1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 __le32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 __le32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 u32 host_mem_descs_size;
151 dma_addr_t host_mem_descs_dma;
152 struct nvme_host_mem_buf_desc *host_mem_descs;
153 void **host_mem_desc_bufs;
154 unsigned int nr_allocated_queues;
155 unsigned int nr_write_queues;
156 unsigned int nr_poll_queues;
157 };
158
io_queue_depth_set(const char * val,const struct kernel_param * kp)159 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
160 {
161 int ret;
162 u32 n;
163
164 ret = kstrtou32(val, 10, &n);
165 if (ret != 0 || n < 2)
166 return -EINVAL;
167
168 return param_set_uint(val, kp);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 /*
221 * The nvme_iod describes the data in an I/O.
222 *
223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224 * to the actual struct scatterlist.
225 */
226 struct nvme_iod {
227 struct nvme_request req;
228 struct nvme_command cmd;
229 struct nvme_queue *nvmeq;
230 bool use_sgl;
231 int aborted;
232 int npages; /* In the PRP list. 0 means small pool in use */
233 int nents; /* Used in scatterlist */
234 dma_addr_t first_dma;
235 unsigned int dma_len; /* length of single DMA segment mapping */
236 dma_addr_t meta_dma;
237 struct scatterlist *sg;
238 };
239
nvme_dbbuf_size(struct nvme_dev * dev)240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 unsigned int mem_size = nvme_dbbuf_size(dev);
248
249 if (dev->dbbuf_dbs)
250 return 0;
251
252 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
253 &dev->dbbuf_dbs_dma_addr,
254 GFP_KERNEL);
255 if (!dev->dbbuf_dbs)
256 return -ENOMEM;
257 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
258 &dev->dbbuf_eis_dma_addr,
259 GFP_KERNEL);
260 if (!dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
263 dev->dbbuf_dbs = NULL;
264 return -ENOMEM;
265 }
266
267 return 0;
268 }
269
nvme_dbbuf_dma_free(struct nvme_dev * dev)270 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
271 {
272 unsigned int mem_size = nvme_dbbuf_size(dev);
273
274 if (dev->dbbuf_dbs) {
275 dma_free_coherent(dev->dev, mem_size,
276 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
277 dev->dbbuf_dbs = NULL;
278 }
279 if (dev->dbbuf_eis) {
280 dma_free_coherent(dev->dev, mem_size,
281 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
282 dev->dbbuf_eis = NULL;
283 }
284 }
285
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)286 static void nvme_dbbuf_init(struct nvme_dev *dev,
287 struct nvme_queue *nvmeq, int qid)
288 {
289 if (!dev->dbbuf_dbs || !qid)
290 return;
291
292 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
295 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
296 }
297
nvme_dbbuf_free(struct nvme_queue * nvmeq)298 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
299 {
300 if (!nvmeq->qid)
301 return;
302
303 nvmeq->dbbuf_sq_db = NULL;
304 nvmeq->dbbuf_cq_db = NULL;
305 nvmeq->dbbuf_sq_ei = NULL;
306 nvmeq->dbbuf_cq_ei = NULL;
307 }
308
nvme_dbbuf_set(struct nvme_dev * dev)309 static void nvme_dbbuf_set(struct nvme_dev *dev)
310 {
311 struct nvme_command c;
312 unsigned int i;
313
314 if (!dev->dbbuf_dbs)
315 return;
316
317 memset(&c, 0, sizeof(c));
318 c.dbbuf.opcode = nvme_admin_dbbuf;
319 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
320 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
321
322 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
323 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
324 /* Free memory and continue on */
325 nvme_dbbuf_dma_free(dev);
326
327 for (i = 1; i <= dev->online_queues; i++)
328 nvme_dbbuf_free(&dev->queues[i]);
329 }
330 }
331
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)332 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
333 {
334 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
335 }
336
337 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)338 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
339 volatile __le32 *dbbuf_ei)
340 {
341 if (dbbuf_db) {
342 u16 old_value, event_idx;
343
344 /*
345 * Ensure that the queue is written before updating
346 * the doorbell in memory
347 */
348 wmb();
349
350 old_value = le32_to_cpu(*dbbuf_db);
351 *dbbuf_db = cpu_to_le32(value);
352
353 /*
354 * Ensure that the doorbell is updated before reading the event
355 * index from memory. The controller needs to provide similar
356 * ordering to ensure the envent index is updated before reading
357 * the doorbell.
358 */
359 mb();
360
361 event_idx = le32_to_cpu(*dbbuf_ei);
362 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
363 return false;
364 }
365
366 return true;
367 }
368
369 /*
370 * Will slightly overestimate the number of pages needed. This is OK
371 * as it only leads to a small amount of wasted memory for the lifetime of
372 * the I/O.
373 */
nvme_pci_npages_prp(void)374 static int nvme_pci_npages_prp(void)
375 {
376 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
377 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
378 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
379 }
380
381 /*
382 * Calculates the number of pages needed for the SGL segments. For example a 4k
383 * page can accommodate 256 SGL descriptors.
384 */
nvme_pci_npages_sgl(void)385 static int nvme_pci_npages_sgl(void)
386 {
387 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
388 NVME_CTRL_PAGE_SIZE);
389 }
390
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)391 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 unsigned int hctx_idx)
393 {
394 struct nvme_dev *dev = data;
395 struct nvme_queue *nvmeq = &dev->queues[0];
396
397 WARN_ON(hctx_idx != 0);
398 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
399
400 hctx->driver_data = nvmeq;
401 return 0;
402 }
403
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)404 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 unsigned int hctx_idx)
406 {
407 struct nvme_dev *dev = data;
408 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
409
410 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
411 hctx->driver_data = nvmeq;
412 return 0;
413 }
414
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)415 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
416 unsigned int hctx_idx, unsigned int numa_node)
417 {
418 struct nvme_dev *dev = set->driver_data;
419 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
420 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
421 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
422
423 BUG_ON(!nvmeq);
424 iod->nvmeq = nvmeq;
425
426 nvme_req(req)->ctrl = &dev->ctrl;
427 return 0;
428 }
429
queue_irq_offset(struct nvme_dev * dev)430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
434 return 1;
435
436 return 0;
437 }
438
nvme_pci_map_queues(struct blk_mq_tag_set * set)439 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 struct nvme_dev *dev = set->driver_data;
442 int i, qoff, offset;
443
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
447
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
451 continue;
452 }
453
454 /*
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
457 */
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 else
462 blk_mq_map_queues(map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
465 }
466
467 return 0;
468 }
469
470 /*
471 * Write sq tail if we are asked to, or if the next command would wrap.
472 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 {
475 if (!write_sq) {
476 u16 next_tail = nvmeq->sq_tail + 1;
477
478 if (next_tail == nvmeq->q_depth)
479 next_tail = 0;
480 if (next_tail != nvmeq->last_sq_tail)
481 return;
482 }
483
484 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 writel(nvmeq->sq_tail, nvmeq->q_db);
487 nvmeq->last_sq_tail = nvmeq->sq_tail;
488 }
489
490 /**
491 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
492 * @nvmeq: The queue to use
493 * @cmd: The command to send
494 * @write_sq: whether to write to the SQ doorbell
495 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)496 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
497 bool write_sq)
498 {
499 spin_lock(&nvmeq->sq_lock);
500 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 cmd, sizeof(*cmd));
502 if (++nvmeq->sq_tail == nvmeq->q_depth)
503 nvmeq->sq_tail = 0;
504 nvme_write_sq_db(nvmeq, write_sq);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)508 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
509 {
510 struct nvme_queue *nvmeq = hctx->driver_data;
511
512 spin_lock(&nvmeq->sq_lock);
513 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
514 nvme_write_sq_db(nvmeq, true);
515 spin_unlock(&nvmeq->sq_lock);
516 }
517
nvme_pci_iod_list(struct request * req)518 static void **nvme_pci_iod_list(struct request *req)
519 {
520 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
521 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
522 }
523
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)524 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
525 {
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 int nseg = blk_rq_nr_phys_segments(req);
528 unsigned int avg_seg_size;
529
530 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
531
532 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
533 return false;
534 if (!iod->nvmeq->qid)
535 return false;
536 if (!sgl_threshold || avg_seg_size < sgl_threshold)
537 return false;
538 return true;
539 }
540
nvme_free_prps(struct nvme_dev * dev,struct request * req)541 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
542 {
543 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 dma_addr_t dma_addr = iod->first_dma;
546 int i;
547
548 for (i = 0; i < iod->npages; i++) {
549 __le64 *prp_list = nvme_pci_iod_list(req)[i];
550 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
551
552 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
553 dma_addr = next_dma_addr;
554 }
555
556 }
557
nvme_free_sgls(struct nvme_dev * dev,struct request * req)558 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
559 {
560 const int last_sg = SGES_PER_PAGE - 1;
561 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
562 dma_addr_t dma_addr = iod->first_dma;
563 int i;
564
565 for (i = 0; i < iod->npages; i++) {
566 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
567 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
568
569 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
570 dma_addr = next_dma_addr;
571 }
572
573 }
574
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)575 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
576 {
577 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
578
579 if (is_pci_p2pdma_page(sg_page(iod->sg)))
580 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
581 rq_dma_dir(req));
582 else
583 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
584 }
585
nvme_unmap_data(struct nvme_dev * dev,struct request * req)586 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
587 {
588 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
589
590 if (iod->dma_len) {
591 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
592 rq_dma_dir(req));
593 return;
594 }
595
596 WARN_ON_ONCE(!iod->nents);
597
598 nvme_unmap_sg(dev, req);
599 if (iod->npages == 0)
600 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
601 iod->first_dma);
602 else if (iod->use_sgl)
603 nvme_free_sgls(dev, req);
604 else
605 nvme_free_prps(dev, req);
606 mempool_free(iod->sg, dev->iod_mempool);
607 }
608
nvme_print_sgl(struct scatterlist * sgl,int nents)609 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
610 {
611 int i;
612 struct scatterlist *sg;
613
614 for_each_sg(sgl, sg, nents, i) {
615 dma_addr_t phys = sg_phys(sg);
616 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
617 "dma_address:%pad dma_length:%d\n",
618 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
619 sg_dma_len(sg));
620 }
621 }
622
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)623 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
624 struct request *req, struct nvme_rw_command *cmnd)
625 {
626 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
627 struct dma_pool *pool;
628 int length = blk_rq_payload_bytes(req);
629 struct scatterlist *sg = iod->sg;
630 int dma_len = sg_dma_len(sg);
631 u64 dma_addr = sg_dma_address(sg);
632 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
633 __le64 *prp_list;
634 void **list = nvme_pci_iod_list(req);
635 dma_addr_t prp_dma;
636 int nprps, i;
637
638 length -= (NVME_CTRL_PAGE_SIZE - offset);
639 if (length <= 0) {
640 iod->first_dma = 0;
641 goto done;
642 }
643
644 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
645 if (dma_len) {
