• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	__le32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	__le32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	u32 host_mem_descs_size;
151 	dma_addr_t host_mem_descs_dma;
152 	struct nvme_host_mem_buf_desc *host_mem_descs;
153 	void **host_mem_desc_bufs;
154 	unsigned int nr_allocated_queues;
155 	unsigned int nr_write_queues;
156 	unsigned int nr_poll_queues;
157 };
158 
io_queue_depth_set(const char * val,const struct kernel_param * kp)159 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
160 {
161 	int ret;
162 	u32 n;
163 
164 	ret = kstrtou32(val, 10, &n);
165 	if (ret != 0 || n < 2)
166 		return -EINVAL;
167 
168 	return param_set_uint(val, kp);
169 }
170 
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	__le32 *dbbuf_sq_db;
214 	__le32 *dbbuf_cq_db;
215 	__le32 *dbbuf_sq_ei;
216 	__le32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	int nents;		/* Used in scatterlist */
234 	dma_addr_t first_dma;
235 	unsigned int dma_len;	/* length of single DMA segment mapping */
236 	dma_addr_t meta_dma;
237 	struct scatterlist *sg;
238 };
239 
nvme_dbbuf_size(struct nvme_dev * dev)240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 	return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 	unsigned int mem_size = nvme_dbbuf_size(dev);
248 
249 	if (dev->dbbuf_dbs)
250 		return 0;
251 
252 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
253 					    &dev->dbbuf_dbs_dma_addr,
254 					    GFP_KERNEL);
255 	if (!dev->dbbuf_dbs)
256 		return -ENOMEM;
257 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
258 					    &dev->dbbuf_eis_dma_addr,
259 					    GFP_KERNEL);
260 	if (!dev->dbbuf_eis) {
261 		dma_free_coherent(dev->dev, mem_size,
262 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
263 		dev->dbbuf_dbs = NULL;
264 		return -ENOMEM;
265 	}
266 
267 	return 0;
268 }
269 
nvme_dbbuf_dma_free(struct nvme_dev * dev)270 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
271 {
272 	unsigned int mem_size = nvme_dbbuf_size(dev);
273 
274 	if (dev->dbbuf_dbs) {
275 		dma_free_coherent(dev->dev, mem_size,
276 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
277 		dev->dbbuf_dbs = NULL;
278 	}
279 	if (dev->dbbuf_eis) {
280 		dma_free_coherent(dev->dev, mem_size,
281 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
282 		dev->dbbuf_eis = NULL;
283 	}
284 }
285 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)286 static void nvme_dbbuf_init(struct nvme_dev *dev,
287 			    struct nvme_queue *nvmeq, int qid)
288 {
289 	if (!dev->dbbuf_dbs || !qid)
290 		return;
291 
292 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
294 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
295 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
296 }
297 
nvme_dbbuf_free(struct nvme_queue * nvmeq)298 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
299 {
300 	if (!nvmeq->qid)
301 		return;
302 
303 	nvmeq->dbbuf_sq_db = NULL;
304 	nvmeq->dbbuf_cq_db = NULL;
305 	nvmeq->dbbuf_sq_ei = NULL;
306 	nvmeq->dbbuf_cq_ei = NULL;
307 }
308 
nvme_dbbuf_set(struct nvme_dev * dev)309 static void nvme_dbbuf_set(struct nvme_dev *dev)
310 {
311 	struct nvme_command c;
312 	unsigned int i;
313 
314 	if (!dev->dbbuf_dbs)
315 		return;
316 
317 	memset(&c, 0, sizeof(c));
318 	c.dbbuf.opcode = nvme_admin_dbbuf;
319 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
320 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
321 
322 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
323 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
324 		/* Free memory and continue on */
325 		nvme_dbbuf_dma_free(dev);
326 
327 		for (i = 1; i <= dev->online_queues; i++)
328 			nvme_dbbuf_free(&dev->queues[i]);
329 	}
330 }
331 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)332 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
333 {
334 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
335 }
336 
337 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)338 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
339 					      volatile __le32 *dbbuf_ei)
340 {
341 	if (dbbuf_db) {
342 		u16 old_value, event_idx;
343 
344 		/*
345 		 * Ensure that the queue is written before updating
346 		 * the doorbell in memory
347 		 */
348 		wmb();
349 
350 		old_value = le32_to_cpu(*dbbuf_db);
351 		*dbbuf_db = cpu_to_le32(value);
352 
353 		/*
354 		 * Ensure that the doorbell is updated before reading the event
355 		 * index from memory.  The controller needs to provide similar
356 		 * ordering to ensure the envent index is updated before reading
357 		 * the doorbell.
358 		 */
359 		mb();
360 
361 		event_idx = le32_to_cpu(*dbbuf_ei);
362 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
363 			return false;
364 	}
365 
366 	return true;
367 }
368 
369 /*
370  * Will slightly overestimate the number of pages needed.  This is OK
371  * as it only leads to a small amount of wasted memory for the lifetime of
372  * the I/O.
373  */
nvme_pci_npages_prp(void)374 static int nvme_pci_npages_prp(void)
375 {
376 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
377 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
378 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
379 }
380 
381 /*
382  * Calculates the number of pages needed for the SGL segments. For example a 4k
383  * page can accommodate 256 SGL descriptors.
