 struct dma_edesc *tbs_desc = NULL;
3447 int entry, desc_size, first_tx;
3448 struct dma_desc *desc, *first;
3449 struct stmmac_tx_queue *tx_q;
3450 bool has_vlan, set_ic;
3451 dma_addr_t des;
3452
3453 tx_q = &priv->tx_queue[queue];
3454 first_tx = tx_q->cur_tx;
3455
3456 if (priv->tx_path_in_lpi_mode)
3457 stmmac_disable_eee_mode(priv);
3458
3459 /* Manage oversized TCP frames for GMAC4 device */
3460 if (skb_is_gso(skb) && priv->tso) {
3461 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3462 return stmmac_tso_xmit(skb, dev);
3463 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3464 return stmmac_tso_xmit(skb, dev);
3465 }
3466
3467 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3468 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3469 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3470 queue));
3471 /* This is a hard error, log it. */
3472 netdev_err(priv->dev,
3473 "%s: Tx Ring full when queue awake\n",
3474 __func__);
3475 }
3476 return NETDEV_TX_BUSY;
3477 }
3478
3479 /* Check if VLAN can be inserted by HW */
3480 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3481
3482 entry = tx_q->cur_tx;
3483 first_entry = entry;
3484 WARN_ON(tx_q->tx_skbuff[first_entry]);
3485
3486 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3487
3488 if (likely(priv->extend_desc))
3489 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3490 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3491 desc = &tx_q->dma_entx[entry].basic;
3492 else
3493 desc = tx_q->dma_tx + entry;
3494
3495 first = desc;
3496
3497 if (has_vlan)
3498 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3499
3500 enh_desc = priv->plat->enh_desc;
3501 /* To program the descriptors according to the size of the frame */
3502 if (enh_desc)
3503 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3504
3505 if (unlikely(is_jumbo)) {
3506 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3507 if (unlikely(entry < 0) && (entry != -EINVAL))
3508 goto dma_map_err;
3509 }
3510
3511 for (i = 0; i < nfrags; i++) {
3512 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3513 int len = skb_frag_size(frag);
3514 bool last_segment = (i == (nfrags - 1));
3515
3516 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3517 WARN_ON(tx_q->tx_skbuff[entry]);
3518
3519 if (likely(priv->extend_desc))
3520 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3521 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3522 desc = &tx_q->dma_entx[entry].basic;
3523 else
3524 desc = tx_q->dma_tx + entry;
3525
3526 des = skb_frag_dma_map(priv->device, frag, 0, len,
3527 DMA_TO_DEVICE);
3528 if (dma_mapping_error(priv->device, des))
3529 goto dma_map_err; /* should reuse desc w/o issues */
3530
3531 tx_q->tx_skbuff_dma[entry].buf = des;
3532
3533 stmmac_set_desc_addr(priv, desc, des);
3534
3535 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3536 tx_q->tx_skbuff_dma[entry].len = len;
3537 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3538
3539 /* Prepare the descriptor and set the own bit too */
3540 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3541 priv->mode, 1, last_segment, skb->len);
3542 }
3543
3544 /* Only the last descriptor gets to point to the skb. */
3545 tx_q->tx_skbuff[entry] = skb;
3546
3547 /* According to the coalesce parameter the IC bit for the latest
3548 * segment is reset and the timer re-started to clean the tx status.
3549 * This approach takes care about the fragments: desc is the first
3550 * element in case of no SG.
3551 */
3552 tx_packets = (entry + 1) - first_tx;
3553 tx_q->tx_count_frames += tx_packets;
3554
3555 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3556 set_ic = true;
3557 else if (!priv->tx_coal_frames)
3558 set_ic = false;
3559 else if (tx_packets > priv->tx_coal_frames)
3560 set_ic = true;
3561 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3562 set_ic = true;
3563 else
3564 set_ic = false;
3565
3566 if (set_ic) {
3567 if (likely(priv->extend_desc))
3568 desc = &tx_q->dma_etx[entry].basic;
3569 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3570 desc = &tx_q->dma_entx[entry].basic;
3571 else
3572 desc = &tx_q->dma_tx[entry];
3573
3574 tx_q->tx_count_frames = 0;
3575 stmmac_set_tx_ic(priv, desc);
3576 priv->xstats.tx_set_ic_bit++;
3577 }
3578
3579 /* We've used all descriptors we need for this skb, however,
3580 * advance cur_tx so that it references a fresh descriptor.
3581 * ndo_start_xmit will fill this descriptor the next time it's
3582 * called and stmmac_tx_clean may clean up to this descriptor.
3583 */
3584 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3585 tx_q->cur_tx = entry;
3586
3587 if (netif_msg_pktdata(priv)) {
3588 netdev_dbg(priv->dev,
3589 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3590 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3591 entry, first, nfrags);
3592
3593 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3594 print_pkt(skb->data, skb->len);
3595 }
3596
3597 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3598 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3599 __func__);
3600 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3601 }
3602
3603 dev->stats.tx_bytes += skb->len;
3604
3605 if (priv->sarc_type)
3606 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3607
3608 skb_tx_timestamp(skb);
3609
3610 /* Ready to fill the first descriptor and set the OWN bit w/o any
3611 * problems because all the descriptors are actually ready to be
3612 * passed to the DMA engine.
3613 */
3614 if (likely(!is_jumbo)) {
3615 bool last_segment = (nfrags == 0);
3616
3617 des = dma_map_single(priv->device, skb->data,
3618 nopaged_len, DMA_TO_DEVICE);
3619 if (dma_mapping_error(priv->device, des))
3620 goto dma_map_err;
3621
3622 tx_q->tx_skbuff_dma[first_entry].buf = des;
3623
3624 stmmac_set_desc_addr(priv, first, des);
3625
3626 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3627 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3628
3629 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3630 priv->hwts_tx_en)) {
3631 /* declare that device is doing timestamping */
3632 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3633 stmmac_enable_tx_timestamp(priv, first);
3634 }
3635
3636 /* Prepare the first descriptor setting the OWN bit too */
3637 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3638 csum_insertion, priv->mode, 0, last_segment,
3639 skb->len);
3640 }
3641
3642 if (tx_q->tbs & STMMAC_TBS_EN) {
3643 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3644
3645 tbs_desc = &tx_q->dma_entx[first_entry];
3646 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3647 }
3648
3649 stmmac_set_tx_owner(priv, first);
3650
3651 /* The own bit must be the latest setting done when prepare the
3652 * descriptor and then barrier is needed to make sure that
3653 * all is coherent before granting the DMA engine.
3654 */
3655 wmb();
3656
3657 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3658
3659 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3660
3661 if (likely(priv->extend_desc))
3662 desc_size = sizeof(struct dma_extended_desc);
3663 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3664 desc_size = sizeof(struct dma_edesc);
3665 else
3666 desc_size = sizeof(struct dma_desc);
3667
3668 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3669 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3670 stmmac_tx_timer_arm(priv, queue);
3671
3672 return NETDEV_TX_OK;
3673
3674 dma_map_err:
3675 netdev_err(priv->dev, "Tx DMA map failed\n");
3676 dev_kfree_skb(skb);
3677 priv->dev->stats.tx_dropped++;
3678 return NETDEV_TX_OK;
3679 }
3680
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3681 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3682 {
3683 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
3684 __be16 vlan_proto = veth->h_vlan_proto;
3685 u16 vlanid;
3686
3687 if ((vlan_proto == htons(ETH_P_8021Q) &&
3688 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3689 (vlan_proto == htons(ETH_P_8021AD) &&
3690 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3691 /* pop the vlan tag */
3692 vlanid = ntohs(veth->h_vlan_TCI);
3693 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3694 skb_pull(skb, VLAN_HLEN);
3695 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3696 }
3697 }
3698
3699 /**
3700 * stmmac_rx_refill - refill used skb preallocated buffers
3701 * @priv: driver private structure
3702 * @queue: RX queue index
3703 * Description : this is to reallocate the skb for the reception process
3704 * that is based on zero-copy.