646 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
647 } else {
648 sg = sg_next(sg);
649 dma_addr = sg_dma_address(sg);
650 dma_len = sg_dma_len(sg);
651 }
652
653 if (length <= NVME_CTRL_PAGE_SIZE) {
654 iod->first_dma = dma_addr;
655 goto done;
656 }
657
658 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
659 if (nprps <= (256 / 8)) {
660 pool = dev->prp_small_pool;
661 iod->npages = 0;
662 } else {
663 pool = dev->prp_page_pool;
664 iod->npages = 1;
665 }
666
667 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
668 if (!prp_list) {
669 iod->first_dma = dma_addr;
670 iod->npages = -1;
671 return BLK_STS_RESOURCE;
672 }
673 list[0] = prp_list;
674 iod->first_dma = prp_dma;
675 i = 0;
676 for (;;) {
677 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
678 __le64 *old_prp_list = prp_list;
679 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
680 if (!prp_list)
681 goto free_prps;
682 list[iod->npages++] = prp_list;
683 prp_list[0] = old_prp_list[i - 1];
684 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
685 i = 1;
686 }
687 prp_list[i++] = cpu_to_le64(dma_addr);
688 dma_len -= NVME_CTRL_PAGE_SIZE;
689 dma_addr += NVME_CTRL_PAGE_SIZE;
690 length -= NVME_CTRL_PAGE_SIZE;
691 if (length <= 0)
692 break;
693 if (dma_len > 0)
694 continue;
695 if (unlikely(dma_len < 0))
696 goto bad_sgl;
697 sg = sg_next(sg);
698 dma_addr = sg_dma_address(sg);
699 dma_len = sg_dma_len(sg);
700 }
701 done:
702 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
703 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
704 return BLK_STS_OK;
705 free_prps:
706 nvme_free_prps(dev, req);
707 return BLK_STS_RESOURCE;
708 bad_sgl:
709 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
710 "Invalid SGL for payload:%d nents:%d\n",
711 blk_rq_payload_bytes(req), iod->nents);
712 return BLK_STS_IOERR;
713 }
714
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)715 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
716 struct scatterlist *sg)
717 {
718 sge->addr = cpu_to_le64(sg_dma_address(sg));
719 sge->length = cpu_to_le32(sg_dma_len(sg));
720 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
721 }
722
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)723 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
724 dma_addr_t dma_addr, int entries)
725 {
726 sge->addr = cpu_to_le64(dma_addr);
727 if (entries < SGES_PER_PAGE) {
728 sge->length = cpu_to_le32(entries * sizeof(*sge));
729 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
730 } else {
731 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
732 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 }
734 }
735
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)736 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
737 struct request *req, struct nvme_rw_command *cmd, int entries)
738 {
739 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 struct dma_pool *pool;
741 struct nvme_sgl_desc *sg_list;
742 struct scatterlist *sg = iod->sg;
743 dma_addr_t sgl_dma;
744 int i = 0;
745
746 /* setting the transfer type as SGL */
747 cmd->flags = NVME_CMD_SGL_METABUF;
748
749 if (entries == 1) {
750 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 return BLK_STS_OK;
752 }
753
754 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
755 pool = dev->prp_small_pool;
756 iod->npages = 0;
757 } else {
758 pool = dev->prp_page_pool;
759 iod->npages = 1;
760 }
761
762 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
763 if (!sg_list) {
764 iod->npages = -1;
765 return BLK_STS_RESOURCE;
766 }
767
768 nvme_pci_iod_list(req)[0] = sg_list;
769 iod->first_dma = sgl_dma;
770
771 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
772
773 do {
774 if (i == SGES_PER_PAGE) {
775 struct nvme_sgl_desc *old_sg_desc = sg_list;
776 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
777
778 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
779 if (!sg_list)
780 goto free_sgls;
781
782 i = 0;
783 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
784 sg_list[i++] = *link;
785 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
786 }
787
788 nvme_pci_sgl_set_data(&sg_list[i++], sg);
789 sg = sg_next(sg);
790 } while (--entries > 0);
791
792 return BLK_STS_OK;
793 free_sgls:
794 nvme_free_sgls(dev, req);
795 return BLK_STS_RESOURCE;
796 }
797
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)798 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
799 struct request *req, struct nvme_rw_command *cmnd,
800 struct bio_vec *bv)
801 {
802 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
803 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
804 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
805
806 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
807 if (dma_mapping_error(dev->dev, iod->first_dma))
808 return BLK_STS_RESOURCE;
809 iod->dma_len = bv->bv_len;
810
811 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
812 if (bv->bv_len > first_prp_len)
813 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
814 else
815 cmnd->dptr.prp2 = 0;
816 return BLK_STS_OK;
817 }
818
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)819 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
820 struct request *req, struct nvme_rw_command *cmnd,
821 struct bio_vec *bv)
822 {
823 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824
825 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
826 if (dma_mapping_error(dev->dev, iod->first_dma))
827 return BLK_STS_RESOURCE;
828 iod->dma_len = bv->bv_len;
829
830 cmnd->flags = NVME_CMD_SGL_METABUF;
831 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
832 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
833 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
834 return BLK_STS_OK;
835 }
836
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838 struct nvme_command *cmnd)
839 {
840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 blk_status_t ret = BLK_STS_RESOURCE;
842 int nr_mapped;
843
844 if (blk_rq_nr_phys_segments(req) == 1) {
845 struct bio_vec bv = req_bvec(req);
846
847 if (!is_pci_p2pdma_page(bv.bv_page)) {
848 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
849 return nvme_setup_prp_simple(dev, req,
850 &cmnd->rw, &bv);
851
852 if (iod->nvmeq->qid && sgl_threshold &&
853 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
854 return nvme_setup_sgl_simple(dev, req,
855 &cmnd->rw, &bv);
856 }
857 }
858
859 iod->dma_len = 0;
860 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
861 if (!iod->sg)
862 return BLK_STS_RESOURCE;
863 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
864 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
865 if (!iod->nents)
866 goto out_free_sg;
867
868 if (is_pci_p2pdma_page(sg_page(iod->sg)))
869 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
870 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
871 else
872 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
873 rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 if (!nr_mapped)
875 goto out_free_sg;
876
877 iod->use_sgl = nvme_pci_use_sgls(dev, req);
878 if (iod->use_sgl)
879 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
880 else
881 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
882 if (ret != BLK_STS_OK)
883 goto out_unmap_sg;
884 return BLK_STS_OK;
885
886 out_unmap_sg:
887 nvme_unmap_sg(dev, req);
888 out_free_sg:
889 mempool_free(iod->sg, dev->iod_mempool);
890 return ret;
891 }
892
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)893 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
894 struct nvme_command *cmnd)
895 {
896 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897
898 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
899 rq_dma_dir(req), 0);
900 if (dma_mapping_error(dev->dev, iod->meta_dma))
901 return BLK_STS_IOERR;
902 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
903 return BLK_STS_OK;
904 }
905
906 /*
907 * NOTE: ns is NULL when called on the admin queue.
908 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)909 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
910 const struct blk_mq_queue_data *bd)
911 {
912 struct nvme_ns *ns = hctx->queue->queuedata;
913 struct nvme_queue *nvmeq = hctx->driver_data;
914 struct nvme_dev *dev = nvmeq->dev;
915 struct request *req = bd->rq;
916 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 struct nvme_command *cmnd = &iod->cmd;
918 blk_status_t ret;
919
920 iod->aborted = 0;
921 iod->npages = -1;
922 iod->nents = 0;
923
924 /*
925 * We should not need to do this, but we're still using this to
926 * ensure we can drain requests on a dying queue.
927 */
928 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
929 return BLK_STS_IOERR;
930
931 ret = nvme_setup_cmd(ns, req, cmnd);
932 if (ret)
933 return ret;
934
935 if (blk_rq_nr_phys_segments(req)) {
936 ret = nvme_map_data(dev, req, cmnd);
937 if (ret)
938 goto out_free_cmd;
939 }
940
941 if (blk_integrity_rq(req)) {
942 ret = nvme_map_metadata(dev, req, cmnd);
943 if (ret)
944 goto out_unmap_data;
945 }
946
947 blk_mq_start_request(req);
948 nvme_submit_cmd(nvmeq, cmnd, bd->last);
949 return BLK_STS_OK;
950 out_unmap_data:
951 if (blk_rq_nr_phys_segments(req))
952 nvme_unmap_data(dev, req);
953 out_free_cmd:
954 nvme_cleanup_cmd(req);
955 return ret;
956 }
957
nvme_pci_complete_rq(struct request * req)958 static void nvme_pci_complete_rq(struct request *req)
959 {
960 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
961 struct nvme_dev *dev = iod->nvmeq->dev;
962
963 if (blk_integrity_rq(req))
964 dma_unmap_page(dev->dev, iod->meta_dma,
965 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
966
967 if (blk_rq_nr_phys_segments(req))
968 nvme_unmap_data(dev, req);
969 nvme_complete_rq(req);
970 }
971
972 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)973 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
974 {
975 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
976
977 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
978 }
979
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)980 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
981 {
982 u16 head = nvmeq->cq_head;
983
984 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
985 nvmeq->dbbuf_cq_ei))
986 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
987 }
988
nvme_queue_tagset(struct nvme_queue * nvmeq)989 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
990 {
991 if (!nvmeq->qid)
992 return nvmeq->dev->admin_tagset.tags[0];
993 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
994 }
995
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)996 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
997 {
998 struct nvme_completion *cqe = &nvmeq->cqes[idx];
999 __u16 command_id = READ_ONCE(cqe->command_id);
1000 struct request *req;
1001
1002 /*
1003 * AEN requests are special as they don't time out and can
1004 * survive any kind of queue freeze and often don't respond to
1005 * aborts. We don't even bother to allocate a struct request
1006 * for them but rather special case them here.
1007 */
1008 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1009 nvme_complete_async_event(&nvmeq->dev->ctrl,
1010 cqe->status, &cqe->result);
1011 return;
1012 }
1013
1014 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1015 if (unlikely(!req)) {
1016 dev_warn(nvmeq->dev->ctrl.device,
1017 "invalid id %d completed on queue %d\n",
1018 command_id, le16_to_cpu(cqe->sq_id));
1019 return;
1020 }
1021
1022 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1023 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1024 nvme_pci_complete_rq(req);
1025 }
1026
nvme_update_cq_head(struct nvme_queue * nvmeq)1027 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1028 {
1029 u32 tmp = nvmeq->cq_head + 1;
1030
1031 if (tmp == nvmeq->q_depth) {
1032 nvmeq->cq_head = 0;
1033 nvmeq->cq_phase ^= 1;
1034 } else {
1035 nvmeq->cq_head = tmp;
1036 }
1037 }
1038
nvme_process_cq(struct nvme_queue * nvmeq)1039 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1040 {
1041 int found = 0;
1042
1043 while (nvme_cqe_pending(nvmeq)) {
1044 found++;
1045 /*
1046 * load-load control dependency between phase and the rest of
1047 * the cqe requires a full read memory barrier
1048 */
1049 dma_rmb();
1050 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1051 nvme_update_cq_head(nvmeq);
1052 }
1053
1054 if (found)
1055 nvme_ring_cq_doorbell(nvmeq);
1056 return found;
1057 }
1058
nvme_irq(int irq,void * data)1059 static irqreturn_t nvme_irq(int irq, void *data)
1060 {
1061 struct nvme_queue *nvmeq = data;
1062 irqreturn_t ret = IRQ_NONE;
1063
1064 /*
1065 * The rmb/wmb pair ensures we see all updates from a previous run of
1066 * the irq handler, even if that was on another CPU.