384  */
nvme_pci_npages_sgl(void)385 static int nvme_pci_npages_sgl(void)
386 {
387 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
388 			NVME_CTRL_PAGE_SIZE);
389 }
390 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)391 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 				unsigned int hctx_idx)
393 {
394 	struct nvme_dev *dev = data;
395 	struct nvme_queue *nvmeq = &dev->queues[0];
396 
397 	WARN_ON(hctx_idx != 0);
398 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
399 
400 	hctx->driver_data = nvmeq;
401 	return 0;
402 }
403 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)404 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 			  unsigned int hctx_idx)
406 {
407 	struct nvme_dev *dev = data;
408 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
409 
410 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
411 	hctx->driver_data = nvmeq;
412 	return 0;
413 }
414 
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)415 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
416 		unsigned int hctx_idx, unsigned int numa_node)
417 {
418 	struct nvme_dev *dev = set->driver_data;
419 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
420 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
421 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
422 
423 	BUG_ON(!nvmeq);
424 	iod->nvmeq = nvmeq;
425 
426 	nvme_req(req)->ctrl = &dev->ctrl;
427 	return 0;
428 }
429 
queue_irq_offset(struct nvme_dev * dev)430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
nvme_pci_map_queues(struct blk_mq_tag_set * set)439 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = set->driver_data;
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 
467 	return 0;
468 }
469 
470 /*
471  * Write sq tail if we are asked to, or if the next command would wrap.
472  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 {
475 	if (!write_sq) {
476 		u16 next_tail = nvmeq->sq_tail + 1;
477 
478 		if (next_tail == nvmeq->q_depth)
479 			next_tail = 0;
480 		if (next_tail != nvmeq->last_sq_tail)
481 			return;
482 	}
483 
484 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 		writel(nvmeq->sq_tail, nvmeq->q_db);
487 	nvmeq->last_sq_tail = nvmeq->sq_tail;
488 }
489 
490 /**
491  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
492  * @nvmeq: The queue to use
493  * @cmd: The command to send
494  * @write_sq: whether to write to the SQ doorbell
495  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)496 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
497 			    bool write_sq)
498 {
499 	spin_lock(&nvmeq->sq_lock);
500 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 	       cmd, sizeof(*cmd));
502 	if (++nvmeq->sq_tail == nvmeq->q_depth)
503 		nvmeq->sq_tail = 0;
504 	nvme_write_sq_db(nvmeq, write_sq);
505 	spin_unlock(&nvmeq->sq_lock);
506 }
507 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)508 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
509 {
510 	struct nvme_queue *nvmeq = hctx->driver_data;
511 
512 	spin_lock(&nvmeq->sq_lock);
513 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
514 		nvme_write_sq_db(nvmeq, true);
515 	spin_unlock(&nvmeq->sq_lock);
516 }
517 
nvme_pci_iod_list(struct request * req)518 static void **nvme_pci_iod_list(struct request *req)
519 {
520 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
521 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
522 }
523 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)524 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
525 {
526 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 	int nseg = blk_rq_nr_phys_segments(req);
528 	unsigned int avg_seg_size;
529 
530 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
531 
532 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
533 		return false;
534 	if (!iod->nvmeq->qid)
535 		return false;
536 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
537 		return false;
538 	return true;
539 }
540 
nvme_free_prps(struct nvme_dev * dev,struct request * req)541 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
542 {
543 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
544 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 	dma_addr_t dma_addr = iod->first_dma;
546 	int i;
547 
548 	for (i = 0; i < iod->npages; i++) {
549 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
550 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
551 
552 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
553 		dma_addr = next_dma_addr;
554 	}
555 
556 }
557 
nvme_free_sgls(struct nvme_dev * dev,struct request * req)558 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
559 {
560 	const int last_sg = SGES_PER_PAGE - 1;
561 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
562 	dma_addr_t dma_addr = iod->first_dma;
563 	int i;
564 
565 	for (i = 0; i < iod->npages; i++) {
566 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
567 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
568 
569 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
570 		dma_addr = next_dma_addr;
571 	}
572 
573 }
574 
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)575 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
576 {
577 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
578 
579 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
580 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
581 				    rq_dma_dir(req));
582 	else
583 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
584 }
585 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)586 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
587 {
588 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
589 
590 	if (iod->dma_len) {
591 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
592 			       rq_dma_dir(req));
593 		return;
594 	}
595 
596 	WARN_ON_ONCE(!iod->nents);
597 
598 	nvme_unmap_sg(dev, req);
599 	if (iod->npages == 0)
600 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
601 			      iod->first_dma);
602 	else if (iod->use_sgl)
603 		nvme_free_sgls(dev, req);
604 	else
605 		nvme_free_prps(dev, req);
606 	mempool_free(iod->sg, dev->iod_mempool);
607 }
608 
nvme_print_sgl(struct scatterlist * sgl,int nents)609 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
610 {
611 	int i;