3705 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3706 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3707 {
3708 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3709 int len, dirty = stmmac_rx_dirty(priv, queue);
3710 unsigned int entry = rx_q->dirty_rx;
3711
3712 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3713
3714 while (dirty-- > 0) {
3715 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3716 struct dma_desc *p;
3717 bool use_rx_wd;
3718
3719 if (priv->extend_desc)
3720 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3721 else
3722 p = rx_q->dma_rx + entry;
3723
3724 if (!buf->page) {
3725 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3726 if (!buf->page)
3727 break;
3728 }
3729
3730 if (priv->sph && !buf->sec_page) {
3731 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3732 if (!buf->sec_page)
3733 break;
3734
3735 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3736
3737 dma_sync_single_for_device(priv->device, buf->sec_addr,
3738 len, DMA_FROM_DEVICE);
3739 }
3740
3741 buf->addr = page_pool_get_dma_addr(buf->page);
3742
3743 /* Sync whole allocation to device. This will invalidate old
3744 * data.
3745 */
3746 dma_sync_single_for_device(priv->device, buf->addr, len,
3747 DMA_FROM_DEVICE);
3748
3749 stmmac_set_desc_addr(priv, p, buf->addr);
3750 if (priv->sph)
3751 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3752 else
3753 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3754 stmmac_refill_desc3(priv, rx_q, p);
3755
3756 rx_q->rx_count_frames++;
3757 rx_q->rx_count_frames += priv->rx_coal_frames;
3758 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3759 rx_q->rx_count_frames = 0;
3760
3761 use_rx_wd = !priv->rx_coal_frames;
3762 use_rx_wd |= rx_q->rx_count_frames > 0;
3763 if (!priv->use_riwt)
3764 use_rx_wd = false;
3765
3766 dma_wmb();
3767 stmmac_set_rx_owner(priv, p, use_rx_wd);
3768
3769 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3770 }
3771 rx_q->dirty_rx = entry;
3772 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3773 (rx_q->dirty_rx * sizeof(struct dma_desc));
3774 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3775 }
3776
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3777 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3778 struct dma_desc *p,
3779 int status, unsigned int len)
3780 {
3781 unsigned int plen = 0, hlen = 0;
3782 int coe = priv->hw->rx_csum;
3783
3784 /* Not first descriptor, buffer is always zero */
3785 if (priv->sph && len)
3786 return 0;
3787
3788 /* First descriptor, get split header length */
3789 stmmac_get_rx_header_len(priv, p, &hlen);
3790 if (priv->sph && hlen) {
3791 priv->xstats.rx_split_hdr_pkt_n++;
3792 return hlen;
3793 }
3794
3795 /* First descriptor, not last descriptor and not split header */
3796 if (status & rx_not_ls)
3797 return priv->dma_buf_sz;
3798
3799 plen = stmmac_get_rx_frame_len(priv, p, coe);
3800
3801 /* First descriptor and last descriptor and not split header */
3802 return min_t(unsigned int, priv->dma_buf_sz, plen);
3803 }
3804
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3805 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3806 struct dma_desc *p,
3807 int status, unsigned int len)
3808 {
3809 int coe = priv->hw->rx_csum;
3810 unsigned int plen = 0;
3811
3812 /* Not split header, buffer is not available */
3813 if (!priv->sph)
3814 return 0;
3815
3816 /* Not last descriptor */
3817 if (status & rx_not_ls)
3818 return priv->dma_buf_sz;
3819
3820 plen = stmmac_get_rx_frame_len(priv, p, coe);
3821
3822 /* Last descriptor */
3823 return plen - len;
3824 }
3825
3826 /**
3827 * stmmac_rx - manage the receive process
3828 * @priv: driver private structure
3829 * @limit: napi bugget
3830 * @queue: RX queue index.
3831 * Description : this the function called by the napi poll method.
3832 * It gets all the frames inside the ring.
3833 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3834 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3835 {
3836 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3837 struct stmmac_channel *ch = &priv->channel[queue];
3838 unsigned int count = 0, error = 0, len = 0;
3839 int status = 0, coe = priv->hw->rx_csum;
3840 unsigned int next_entry = rx_q->cur_rx;
3841 unsigned int desc_size;
3842 struct sk_buff *skb = NULL;
3843
3844 if (netif_msg_rx_status(priv)) {
3845 void *rx_head;
3846
3847 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3848 if (priv->extend_desc) {
3849 rx_head = (void *)rx_q->dma_erx;
3850 desc_size = sizeof(struct dma_extended_desc);
3851 } else {
3852 rx_head = (void *)rx_q->dma_rx;
3853 desc_size = sizeof(struct dma_desc);
3854 }
3855
3856 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3857 rx_q->dma_rx_phy, desc_size);
3858 }
3859 while (count < limit) {
3860 unsigned int buf1_len = 0, buf2_len = 0;
3861 enum pkt_hash_types hash_type;
3862 struct stmmac_rx_buffer *buf;
3863 struct dma_desc *np, *p;
3864 int entry;
3865 u32 hash;
3866
3867 if (!count && rx_q->state_saved) {
3868 skb = rx_q->state.skb;
3869 error = rx_q->state.error;
3870 len = rx_q->state.len;
3871 } else {
3872 rx_q->state_saved = false;
3873 skb = NULL;
3874 error = 0;
3875 len = 0;
3876 }
3877
3878 read_again:
3879 if (count >= limit)
3880 break;
3881
3882 buf1_len = 0;
3883 buf2_len = 0;
3884 entry = next_entry;
3885 buf = &rx_q->buf_pool[entry];
3886
3887 if (priv->extend_desc)
3888 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3889 else
3890 p = rx_q->dma_rx + entry;
3891
3892 /* read the status of the incoming frame */
3893 status = stmmac_rx_status(priv, &priv->dev->stats,
3894 &priv->xstats, p);
3895 /* check if managed by the DMA otherwise go ahead */
3896 if (unlikely(status & dma_own))
3897 break;
3898
3899 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3900 priv->dma_rx_size);
3901 next_entry = rx_q->cur_rx;
3902
3903 if (priv->extend_desc)
3904 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3905 else
3906 np = rx_q->dma_rx + next_entry;
3907
3908 prefetch(np);
3909
3910 if (priv->extend_desc)
3911 stmmac_rx_extended_status(priv, &priv->dev->stats,
3912 &priv->xstats, rx_q->dma_erx + entry);
3913 if (unlikely(status == discard_frame)) {
3914 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3915 buf->page = NULL;
3916 error = 1;
3917 if (!priv->hwts_rx_en)
3918 priv->dev->stats.rx_errors++;
3919 }
3920
3921 if (unlikely(error && (status & rx_not_ls)))
3922 goto read_again;
3923 if (unlikely(error)) {
3924 dev_kfree_skb(skb);
3925 skb = NULL;
3926 count++;
3927 continue;
3928 }
3929
3930 /* Buffer is good. Go on. */
3931
3932 prefetch(page_address(buf->page));
3933 if (buf->sec_page)
3934 prefetch(page_address(buf->sec_page));
3935
3936 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3937 len += buf1_len;
3938 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3939 len += buf2_len;
3940
3941 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3942 * Type frames (LLC/LLC-SNAP)
3943 *
3944 * llc_snap is never checked in GMAC >= 4, so this ACS
3945 * feature is always disabled and packets need to be
3946 * stripped manually.