1067 */
1068 rmb();
1069 if (nvme_process_cq(nvmeq))
1070 ret = IRQ_HANDLED;
1071 wmb();
1072
1073 return ret;
1074 }
1075
nvme_irq_check(int irq,void * data)1076 static irqreturn_t nvme_irq_check(int irq, void *data)
1077 {
1078 struct nvme_queue *nvmeq = data;
1079
1080 if (nvme_cqe_pending(nvmeq))
1081 return IRQ_WAKE_THREAD;
1082 return IRQ_NONE;
1083 }
1084
1085 /*
1086 * Poll for completions for any interrupt driven queue
1087 * Can be called from any context.
1088 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1089 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1090 {
1091 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1092
1093 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1094
1095 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1096 nvme_process_cq(nvmeq);
1097 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1098 }
1099
nvme_poll(struct blk_mq_hw_ctx * hctx)1100 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1101 {
1102 struct nvme_queue *nvmeq = hctx->driver_data;
1103 bool found;
1104
1105 if (!nvme_cqe_pending(nvmeq))
1106 return 0;
1107
1108 spin_lock(&nvmeq->cq_poll_lock);
1109 found = nvme_process_cq(nvmeq);
1110 spin_unlock(&nvmeq->cq_poll_lock);
1111
1112 return found;
1113 }
1114
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1115 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1116 {
1117 struct nvme_dev *dev = to_nvme_dev(ctrl);
1118 struct nvme_queue *nvmeq = &dev->queues[0];
1119 struct nvme_command c;
1120
1121 memset(&c, 0, sizeof(c));
1122 c.common.opcode = nvme_admin_async_event;
1123 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1124 nvme_submit_cmd(nvmeq, &c, true);
1125 }
1126
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1127 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1128 {
1129 struct nvme_command c;
1130
1131 memset(&c, 0, sizeof(c));
1132 c.delete_queue.opcode = opcode;
1133 c.delete_queue.qid = cpu_to_le16(id);
1134
1135 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1136 }
1137
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1138 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1139 struct nvme_queue *nvmeq, s16 vector)
1140 {
1141 struct nvme_command c;
1142 int flags = NVME_QUEUE_PHYS_CONTIG;
1143
1144 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1145 flags |= NVME_CQ_IRQ_ENABLED;
1146
1147 /*
1148 * Note: we (ab)use the fact that the prp fields survive if no data
1149 * is attached to the request.
1150 */
1151 memset(&c, 0, sizeof(c));
1152 c.create_cq.opcode = nvme_admin_create_cq;
1153 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1154 c.create_cq.cqid = cpu_to_le16(qid);
1155 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156 c.create_cq.cq_flags = cpu_to_le16(flags);
1157 c.create_cq.irq_vector = cpu_to_le16(vector);
1158
1159 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1160 }
1161
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1162 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1163 struct nvme_queue *nvmeq)
1164 {
1165 struct nvme_ctrl *ctrl = &dev->ctrl;
1166 struct nvme_command c;
1167 int flags = NVME_QUEUE_PHYS_CONTIG;
1168
1169 /*
1170 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1171 * set. Since URGENT priority is zeroes, it makes all queues
1172 * URGENT.
1173 */
1174 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1175 flags |= NVME_SQ_PRIO_MEDIUM;
1176
1177 /*
1178 * Note: we (ab)use the fact that the prp fields survive if no data
1179 * is attached to the request.
1180 */
1181 memset(&c, 0, sizeof(c));
1182 c.create_sq.opcode = nvme_admin_create_sq;
1183 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1184 c.create_sq.sqid = cpu_to_le16(qid);
1185 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1186 c.create_sq.sq_flags = cpu_to_le16(flags);
1187 c.create_sq.cqid = cpu_to_le16(qid);
1188
1189 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1190 }
1191
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1192 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1193 {
1194 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1195 }
1196
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1197 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1198 {
1199 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1200 }
1201
abort_endio(struct request * req,blk_status_t error)1202 static void abort_endio(struct request *req, blk_status_t error)
1203 {
1204 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1205 struct nvme_queue *nvmeq = iod->nvmeq;
1206
1207 dev_warn(nvmeq->dev->ctrl.device,
1208 "Abort status: 0x%x", nvme_req(req)->status);
1209 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1210 blk_mq_free_request(req);
1211 }
1212
nvme_should_reset(struct nvme_dev * dev,u32 csts)1213 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1214 {
1215 /* If true, indicates loss of adapter communication, possibly by a
1216 * NVMe Subsystem reset.
1217 */
1218 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1219
1220 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1221 switch (dev->ctrl.state) {
1222 case NVME_CTRL_RESETTING:
1223 case NVME_CTRL_CONNECTING:
1224 return false;
1225 default:
1226 break;
1227 }
1228
1229 /* We shouldn't reset unless the controller is on fatal error state
1230 * _or_ if we lost the communication with it.
1231 */
1232 if (!(csts & NVME_CSTS_CFS) && !nssro)
1233 return false;
1234
1235 return true;
1236 }
1237
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1238 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1239 {
1240 /* Read a config register to help see what died. */
1241 u16 pci_status;
1242 int result;
1243
1244 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1245 &pci_status);
1246 if (result == PCIBIOS_SUCCESSFUL)
1247 dev_warn(dev->ctrl.device,
1248 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1249 csts, pci_status);
1250 else
1251 dev_warn(dev->ctrl.device,
1252 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1253 csts, result);
1254 }
1255
nvme_timeout(struct request * req,bool reserved)1256 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1257 {
1258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1259 struct nvme_queue *nvmeq = iod->nvmeq;
1260 struct nvme_dev *dev = nvmeq->dev;
1261 struct request *abort_req;
1262 struct nvme_command cmd;
1263 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1264
1265 /* If PCI error recovery process is happening, we cannot reset or
1266 * the recovery mechanism will surely fail.
1267 */
1268 mb();
1269 if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 return BLK_EH_RESET_TIMER;
1271
1272 /*
1273 * Reset immediately if the controller is failed
1274 */
1275 if (nvme_should_reset(dev, csts)) {
1276 nvme_warn_reset(dev, csts);
1277 nvme_dev_disable(dev, false);
1278 nvme_reset_ctrl(&dev->ctrl);
1279 return BLK_EH_DONE;
1280 }
1281
1282 /*
1283 * Did we miss an interrupt?
1284 */
1285 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1286 nvme_poll(req->mq_hctx);
1287 else
1288 nvme_poll_irqdisable(nvmeq);
1289
1290 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1291 dev_warn(dev->ctrl.device,
1292 "I/O %d QID %d timeout, completion polled\n",
1293 req->tag, nvmeq->qid);
1294 return BLK_EH_DONE;
1295 }
1296
1297 /*
1298 * Shutdown immediately if controller times out while starting. The
1299 * reset work will see the pci device disabled when it gets the forced
1300 * cancellation error. All outstanding requests are completed on
1301 * shutdown, so we return BLK_EH_DONE.
1302 */
1303 switch (dev->ctrl.state) {
1304 case NVME_CTRL_CONNECTING:
1305 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1306 fallthrough;
1307 case NVME_CTRL_DELETING:
1308 dev_warn_ratelimited(dev->ctrl.device,
1309 "I/O %d QID %d timeout, disable controller\n",
1310 req->tag, nvmeq->qid);
1311 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1312 nvme_dev_disable(dev, true);
1313 return BLK_EH_DONE;
1314 case NVME_CTRL_RESETTING:
1315 return BLK_EH_RESET_TIMER;
1316 default:
1317 break;
1318 }
1319
1320 /*
1321 * Shutdown the controller immediately and schedule a reset if the
1322 * command was already aborted once before and still hasn't been
1323 * returned to the driver, or if this is the admin queue.
1324 */
1325 if (!nvmeq->qid || iod->aborted) {
1326 dev_warn(dev->ctrl.device,
1327 "I/O %d QID %d timeout, reset controller\n",
1328 req->tag, nvmeq->qid);
1329 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1330 nvme_dev_disable(dev, false);
1331 nvme_reset_ctrl(&dev->ctrl);
1332
1333 return BLK_EH_DONE;
1334 }
1335
1336 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1337 atomic_inc(&dev->ctrl.abort_limit);
1338 return BLK_EH_RESET_TIMER;
1339 }
1340 iod->aborted = 1;
1341
1342 memset(&cmd, 0, sizeof(cmd));
1343 cmd.abort.opcode = nvme_admin_abort_cmd;
1344 cmd.abort.cid = nvme_cid(req);
1345 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1346
1347 dev_warn(nvmeq->dev->ctrl.device,
1348 "I/O %d QID %d timeout, aborting\n",
1349 req->tag, nvmeq->qid);
1350
1351 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1352 BLK_MQ_REQ_NOWAIT);
1353 if (IS_ERR(abort_req)) {
1354 atomic_inc(&dev->ctrl.abort_limit);
1355 return BLK_EH_RESET_TIMER;
1356 }
1357
1358 abort_req->end_io_data = NULL;
1359 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1360
1361 /*
1362 * The aborted req will be completed on receiving the abort req.
1363 * We enable the timer again. If hit twice, it'll cause a device reset,
1364 * as the device then is in a faulty state.
1365 */
1366 return BLK_EH_RESET_TIMER;
1367 }
1368
nvme_free_queue(struct nvme_queue * nvmeq)1369 static void nvme_free_queue(struct nvme_queue *nvmeq)
1370 {
1371 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1372 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1373 if (!nvmeq->sq_cmds)
1374 return;
1375
1376 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1377 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1378 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1379 } else {
1380 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1381 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1382 }
1383 }
1384
nvme_free_queues(struct nvme_dev * dev,int lowest)1385 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1386 {
1387 int i;
1388
1389 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1390 dev->ctrl.queue_count--;
1391 nvme_free_queue(&dev->queues[i]);
1392 }
1393 }
1394
1395 /**
1396 * nvme_suspend_queue - put queue into suspended state
1397 * @nvmeq: queue to suspend
1398 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1399 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1400 {
1401 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1402 return 1;
1403
1404 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1405 mb();
1406
1407 nvmeq->dev->online_queues--;
1408 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1409 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1410 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1411 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1412 return 0;
1413 }
1414
nvme_suspend_io_queues(struct nvme_dev * dev)1415 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1416 {
1417 int i;
1418
1419 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1420 nvme_suspend_queue(&dev->queues[i]);
1421 }
1422
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1423 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1424 {
1425 struct nvme_queue *nvmeq = &dev->queues[0];
1426
1427 if (shutdown)
1428 nvme_shutdown_ctrl(&dev->ctrl);
1429 else
1430 nvme_disable_ctrl(&dev->ctrl);
1431
1432 nvme_poll_irqdisable(nvmeq);
1433 }
1434
1435 /*
1436 * Called only on a device that has been disabled and after all other threads
1437 * that can check this device's completion queues have synced, except
1438 * nvme_poll(). This is the last chance for the driver to see a natural
1439 * completion before nvme_cancel_request() terminates all incomplete requests.