612 	struct scatterlist *sg;
613 
614 	for_each_sg(sgl, sg, nents, i) {
615 		dma_addr_t phys = sg_phys(sg);
616 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
617 			"dma_address:%pad dma_length:%d\n",
618 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
619 			sg_dma_len(sg));
620 	}
621 }
622 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)623 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
624 		struct request *req, struct nvme_rw_command *cmnd)
625 {
626 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
627 	struct dma_pool *pool;
628 	int length = blk_rq_payload_bytes(req);
629 	struct scatterlist *sg = iod->sg;
630 	int dma_len = sg_dma_len(sg);
631 	u64 dma_addr = sg_dma_address(sg);
632 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
633 	__le64 *prp_list;
634 	void **list = nvme_pci_iod_list(req);
635 	dma_addr_t prp_dma;
636 	int nprps, i;
637 
638 	length -= (NVME_CTRL_PAGE_SIZE - offset);
639 	if (length <= 0) {
640 		iod->first_dma = 0;
641 		goto done;
642 	}
643 
644 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
645 	if (dma_len) {
646 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
647 	} else {
648 		sg = sg_next(sg);
649 		dma_addr = sg_dma_address(sg);
650 		dma_len = sg_dma_len(sg);
651 	}
652 
653 	if (length <= NVME_CTRL_PAGE_SIZE) {
654 		iod->first_dma = dma_addr;
655 		goto done;
656 	}
657 
658 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
659 	if (nprps <= (256 / 8)) {
660 		pool = dev->prp_small_pool;
661 		iod->npages = 0;
662 	} else {
663 		pool = dev->prp_page_pool;
664 		iod->npages = 1;
665 	}
666 
667 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
668 	if (!prp_list) {
669 		iod->first_dma = dma_addr;
670 		iod->npages = -1;
671 		return BLK_STS_RESOURCE;
672 	}
673 	list[0] = prp_list;
674 	iod->first_dma = prp_dma;
675 	i = 0;
676 	for (;;) {
677 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
678 			__le64 *old_prp_list = prp_list;
679 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
680 			if (!prp_list)
681 				goto free_prps;
682 			list[iod->npages++] = prp_list;
683 			prp_list[0] = old_prp_list[i - 1];
684 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
685 			i = 1;
686 		}
687 		prp_list[i++] = cpu_to_le64(dma_addr);
688 		dma_len -= NVME_CTRL_PAGE_SIZE;
689 		dma_addr += NVME_CTRL_PAGE_SIZE;
690 		length -= NVME_CTRL_PAGE_SIZE;
691 		if (length <= 0)
692 			break;
693 		if (dma_len > 0)
694 			continue;
695 		if (unlikely(dma_len < 0))
696 			goto bad_sgl;
697 		sg = sg_next(sg);
698 		dma_addr = sg_dma_address(sg);
699 		dma_len = sg_dma_len(sg);
700 	}
701 done:
702 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
703 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
704 	return BLK_STS_OK;
705 free_prps:
706 	nvme_free_prps(dev, req);
707 	return BLK_STS_RESOURCE;
708 bad_sgl:
709 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
710 			"Invalid SGL for payload:%d nents:%d\n",
711 			blk_rq_payload_bytes(req), iod->nents);
712 	return BLK_STS_IOERR;
713 }
714 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)715 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
716 		struct scatterlist *sg)
717 {
718 	sge->addr = cpu_to_le64(sg_dma_address(sg));
719 	sge->length = cpu_to_le32(sg_dma_len(sg));
720 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
721 }
722 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)723 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
724 		dma_addr_t dma_addr, int entries)
725 {
726 	sge->addr = cpu_to_le64(dma_addr);
727 	if (entries < SGES_PER_PAGE) {
728 		sge->length = cpu_to_le32(entries * sizeof(*sge));
729 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
730 	} else {
731 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
732 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 	}
734 }
735 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)736 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
737 		struct request *req, struct nvme_rw_command *cmd, int entries)
738 {
739 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 	struct dma_pool *pool;
741 	struct nvme_sgl_desc *sg_list;
742 	struct scatterlist *sg = iod->sg;
743 	dma_addr_t sgl_dma;
744 	int i = 0;
745 
746 	/* setting the transfer type as SGL */
747 	cmd->flags = NVME_CMD_SGL_METABUF;
748 
749 	if (entries == 1) {
750 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 		return BLK_STS_OK;
752 	}
753 
754 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
755 		pool = dev->prp_small_pool;
756 		iod->npages = 0;
757 	} else {
758 		pool = dev->prp_page_pool;
759 		iod->npages = 1;
760 	}
761 
762 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
763 	if (!sg_list) {
764 		iod->npages = -1;
765 		return BLK_STS_RESOURCE;
766 	}
767 
768 	nvme_pci_iod_list(req)[0] = sg_list;
769 	iod->first_dma = sgl_dma;
770 
771 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
772 
773 	do {
774 		if (i == SGES_PER_PAGE) {
775 			struct nvme_sgl_desc *old_sg_desc = sg_list;
776 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
777 
778 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
779 			if (!sg_list)
780 				goto free_sgls;
781 
782 			i = 0;
783 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
784 			sg_list[i++] = *link;
785 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
786 		}
787 
788 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
789 		sg = sg_next(sg);
790 	} while (--entries > 0);
791 
792 	return BLK_STS_OK;
793 free_sgls:
794 	nvme_free_sgls(dev, req);
795 	return BLK_STS_RESOURCE;
796 }
797 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)798 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
799 		struct request *req, struct nvme_rw_command *cmnd,
800 		struct bio_vec *bv)
801 {
802 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
803 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
804 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
805 
806 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
807 	if (dma_mapping_error(dev->dev, iod->first_dma))
808 		return BLK_STS_RESOURCE;
809 	iod->dma_len = bv->bv_len;
810 
811 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
812 	if (bv->bv_len > first_prp_len)