3947 */
3948 if (likely(!(status & rx_not_ls)) &&
3949 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3950 unlikely(status != llc_snap))) {
3951 if (buf2_len)
3952 buf2_len -= ETH_FCS_LEN;
3953 else
3954 buf1_len -= ETH_FCS_LEN;
3955
3956 len -= ETH_FCS_LEN;
3957 }
3958
3959 if (!skb) {
3960 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3961 if (!skb) {
3962 priv->dev->stats.rx_dropped++;
3963 count++;
3964 goto drain_data;
3965 }
3966
3967 dma_sync_single_for_cpu(priv->device, buf->addr,
3968 buf1_len, DMA_FROM_DEVICE);
3969 skb_copy_to_linear_data(skb, page_address(buf->page),
3970 buf1_len);
3971 skb_put(skb, buf1_len);
3972
3973 /* Data payload copied into SKB, page ready for recycle */
3974 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3975 buf->page = NULL;
3976 } else if (buf1_len) {
3977 dma_sync_single_for_cpu(priv->device, buf->addr,
3978 buf1_len, DMA_FROM_DEVICE);
3979 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3980 buf->page, 0, buf1_len,
3981 priv->dma_buf_sz);
3982
3983 /* Data payload appended into SKB */
3984 page_pool_release_page(rx_q->page_pool, buf->page);
3985 buf->page = NULL;
3986 }
3987
3988 if (buf2_len) {
3989 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3990 buf2_len, DMA_FROM_DEVICE);
3991 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3992 buf->sec_page, 0, buf2_len,
3993 priv->dma_buf_sz);
3994
3995 /* Data payload appended into SKB */
3996 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3997 buf->sec_page = NULL;
3998 }
3999
4000 drain_data:
4001 if (likely(status & rx_not_ls))
4002 goto read_again;
4003 if (!skb)
4004 continue;
4005
4006 /* Got entire packet into SKB. Finish it. */
4007
4008 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4009 stmmac_rx_vlan(priv->dev, skb);
4010 skb->protocol = eth_type_trans(skb, priv->dev);
4011
4012 if (unlikely(!coe))
4013 skb_checksum_none_assert(skb);
4014 else
4015 skb->ip_summed = CHECKSUM_UNNECESSARY;
4016
4017 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4018 skb_set_hash(skb, hash, hash_type);
4019
4020 skb_record_rx_queue(skb, queue);
4021 napi_gro_receive(&ch->rx_napi, skb);
4022 skb = NULL;
4023
4024 priv->dev->stats.rx_packets++;
4025 priv->dev->stats.rx_bytes += len;
4026 count++;
4027 }
4028
4029 if (status & rx_not_ls || skb) {
4030 rx_q->state_saved = true;
4031 rx_q->state.skb = skb;
4032 rx_q->state.error = error;
4033 rx_q->state.len = len;
4034 }
4035
4036 stmmac_rx_refill(priv, queue);
4037
4038 priv->xstats.rx_pkt_n += count;
4039
4040 return count;
4041 }
4042
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)4043 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4044 {
4045 struct stmmac_channel *ch =
4046 container_of(napi, struct stmmac_channel, rx_napi);
4047 struct stmmac_priv *priv = ch->priv_data;
4048 u32 chan = ch->index;
4049 int work_done;
4050
4051 priv->xstats.napi_poll++;
4052
4053 work_done = stmmac_rx(priv, budget, chan);
4054 if (work_done < budget && napi_complete_done(napi, work_done)) {
4055 unsigned long flags;
4056
4057 spin_lock_irqsave(&ch->lock, flags);
4058 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4059 spin_unlock_irqrestore(&ch->lock, flags);
4060 }
4061
4062 return work_done;
4063 }
4064
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)4065 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4066 {
4067 struct stmmac_channel *ch =
4068 container_of(napi, struct stmmac_channel, tx_napi);
4069 struct stmmac_priv *priv = ch->priv_data;
4070 u32 chan = ch->index;
4071 int work_done;
4072
4073 priv->xstats.napi_poll++;
4074
4075 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4076 work_done = min(work_done, budget);
4077
4078 if (work_done < budget && napi_complete_done(napi, work_done)) {
4079 unsigned long flags;
4080
4081 spin_lock_irqsave(&ch->lock, flags);
4082 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4083 spin_unlock_irqrestore(&ch->lock, flags);
4084 }
4085
4086 return work_done;
4087 }
4088
4089 /**
4090 * stmmac_tx_timeout
4091 * @dev : Pointer to net device structure
4092 * @txqueue: the index of the hanging transmit queue
4093 * Description: this function is called when a packet transmission fails to
4094 * complete within a reasonable time. The driver will mark the error in the
4095 * netdev structure and arrange for the device to be reset to a sane state
4096 * in order to transmit a new packet.
4097 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)4098 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4099 {
4100 struct stmmac_priv *priv = netdev_priv(dev);
4101
4102 stmmac_global_err(priv);
4103 }
4104
4105 /**
4106 * stmmac_set_rx_mode - entry point for multicast addressing
4107 * @dev : pointer to the device structure
4108 * Description:
4109 * This function is a driver entry point which gets called by the kernel
4110 * whenever multicast addresses must be enabled/disabled.
4111 * Return value:
4112 * void.
4113 */
stmmac_set_rx_mode(struct net_device * dev)4114 static void stmmac_set_rx_mode(struct net_device *dev)
4115 {
4116 struct stmmac_priv *priv = netdev_priv(dev);
4117
4118 stmmac_set_filter(priv, priv->hw, dev);
4119 }
4120
4121 /**
4122 * stmmac_change_mtu - entry point to change MTU size for the device.
4123 * @dev : device pointer.
4124 * @new_mtu : the new MTU size for the device.
4125 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
4126 * to drive packet transmission. Ethernet has an MTU of 1500 octets
4127 * (ETH_DATA_LEN). This value can be changed with ifconfig.
4128 * Return value:
4129 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4130 * file on failure.
4131 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4132 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4133 {
4134 struct stmmac_priv *priv = netdev_priv(dev);
4135 int txfifosz = priv->plat->tx_fifo_size;
4136 const int mtu = new_mtu;
4137
4138 if (txfifosz == 0)
4139 txfifosz = priv->dma_cap.tx_fifo_size;
4140
4141 txfifosz /= priv->plat->tx_queues_to_use;
4142
4143 if (netif_running(dev)) {
4144 netdev_err(priv->dev, "must be stopped to change its MTU\n");
4145 return -EBUSY;
4146 }
4147
4148 new_mtu = STMMAC_ALIGN(new_mtu);
4149
4150 /* If condition true, FIFO is too small or MTU too large */
4151 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4152 return -EINVAL;
4153
4154 dev->mtu = mtu;
4155
4156 netdev_update_features(dev);
4157
4158 return 0;
4159 }
4160
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4161 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4162 netdev_features_t features)
4163 {
4164 struct stmmac_priv *priv = netdev_priv(dev);
4165
4166 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4167 features &= ~NETIF_F_RXCSUM;
4168
4169 if (!priv->plat->tx_coe)
4170 features &= ~NETIF_F_CSUM_MASK;
4171
4172 /* Some GMAC devices have a bugged Jumbo frame support that
4173 * needs to have the Tx COE disabled for oversized frames
4174 * (due to limited buffer sizes). In this case we disable
4175 * the TX csum insertion in the TDES and not use SF.
4176 */
4177 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4178 features &= ~NETIF_F_CSUM_MASK;
4179
4180 /* Disable tso if asked by ethtool */
4181 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4182 if (features & NETIF_F_TSO)
4183 priv->tso = true;
4184 else
4185 priv->tso = false;
4186 }
4187
4188 return features;
4189 }
4190
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4191 static int stmmac_set_features(struct net_device *netdev,
4192 netdev_features_t features)
4193 {
4194 struct stmmac_priv *priv = netdev_priv(netdev);
4195 bool sph_en;
4196 u32 chan;
4197
4198 /* Keep the COE Type in case of csum is supporting */
4199 if (features & NETIF_F_RXCSUM)
4200 priv->hw->rx_csum = priv->plat->rx_coe;
4201 else
4202 priv->hw->rx_csum = 0;
4203 /* No check needed because rx_coe has been set before and it will be
4204 * fixed in case of issue.
4205 */
4206 stmmac_rx_ipc(priv, priv->hw);
4207
4208 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4209 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4210 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4211
4212 return 0;
4213 }
4214
4215 /**
4216 * stmmac_interrupt - main ISR
4217 * @irq: interrupt number.
4218 * @dev_id: to pass the net device pointer (must be valid).
4219 * Description: this is the main driver interrupt service routine.
4220 * It can call:
4221 * o DMA service routine (to manage incoming frame reception and transmission
4222 * status)
4223 * o Core interrupts to manage: remote wake-up, management counter, LPI
4224 * interrupts.
4225 */
stmmac_interrupt(int irq,void * dev_id)4226 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4227 {
4228 struct net_device *dev = (struct net_device *)dev_id;
4229 struct stmmac_priv *priv = netdev_priv(dev);
4230 u32 rx_cnt = priv->plat->rx_queues_to_use;
4231 u32 tx_cnt = priv->plat->tx_queues_to_use;
4232 u32 queues_count;
4233 u32 queue;
4234 bool xmac;
4235
4236 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4237 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4238
4239 if (priv->irq_wake)
4240 pm_wakeup_event(priv->device, 0);
4241
4242 /* Check if adapter is up */
4243 if (test_bit(STMMAC_DOWN, &priv->state))
4244 return IRQ_HANDLED;
4245 /* Check if a fatal error happened */
4246 if (stmmac_safety_feat_interrupt(priv))
4247 return IRQ_HANDLED;
4248
4249 /* To handle GMAC own interrupts */
4250 if ((priv->plat->has_gmac) || xmac) {
4251 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4252
4253 if (unlikely(status)) {
4254 /* For LPI we need to save the tx status */
4255 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4256 priv->tx_path_in_lpi_mode = true;
4257 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4258 priv->tx_path_in_lpi_mode = false;
4259 }
4260
4261 for (queue = 0; queue < queues_count; queue++) {
4262 status = stmmac_host_mtl_irq_status(priv, priv->hw,
4263 queue);
4264 }
4265
4266 /* PCS link status */
4267 if (priv->hw->pcs) {
4268 if (priv->xstats.pcs_link)
4269 netif_carrier_on(dev);
4270 else
4271 netif_carrier_off(dev);
4272 }
4273 }
4274
4275 /* To handle DMA interrupts */
4276 stmmac_dma_interrupt(priv);
4277
4278 return IRQ_HANDLED;
4279 }
4280
4281 #ifdef CONFIG_NET_POLL_CONTROLLER
4282 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4283 * to allow network I/O with interrupts disabled.