1440 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1441 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1442 {
1443 int i;
1444
1445 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1446 spin_lock(&dev->queues[i].cq_poll_lock);
1447 nvme_process_cq(&dev->queues[i]);
1448 spin_unlock(&dev->queues[i].cq_poll_lock);
1449 }
1450 }
1451
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1452 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1453 int entry_size)
1454 {
1455 int q_depth = dev->q_depth;
1456 unsigned q_size_aligned = roundup(q_depth * entry_size,
1457 NVME_CTRL_PAGE_SIZE);
1458
1459 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1460 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1461
1462 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1463 q_depth = div_u64(mem_per_q, entry_size);
1464
1465 /*
1466 * Ensure the reduced q_depth is above some threshold where it
1467 * would be better to map queues in system memory with the
1468 * original depth
1469 */
1470 if (q_depth < 64)
1471 return -ENOMEM;
1472 }
1473
1474 return q_depth;
1475 }
1476
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1477 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1478 int qid)
1479 {
1480 struct pci_dev *pdev = to_pci_dev(dev->dev);
1481
1482 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1483 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1484 if (nvmeq->sq_cmds) {
1485 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1486 nvmeq->sq_cmds);
1487 if (nvmeq->sq_dma_addr) {
1488 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1489 return 0;
1490 }
1491
1492 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1493 }
1494 }
1495
1496 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1497 &nvmeq->sq_dma_addr, GFP_KERNEL);
1498 if (!nvmeq->sq_cmds)
1499 return -ENOMEM;
1500 return 0;
1501 }
1502
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1503 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1504 {
1505 struct nvme_queue *nvmeq = &dev->queues[qid];
1506
1507 if (dev->ctrl.queue_count > qid)
1508 return 0;
1509
1510 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1511 nvmeq->q_depth = depth;
1512 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1513 &nvmeq->cq_dma_addr, GFP_KERNEL);
1514 if (!nvmeq->cqes)
1515 goto free_nvmeq;
1516
1517 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1518 goto free_cqdma;
1519
1520 nvmeq->dev = dev;
1521 spin_lock_init(&nvmeq->sq_lock);
1522 spin_lock_init(&nvmeq->cq_poll_lock);
1523 nvmeq->cq_head = 0;
1524 nvmeq->cq_phase = 1;
1525 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1526 nvmeq->qid = qid;
1527 dev->ctrl.queue_count++;
1528
1529 return 0;
1530
1531 free_cqdma:
1532 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1533 nvmeq->cq_dma_addr);
1534 free_nvmeq:
1535 return -ENOMEM;
1536 }
1537
queue_request_irq(struct nvme_queue * nvmeq)1538 static int queue_request_irq(struct nvme_queue *nvmeq)
1539 {
1540 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1541 int nr = nvmeq->dev->ctrl.instance;
1542
1543 if (use_threaded_interrupts) {
1544 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1545 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1546 } else {
1547 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1548 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1549 }
1550 }
1551
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1552 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1553 {
1554 struct nvme_dev *dev = nvmeq->dev;
1555
1556 nvmeq->sq_tail = 0;
1557 nvmeq->last_sq_tail = 0;
1558 nvmeq->cq_head = 0;
1559 nvmeq->cq_phase = 1;
1560 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1561 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1562 nvme_dbbuf_init(dev, nvmeq, qid);
1563 dev->online_queues++;
1564 wmb(); /* ensure the first interrupt sees the initialization */
1565 }
1566
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1567 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1568 {
1569 struct nvme_dev *dev = nvmeq->dev;
1570 int result;
1571 u16 vector = 0;
1572
1573 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1574
1575 /*
1576 * A queue's vector matches the queue identifier unless the controller
1577 * has only one vector available.
1578 */
1579 if (!polled)
1580 vector = dev->num_vecs == 1 ? 0 : qid;
1581 else
1582 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1583
1584 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1585 if (result)
1586 return result;
1587
1588 result = adapter_alloc_sq(dev, qid, nvmeq);
1589 if (result < 0)
1590 return result;
1591 if (result)
1592 goto release_cq;
1593
1594 nvmeq->cq_vector = vector;
1595 nvme_init_queue(nvmeq, qid);
1596
1597 if (!polled) {
1598 result = queue_request_irq(nvmeq);
1599 if (result < 0)
1600 goto release_sq;
1601 }
1602
1603 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1604 return result;
1605
1606 release_sq:
1607 dev->online_queues--;
1608 adapter_delete_sq(dev, qid);
1609 release_cq:
1610 adapter_delete_cq(dev, qid);
1611 return result;
1612 }
1613
1614 static const struct blk_mq_ops nvme_mq_admin_ops = {
1615 .queue_rq = nvme_queue_rq,
1616 .complete = nvme_pci_complete_rq,
1617 .init_hctx = nvme_admin_init_hctx,
1618 .init_request = nvme_init_request,
1619 .timeout = nvme_timeout,
1620 };
1621
1622 static const struct blk_mq_ops nvme_mq_ops = {
1623 .queue_rq = nvme_queue_rq,
1624 .complete = nvme_pci_complete_rq,
1625 .commit_rqs = nvme_commit_rqs,
1626 .init_hctx = nvme_init_hctx,
1627 .init_request = nvme_init_request,
1628 .map_queues = nvme_pci_map_queues,
1629 .timeout = nvme_timeout,
1630 .poll = nvme_poll,
1631 };
1632
nvme_dev_remove_admin(struct nvme_dev * dev)1633 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1634 {
1635 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1636 /*
1637 * If the controller was reset during removal, it's possible
1638 * user requests may be waiting on a stopped queue. Start the
1639 * queue to flush these to completion.
1640 */
1641 nvme_start_admin_queue(&dev->ctrl);
1642 blk_cleanup_queue(dev->ctrl.admin_q);
1643 blk_mq_free_tag_set(&dev->admin_tagset);
1644 }
1645 }
1646
nvme_alloc_admin_tags(struct nvme_dev * dev)1647 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1648 {
1649 if (!dev->ctrl.admin_q) {
1650 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1651 dev->admin_tagset.nr_hw_queues = 1;
1652
1653 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1654 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1655 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1656 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1657 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1658 dev->admin_tagset.driver_data = dev;
1659
1660 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1661 return -ENOMEM;
1662 dev->ctrl.admin_tagset = &dev->admin_tagset;
1663
1664 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1665 if (IS_ERR(dev->ctrl.admin_q)) {
1666 blk_mq_free_tag_set(&dev->admin_tagset);
1667 dev->ctrl.admin_q = NULL;
1668 return -ENOMEM;
1669 }
1670 if (!blk_get_queue(dev->ctrl.admin_q)) {
1671 nvme_dev_remove_admin(dev);
1672 dev->ctrl.admin_q = NULL;
1673 return -ENODEV;
1674 }
1675 } else
1676 nvme_start_admin_queue(&dev->ctrl);
1677
1678 return 0;
1679 }
1680
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1681 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1682 {
1683 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1684 }
1685
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1686 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1687 {
1688 struct pci_dev *pdev = to_pci_dev(dev->dev);
1689
1690 if (size <= dev->bar_mapped_size)
1691 return 0;
1692 if (size > pci_resource_len(pdev, 0))
1693 return -ENOMEM;
1694 if (dev->bar)
1695 iounmap(dev->bar);
1696 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1697 if (!dev->bar) {
1698 dev->bar_mapped_size = 0;
1699 return -ENOMEM;
1700 }
1701 dev->bar_mapped_size = size;
1702 dev->dbs = dev->bar + NVME_REG_DBS;
1703
1704 return 0;
1705 }
1706
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1707 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1708 {
1709 int result;
1710 u32 aqa;
1711 struct nvme_queue *nvmeq;
1712
1713 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1714 if (result < 0)
1715 return result;
1716
1717 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1718 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1719
1720 if (dev->subsystem &&
1721 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1722 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1723
1724 result = nvme_disable_ctrl(&dev->ctrl);
1725 if (result < 0)
1726 return result;
1727
1728 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1729 if (result)
1730 return result;
1731
1732 dev->ctrl.numa_node = dev_to_node(dev->dev);
1733
1734 nvmeq = &dev->queues[0];
1735 aqa = nvmeq->q_depth - 1;
1736 aqa |= aqa << 16;
1737
1738 writel(aqa, dev->bar + NVME_REG_AQA);
1739 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1740 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1741
1742 result = nvme_enable_ctrl(&dev->ctrl);
1743 if (result)
1744 return result;
1745
1746 nvmeq->cq_vector = 0;
1747 nvme_init_queue(nvmeq, 0);
1748 result = queue_request_irq(nvmeq);
1749 if (result) {
1750 dev->online_queues--;
1751 return result;
1752 }
1753
1754 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1755 return result;
1756 }
1757
nvme_create_io_queues(struct nvme_dev * dev)1758 static int nvme_create_io_queues(struct nvme_dev *dev)
1759 {
1760 unsigned i, max, rw_queues;
1761 int ret = 0;
1762
1763 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1764 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1765 ret = -ENOMEM;
1766 break;
1767 }
1768 }
1769
1770 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1771 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1772 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1773 dev->io_queues[HCTX_TYPE_READ];
1774 } else {
1775 rw_queues = max;
1776 }
1777
1778 for (i = dev->online_queues; i <= max; i++) {
1779 bool polled = i > rw_queues;
1780
1781 ret = nvme_create_queue(&dev->queues[i], i, polled);
1782 if (ret)
1783 break;
1784 }
1785
1786 /*
1787 * Ignore failing Create SQ/CQ commands, we can continue with less
1788 * than the desired amount of queues, and even a controller without
1789 * I/O queues can still be used to issue admin commands. This might
1790 * be useful to upgrade a buggy firmware for example.