813 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
814 	else
815 		cmnd->dptr.prp2 = 0;
816 	return BLK_STS_OK;
817 }
818 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)819 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
820 		struct request *req, struct nvme_rw_command *cmnd,
821 		struct bio_vec *bv)
822 {
823 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824 
825 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
826 	if (dma_mapping_error(dev->dev, iod->first_dma))
827 		return BLK_STS_RESOURCE;
828 	iod->dma_len = bv->bv_len;
829 
830 	cmnd->flags = NVME_CMD_SGL_METABUF;
831 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
832 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
833 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
834 	return BLK_STS_OK;
835 }
836 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838 		struct nvme_command *cmnd)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret = BLK_STS_RESOURCE;
842 	int nr_mapped;
843 
844 	if (blk_rq_nr_phys_segments(req) == 1) {
845 		struct bio_vec bv = req_bvec(req);
846 
847 		if (!is_pci_p2pdma_page(bv.bv_page)) {
848 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
849 				return nvme_setup_prp_simple(dev, req,
850 							     &cmnd->rw, &bv);
851 
852 			if (iod->nvmeq->qid && sgl_threshold &&
853 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
854 				return nvme_setup_sgl_simple(dev, req,
855 							     &cmnd->rw, &bv);
856 		}
857 	}
858 
859 	iod->dma_len = 0;
860 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
861 	if (!iod->sg)
862 		return BLK_STS_RESOURCE;
863 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
864 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
865 	if (!iod->nents)
866 		goto out_free_sg;
867 
868 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
869 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
870 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
871 	else
872 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
873 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 	if (!nr_mapped)
875 		goto out_free_sg;
876 
877 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
878 	if (iod->use_sgl)
879 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
880 	else
881 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
882 	if (ret != BLK_STS_OK)
883 		goto out_unmap_sg;
884 	return BLK_STS_OK;
885 
886 out_unmap_sg:
887 	nvme_unmap_sg(dev, req);
888 out_free_sg:
889 	mempool_free(iod->sg, dev->iod_mempool);
890 	return ret;
891 }
892 
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)893 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
894 		struct nvme_command *cmnd)
895 {
896 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897 
898 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
899 			rq_dma_dir(req), 0);
900 	if (dma_mapping_error(dev->dev, iod->meta_dma))
901 		return BLK_STS_IOERR;
902 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
903 	return BLK_STS_OK;
904 }
905 
906 /*
907  * NOTE: ns is NULL when called on the admin queue.
908  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)909 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
910 			 const struct blk_mq_queue_data *bd)
911 {
912 	struct nvme_ns *ns = hctx->queue->queuedata;
913 	struct nvme_queue *nvmeq = hctx->driver_data;
914 	struct nvme_dev *dev = nvmeq->dev;
915 	struct request *req = bd->rq;
916 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 	struct nvme_command *cmnd = &iod->cmd;
918 	blk_status_t ret;
919 
920 	iod->aborted = 0;
921 	iod->npages = -1;
922 	iod->nents = 0;
923 
924 	/*
925 	 * We should not need to do this, but we're still using this to
926 	 * ensure we can drain requests on a dying queue.
927 	 */
928 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
929 		return BLK_STS_IOERR;
930 
931 	ret = nvme_setup_cmd(ns, req, cmnd);
932 	if (ret)
933 		return ret;
934 
935 	if (blk_rq_nr_phys_segments(req)) {
936 		ret = nvme_map_data(dev, req, cmnd);
937 		if (ret)
938 			goto out_free_cmd;
939 	}
940 
941 	if (blk_integrity_rq(req)) {
942 		ret = nvme_map_metadata(dev, req, cmnd);
943 		if (ret)
944 			goto out_unmap_data;
945 	}
946 
947 	blk_mq_start_request(req);
948 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
949 	return BLK_STS_OK;
950 out_unmap_data:
951 	if (blk_rq_nr_phys_segments(req))
952 		nvme_unmap_data(dev, req);
953 out_free_cmd:
954 	nvme_cleanup_cmd(req);
955 	return ret;
956 }
957 
nvme_pci_complete_rq(struct request * req)958 static void nvme_pci_complete_rq(struct request *req)
959 {
960 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
961 	struct nvme_dev *dev = iod->nvmeq->dev;
962 
963 	if (blk_integrity_rq(req))
964 		dma_unmap_page(dev->dev, iod->meta_dma,
965 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
966 
967 	if (blk_rq_nr_phys_segments(req))
968 		nvme_unmap_data(dev, req);
969 	nvme_complete_rq(req);
970 }
971 
972 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)973 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
974 {
975 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
976 
977 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
978 }
979 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)980 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
981 {
982 	u16 head = nvmeq->cq_head;
983 
984 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
985 					      nvmeq->dbbuf_cq_ei))
986 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
987 }
988 
nvme_queue_tagset(struct nvme_queue * nvmeq)989 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
990 {
991 	if (!nvmeq->qid)
992 		return nvmeq->dev->admin_tagset.tags[0];
993 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
994 }
995 
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)996 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
997 {
998 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
999 	__u16 command_id = READ_ONCE(cqe->command_id);
1000 	struct request *req;
1001 
1002 	/*
1003 	 * AEN requests are special as they don't time out and can
1004 	 * survive any kind of queue freeze and often don't respond to
1005 	 * aborts.  We don't even bother to allocate a struct request
1006 	 * for them but rather special case them here.