4284 */
stmmac_poll_controller(struct net_device * dev)4285 static void stmmac_poll_controller(struct net_device *dev)
4286 {
4287 disable_irq(dev->irq);
4288 stmmac_interrupt(dev->irq, dev);
4289 enable_irq(dev->irq);
4290 }
4291 #endif
4292
4293 /**
4294 * stmmac_ioctl - Entry point for the Ioctl
4295 * @dev: Device pointer.
4296 * @rq: An IOCTL specefic structure, that can contain a pointer to
4297 * a proprietary structure used to pass information to the driver.
4298 * @cmd: IOCTL command
4299 * Description:
4300 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4301 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4302 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4303 {
4304 struct stmmac_priv *priv = netdev_priv (dev);
4305 int ret = -EOPNOTSUPP;
4306
4307 if (!netif_running(dev))
4308 return -EINVAL;
4309
4310 switch (cmd) {
4311 case SIOCGMIIPHY:
4312 case SIOCGMIIREG:
4313 case SIOCSMIIREG:
4314 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4315 break;
4316 case SIOCSHWTSTAMP:
4317 ret = stmmac_hwtstamp_set(dev, rq);
4318 break;
4319 case SIOCGHWTSTAMP:
4320 ret = stmmac_hwtstamp_get(dev, rq);
4321 break;
4322 default:
4323 break;
4324 }
4325
4326 return ret;
4327 }
4328
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4329 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4330 void *cb_priv)
4331 {
4332 struct stmmac_priv *priv = cb_priv;
4333 int ret = -EOPNOTSUPP;
4334
4335 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4336 return ret;
4337
4338 stmmac_disable_all_queues(priv);
4339
4340 switch (type) {
4341 case TC_SETUP_CLSU32:
4342 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4343 break;
4344 case TC_SETUP_CLSFLOWER:
4345 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4346 break;
4347 default:
4348 break;
4349 }
4350
4351 stmmac_enable_all_queues(priv);
4352 return ret;
4353 }
4354
4355 static LIST_HEAD(stmmac_block_cb_list);
4356
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4357 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4358 void *type_data)
4359 {
4360 struct stmmac_priv *priv = netdev_priv(ndev);
4361
4362 switch (type) {
4363 case TC_SETUP_BLOCK:
4364 return flow_block_cb_setup_simple(type_data,
4365 &stmmac_block_cb_list,
4366 stmmac_setup_tc_block_cb,
4367 priv, priv, true);
4368 case TC_SETUP_QDISC_CBS:
4369 return stmmac_tc_setup_cbs(priv, priv, type_data);
4370 case TC_SETUP_QDISC_TAPRIO:
4371 return stmmac_tc_setup_taprio(priv, priv, type_data);
4372 case TC_SETUP_QDISC_ETF:
4373 return stmmac_tc_setup_etf(priv, priv, type_data);
4374 default:
4375 return -EOPNOTSUPP;
4376 }
4377 }
4378
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4379 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4380 struct net_device *sb_dev)
4381 {
4382 int gso = skb_shinfo(skb)->gso_type;
4383
4384 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4385 /*
4386 * There is no way to determine the number of TSO/USO
4387 * capable Queues. Let's use always the Queue 0
4388 * because if TSO/USO is supported then at least this
4389 * one will be capable.
4390 */
4391 return 0;
4392 }
4393
4394 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4395 }
4396
stmmac_set_mac_address(struct net_device * ndev,void * addr)4397 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4398 {
4399 struct stmmac_priv *priv = netdev_priv(ndev);
4400 int ret = 0;
4401
4402 ret = pm_runtime_get_sync(priv->device);
4403 if (ret < 0) {
4404 pm_runtime_put_noidle(priv->device);
4405 return ret;
4406 }
4407
4408 ret = eth_mac_addr(ndev, addr);
4409 if (ret)
4410 goto set_mac_error;
4411
4412 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4413
4414 set_mac_error:
4415 pm_runtime_put(priv->device);
4416
4417 return ret;
4418 }
4419
4420 #ifdef CONFIG_DEBUG_FS
4421 static struct dentry *stmmac_fs_dir;
4422
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4423 static void sysfs_display_ring(void *head, int size, int extend_desc,
4424 struct seq_file *seq, dma_addr_t dma_phy_addr)
4425 {
4426 int i;
4427 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4428 struct dma_desc *p = (struct dma_desc *)head;
4429 dma_addr_t dma_addr;
4430
4431 for (i = 0; i < size; i++) {
4432 if (extend_desc) {
4433 dma_addr = dma_phy_addr + i * sizeof(*ep);
4434 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4435 i, &dma_addr,
4436 le32_to_cpu(ep->basic.des0),
4437 le32_to_cpu(ep->basic.des1),
4438 le32_to_cpu(ep->basic.des2),
4439 le32_to_cpu(ep->basic.des3));
4440 ep++;
4441 } else {
4442 dma_addr = dma_phy_addr + i * sizeof(*p);
4443 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4444 i, &dma_addr,
4445 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4446 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4447 p++;
4448 }
4449 seq_printf(seq, "\n");
4450 }
4451 }
4452
stmmac_rings_status_show(struct seq_file * seq,void * v)4453 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4454 {
4455 struct net_device *dev = seq->private;
4456 struct stmmac_priv *priv = netdev_priv(dev);
4457 u32 rx_count = priv->plat->rx_queues_to_use;
4458 u32 tx_count = priv->plat->tx_queues_to_use;
4459 u32 queue;
4460
4461 if ((dev->flags & IFF_UP) == 0)
4462 return 0;
4463
4464 for (queue = 0; queue < rx_count; queue++) {
4465 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4466
4467 seq_printf(seq, "RX Queue %d:\n", queue);
4468
4469 if (priv->extend_desc) {
4470 seq_printf(seq, "Extended descriptor ring:\n");
4471 sysfs_display_ring((void *)rx_q->dma_erx,
4472 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4473 } else {
4474 seq_printf(seq, "Descriptor ring:\n");
4475 sysfs_display_ring((void *)rx_q->dma_rx,
4476 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4477 }
4478 }
4479
4480 for (queue = 0; queue < tx_count; queue++) {
4481 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4482
4483 seq_printf(seq, "TX Queue %d:\n", queue);
4484
4485 if (priv->extend_desc) {
4486 seq_printf(seq, "Extended descriptor ring:\n");
4487 sysfs_display_ring((void *)tx_q->dma_etx,
4488 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4489 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4490 seq_printf(seq, "Descriptor ring:\n");
4491 sysfs_display_ring((void *)tx_q->dma_tx,
4492 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4493 }
4494 }
4495
4496 return 0;
4497 }
4498 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4499
stmmac_dma_cap_show(struct seq_file * seq,void * v)4500 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4501 {
4502 struct net_device *dev = seq->private;
4503 struct stmmac_priv *priv = netdev_priv(dev);
4504
4505 if (!priv->hw_cap_support) {
4506 seq_printf(seq, "DMA HW features not supported\n");
4507 return 0;
4508 }
4509
4510 seq_printf(seq, "==============================\n");
4511 seq_printf(seq, "\tDMA HW features\n");
4512 seq_printf(seq, "==============================\n");
4513
4514 seq_printf(seq, "\t10/100 Mbps: %s\n",
4515 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4516 seq_printf(seq, "\t1000 Mbps: %s\n",
4517 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4518 seq_printf(seq, "\tHalf duplex: %s\n",
4519 (priv->dma_cap.half_duplex) ? "Y" : "N");
4520 seq_printf(seq, "\tHash Filter: %s\n",
4521 (priv->dma_cap.hash_filter) ? "Y" : "N");
4522 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4523 (priv->dma_cap.multi_addr) ? "Y" : "N");
4524 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4525 (priv->dma_cap.pcs) ? "Y" : "N");
4526 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4527 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4528 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4529 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4530 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4531 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4532 seq_printf(seq, "\tRMON module: %s\n",
4533 (priv->dma_cap.rmon) ? "Y" : "N");
4534 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4535 (priv->dma_cap.time_stamp) ? "Y" : "N");
4536 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4537 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4538 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4539 (priv->dma_cap.eee) ? "Y" : "N");
4540 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4541 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4542 (priv->dma_cap.tx_coe) ? "Y" : "N");
4543 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4544 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4545 (priv->dma_cap.rx_coe) ? "Y" : "N");
4546 } else {