1791 */
1792 return ret >= 0 ? 0 : ret;
1793 }
1794
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1795 static ssize_t nvme_cmb_show(struct device *dev,
1796 struct device_attribute *attr,
1797 char *buf)
1798 {
1799 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1800
1801 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1802 ndev->cmbloc, ndev->cmbsz);
1803 }
1804 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1805
nvme_cmb_size_unit(struct nvme_dev * dev)1806 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1807 {
1808 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1809
1810 return 1ULL << (12 + 4 * szu);
1811 }
1812
nvme_cmb_size(struct nvme_dev * dev)1813 static u32 nvme_cmb_size(struct nvme_dev *dev)
1814 {
1815 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1816 }
1817
nvme_map_cmb(struct nvme_dev * dev)1818 static void nvme_map_cmb(struct nvme_dev *dev)
1819 {
1820 u64 size, offset;
1821 resource_size_t bar_size;
1822 struct pci_dev *pdev = to_pci_dev(dev->dev);
1823 int bar;
1824
1825 if (dev->cmb_size)
1826 return;
1827
1828 if (NVME_CAP_CMBS(dev->ctrl.cap))
1829 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1830
1831 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1832 if (!dev->cmbsz)
1833 return;
1834 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1835
1836 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1837 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1838 bar = NVME_CMB_BIR(dev->cmbloc);
1839 bar_size = pci_resource_len(pdev, bar);
1840
1841 if (offset > bar_size)
1842 return;
1843
1844 /*
1845 * Tell the controller about the host side address mapping the CMB,
1846 * and enable CMB decoding for the NVMe 1.4+ scheme:
1847 */
1848 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1849 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1850 (pci_bus_address(pdev, bar) + offset),
1851 dev->bar + NVME_REG_CMBMSC);
1852 }
1853
1854 /*
1855 * Controllers may support a CMB size larger than their BAR,
1856 * for example, due to being behind a bridge. Reduce the CMB to
1857 * the reported size of the BAR
1858 */
1859 if (size > bar_size - offset)
1860 size = bar_size - offset;
1861
1862 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1863 dev_warn(dev->ctrl.device,
1864 "failed to register the CMB\n");
1865 return;
1866 }
1867
1868 dev->cmb_size = size;
1869 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1870
1871 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1872 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1873 pci_p2pmem_publish(pdev, true);
1874
1875 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1876 &dev_attr_cmb.attr, NULL))
1877 dev_warn(dev->ctrl.device,
1878 "failed to add sysfs attribute for CMB\n");
1879 }
1880
nvme_release_cmb(struct nvme_dev * dev)1881 static inline void nvme_release_cmb(struct nvme_dev *dev)
1882 {
1883 if (dev->cmb_size) {
1884 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1885 &dev_attr_cmb.attr, NULL);
1886 dev->cmb_size = 0;
1887 }
1888 }
1889
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1891 {
1892 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1893 u64 dma_addr = dev->host_mem_descs_dma;
1894 struct nvme_command c;
1895 int ret;
1896
1897 memset(&c, 0, sizeof(c));
1898 c.features.opcode = nvme_admin_set_features;
1899 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1900 c.features.dword11 = cpu_to_le32(bits);
1901 c.features.dword12 = cpu_to_le32(host_mem_size);
1902 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1903 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1904 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1905
1906 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1907 if (ret) {
1908 dev_warn(dev->ctrl.device,
1909 "failed to set host mem (err %d, flags %#x).\n",
1910 ret, bits);
1911 }
1912 return ret;
1913 }
1914
nvme_free_host_mem(struct nvme_dev * dev)1915 static void nvme_free_host_mem(struct nvme_dev *dev)
1916 {
1917 int i;
1918
1919 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1920 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1921 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1922
1923 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1924 le64_to_cpu(desc->addr),
1925 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926 }
1927
1928 kfree(dev->host_mem_desc_bufs);
1929 dev->host_mem_desc_bufs = NULL;
1930 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1931 dev->host_mem_descs, dev->host_mem_descs_dma);
1932 dev->host_mem_descs = NULL;
1933 dev->host_mem_descs_size = 0;
1934 dev->nr_host_mem_descs = 0;
1935 }
1936
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1937 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1938 u32 chunk_size)
1939 {
1940 struct nvme_host_mem_buf_desc *descs;
1941 u32 max_entries, len, descs_size;
1942 dma_addr_t descs_dma;
1943 int i = 0;
1944 void **bufs;
1945 u64 size, tmp;
1946
1947 tmp = (preferred + chunk_size - 1);
1948 do_div(tmp, chunk_size);
1949 max_entries = tmp;
1950
1951 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1952 max_entries = dev->ctrl.hmmaxd;
1953
1954 descs_size = max_entries * sizeof(*descs);
1955 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1956 GFP_KERNEL);
1957 if (!descs)
1958 goto out;
1959
1960 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1961 if (!bufs)
1962 goto out_free_descs;
1963
1964 for (size = 0; size < preferred && i < max_entries; size += len) {
1965 dma_addr_t dma_addr;
1966
1967 len = min_t(u64, chunk_size, preferred - size);
1968 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1969 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970 if (!bufs[i])
1971 break;
1972
1973 descs[i].addr = cpu_to_le64(dma_addr);
1974 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1975 i++;
1976 }
1977
1978 if (!size)
1979 goto out_free_bufs;
1980
1981 dev->nr_host_mem_descs = i;
1982 dev->host_mem_size = size;
1983 dev->host_mem_descs = descs;
1984 dev->host_mem_descs_dma = descs_dma;
1985 dev->host_mem_descs_size = descs_size;
1986 dev->host_mem_desc_bufs = bufs;
1987 return 0;
1988
1989 out_free_bufs:
1990 while (--i >= 0) {
1991 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1992
1993 dma_free_attrs(dev->dev, size, bufs[i],
1994 le64_to_cpu(descs[i].addr),
1995 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1996 }
1997
1998 kfree(bufs);
1999 out_free_descs:
2000 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2001 out:
2002 dev->host_mem_descs = NULL;
2003 return -ENOMEM;
2004 }
2005
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2006 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2007 {
2008 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2009 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2010 u64 chunk_size;
2011
2012 /* start big and work our way down */
2013 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2014 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2015 if (!min || dev->host_mem_size >= min)
2016 return 0;
2017 nvme_free_host_mem(dev);
2018 }
2019 }
2020
2021 return -ENOMEM;
2022 }
2023
nvme_setup_host_mem(struct nvme_dev * dev)2024 static int nvme_setup_host_mem(struct nvme_dev *dev)
2025 {
2026 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2027 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2028 u64 min = (u64)dev->ctrl.hmmin * 4096;
2029 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2030 int ret;
2031
2032 preferred = min(preferred, max);
2033 if (min > max) {
2034 dev_warn(dev->ctrl.device,
2035 "min host memory (%lld MiB) above limit (%d MiB).\n",
2036 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2037 nvme_free_host_mem(dev);
2038 return 0;
2039 }
2040
2041 /*
2042 * If we already have a buffer allocated check if we can reuse it.
2043 */
2044 if (dev->host_mem_descs) {
2045 if (dev->host_mem_size >= min)
2046 enable_bits |= NVME_HOST_MEM_RETURN;
2047 else
2048 nvme_free_host_mem(dev);
2049 }
2050
2051 if (!dev->host_mem_descs) {
2052 if (nvme_alloc_host_mem(dev, min, preferred)) {
2053 dev_warn(dev->ctrl.device,
2054 "failed to allocate host memory buffer.\n");
2055 return 0; /* controller must work without HMB */
2056 }
2057
2058 dev_info(dev->ctrl.device,
2059 "allocated %lld MiB host memory buffer.\n",
2060 dev->host_mem_size >> ilog2(SZ_1M));
2061 }
2062
2063 ret = nvme_set_host_mem(dev, enable_bits);
2064 if (ret)
2065 nvme_free_host_mem(dev);
2066 return ret;
2067 }
2068
2069 /*
2070 * nirqs is the number of interrupts available for write and read
2071 * queues. The core already reserved an interrupt for the admin queue.
2072 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2073 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2074 {
2075 struct nvme_dev *dev = affd->priv;
2076 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2077
2078 /*
2079 * If there is no interrupt available for queues, ensure that
2080 * the default queue is set to 1. The affinity set size is
2081 * also set to one, but the irq core ignores it for this case.
2082 *
2083 * If only one interrupt is available or 'write_queue' == 0, combine
2084 * write and read queues.
2085 *
2086 * If 'write_queues' > 0, ensure it leaves room for at least one read
2087 * queue.
2088 */
2089 if (!nrirqs) {
2090 nrirqs = 1;
2091 nr_read_queues = 0;
2092 } else if (nrirqs == 1 || !nr_write_queues) {
2093 nr_read_queues = 0;
2094 } else if (nr_write_queues >= nrirqs) {
2095 nr_read_queues = 1;
2096 } else {
2097 nr_read_queues = nrirqs - nr_write_queues;
2098 }
2099
2100 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2101 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2102 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2103 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2104 affd->nr_sets = nr_read_queues ? 2 : 1;
2105 }
2106
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2107 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2108 {
2109 struct pci_dev *pdev = to_pci_dev(dev->dev);
2110 struct irq_affinity affd = {
2111 .pre_vectors = 1,
2112 .calc_sets = nvme_calc_irq_sets,
2113 .priv = dev,
2114 };
2115 unsigned int irq_queues, poll_queues;
2116
2117 /*
2118 * Poll queues don't need interrupts, but we need at least one I/O queue
2119 * left over for non-polled I/O.
2120 */
2121 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2122 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2123
2124 /*
2125 * Initialize for the single interrupt case, will be updated in
2126 * nvme_calc_irq_sets().
2127 */
2128 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2129 dev->io_queues[HCTX_TYPE_READ] = 0;
2130
2131 /*
2132 * We need interrupts for the admin queue and each non-polled I/O queue,
2133 * but some Apple controllers require all queues to use the first
2134 * vector.
2135 */
2136 irq_queues = 1;
2137 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2138 irq_queues += (nr_io_queues - poll_queues);
2139 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2140 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2141 }
2142
nvme_disable_io_queues(struct nvme_dev * dev)2143 static void nvme_disable_io_queues(struct nvme_dev *dev)
2144 {
2145 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2146 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2147 }
2148
nvme_max_io_queues(struct nvme_dev * dev)2149 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2150 {
2151 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2152 }
2153
nvme_setup_io_queues(struct nvme_dev * dev)2154 static int nvme_setup_io_queues(struct nvme_dev *dev)
2155 {
2156 struct nvme_queue *adminq = &dev->queues[0];
2157 struct pci_dev *pdev = to_pci_dev(dev->dev);
2158 unsigned int nr_io_queues;
2159 unsigned long size;
2160 int result;
2161
2162 /*
2163 * Sample the module parameters once at reset time so that we have
2164 * stable values to work with.
2165 */
2166 dev->nr_write_queues = write_queues;
2167 dev->nr_poll_queues = poll_queues;
2168
2169 /*
2170 * If tags are shared with admin queue (Apple bug), then
2171 * make sure we only use one IO queue.
2172 */
2173 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2174 nr_io_queues = 1;
2175 else
2176 nr_io_queues = min(nvme_max_io_queues(dev),
2177 dev->nr_allocated_queues - 1);
2178
2179 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2180 if (result < 0)
2181 return result;
2182
2183 if (nr_io_queues == 0)
2184 return 0;
2185
2186 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2187
2188 if (dev->cmb_use_sqes) {
2189 result = nvme_cmb_qdepth(dev, nr_io_queues,
2190 sizeof(struct nvme_command));
2191 if (result > 0)
2192 dev->q_depth = result;
2193 else
2194 dev->cmb_use_sqes = false;
2195 }
2196
2197 do {
2198 size = db_bar_size(dev, nr_io_queues);
2199 result = nvme_remap_bar(dev, size);
2200 if (!result)
2201 break;
2202 if (!--nr_io_queues)
2203 return -ENOMEM;
2204 } while (1);
2205 adminq->q_db = dev->dbs;
2206
2207 retry:
2208 /* Deregister the admin queue's interrupt */
2209 pci_free_irq(pdev, 0, adminq);
2210
2211 /*
2212 * If we enable msix early due to not intx, disable it again before
2213 * setting up the full range we need.
2214 */
2215 pci_free_irq_vectors(pdev);
2216
2217 result = nvme_setup_irqs(dev, nr_io_queues);
2218 if (result <= 0)
2219 return -EIO;
2220
2221 dev->num_vecs = result;
2222 result = max(result - 1, 1);
2223 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2224
2225 /*
2226 * Should investigate if there's a performance win from allocating
2227 * more queues than interrupt vectors; it might allow the submission
2228 * path to scale better, even if the receive path is limited by the
2229 * number of interrupts.