1007 	 */
1008 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1009 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1010 				cqe->status, &cqe->result);
1011 		return;
1012 	}
1013 
1014 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1015 	if (unlikely(!req)) {
1016 		dev_warn(nvmeq->dev->ctrl.device,
1017 			"invalid id %d completed on queue %d\n",
1018 			command_id, le16_to_cpu(cqe->sq_id));
1019 		return;
1020 	}
1021 
1022 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1023 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1024 		nvme_pci_complete_rq(req);
1025 }
1026 
nvme_update_cq_head(struct nvme_queue * nvmeq)1027 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1028 {
1029 	u32 tmp = nvmeq->cq_head + 1;
1030 
1031 	if (tmp == nvmeq->q_depth) {
1032 		nvmeq->cq_head = 0;
1033 		nvmeq->cq_phase ^= 1;
1034 	} else {
1035 		nvmeq->cq_head = tmp;
1036 	}
1037 }
1038 
nvme_process_cq(struct nvme_queue * nvmeq)1039 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1040 {
1041 	int found = 0;
1042 
1043 	while (nvme_cqe_pending(nvmeq)) {
1044 		found++;
1045 		/*
1046 		 * load-load control dependency between phase and the rest of
1047 		 * the cqe requires a full read memory barrier
1048 		 */
1049 		dma_rmb();
1050 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1051 		nvme_update_cq_head(nvmeq);
1052 	}
1053 
1054 	if (found)
1055 		nvme_ring_cq_doorbell(nvmeq);
1056 	return found;
1057 }
1058 
nvme_irq(int irq,void * data)1059 static irqreturn_t nvme_irq(int irq, void *data)
1060 {
1061 	struct nvme_queue *nvmeq = data;
1062 	irqreturn_t ret = IRQ_NONE;
1063 
1064 	/*
1065 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1066 	 * the irq handler, even if that was on another CPU.
1067 	 */
1068 	rmb();
1069 	if (nvme_process_cq(nvmeq))
1070 		ret = IRQ_HANDLED;
1071 	wmb();
1072 
1073 	return ret;
1074 }
1075 
nvme_irq_check(int irq,void * data)1076 static irqreturn_t nvme_irq_check(int irq, void *data)
1077 {
1078 	struct nvme_queue *nvmeq = data;
1079 
1080 	if (nvme_cqe_pending(nvmeq))
1081 		return IRQ_WAKE_THREAD;
1082 	return IRQ_NONE;
1083 }
1084 
1085 /*
1086  * Poll for completions for any interrupt driven queue
1087  * Can be called from any context.
1088  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1089 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1090 {
1091 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1092 
1093 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1094 
1095 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1096 	nvme_process_cq(nvmeq);
1097 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1098 }
1099 
nvme_poll(struct blk_mq_hw_ctx * hctx)1100 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1101 {
1102 	struct nvme_queue *nvmeq = hctx->driver_data;
1103 	bool found;
1104 
1105 	if (!nvme_cqe_pending(nvmeq))
1106 		return 0;
1107 
1108 	spin_lock(&nvmeq->cq_poll_lock);
1109 	found = nvme_process_cq(nvmeq);
1110 	spin_unlock(&nvmeq->cq_poll_lock);
1111 
1112 	return found;
1113 }
1114 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1115 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1116 {
1117 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1118 	struct nvme_queue *nvmeq = &dev->queues[0];
1119 	struct nvme_command c;
1120 
1121 	memset(&c, 0, sizeof(c));
1122 	c.common.opcode = nvme_admin_async_event;
1123 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1124 	nvme_submit_cmd(nvmeq, &c, true);
1125 }
1126 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1127 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1128 {
1129 	struct nvme_command c;
1130 
1131 	memset(&c, 0, sizeof(c));
1132 	c.delete_queue.opcode = opcode;
1133 	c.delete_queue.qid = cpu_to_le16(id);
1134 
1135 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1136 }
1137 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1138 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1139 		struct nvme_queue *nvmeq, s16 vector)
1140 {
1141 	struct nvme_command c;
1142 	int flags = NVME_QUEUE_PHYS_CONTIG;
1143 
1144 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1145 		flags |= NVME_CQ_IRQ_ENABLED;
1146 
1147 	/*
1148 	 * Note: we (ab)use the fact that the prp fields survive if no data
1149 	 * is attached to the request.
1150 	 */
1151 	memset(&c, 0, sizeof(c));
1152 	c.create_cq.opcode = nvme_admin_create_cq;
1153 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1154 	c.create_cq.cqid = cpu_to_le16(qid);
1155 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156 	c.create_cq.cq_flags = cpu_to_le16(flags);
1157 	c.create_cq.irq_vector = cpu_to_le16(vector);
1158 
1159 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1160 }
1161 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1162 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1163 						struct nvme_queue *nvmeq)
1164 {
1165 	struct nvme_ctrl *ctrl = &dev->ctrl;
1166 	struct nvme_command c;
1167 	int flags = NVME_QUEUE_PHYS_CONTIG;
1168 
1169 	/*
1170 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1171 	 * set. Since URGENT priority is zeroes, it makes all queues
1172 	 * URGENT.