4547 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4548 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4549 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4550 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4551 }
4552 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4553 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4554 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4555 priv->dma_cap.number_rx_channel);
4556 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4557 priv->dma_cap.number_tx_channel);
4558 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4559 priv->dma_cap.number_rx_queues);
4560 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4561 priv->dma_cap.number_tx_queues);
4562 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4563 (priv->dma_cap.enh_desc) ? "Y" : "N");
4564 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4565 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4566 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4567 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4568 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4569 priv->dma_cap.pps_out_num);
4570 seq_printf(seq, "\tSafety Features: %s\n",
4571 priv->dma_cap.asp ? "Y" : "N");
4572 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4573 priv->dma_cap.frpsel ? "Y" : "N");
4574 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4575 priv->dma_cap.addr64);
4576 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4577 priv->dma_cap.rssen ? "Y" : "N");
4578 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4579 priv->dma_cap.vlhash ? "Y" : "N");
4580 seq_printf(seq, "\tSplit Header: %s\n",
4581 priv->dma_cap.sphen ? "Y" : "N");
4582 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4583 priv->dma_cap.vlins ? "Y" : "N");
4584 seq_printf(seq, "\tDouble VLAN: %s\n",
4585 priv->dma_cap.dvlan ? "Y" : "N");
4586 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4587 priv->dma_cap.l3l4fnum);
4588 seq_printf(seq, "\tARP Offloading: %s\n",
4589 priv->dma_cap.arpoffsel ? "Y" : "N");
4590 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4591 priv->dma_cap.estsel ? "Y" : "N");
4592 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4593 priv->dma_cap.fpesel ? "Y" : "N");
4594 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4595 priv->dma_cap.tbssel ? "Y" : "N");
4596 return 0;
4597 }
4598 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4599
4600 /* Use network device events to rename debugfs file entries.
4601 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4602 static int stmmac_device_event(struct notifier_block *unused,
4603 unsigned long event, void *ptr)
4604 {
4605 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4606 struct stmmac_priv *priv = netdev_priv(dev);
4607
4608 if (dev->netdev_ops != &stmmac_netdev_ops)
4609 goto done;
4610
4611 switch (event) {
4612 case NETDEV_CHANGENAME:
4613 if (priv->dbgfs_dir)
4614 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4615 priv->dbgfs_dir,
4616 stmmac_fs_dir,
4617 dev->name);
4618 break;
4619 }
4620 done:
4621 return NOTIFY_DONE;
4622 }
4623
4624 static struct notifier_block stmmac_notifier = {
4625 .notifier_call = stmmac_device_event,
4626 };
4627
stmmac_init_fs(struct net_device * dev)4628 static void stmmac_init_fs(struct net_device *dev)
4629 {
4630 struct stmmac_priv *priv = netdev_priv(dev);
4631
4632 rtnl_lock();
4633
4634 /* Create per netdev entries */
4635 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4636
4637 /* Entry to report DMA RX/TX rings */
4638 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4639 &stmmac_rings_status_fops);
4640
4641 /* Entry to report the DMA HW features */
4642 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4643 &stmmac_dma_cap_fops);
4644
4645 rtnl_unlock();
4646 }
4647
stmmac_exit_fs(struct net_device * dev)4648 static void stmmac_exit_fs(struct net_device *dev)
4649 {
4650 struct stmmac_priv *priv = netdev_priv(dev);
4651
4652 debugfs_remove_recursive(priv->dbgfs_dir);
4653 }
4654 #endif /* CONFIG_DEBUG_FS */
4655
stmmac_vid_crc32_le(__le16 vid_le)4656 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4657 {
4658 unsigned char *data = (unsigned char *)&vid_le;
4659 unsigned char data_byte = 0;
4660 u32 crc = ~0x0;
4661 u32 temp = 0;
4662 int i, bits;
4663
4664 bits = get_bitmask_order(VLAN_VID_MASK);
4665 for (i = 0; i < bits; i++) {
4666 if ((i % 8) == 0)
4667 data_byte = data[i / 8];
4668
4669 temp = ((crc & 1) ^ data_byte) & 1;
4670 crc >>= 1;
4671 data_byte >>= 1;
4672
4673 if (temp)
4674 crc ^= 0xedb88320;
4675 }
4676
4677 return crc;
4678 }
4679
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4680 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4681 {
4682 u32 crc, hash = 0;
4683 __le16 pmatch = 0;
4684 int count = 0;
4685 u16 vid = 0;
4686
4687 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4688 __le16 vid_le = cpu_to_le16(vid);
4689 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4690 hash |= (1 << crc);
4691 count++;
4692 }
4693
4694 if (!priv->dma_cap.vlhash) {
4695 if (count > 2) /* VID = 0 always passes filter */
4696 return -EOPNOTSUPP;
4697
4698 pmatch = cpu_to_le16(vid);
4699 hash = 0;
4700 }
4701
4702 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4703 }
4704
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4705 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4706 {
4707 struct stmmac_priv *priv = netdev_priv(ndev);
4708 bool is_double = false;
4709 int ret;
4710
4711 if (be16_to_cpu(proto) == ETH_P_8021AD)
4712 is_double = true;
4713
4714 set_bit(vid, priv->active_vlans);
4715 ret = stmmac_vlan_update(priv, is_double);
4716 if (ret) {
4717 clear_bit(vid, priv->active_vlans);
4718 return ret;
4719 }
4720
4721 if (priv->hw->num_vlan) {
4722 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4723 if (ret)
4724 return ret;
4725 }
4726
4727 return 0;
4728 }
4729
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4730 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4731 {
4732 struct stmmac_priv *priv = netdev_priv(ndev);
4733 bool is_double = false;
4734 int ret;
4735
4736 ret = pm_runtime_get_sync(priv->device);
4737 if (ret < 0) {
4738 pm_runtime_put_noidle(priv->device);
4739 return ret;
4740 }
4741
4742 if (be16_to_cpu(proto) == ETH_P_8021AD)
4743 is_double = true;
4744
4745 clear_bit(vid, priv->active_vlans);
4746
4747 if (priv->hw->num_vlan) {
4748 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4749 if (ret)
4750 goto del_vlan_error;
4751 }
4752
4753 ret = stmmac_vlan_update(priv, is_double);
4754
4755 del_vlan_error:
4756 pm_runtime_put(priv->device);
4757
4758 return ret;
4759 }
4760
4761 static const struct net_device_ops stmmac_netdev_ops = {
4762 .ndo_open = stmmac_open,
4763 .ndo_start_xmit = stmmac_xmit,
4764 .ndo_stop = stmmac_release,
4765 .ndo_change_mtu = stmmac_change_mtu,
4766 .ndo_fix_features = stmmac_fix_features,
4767 .ndo_set_features = stmmac_set_features,
4768 .ndo_set_rx_mode = stmmac_set_rx_mode,
4769 .ndo_tx_timeout = stmmac_tx_timeout,
4770 .ndo_do_ioctl = stmmac_ioctl,
4771 .ndo_setup_tc = stmmac_setup_tc,
4772 .ndo_select_queue = stmmac_select_queue,
4773 #ifdef CONFIG_NET_POLL_CONTROLLER
4774 .ndo_poll_controller = stmmac_poll_controller,
4775 #endif
4776 .ndo_set_mac_address = stmmac_set_mac_address,
4777 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4778 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4779 };
4780
stmmac_reset_subtask(struct stmmac_priv * priv)4781 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4782 {
4783 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4784 return;
4785 if (test_bit(STMMAC_DOWN, &priv->state))
4786 return;
4787
4788 netdev_err(priv->dev, "Reset adapter.\n");
4789
4790 rtnl_lock();
4791 netif_trans_update(priv->dev);
4792 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4793 usleep_range(1000, 2000);
4794
4795 set_bit(STMMAC_DOWN, &priv->state);
4796 dev_close(priv->dev);
4797 dev_open(priv->dev, NULL);
4798 clear_bit(STMMAC_DOWN, &priv->state);
4799 clear_bit(STMMAC_RESETING, &priv->state);
4800 rtnl_unlock();
4801 }
4802
stmmac_service_task(struct work_struct * work)4803 static void stmmac_service_task(struct work_struct *work)
4804 {
4805 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4806 service_task);
4807
4808 stmmac_reset_subtask(priv);
4809 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4810 }
4811
4812 /**
4813 * stmmac_hw_init - Init the MAC device
4814 * @priv: driver private structure
4815 * Description: this function is to configure the MAC device according to
4816 * some platform parameters or the HW capability register. It prepares the
4817 * driver to use either ring or chain modes and to setup either enhanced or
4818 * normal descriptors.