2230 */
2231 result = queue_request_irq(adminq);
2232 if (result)
2233 return result;
2234 set_bit(NVMEQ_ENABLED, &adminq->flags);
2235
2236 result = nvme_create_io_queues(dev);
2237 if (result || dev->online_queues < 2)
2238 return result;
2239
2240 if (dev->online_queues - 1 < dev->max_qid) {
2241 nr_io_queues = dev->online_queues - 1;
2242 nvme_disable_io_queues(dev);
2243 nvme_suspend_io_queues(dev);
2244 goto retry;
2245 }
2246 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2247 dev->io_queues[HCTX_TYPE_DEFAULT],
2248 dev->io_queues[HCTX_TYPE_READ],
2249 dev->io_queues[HCTX_TYPE_POLL]);
2250 return 0;
2251 }
2252
nvme_del_queue_end(struct request * req,blk_status_t error)2253 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2254 {
2255 struct nvme_queue *nvmeq = req->end_io_data;
2256
2257 blk_mq_free_request(req);
2258 complete(&nvmeq->delete_done);
2259 }
2260
nvme_del_cq_end(struct request * req,blk_status_t error)2261 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2262 {
2263 struct nvme_queue *nvmeq = req->end_io_data;
2264
2265 if (error)
2266 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2267
2268 nvme_del_queue_end(req, error);
2269 }
2270
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2271 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2272 {
2273 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2274 struct request *req;
2275 struct nvme_command cmd;
2276
2277 memset(&cmd, 0, sizeof(cmd));
2278 cmd.delete_queue.opcode = opcode;
2279 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2280
2281 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2282 if (IS_ERR(req))
2283 return PTR_ERR(req);
2284
2285 req->end_io_data = nvmeq;
2286
2287 init_completion(&nvmeq->delete_done);
2288 blk_execute_rq_nowait(q, NULL, req, false,
2289 opcode == nvme_admin_delete_cq ?
2290 nvme_del_cq_end : nvme_del_queue_end);
2291 return 0;
2292 }
2293
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2294 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2295 {
2296 int nr_queues = dev->online_queues - 1, sent = 0;
2297 unsigned long timeout;
2298
2299 retry:
2300 timeout = ADMIN_TIMEOUT;
2301 while (nr_queues > 0) {
2302 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2303 break;
2304 nr_queues--;
2305 sent++;
2306 }
2307 while (sent) {
2308 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2309
2310 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2311 timeout);
2312 if (timeout == 0)
2313 return false;
2314
2315 sent--;
2316 if (nr_queues)
2317 goto retry;
2318 }
2319 return true;
2320 }
2321
nvme_pci_alloc_tag_set(struct nvme_dev * dev)2322 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2323 {
2324 struct blk_mq_tag_set * set = &dev->tagset;
2325 int ret;
2326
2327 set->ops = &nvme_mq_ops;
2328 set->nr_hw_queues = dev->online_queues - 1;
2329 set->nr_maps = 2; /* default + read */
2330 if (dev->io_queues[HCTX_TYPE_POLL])
2331 set->nr_maps++;
2332 set->timeout = NVME_IO_TIMEOUT;
2333 set->numa_node = dev->ctrl.numa_node;
2334 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2335 set->cmd_size = sizeof(struct nvme_iod);
2336 set->flags = BLK_MQ_F_SHOULD_MERGE;
2337 set->driver_data = dev;
2338
2339 /*
2340 * Some Apple controllers requires tags to be unique
2341 * across admin and IO queue, so reserve the first 32
2342 * tags of the IO queue.
2343 */
2344 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2345 set->reserved_tags = NVME_AQ_DEPTH;
2346
2347 ret = blk_mq_alloc_tag_set(set);
2348 if (ret) {
2349 dev_warn(dev->ctrl.device,
2350 "IO queues tagset allocation failed %d\n", ret);
2351 return;
2352 }
2353 dev->ctrl.tagset = set;
2354 }
2355
nvme_pci_update_nr_queues(struct nvme_dev * dev)2356 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2357 {
2358 /* Give up if we are racing with nvme_dev_disable() */
2359 if (!mutex_trylock(&dev->shutdown_lock))
2360 return false;
2361
2362 /* Check if nvme_dev_disable() has been executed already */
2363 if (!dev->online_queues) {
2364 mutex_unlock(&dev->shutdown_lock);
2365 return false;
2366 }
2367
2368 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2369 /* free previously allocated queues that are no longer usable */
2370 nvme_free_queues(dev, dev->online_queues);
2371 mutex_unlock(&dev->shutdown_lock);
2372 return true;
2373 }
2374
nvme_pci_enable(struct nvme_dev * dev)2375 static int nvme_pci_enable(struct nvme_dev *dev)
2376 {
2377 int result = -ENOMEM;
2378 struct pci_dev *pdev = to_pci_dev(dev->dev);
2379
2380 if (pci_enable_device_mem(pdev))
2381 return result;
2382
2383 pci_set_master(pdev);
2384
2385 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2386 goto disable;
2387
2388 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2389 result = -ENODEV;
2390 goto disable;
2391 }
2392
2393 /*
2394 * Some devices and/or platforms don't advertise or work with INTx
2395 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2396 * adjust this later.
2397 */
2398 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2399 if (result < 0)
2400 return result;
2401
2402 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2403
2404 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2405 io_queue_depth);
2406 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2407 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2408 dev->dbs = dev->bar + 4096;
2409
2410 /*
2411 * Some Apple controllers require a non-standard SQE size.
2412 * Interestingly they also seem to ignore the CC:IOSQES register
2413 * so we don't bother updating it here.
2414 */
2415 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2416 dev->io_sqes = 7;
2417 else
2418 dev->io_sqes = NVME_NVM_IOSQES;
2419
2420 /*
2421 * Temporary fix for the Apple controller found in the MacBook8,1 and
2422 * some MacBook7,1 to avoid controller resets and data loss.
2423 */
2424 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2425 dev->q_depth = 2;
2426 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2427 "set queue depth=%u to work around controller resets\n",
2428 dev->q_depth);
2429 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2430 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2431 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2432 dev->q_depth = 64;
2433 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2434 "set queue depth=%u\n", dev->q_depth);
2435 }
2436
2437 /*
2438 * Controllers with the shared tags quirk need the IO queue to be
2439 * big enough so that we get 32 tags for the admin queue
2440 */
2441 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2442 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2443 dev->q_depth = NVME_AQ_DEPTH + 2;
2444 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2445 dev->q_depth);
2446 }
2447
2448
2449 nvme_map_cmb(dev);
2450
2451 pci_enable_pcie_error_reporting(pdev);
2452 pci_save_state(pdev);
2453 return 0;
2454
2455 disable:
2456 pci_disable_device(pdev);
2457 return result;
2458 }
2459
nvme_dev_unmap(struct nvme_dev * dev)2460 static void nvme_dev_unmap(struct nvme_dev *dev)
2461 {
2462 if (dev->bar)
2463 iounmap(dev->bar);
2464 pci_release_mem_regions(to_pci_dev(dev->dev));
2465 }
2466
nvme_pci_disable(struct nvme_dev * dev)2467 static void nvme_pci_disable(struct nvme_dev *dev)
2468 {
2469 struct pci_dev *pdev = to_pci_dev(dev->dev);
2470
2471 pci_free_irq_vectors(pdev);
2472
2473 if (pci_is_enabled(pdev)) {
2474 pci_disable_pcie_error_reporting(pdev);
2475 pci_disable_device(pdev);
2476 }
2477 }
2478
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2479 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2480 {
2481 bool dead = true, freeze = false;
2482 struct pci_dev *pdev = to_pci_dev(dev->dev);
2483
2484 mutex_lock(&dev->shutdown_lock);
2485 if (pci_is_enabled(pdev)) {
2486 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2487
2488 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2489 dev->ctrl.state == NVME_CTRL_RESETTING) {
2490 freeze = true;
2491 nvme_start_freeze(&dev->ctrl);
2492 }
2493 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2494 pdev->error_state != pci_channel_io_normal);
2495 }
2496
2497 /*
2498 * Give the controller a chance to complete all entered requests if
2499 * doing a safe shutdown.
2500 */
2501 if (!dead && shutdown && freeze)
2502 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2503
2504 nvme_stop_queues(&dev->ctrl);
2505
2506 if (!dead && dev->ctrl.queue_count > 0) {
2507 nvme_disable_io_queues(dev);
2508 nvme_disable_admin_queue(dev, shutdown);
2509 }
2510 nvme_suspend_io_queues(dev);
2511 nvme_suspend_queue(&dev->queues[0]);
2512 nvme_pci_disable(dev);
2513 nvme_reap_pending_cqes(dev);
2514
2515 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2516 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2517 blk_mq_tagset_wait_completed_request(&dev->tagset);
2518 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2519
2520 /*
2521 * The driver will not be starting up queues again if shutting down so
2522 * must flush all entered requests to their failed completion to avoid
2523 * deadlocking blk-mq hot-cpu notifier.
2524 */
2525 if (shutdown) {
2526 nvme_start_queues(&dev->ctrl);
2527 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2528 nvme_start_admin_queue(&dev->ctrl);
2529 }
2530 mutex_unlock(&dev->shutdown_lock);
2531 }
2532
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2533 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2534 {
2535 if (!nvme_wait_reset(&dev->ctrl))
2536 return -EBUSY;
2537 nvme_dev_disable(dev, shutdown);
2538 return 0;
2539 }
2540
nvme_setup_prp_pools(struct nvme_dev * dev)2541 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2542 {
2543 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2544 NVME_CTRL_PAGE_SIZE,
2545 NVME_CTRL_PAGE_SIZE, 0);
2546 if (!dev->prp_page_pool)
2547 return -ENOMEM;
2548
2549 /* Optimisation for I/Os between 4k and 128k */
2550 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2551 256, 256, 0);
2552 if (!dev->prp_small_pool) {
2553 dma_pool_destroy(dev->prp_page_pool);
2554 return -ENOMEM;
2555 }
2556 return 0;
2557 }
2558
nvme_release_prp_pools(struct nvme_dev * dev)2559 static void nvme_release_prp_pools(struct nvme_dev *dev)
2560 {
2561 dma_pool_destroy(dev->prp_page_pool);
2562 dma_pool_destroy(dev->prp_small_pool);
2563 }
2564
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2565 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2566 {
2567 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2568 size_t alloc_size = sizeof(__le64 *) * npages +
2569 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2570
2571 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2572 dev->iod_mempool = mempool_create_node(1,
2573 mempool_kmalloc, mempool_kfree,
2574 (void *)alloc_size, GFP_KERNEL,
2575 dev_to_node(dev->dev));
2576 if (!dev->iod_mempool)
2577 return -ENOMEM;
2578 return 0;
2579 }
2580
nvme_free_tagset(struct nvme_dev * dev)2581 static void nvme_free_tagset(struct nvme_dev *dev)
2582 {
2583 if (dev->tagset.tags)
2584 blk_mq_free_tag_set(&dev->tagset);
2585 dev->ctrl.tagset = NULL;
2586 }
2587
2588 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2589 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2590 {
2591 struct nvme_dev *dev = to_nvme_dev(ctrl);
2592
2593 nvme_dbbuf_dma_free(dev);
2594 nvme_free_tagset(dev);
2595 if (dev->ctrl.admin_q)
2596 blk_put_queue(dev->ctrl.admin_q);
2597 free_opal_dev(dev->ctrl.opal_dev);
2598 mempool_destroy(dev->iod_mempool);
2599 put_device(dev->dev);
2600 kfree(dev->queues);
2601 kfree(dev);
2602 }
2603
nvme_remove_dead_ctrl(struct nvme_dev * dev)2604 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2605 {
2606 /*
2607 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2608 * may be holding this pci_dev's device lock.