1173 	 */
1174 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1175 		flags |= NVME_SQ_PRIO_MEDIUM;
1176 
1177 	/*
1178 	 * Note: we (ab)use the fact that the prp fields survive if no data
1179 	 * is attached to the request.
1180 	 */
1181 	memset(&c, 0, sizeof(c));
1182 	c.create_sq.opcode = nvme_admin_create_sq;
1183 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1184 	c.create_sq.sqid = cpu_to_le16(qid);
1185 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1186 	c.create_sq.sq_flags = cpu_to_le16(flags);
1187 	c.create_sq.cqid = cpu_to_le16(qid);
1188 
1189 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1190 }
1191 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1192 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1193 {
1194 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1195 }
1196 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1197 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1198 {
1199 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1200 }
1201 
abort_endio(struct request * req,blk_status_t error)1202 static void abort_endio(struct request *req, blk_status_t error)
1203 {
1204 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1205 	struct nvme_queue *nvmeq = iod->nvmeq;
1206 
1207 	dev_warn(nvmeq->dev->ctrl.device,
1208 		 "Abort status: 0x%x", nvme_req(req)->status);
1209 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1210 	blk_mq_free_request(req);
1211 }
1212 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1213 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1214 {
1215 	/* If true, indicates loss of adapter communication, possibly by a
1216 	 * NVMe Subsystem reset.
1217 	 */
1218 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1219 
1220 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1221 	switch (dev->ctrl.state) {
1222 	case NVME_CTRL_RESETTING:
1223 	case NVME_CTRL_CONNECTING:
1224 		return false;
1225 	default:
1226 		break;
1227 	}
1228 
1229 	/* We shouldn't reset unless the controller is on fatal error state
1230 	 * _or_ if we lost the communication with it.
1231 	 */
1232 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1233 		return false;
1234 
1235 	return true;
1236 }
1237 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1238 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1239 {
1240 	/* Read a config register to help see what died. */
1241 	u16 pci_status;
1242 	int result;
1243 
1244 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1245 				      &pci_status);
1246 	if (result == PCIBIOS_SUCCESSFUL)
1247 		dev_warn(dev->ctrl.device,
1248 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1249 			 csts, pci_status);
1250 	else
1251 		dev_warn(dev->ctrl.device,
1252 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1253 			 csts, result);
1254 }
1255 
nvme_timeout(struct request * req,bool reserved)1256 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1257 {
1258 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1259 	struct nvme_queue *nvmeq = iod->nvmeq;
1260 	struct nvme_dev *dev = nvmeq->dev;
1261 	struct request *abort_req;
1262 	struct nvme_command cmd;
1263 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1264 
1265 	/* If PCI error recovery process is happening, we cannot reset or
1266 	 * the recovery mechanism will surely fail.
1267 	 */
1268 	mb();
1269 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 		return BLK_EH_RESET_TIMER;
1271 
1272 	/*
1273 	 * Reset immediately if the controller is failed
1274 	 */
1275 	if (nvme_should_reset(dev, csts)) {
1276 		nvme_warn_reset(dev, csts);
1277 		nvme_dev_disable(dev, false);
1278 		nvme_reset_ctrl(&dev->ctrl);
1279 		return BLK_EH_DONE;
1280 	}
1281 
1282 	/*
1283 	 * Did we miss an interrupt?
1284 	 */
1285 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1286 		nvme_poll(req->mq_hctx);
1287 	else
1288 		nvme_poll_irqdisable(nvmeq);
1289 
1290 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1291 		dev_warn(dev->ctrl.device,
1292 			 "I/O %d QID %d timeout, completion polled\n",
1293 			 req->tag, nvmeq->qid);
1294 		return BLK_EH_DONE;
1295 	}
1296 
1297 	/*
1298 	 * Shutdown immediately if controller times out while starting. The
1299 	 * reset work will see the pci device disabled when it gets the forced
1300 	 * cancellation error. All outstanding requests are completed on
1301 	 * shutdown, so we return BLK_EH_DONE.
1302 	 */
1303 	switch (dev->ctrl.state) {
1304 	case NVME_CTRL_CONNECTING:
1305 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1306 		fallthrough;
1307 	case NVME_CTRL_DELETING:
1308 		dev_warn_ratelimited(dev->ctrl.device,
1309 			 "I/O %d QID %d timeout, disable controller\n",
1310 			 req->tag, nvmeq->qid);
1311 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1312 		nvme_dev_disable(dev, true);
1313 		return BLK_EH_DONE;
1314 	case NVME_CTRL_RESETTING:
1315 		return BLK_EH_RESET_TIMER;
1316 	default:
1317 		break;
1318 	}
1319 
1320 	/*
1321 	 * Shutdown the controller immediately and schedule a reset if the
1322 	 * command was already aborted once before and still hasn't been
1323 	 * returned to the driver, or if this is the admin queue.