4819 */
stmmac_hw_init(struct stmmac_priv * priv)4820 static int stmmac_hw_init(struct stmmac_priv *priv)
4821 {
4822 int ret;
4823
4824 /* dwmac-sun8i only work in chain mode */
4825 if (priv->plat->has_sun8i)
4826 chain_mode = 1;
4827 priv->chain_mode = chain_mode;
4828
4829 /* Initialize HW Interface */
4830 ret = stmmac_hwif_init(priv);
4831 if (ret)
4832 return ret;
4833
4834 /* Get the HW capability (new GMAC newer than 3.50a) */
4835 priv->hw_cap_support = stmmac_get_hw_features(priv);
4836 if (priv->hw_cap_support) {
4837 dev_info(priv->device, "DMA HW capability register supported\n");
4838
4839 /* We can override some gmac/dma configuration fields: e.g.
4840 * enh_desc, tx_coe (e.g. that are passed through the
4841 * platform) with the values from the HW capability
4842 * register (if supported).
4843 */
4844 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4845 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4846 priv->hw->pmt = priv->plat->pmt;
4847 if (priv->dma_cap.hash_tb_sz) {
4848 priv->hw->multicast_filter_bins =
4849 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4850 priv->hw->mcast_bits_log2 =
4851 ilog2(priv->hw->multicast_filter_bins);
4852 }
4853
4854 /* TXCOE doesn't work in thresh DMA mode */
4855 if (priv->plat->force_thresh_dma_mode)
4856 priv->plat->tx_coe = 0;
4857 else
4858 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4859
4860 /* In case of GMAC4 rx_coe is from HW cap register. */
4861 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4862
4863 if (priv->dma_cap.rx_coe_type2)
4864 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4865 else if (priv->dma_cap.rx_coe_type1)
4866 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4867
4868 } else {
4869 dev_info(priv->device, "No HW DMA feature register supported\n");
4870 }
4871
4872 if (priv->plat->rx_coe) {
4873 priv->hw->rx_csum = priv->plat->rx_coe;
4874 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4875 if (priv->synopsys_id < DWMAC_CORE_4_00)
4876 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4877 }
4878 if (priv->plat->tx_coe)
4879 dev_info(priv->device, "TX Checksum insertion supported\n");
4880
4881 if (priv->plat->pmt) {
4882 dev_info(priv->device, "Wake-Up On Lan supported\n");
4883 device_set_wakeup_capable(priv->device, 1);
4884 }
4885
4886 if (priv->dma_cap.tsoen)
4887 dev_info(priv->device, "TSO supported\n");
4888
4889 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4890 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4891
4892 /* Run HW quirks, if any */
4893 if (priv->hwif_quirks) {
4894 ret = priv->hwif_quirks(priv);
4895 if (ret)
4896 return ret;
4897 }
4898
4899 /* Rx Watchdog is available in the COREs newer than the 3.40.
4900 * In some case, for example on bugged HW this feature
4901 * has to be disable and this can be done by passing the
4902 * riwt_off field from the platform.
4903 */
4904 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4905 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4906 priv->use_riwt = 1;
4907 dev_info(priv->device,
4908 "Enable RX Mitigation via HW Watchdog Timer\n");
4909 }
4910
4911 return 0;
4912 }
4913
stmmac_napi_add(struct net_device * dev)4914 static void stmmac_napi_add(struct net_device *dev)
4915 {
4916 struct stmmac_priv *priv = netdev_priv(dev);
4917 u32 queue, maxq;
4918
4919 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4920
4921 for (queue = 0; queue < maxq; queue++) {
4922 struct stmmac_channel *ch = &priv->channel[queue];
4923
4924 ch->priv_data = priv;
4925 ch->index = queue;
4926 spin_lock_init(&ch->lock);
4927
4928 if (queue < priv->plat->rx_queues_to_use) {
4929 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4930 NAPI_POLL_WEIGHT);
4931 }
4932 if (queue < priv->plat->tx_queues_to_use) {
4933 netif_tx_napi_add(dev, &ch->tx_napi,
4934 stmmac_napi_poll_tx,
4935 NAPI_POLL_WEIGHT);
4936 }
4937 }
4938 }
4939
stmmac_napi_del(struct net_device * dev)4940 static void stmmac_napi_del(struct net_device *dev)
4941 {
4942 struct stmmac_priv *priv = netdev_priv(dev);
4943 u32 queue, maxq;
4944
4945 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4946
4947 for (queue = 0; queue < maxq; queue++) {
4948 struct stmmac_channel *ch = &priv->channel[queue];
4949
4950 if (queue < priv->plat->rx_queues_to_use)
4951 netif_napi_del(&ch->rx_napi);
4952 if (queue < priv->plat->tx_queues_to_use)
4953 netif_napi_del(&ch->tx_napi);
4954 }
4955 }
4956
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4957 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4958 {
4959 struct stmmac_priv *priv = netdev_priv(dev);
4960 int ret = 0, i;
4961
4962 if (netif_running(dev))
4963 stmmac_release(dev);
4964
4965 stmmac_napi_del(dev);
4966
4967 priv->plat->rx_queues_to_use = rx_cnt;
4968 priv->plat->tx_queues_to_use = tx_cnt;
4969 if (!netif_is_rxfh_configured(dev))
4970 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4971 priv->rss.table[i] = ethtool_rxfh_indir_default(i,
4972 rx_cnt);
4973
4974 stmmac_napi_add(dev);
4975
4976 if (netif_running(dev))
4977 ret = stmmac_open(dev);
4978
4979 return ret;
4980 }
4981
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4982 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4983 {
4984 struct stmmac_priv *priv = netdev_priv(dev);
4985 int ret = 0;
4986
4987 if (netif_running(dev))
4988 stmmac_release(dev);
4989
4990 priv->dma_rx_size = rx_size;
4991 priv->dma_tx_size = tx_size;
4992
4993 if (netif_running(dev))
4994 ret = stmmac_open(dev);
4995
4996 return ret;
4997 }
4998
4999 /**
5000 * stmmac_dvr_probe
5001 * @device: device pointer
5002 * @plat_dat: platform data pointer
5003 * @res: stmmac resource pointer
5004 * Description: this is the main probe function used to
5005 * call the alloc_etherdev, allocate the priv structure.
5006 * Return:
5007 * returns 0 on success, otherwise errno.
5008 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)5009 int stmmac_dvr_probe(struct device *device,
5010 struct plat_stmmacenet_data *plat_dat,
5011 struct stmmac_resources *res)
5012 {
5013 struct net_device *ndev = NULL;
5014 struct stmmac_priv *priv;
5015 u32 rxq;
5016 int i, ret = 0;
5017
5018 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
5019 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
5020 if (!ndev)
5021 return -ENOMEM;
5022
5023 SET_NETDEV_DEV(ndev, device);
5024
5025 priv = netdev_priv(ndev);
5026 priv->device = device;
5027 priv->dev = ndev;
5028
5029 stmmac_set_ethtool_ops(ndev);
5030 priv->pause = pause;
5031 priv->plat = plat_dat;
5032 priv->ioaddr = res->addr;
5033 priv->dev->base_addr = (unsigned long)res->addr;
5034
5035 priv->dev->irq = res->irq;
5036 priv->wol_irq = res->wol_irq;
5037 priv->lpi_irq = res->lpi_irq;
5038
5039 if (!IS_ERR_OR_NULL(res->mac))
5040 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5041
5042 dev_set_drvdata(device, priv->dev);
5043
5044 /* Verify driver arguments */
5045 stmmac_verify_args();
5046
5047 /* Allocate workqueue */
5048 priv->wq = create_singlethread_workqueue("stmmac_wq");
5049 if (!priv->wq) {
5050 dev_err(priv->device, "failed to create workqueue\n");
5051 return -ENOMEM;
5052 }
5053
5054 INIT_WORK(&priv->service_task, stmmac_service_task);
5055
5056 /* Override with kernel parameters if supplied XXX CRS XXX
5057 * this needs to have multiple instances
5058 */
5059 if ((phyaddr >= 0) && (phyaddr <= 31))
5060 priv->plat->phy_addr = phyaddr;
5061
5062 if (priv->plat->stmmac_rst) {
5063 ret = reset_control_assert(priv->plat->stmmac_rst);
5064 reset_control_deassert(priv->plat->stmmac_rst);
5065 /* Some reset controllers have only reset callback instead of
5066 * assert + deassert callbacks pair.