2609 */
2610 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2611 nvme_get_ctrl(&dev->ctrl);
2612 nvme_dev_disable(dev, false);
2613 nvme_kill_queues(&dev->ctrl);
2614 if (!queue_work(nvme_wq, &dev->remove_work))
2615 nvme_put_ctrl(&dev->ctrl);
2616 }
2617
nvme_reset_work(struct work_struct * work)2618 static void nvme_reset_work(struct work_struct *work)
2619 {
2620 struct nvme_dev *dev =
2621 container_of(work, struct nvme_dev, ctrl.reset_work);
2622 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2623 int result;
2624
2625 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2626 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2627 dev->ctrl.state);
2628 result = -ENODEV;
2629 goto out;
2630 }
2631
2632 /*
2633 * If we're called to reset a live controller first shut it down before
2634 * moving on.
2635 */
2636 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2637 nvme_dev_disable(dev, false);
2638 nvme_sync_queues(&dev->ctrl);
2639
2640 mutex_lock(&dev->shutdown_lock);
2641 result = nvme_pci_enable(dev);
2642 if (result)
2643 goto out_unlock;
2644
2645 result = nvme_pci_configure_admin_queue(dev);
2646 if (result)
2647 goto out_unlock;
2648
2649 result = nvme_alloc_admin_tags(dev);
2650 if (result)
2651 goto out_unlock;
2652
2653 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2654
2655 /*
2656 * Limit the max command size to prevent iod->sg allocations going
2657 * over a single page.
2658 */
2659 dev->ctrl.max_hw_sectors = min_t(u32,
2660 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2661 dev->ctrl.max_segments = NVME_MAX_SEGS;
2662
2663 /*
2664 * Don't limit the IOMMU merged segment size.
2665 */
2666 dma_set_max_seg_size(dev->dev, 0xffffffff);
2667
2668 mutex_unlock(&dev->shutdown_lock);
2669
2670 /*
2671 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2672 * initializing procedure here.
2673 */
2674 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2675 dev_warn(dev->ctrl.device,
2676 "failed to mark controller CONNECTING\n");
2677 result = -EBUSY;
2678 goto out;
2679 }
2680
2681 /*
2682 * We do not support an SGL for metadata (yet), so we are limited to a
2683 * single integrity segment for the separate metadata pointer.
2684 */
2685 dev->ctrl.max_integrity_segments = 1;
2686
2687 result = nvme_init_identify(&dev->ctrl);
2688 if (result)
2689 goto out;
2690
2691 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2692 if (!dev->ctrl.opal_dev)
2693 dev->ctrl.opal_dev =
2694 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2695 else if (was_suspend)
2696 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2697 } else {
2698 free_opal_dev(dev->ctrl.opal_dev);
2699 dev->ctrl.opal_dev = NULL;
2700 }
2701
2702 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2703 result = nvme_dbbuf_dma_alloc(dev);
2704 if (result)
2705 dev_warn(dev->dev,
2706 "unable to allocate dma for dbbuf\n");
2707 }
2708
2709 if (dev->ctrl.hmpre) {
2710 result = nvme_setup_host_mem(dev);
2711 if (result < 0)
2712 goto out;
2713 }
2714
2715 result = nvme_setup_io_queues(dev);
2716 if (result)
2717 goto out;
2718
2719 if (dev->ctrl.tagset) {
2720 /*
2721 * This is a controller reset and we already have a tagset.
2722 * Freeze and update the number of I/O queues as thos might have
2723 * changed. If there are no I/O queues left after this reset,
2724 * keep the controller around but remove all namespaces.
2725 */
2726 if (dev->online_queues > 1) {
2727 nvme_start_queues(&dev->ctrl);
2728 nvme_wait_freeze(&dev->ctrl);
2729 if (!nvme_pci_update_nr_queues(dev))
2730 goto out;
2731 nvme_dbbuf_set(dev);
2732 nvme_unfreeze(&dev->ctrl);
2733 } else {
2734 dev_warn(dev->ctrl.device, "IO queues lost\n");
2735 nvme_kill_queues(&dev->ctrl);
2736 nvme_remove_namespaces(&dev->ctrl);
2737 nvme_free_tagset(dev);
2738 }
2739 } else {
2740 /*
2741 * First probe. Still allow the controller to show up even if
2742 * there are no namespaces.
2743 */
2744 if (dev->online_queues > 1) {
2745 nvme_pci_alloc_tag_set(dev);
2746 nvme_dbbuf_set(dev);
2747 } else {
2748 dev_warn(dev->ctrl.device, "IO queues not created\n");
2749 }
2750 }
2751
2752 /*
2753 * If only admin queue live, keep it to do further investigation or
2754 * recovery.
2755 */
2756 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2757 dev_warn(dev->ctrl.device,
2758 "failed to mark controller live state\n");
2759 result = -ENODEV;
2760 goto out;
2761 }
2762
2763 nvme_start_ctrl(&dev->ctrl);
2764 return;
2765
2766 out_unlock:
2767 mutex_unlock(&dev->shutdown_lock);
2768 out:
2769 if (result)
2770 dev_warn(dev->ctrl.device,
2771 "Removing after probe failure status: %d\n", result);
2772 nvme_remove_dead_ctrl(dev);
2773 }
2774
nvme_remove_dead_ctrl_work(struct work_struct * work)2775 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2776 {
2777 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2778 struct pci_dev *pdev = to_pci_dev(dev->dev);
2779
2780 if (pci_get_drvdata(pdev))
2781 device_release_driver(&pdev->dev);
2782 nvme_put_ctrl(&dev->ctrl);
2783 }
2784
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2785 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2786 {
2787 *val = readl(to_nvme_dev(ctrl)->bar + off);
2788 return 0;
2789 }
2790
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2791 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2792 {
2793 writel(val, to_nvme_dev(ctrl)->bar + off);
2794 return 0;
2795 }
2796
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2797 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2798 {
2799 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2800 return 0;
2801 }
2802
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2803 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2804 {
2805 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2806
2807 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2808 }
2809
2810 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2811 .name = "pcie",
2812 .module = THIS_MODULE,
2813 .flags = NVME_F_METADATA_SUPPORTED |
2814 NVME_F_PCI_P2PDMA,
2815 .reg_read32 = nvme_pci_reg_read32,
2816 .reg_write32 = nvme_pci_reg_write32,
2817 .reg_read64 = nvme_pci_reg_read64,
2818 .free_ctrl = nvme_pci_free_ctrl,
2819 .submit_async_event = nvme_pci_submit_async_event,
2820 .get_address = nvme_pci_get_address,
2821 };
2822
nvme_dev_map(struct nvme_dev * dev)2823 static int nvme_dev_map(struct nvme_dev *dev)
2824 {
2825 struct pci_dev *pdev = to_pci_dev(dev->dev);
2826
2827 if (pci_request_mem_regions(pdev, "nvme"))
2828 return -ENODEV;
2829
2830 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2831 goto release;
2832
2833 return 0;
2834 release:
2835 pci_release_mem_regions(pdev);
2836 return -ENODEV;
2837 }
2838
check_vendor_combination_bug(struct pci_dev * pdev)2839 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2840 {
2841 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2842 /*
2843 * Several Samsung devices seem to drop off the PCIe bus
2844 * randomly when APST is on and uses the deepest sleep state.
2845 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2846 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2847 * 950 PRO 256GB", but it seems to be restricted to two Dell
2848 * laptops.
2849 */
2850 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2851 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2852 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2853 return NVME_QUIRK_NO_DEEPEST_PS;
2854 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2855 /*
2856 * Samsung SSD 960 EVO drops off the PCIe bus after system
2857 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2858 * within few minutes after bootup on a Coffee Lake board -
2859 * ASUS PRIME Z370-A
2860 */
2861 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2862 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2863 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2864 return NVME_QUIRK_NO_APST;
2865 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2866 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2867 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2868 /*
2869 * Forcing to use host managed nvme power settings for
2870 * lowest idle power with quick resume latency on
2871 * Samsung and Toshiba SSDs based on suspend behavior
2872 * on Coffee Lake board for LENOVO C640
2873 */
2874 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2875 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2876 return NVME_QUIRK_SIMPLE_SUSPEND;
2877 }
2878
2879 return 0;
2880 }
2881
nvme_async_probe(void * data,async_cookie_t cookie)2882 static void nvme_async_probe(void *data, async_cookie_t cookie)
2883 {
2884 struct nvme_dev *dev = data;
2885
2886 flush_work(&dev->ctrl.reset_work);
2887 flush_work(&dev->ctrl.scan_work);
2888 nvme_put_ctrl(&dev->ctrl);
2889 }
2890
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2891 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2892 const struct pci_device_id *id)
2893 {
2894 unsigned long quirks = id->driver_data;
2895 int node = dev_to_node(&pdev->dev);
2896 struct nvme_dev *dev;
2897 int ret = -ENOMEM;
2898
2899 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2900 if (!dev)
2901 return ERR_PTR(-ENOMEM);
2902 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2903 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2904 mutex_init(&dev->shutdown_lock);
2905
2906 dev->nr_write_queues = write_queues;
2907 dev->nr_poll_queues = poll_queues;
2908 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2909 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2910 sizeof(struct nvme_queue), GFP_KERNEL, node);
2911 if (!dev->queues)
2912 goto out_free_dev;
2913
2914 dev->dev = get_device(&pdev->dev);
2915
2916 quirks |= check_vendor_combination_bug(pdev);
2917 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2918 /*
2919 * Some systems use a bios work around to ask for D3 on
2920 * platforms that support kernel managed suspend.
2921 */
2922 dev_info(&pdev->dev,
2923 "platform quirk: setting simple suspend\n");
2924 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2925 }
2926 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2927 quirks);
2928 if (ret)
2929 goto out_put_device;
2930 return dev;
2931
2932 out_put_device:
2933 put_device(dev->dev);
2934 kfree(dev->queues);
2935 out_free_dev:
2936 kfree(dev);
2937 return ERR_PTR(ret);
2938 }
2939
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2940 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2941 {
2942 struct nvme_dev *dev;
2943 int result = -ENOMEM;
2944
2945 dev = nvme_pci_alloc_dev(pdev, id);
2946 if (IS_ERR(dev))
2947 return PTR_ERR(dev);
2948
2949 result = nvme_dev_map(dev);
2950 if (result)
2951 goto out_uninit_ctrl;
2952
2953 result = nvme_setup_prp_pools(dev);
2954 if (result)
2955 goto out_dev_unmap;
2956
2957 result = nvme_pci_alloc_iod_mempool(dev);
2958 if (result)
2959 goto out_release_prp_pools;
2960
2961 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2962 pci_set_drvdata(pdev, dev);
2963
2964 nvme_reset_ctrl(&dev->ctrl);
2965 async_schedule(nvme_async_probe, dev);
2966 return 0;
2967
2968 out_release_prp_pools:
2969 nvme_release_prp_pools(dev);
2970 out_dev_unmap:
2971 nvme_dev_unmap(dev);
2972 out_uninit_ctrl:
2973 nvme_uninit_ctrl(&dev->ctrl);
2974 return result;
2975 }
2976
nvme_reset_prepare(struct pci_dev * pdev)2977 static void nvme_reset_prepare(struct pci_dev *pdev)
2978 {
2979 struct nvme_dev *dev = pci_get_drvdata(pdev);
2980
2981 /*
2982 * We don't need to check the return value from waiting for the reset
2983 * state as pci_dev device lock is held, making it impossible to race
2984 * with ->remove().