1324 	 */
1325 	if (!nvmeq->qid || iod->aborted) {
1326 		dev_warn(dev->ctrl.device,
1327 			 "I/O %d QID %d timeout, reset controller\n",
1328 			 req->tag, nvmeq->qid);
1329 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1330 		nvme_dev_disable(dev, false);
1331 		nvme_reset_ctrl(&dev->ctrl);
1332 
1333 		return BLK_EH_DONE;
1334 	}
1335 
1336 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1337 		atomic_inc(&dev->ctrl.abort_limit);
1338 		return BLK_EH_RESET_TIMER;
1339 	}
1340 	iod->aborted = 1;
1341 
1342 	memset(&cmd, 0, sizeof(cmd));
1343 	cmd.abort.opcode = nvme_admin_abort_cmd;
1344 	cmd.abort.cid = nvme_cid(req);
1345 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1346 
1347 	dev_warn(nvmeq->dev->ctrl.device,
1348 		"I/O %d QID %d timeout, aborting\n",
1349 		 req->tag, nvmeq->qid);
1350 
1351 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1352 			BLK_MQ_REQ_NOWAIT);
1353 	if (IS_ERR(abort_req)) {
1354 		atomic_inc(&dev->ctrl.abort_limit);
1355 		return BLK_EH_RESET_TIMER;
1356 	}
1357 
1358 	abort_req->end_io_data = NULL;
1359 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1360 
1361 	/*
1362 	 * The aborted req will be completed on receiving the abort req.
1363 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1364 	 * as the device then is in a faulty state.
1365 	 */
1366 	return BLK_EH_RESET_TIMER;
1367 }
1368 
nvme_free_queue(struct nvme_queue * nvmeq)1369 static void nvme_free_queue(struct nvme_queue *nvmeq)
1370 {
1371 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1372 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1373 	if (!nvmeq->sq_cmds)
1374 		return;
1375 
1376 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1377 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1378 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1379 	} else {
1380 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1381 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1382 	}
1383 }
1384 
nvme_free_queues(struct nvme_dev * dev,int lowest)1385 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1386 {
1387 	int i;
1388 
1389 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1390 		dev->ctrl.queue_count--;
1391 		nvme_free_queue(&dev->queues[i]);
1392 	}
1393 }
1394 
1395 /**
1396  * nvme_suspend_queue - put queue into suspended state
1397  * @nvmeq: queue to suspend
1398  */
nvme_suspend_queue(struct nvme_queue * nvmeq)1399 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1400 {
1401 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1402 		return 1;
1403 
1404 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1405 	mb();
1406 
1407 	nvmeq->dev->online_queues--;
1408 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1409 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1410 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1411 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1412 	return 0;
1413 }
1414 
nvme_suspend_io_queues(struct nvme_dev * dev)1415 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1416 {
1417 	int i;
1418 
1419 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1420 		nvme_suspend_queue(&dev->queues[i]);
1421 }
1422 
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1423 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1424 {
1425 	struct nvme_queue *nvmeq = &dev->queues[0];
1426 
1427 	if (shutdown)
1428 		nvme_shutdown_ctrl(&dev->ctrl);
1429 	else
1430 		nvme_disable_ctrl(&dev->ctrl);
1431 
1432 	nvme_poll_irqdisable(nvmeq);
1433 }
1434 
1435 /*
1436  * Called only on a device that has been disabled and after all other threads
1437  * that can check this device's completion queues have synced, except
1438  * nvme_poll(). This is the last chance for the driver to see a natural
1439  * completion before nvme_cancel_request() terminates all incomplete requests.
1440  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1441 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1442 {
1443 	int i;
1444 
1445 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1446 		spin_lock(&dev->queues[i].cq_poll_lock);
1447 		nvme_process_cq(&dev->queues[i]);
1448 		spin_unlock(&dev->queues[i].cq_poll_lock);
1449 	}
1450 }
1451 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1452 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1453 				int entry_size)
1454 {
1455 	int q_depth = dev->q_depth;
1456 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1457 					  NVME_CTRL_PAGE_SIZE);
1458 
1459 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1460 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1461 
1462 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1463 		q_depth = div_u64(mem_per_q, entry_size);
1464 
1465 		/*
1466 		 * Ensure the reduced q_depth is above some threshold where it
1467 		 * would be better to map queues in system memory with the
1468 		 * original depth
1469 		 */
1470 		if (q_depth < 64)
1471 			return -ENOMEM;
1472 	}
1473 
1474 	return q_depth;
1475 }
1476 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1477 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1478 				int qid)
1479 {
1480 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1481 
1482 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1483 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1484 		if (nvmeq->sq_cmds) {
1485 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1486 							nvmeq->sq_cmds);
1487 			if (nvmeq->sq_dma_addr) {
1488 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1489 				return 0;
1490 			}
1491 
1492 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1493 		}
1494 	}
1495 
1496 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1497 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1498 	if (!nvmeq->sq_cmds)
1499 		return -ENOMEM;
1500 	return 0;
1501 }