5067 */
5068 if (ret == -ENOTSUPP)
5069 reset_control_reset(priv->plat->stmmac_rst);
5070 }
5071
5072 /* Init MAC and get the capabilities */
5073 ret = stmmac_hw_init(priv);
5074 if (ret)
5075 goto error_hw_init;
5076
5077 stmmac_check_ether_addr(priv);
5078
5079 ndev->netdev_ops = &stmmac_netdev_ops;
5080
5081 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5082 NETIF_F_RXCSUM;
5083
5084 ret = stmmac_tc_init(priv, priv);
5085 if (!ret) {
5086 ndev->hw_features |= NETIF_F_HW_TC;
5087 }
5088
5089 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5090 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5091 if (priv->plat->has_gmac4)
5092 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5093 priv->tso = true;
5094 dev_info(priv->device, "TSO feature enabled\n");
5095 }
5096
5097 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
5098 ndev->hw_features |= NETIF_F_GRO;
5099 priv->sph = true;
5100 dev_info(priv->device, "SPH feature enabled\n");
5101 }
5102
5103 /* The current IP register MAC_HW_Feature1[ADDR64] only define
5104 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5105 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5106 * So overwrite dma_cap.addr64 according to HW real design.
5107 */
5108 if (priv->plat->addr64)
5109 priv->dma_cap.addr64 = priv->plat->addr64;
5110
5111 if (priv->dma_cap.addr64) {
5112 ret = dma_set_mask_and_coherent(device,
5113 DMA_BIT_MASK(priv->dma_cap.addr64));
5114 if (!ret) {
5115 dev_info(priv->device, "Using %d bits DMA width\n",
5116 priv->dma_cap.addr64);
5117
5118 /*
5119 * If more than 32 bits can be addressed, make sure to
5120 * enable enhanced addressing mode.
5121 */
5122 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5123 priv->plat->dma_cfg->eame = true;
5124 } else {
5125 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5126 if (ret) {
5127 dev_err(priv->device, "Failed to set DMA Mask\n");
5128 goto error_hw_init;
5129 }
5130
5131 priv->dma_cap.addr64 = 32;
5132 }
5133 }
5134
5135 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5136 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5137 #ifdef STMMAC_VLAN_TAG_USED
5138 /* Both mac100 and gmac support receive VLAN tag detection */
5139 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5140 if (priv->dma_cap.vlhash) {
5141 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5142 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5143 }
5144 if (priv->dma_cap.vlins) {
5145 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5146 if (priv->dma_cap.dvlan)
5147 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5148 }
5149 #endif
5150 priv->msg_enable = netif_msg_init(debug, default_msg_level);
5151
5152 /* Initialize RSS */
5153 rxq = priv->plat->rx_queues_to_use;
5154 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5155 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5156 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5157
5158 if (priv->dma_cap.rssen && priv->plat->rss_en)
5159 ndev->features |= NETIF_F_RXHASH;
5160
5161 /* MTU range: 46 - hw-specific max */
5162 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5163 if (priv->plat->has_xgmac)
5164 ndev->max_mtu = XGMAC_JUMBO_LEN;
5165 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5166 ndev->max_mtu = JUMBO_LEN;
5167 else
5168 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5169 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5170 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5171 */
5172 if ((priv->plat->maxmtu < ndev->max_mtu) &&
5173 (priv->plat->maxmtu >= ndev->min_mtu))
5174 ndev->max_mtu = priv->plat->maxmtu;
5175 else if (priv->plat->maxmtu < ndev->min_mtu)
5176 dev_warn(priv->device,
5177 "%s: warning: maxmtu having invalid value (%d)\n",
5178 __func__, priv->plat->maxmtu);
5179
5180 if (flow_ctrl)
5181 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
5182
5183 /* Setup channels NAPI */
5184 stmmac_napi_add(ndev);
5185
5186 mutex_init(&priv->lock);
5187
5188 /* If a specific clk_csr value is passed from the platform
5189 * this means that the CSR Clock Range selection cannot be
5190 * changed at run-time and it is fixed. Viceversa the driver'll try to
5191 * set the MDC clock dynamically according to the csr actual
5192 * clock input.
5193 */
5194 if (priv->plat->clk_csr >= 0)
5195 priv->clk_csr = priv->plat->clk_csr;
5196 else
5197 stmmac_clk_csr_set(priv);
5198
5199 stmmac_check_pcs_mode(priv);
5200
5201 pm_runtime_get_noresume(device);
5202 pm_runtime_set_active(device);
5203 if (!pm_runtime_enabled(device))
5204 pm_runtime_enable(device);
5205
5206 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5207 priv->hw->pcs != STMMAC_PCS_RTBI) {
5208 /* MDIO bus Registration */
5209 ret = stmmac_mdio_register(ndev);
5210 if (ret < 0) {
5211 dev_err_probe(priv->device, ret,
5212 "%s: MDIO bus (id: %d) registration failed\n",
5213 __func__, priv->plat->bus_id);
5214 goto error_mdio_register;
5215 }
5216 }
5217
5218 ret = stmmac_phy_setup(priv);
5219 if (ret) {
5220 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5221 goto error_phy_setup;
5222 }
5223
5224 ret = register_netdev(ndev);
5225 if (ret) {
5226 dev_err(priv->device, "%s: ERROR %i registering the device\n",
5227 __func__, ret);
5228 goto error_netdev_register;
5229 }
5230
5231 #ifdef CONFIG_DEBUG_FS
5232 stmmac_init_fs(ndev);
5233 #endif
5234
5235 /* Let pm_runtime_put() disable the clocks.
5236 * If CONFIG_PM is not enabled, the clocks will stay powered.
5237 */
5238 pm_runtime_put(device);
5239
5240 return ret;
5241
5242 error_netdev_register:
5243 phylink_destroy(priv->phylink);
5244 error_phy_setup:
5245 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5246 priv->hw->pcs != STMMAC_PCS_RTBI)
5247 stmmac_mdio_unregister(ndev);
5248 error_mdio_register:
5249 stmmac_napi_del(ndev);
5250 error_hw_init:
5251 destroy_workqueue(priv->wq);
5252
5253 return ret;
5254 }
5255 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5256
5257 /**
5258 * stmmac_dvr_remove
5259 * @dev: device pointer
5260 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5261 * changes the link status, releases the DMA descriptor rings.
5262 */
stmmac_dvr_remove(struct device * dev)5263 int stmmac_dvr_remove(struct device *dev)
5264 {
5265 struct net_device *ndev = dev_get_drvdata(dev);
5266 struct stmmac_priv *priv = netdev_priv(ndev);
5267
5268 netdev_info(priv->dev, "%s: removing driver", __func__);
5269
5270 stmmac_stop_all_dma(priv);
5271 stmmac_mac_set(priv, priv->ioaddr, false);
5272 netif_carrier_off(ndev);
5273 unregister_netdev(ndev);
5274
5275 #ifdef CONFIG_DEBUG_FS
5276 stmmac_exit_fs(ndev);
5277 #endif
5278 phylink_destroy(priv->phylink);
5279 if (priv->plat->stmmac_rst)
5280 reset_control_assert(priv->plat->stmmac_rst);
5281 pm_runtime_put(dev);
5282 pm_runtime_disable(dev);
5283 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5284 priv->hw->pcs != STMMAC_PCS_RTBI)
5285 stmmac_mdio_unregister(ndev);
5286 destroy_workqueue(priv->wq);
5287 mutex_destroy(&priv->lock);
5288
5289 return 0;
5290 }
5291 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5292
5293 /**
5294 * stmmac_suspend - suspend callback
5295 * @dev: device pointer
5296 * Description: this is the function to suspend the device and it is called
5297 * by the platform driver to stop the network queue, release the resources,
5298 * program the PMT register (for WoL), clean and release driver resources.