2985 */
2986 nvme_disable_prepare_reset(dev, false);
2987 nvme_sync_queues(&dev->ctrl);
2988 }
2989
nvme_reset_done(struct pci_dev * pdev)2990 static void nvme_reset_done(struct pci_dev *pdev)
2991 {
2992 struct nvme_dev *dev = pci_get_drvdata(pdev);
2993
2994 if (!nvme_try_sched_reset(&dev->ctrl))
2995 flush_work(&dev->ctrl.reset_work);
2996 }
2997
nvme_shutdown(struct pci_dev * pdev)2998 static void nvme_shutdown(struct pci_dev *pdev)
2999 {
3000 struct nvme_dev *dev = pci_get_drvdata(pdev);
3001
3002 nvme_disable_prepare_reset(dev, true);
3003 }
3004
3005 /*
3006 * The driver's remove may be called on a device in a partially initialized
3007 * state. This function must not have any dependencies on the device state in
3008 * order to proceed.
3009 */
nvme_remove(struct pci_dev * pdev)3010 static void nvme_remove(struct pci_dev *pdev)
3011 {
3012 struct nvme_dev *dev = pci_get_drvdata(pdev);
3013
3014 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015 pci_set_drvdata(pdev, NULL);
3016
3017 if (!pci_device_is_present(pdev)) {
3018 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3019 nvme_dev_disable(dev, true);
3020 }
3021
3022 flush_work(&dev->ctrl.reset_work);
3023 nvme_stop_ctrl(&dev->ctrl);
3024 nvme_remove_namespaces(&dev->ctrl);
3025 nvme_dev_disable(dev, true);
3026 nvme_release_cmb(dev);
3027 nvme_free_host_mem(dev);
3028 nvme_dev_remove_admin(dev);
3029 nvme_free_queues(dev, 0);
3030 nvme_release_prp_pools(dev);
3031 nvme_dev_unmap(dev);
3032 nvme_uninit_ctrl(&dev->ctrl);
3033 }
3034
3035 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3036 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3037 {
3038 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3039 }
3040
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3041 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3042 {
3043 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3044 }
3045
nvme_resume(struct device * dev)3046 static int nvme_resume(struct device *dev)
3047 {
3048 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3049 struct nvme_ctrl *ctrl = &ndev->ctrl;
3050
3051 if (ndev->last_ps == U32_MAX ||
3052 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3053 return nvme_try_sched_reset(&ndev->ctrl);
3054 return 0;
3055 }
3056
nvme_suspend(struct device * dev)3057 static int nvme_suspend(struct device *dev)
3058 {
3059 struct pci_dev *pdev = to_pci_dev(dev);
3060 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3061 struct nvme_ctrl *ctrl = &ndev->ctrl;
3062 int ret = -EBUSY;
3063
3064 ndev->last_ps = U32_MAX;
3065
3066 /*
3067 * The platform does not remove power for a kernel managed suspend so
3068 * use host managed nvme power settings for lowest idle power if
3069 * possible. This should have quicker resume latency than a full device
3070 * shutdown. But if the firmware is involved after the suspend or the
3071 * device does not support any non-default power states, shut down the
3072 * device fully.
3073 *
3074 * If ASPM is not enabled for the device, shut down the device and allow
3075 * the PCI bus layer to put it into D3 in order to take the PCIe link
3076 * down, so as to allow the platform to achieve its minimum low-power
3077 * state (which may not be possible if the link is up).
3078 *
3079 * If a host memory buffer is enabled, shut down the device as the NVMe
3080 * specification allows the device to access the host memory buffer in
3081 * host DRAM from all power states, but hosts will fail access to DRAM
3082 * during S3.
3083 */
3084 if (pm_suspend_via_firmware() || !ctrl->npss ||
3085 !pcie_aspm_enabled(pdev) ||
3086 ndev->nr_host_mem_descs ||
3087 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3088 return nvme_disable_prepare_reset(ndev, true);
3089
3090 nvme_start_freeze(ctrl);
3091 nvme_wait_freeze(ctrl);
3092 nvme_sync_queues(ctrl);
3093
3094 if (ctrl->state != NVME_CTRL_LIVE)
3095 goto unfreeze;
3096
3097 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3098 if (ret < 0)
3099 goto unfreeze;
3100
3101 /*
3102 * A saved state prevents pci pm from generically controlling the
3103 * device's power. If we're using protocol specific settings, we don't
3104 * want pci interfering.
3105 */
3106 pci_save_state(pdev);
3107
3108 ret = nvme_set_power_state(ctrl, ctrl->npss);
3109 if (ret < 0)
3110 goto unfreeze;
3111
3112 if (ret) {
3113 /* discard the saved state */
3114 pci_load_saved_state(pdev, NULL);
3115
3116 /*
3117 * Clearing npss forces a controller reset on resume. The
3118 * correct value will be rediscovered then.
3119 */
3120 ret = nvme_disable_prepare_reset(ndev, true);
3121 ctrl->npss = 0;
3122 }
3123 unfreeze:
3124 nvme_unfreeze(ctrl);
3125 return ret;
3126 }
3127
nvme_simple_suspend(struct device * dev)3128 static int nvme_simple_suspend(struct device *dev)
3129 {
3130 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3131
3132 return nvme_disable_prepare_reset(ndev, true);
3133 }
3134
nvme_simple_resume(struct device * dev)3135 static int nvme_simple_resume(struct device *dev)
3136 {
3137 struct pci_dev *pdev = to_pci_dev(dev);
3138 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3139
3140 return nvme_try_sched_reset(&ndev->ctrl);
3141 }
3142
3143 static const struct dev_pm_ops nvme_dev_pm_ops = {
3144 .suspend = nvme_suspend,
3145 .resume = nvme_resume,
3146 .freeze = nvme_simple_suspend,
3147 .thaw = nvme_simple_resume,
3148 .poweroff = nvme_simple_suspend,
3149 .restore = nvme_simple_resume,
3150 };
3151 #endif /* CONFIG_PM_SLEEP */
3152
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3153 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3154 pci_channel_state_t state)
3155 {
3156 struct nvme_dev *dev = pci_get_drvdata(pdev);
3157
3158 /*
3159 * A frozen channel requires a reset. When detected, this method will
3160 * shutdown the controller to quiesce. The controller will be restarted
3161 * after the slot reset through driver's slot_reset callback.
3162 */
3163 switch (state) {
3164 case pci_channel_io_normal:
3165 return PCI_ERS_RESULT_CAN_RECOVER;
3166 case pci_channel_io_frozen:
3167 dev_warn(dev->ctrl.device,
3168 "frozen state error detected, reset controller\n");
3169 nvme_dev_disable(dev, false);
3170 return PCI_ERS_RESULT_NEED_RESET;
3171 case pci_channel_io_perm_failure:
3172 dev_warn(dev->ctrl.device,
3173 "failure state error detected, request disconnect\n");
3174 return PCI_ERS_RESULT_DISCONNECT;
3175 }
3176 return PCI_ERS_RESULT_NEED_RESET;
3177 }
3178
nvme_slot_reset(struct pci_dev * pdev)3179 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3180 {
3181 struct nvme_dev *dev = pci_get_drvdata(pdev);
3182
3183 dev_info(dev->ctrl.device, "restart after slot reset\n");
3184 pci_restore_state(pdev);
3185 nvme_reset_ctrl(&dev->ctrl);
3186 return PCI_ERS_RESULT_RECOVERED;
3187 }
3188
nvme_error_resume(struct pci_dev * pdev)3189 static void nvme_error_resume(struct pci_dev *pdev)
3190 {
3191 struct nvme_dev *dev = pci_get_drvdata(pdev);
3192
3193 flush_work(&dev->ctrl.reset_work);
3194 }
3195
3196 static const struct pci_error_handlers nvme_err_handler = {
3197 .error_detected = nvme_error_detected,
3198 .slot_reset = nvme_slot_reset,
3199 .resume = nvme_error_resume,
3200 .reset_prepare = nvme_reset_prepare,
3201 .reset_done = nvme_reset_done,
3202 };
3203
3204 static const struct pci_device_id nvme_id_table[] = {
3205 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3206 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3207 NVME_QUIRK_DEALLOCATE_ZEROES, },
3208 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3209 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3210 NVME_QUIRK_DEALLOCATE_ZEROES, },
3211 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3212 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3213 NVME_QUIRK_DEALLOCATE_ZEROES |
3214 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3215 NVME_QUIRK_BOGUS_NID, },
3216 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3217 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3218 NVME_QUIRK_DEALLOCATE_ZEROES, },
3219 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3220 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3221 NVME_QUIRK_MEDIUM_PRIO_SQ |
3222 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3223 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3224 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3225 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3226 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3227 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3228 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3229 NVME_QUIRK_BOGUS_NID, },
3230 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3231 .driver_data = NVME_QUIRK_BOGUS_NID, },
3232 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3233 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3234 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3235 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3236 NVME_QUIRK_NO_NS_DESC_LIST, },
3237 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3238 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3239 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3240 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3241 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3242 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3243 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3244 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3245 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3246 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3247 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3248 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3249 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3250 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3251 NVME_QUIRK_BOGUS_NID, },
3252 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3253 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3254 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3255 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3256 .driver_data = NVME_QUIRK_LIGHTNVM, },
3257 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3258 .driver_data = NVME_QUIRK_LIGHTNVM, },
3259 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3260 .driver_data = NVME_QUIRK_LIGHTNVM, },
3261 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3262 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3263 NVME_QUIRK_BOGUS_NID, },
3264 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3265 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3266 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3267 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3268 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3269 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3270 .driver_data = NVME_QUIRK_BOGUS_NID, },
3271 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3272 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3273 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3274 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3275 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3276 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3277 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3278 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3279 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3280 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3281 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3282 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3283 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3284 NVME_QUIRK_128_BYTES_SQES |
3285 NVME_QUIRK_SHARED_TAGS |
3286 NVME_QUIRK_SKIP_CID_GEN },
3287 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3288 { 0, }
3289 };
3290 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3291
3292 static struct pci_driver nvme_driver = {
3293 .name = "nvme",
3294 .id_table = nvme_id_table,
3295 .probe = nvme_probe,
3296 .remove = nvme_remove,
3297 .shutdown = nvme_shutdown,
3298 #ifdef CONFIG_PM_SLEEP
3299 .driver = {
3300 .pm = &nvme_dev_pm_ops,
3301 },
3302 #endif
3303 .sriov_configure = pci_sriov_configure_simple,
3304 .err_handler = &nvme_err_handler,
3305 };
3306
nvme_init(void)3307 static int __init nvme_init(void)
3308 {
3309 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3310 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3311 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3312 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3313
3314 return pci_register_driver(&nvme_driver);
3315 }
3316
nvme_exit(void)3317 static void __exit nvme_exit(void)
3318 {
3319 pci_unregister_driver(&nvme_driver);
3320 flush_workqueue(nvme_wq);
3321 }
3322
3323 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3324 MODULE_LICENSE("GPL");
3325 MODULE_VERSION("1.0");
3326 module_init(nvme_init);
3327 module_exit(nvme_exit);
3328