5299 */
stmmac_suspend(struct device * dev)5300 int stmmac_suspend(struct device *dev)
5301 {
5302 struct net_device *ndev = dev_get_drvdata(dev);
5303 struct stmmac_priv *priv = netdev_priv(ndev);
5304 u32 chan;
5305
5306 if (!ndev || !netif_running(ndev))
5307 return 0;
5308
5309 phylink_mac_change(priv->phylink, false);
5310
5311 mutex_lock(&priv->lock);
5312
5313 netif_device_detach(ndev);
5314
5315 stmmac_disable_all_queues(priv);
5316
5317 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5318 del_timer_sync(&priv->tx_queue[chan].txtimer);
5319
5320 if (priv->eee_enabled) {
5321 priv->tx_path_in_lpi_mode = false;
5322 del_timer_sync(&priv->eee_ctrl_timer);
5323 }
5324
5325 /* Stop TX/RX DMA */
5326 stmmac_stop_all_dma(priv);
5327
5328 if (priv->plat->serdes_powerdown)
5329 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5330
5331 /* Enable Power down mode by programming the PMT regs */
5332 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5333 stmmac_pmt(priv, priv->hw, priv->wolopts);
5334 priv->irq_wake = 1;
5335 } else {
5336 mutex_unlock(&priv->lock);
5337 rtnl_lock();
5338 if (device_may_wakeup(priv->device))
5339 phylink_speed_down(priv->phylink, false);
5340 phylink_stop(priv->phylink);
5341 rtnl_unlock();
5342 mutex_lock(&priv->lock);
5343
5344 stmmac_mac_set(priv, priv->ioaddr, false);
5345 pinctrl_pm_select_sleep_state(priv->device);
5346 }
5347 mutex_unlock(&priv->lock);
5348
5349 priv->speed = SPEED_UNKNOWN;
5350 return 0;
5351 }
5352 EXPORT_SYMBOL_GPL(stmmac_suspend);
5353
5354 /**
5355 * stmmac_reset_queues_param - reset queue parameters
5356 * @priv: device pointer
5357 */
stmmac_reset_queues_param(struct stmmac_priv * priv)5358 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5359 {
5360 u32 rx_cnt = priv->plat->rx_queues_to_use;
5361 u32 tx_cnt = priv->plat->tx_queues_to_use;
5362 u32 queue;
5363
5364 for (queue = 0; queue < rx_cnt; queue++) {
5365 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5366
5367 rx_q->cur_rx = 0;
5368 rx_q->dirty_rx = 0;
5369 }
5370
5371 for (queue = 0; queue < tx_cnt; queue++) {
5372 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5373
5374 tx_q->cur_tx = 0;
5375 tx_q->dirty_tx = 0;
5376 tx_q->mss = 0;
5377
5378 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5379 }
5380 }
5381
5382 /**
5383 * stmmac_resume - resume callback
5384 * @dev: device pointer
5385 * Description: when resume this function is invoked to setup the DMA and CORE
5386 * in a usable state.
5387 */
stmmac_resume(struct device * dev)5388 int stmmac_resume(struct device *dev)
5389 {
5390 struct net_device *ndev = dev_get_drvdata(dev);
5391 struct stmmac_priv *priv = netdev_priv(ndev);
5392 int ret;
5393
5394 if (!netif_running(ndev))
5395 return 0;
5396
5397 /* Power Down bit, into the PM register, is cleared
5398 * automatically as soon as a magic packet or a Wake-up frame
5399 * is received. Anyway, it's better to manually clear
5400 * this bit because it can generate problems while resuming
5401 * from another devices (e.g. serial console).
5402 */
5403 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5404 mutex_lock(&priv->lock);
5405 stmmac_pmt(priv, priv->hw, 0);
5406 mutex_unlock(&priv->lock);
5407 priv->irq_wake = 0;
5408 } else {
5409 pinctrl_pm_select_default_state(priv->device);
5410 /* reset the phy so that it's ready */
5411 if (priv->mii)
5412 stmmac_mdio_reset(priv->mii);
5413 }
5414
5415 if (priv->plat->serdes_powerup) {
5416 ret = priv->plat->serdes_powerup(ndev,
5417 priv->plat->bsp_priv);
5418
5419 if (ret < 0)
5420 return ret;
5421 }
5422
5423 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5424 rtnl_lock();
5425 phylink_start(priv->phylink);
5426 /* We may have called phylink_speed_down before */
5427 phylink_speed_up(priv->phylink);
5428 rtnl_unlock();
5429 }
5430
5431 rtnl_lock();
5432 mutex_lock(&priv->lock);
5433
5434 stmmac_reset_queues_param(priv);
5435
5436 stmmac_free_tx_skbufs(priv);
5437 stmmac_clear_descriptors(priv);
5438
5439 stmmac_hw_setup(ndev, false);
5440 stmmac_init_coalesce(priv);
5441 stmmac_set_rx_mode(ndev);
5442
5443 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5444
5445 stmmac_enable_all_queues(priv);
5446
5447 mutex_unlock(&priv->lock);
5448 rtnl_unlock();
5449
5450 phylink_mac_change(priv->phylink, true);
5451
5452 netif_device_attach(ndev);
5453
5454 return 0;
5455 }
5456 EXPORT_SYMBOL_GPL(stmmac_resume);
5457
5458 #ifndef MODULE
stmmac_cmdline_opt(char * str)5459 static int __init stmmac_cmdline_opt(char *str)
5460 {
5461 char *opt;
5462
5463 if (!str || !*str)
5464 return 1;
5465 while ((opt = strsep(&str, ",")) != NULL) {
5466 if (!strncmp(opt, "debug:", 6)) {
5467 if (kstrtoint(opt + 6, 0, &debug))
5468 goto err;
5469 } else if (!strncmp(opt, "phyaddr:", 8)) {
5470 if (kstrtoint(opt + 8, 0, &phyaddr))
5471 goto err;
5472 } else if (!strncmp(opt, "buf_sz:", 7)) {
5473 if (kstrtoint(opt + 7, 0, &buf_sz))
5474 goto err;
5475 } else if (!strncmp(opt, "tc:", 3)) {
5476 if (kstrtoint(opt + 3, 0, &tc))
5477 goto err;
5478 } else if (!strncmp(opt, "watchdog:", 9)) {
5479 if (kstrtoint(opt + 9, 0, &watchdog))
5480 goto err;
5481 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5482 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5483 goto err;
5484 } else if (!strncmp(opt, "pause:", 6)) {
5485 if (kstrtoint(opt + 6, 0, &pause))
5486 goto err;
5487 } else if (!strncmp(opt, "eee_timer:", 10)) {
5488 if (kstrtoint(opt + 10, 0, &eee_timer))
5489 goto err;
5490 } else if (!strncmp(opt, "chain_mode:", 11)) {
5491 if (kstrtoint(opt + 11, 0, &chain_mode))
5492 goto err;
5493 }
5494 }
5495 return 1;
5496
5497 err:
5498 pr_err("%s: ERROR broken module parameter conversion", __func__);
5499 return 1;
5500 }
5501
5502 __setup("stmmaceth=", stmmac_cmdline_opt);
5503 #endif /* MODULE */
5504
stmmac_init(void)5505 static int __init stmmac_init(void)
5506 {
5507 #ifdef CONFIG_DEBUG_FS
5508 /* Create debugfs main directory if it doesn't exist yet */
5509 if (!stmmac_fs_dir)
5510 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5511 register_netdevice_notifier(&stmmac_notifier);
5512 #endif
5513
5514 return 0;
5515 }
5516
stmmac_exit(void)5517 static void __exit stmmac_exit(void)
5518 {
5519 #ifdef CONFIG_DEBUG_FS
5520 unregister_netdevice_notifier(&stmmac_notifier);
5521 debugfs_remove_recursive(stmmac_fs_dir);
5522 #endif
5523 }
5524
5525 module_init(stmmac_init)
5526 module_exit(stmmac_exit)
5527
5528 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5529 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5530 MODULE_LICENSE("GPL");
5531