1502 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1503 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1504 {
1505 	struct nvme_queue *nvmeq = &dev->queues[qid];
1506 
1507 	if (dev->ctrl.queue_count > qid)
1508 		return 0;
1509 
1510 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1511 	nvmeq->q_depth = depth;
1512 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1513 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1514 	if (!nvmeq->cqes)
1515 		goto free_nvmeq;
1516 
1517 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1518 		goto free_cqdma;
1519 
1520 	nvmeq->dev = dev;
1521 	spin_lock_init(&nvmeq->sq_lock);
1522 	spin_lock_init(&nvmeq->cq_poll_lock);
1523 	nvmeq->cq_head = 0;
1524 	nvmeq->cq_phase = 1;
1525 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1526 	nvmeq->qid = qid;
1527 	dev->ctrl.queue_count++;
1528 
1529 	return 0;
1530 
1531  free_cqdma:
1532 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1533 			  nvmeq->cq_dma_addr);
1534  free_nvmeq:
1535 	return -ENOMEM;
1536 }
1537 
queue_request_irq(struct nvme_queue * nvmeq)1538 static int queue_request_irq(struct nvme_queue *nvmeq)
1539 {
1540 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1541 	int nr = nvmeq->dev->ctrl.instance;
1542 
1543 	if (use_threaded_interrupts) {
1544 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1545 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1546 	} else {
1547 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1548 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1549 	}
1550 }
1551 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1552 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1553 {
1554 	struct nvme_dev *dev = nvmeq->dev;
1555 
1556 	nvmeq->sq_tail = 0;
1557 	nvmeq->last_sq_tail = 0;
1558 	nvmeq->cq_head = 0;
1559 	nvmeq->cq_phase = 1;
1560 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1561 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1562 	nvme_dbbuf_init(dev, nvmeq, qid);
1563 	dev->online_queues++;
1564 	wmb(); /* ensure the first interrupt sees the initialization */
1565 }
1566 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1567 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1568 {
1569 	struct nvme_dev *dev = nvmeq->dev;
1570 	int result;
1571 	u16 vector = 0;
1572 
1573 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1574 
1575 	/*
1576 	 * A queue's vector matches the queue identifier unless the controller
1577 	 * has only one vector available.
1578 	 */
1579 	if (!polled)
1580 		vector = dev->num_vecs == 1 ? 0 : qid;
1581 	else
1582 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1583 
1584 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1585 	if (result)
1586 		return result;
1587 
1588 	result = adapter_alloc_sq(dev, qid, nvmeq);
1589 	if (result < 0)
1590 		return result;
1591 	if (result)
1592 		goto release_cq;
1593 
1594 	nvmeq->cq_vector = vector;
1595 	nvme_init_queue(nvmeq, qid);
1596 
1597 	if (!polled) {
1598 		result = queue_request_irq(nvmeq);
1599 		if (result < 0)
1600 			goto release_sq;
1601 	}
1602 
1603 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1604 	return result;
1605 
1606 release_sq:
1607 	dev->online_queues--;
1608 	adapter_delete_sq(dev, qid);
1609 release_cq:
1610 	adapter_delete_cq(dev, qid);
1611 	return result;
1612 }
1613 
1614 static const struct blk_mq_ops nvme_mq_admin_ops = {
1615 	.queue_rq	= nvme_queue_rq,
1616 	.complete	= nvme_pci_complete_rq,
1617 	.init_hctx	= nvme_admin_init_hctx,
1618 	.init_request	= nvme_init_request,
1619 	.timeout	= nvme_timeout,
1620 };
1621 
1622 static const struct blk_mq_ops nvme_mq_ops = {
1623 	.queue_rq	= nvme_queue_rq,
1624 	.complete	= nvme_pci_complete_rq,
1625 	.commit_rqs	= nvme_commit_rqs,
1626 	.init_hctx	= nvme_init_hctx,
1627 	.init_request	= nvme_init_request,
1628 	.map_queues	= nvme_pci_map_queues,
1629 	.timeout	= nvme_timeout,
1630 	.poll		= nvme_poll,
1631 };
1632 
nvme_dev_remove_admin(struct nvme_dev * dev)1633 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1634 {
1635 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1636 		/*
1637 		 * If the controller was reset during removal, it's possible
1638 		 * user requests may be waiting on a stopped queue. Start the
1639 		 * queue to flush these to completion.
1640 		 */
1641 		nvme_start_admin_queue(&dev->ctrl);
1642 		blk_cleanup_queue(dev->ctrl.admin_q);
1643 		blk_mq_free_tag_set(&dev->admin_tagset);
1644 	}
1645 }
1646 
nvme_alloc_admin_tags(struct nvme_dev * dev)1647 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1648 {
1649 	if (!dev->ctrl.admin_q) {
1650 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1651 		dev->admin_tagset.nr_hw_queues = 1;
1652 
1653 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1654 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1655 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1656 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1657 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1658 		dev->admin_tagset.driver_data = dev;
1659 
1660 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1661 			return -ENOMEM;
1662 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1663 
1664 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1665 		if (IS_ERR(dev->ctrl.admin_q)) {
1666 			blk_mq_free_tag_set(&dev->admin_tagset);
1667 			dev->ctrl.admin_q = NULL;
1668 			return -ENOMEM;
1669 		}
1670 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1671 			nvme_dev_remove_admin(dev);
1672 			dev->ctrl.admin_q = NULL;
1673 			return -ENODEV;
1674 		}
1675 	} else
1676 		nvme_start_admin_queue(&dev->ctrl);
1677 
1678 	return 0;
1679 }
1680 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1681 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1682 {
1683 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1684 }
1685 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1686 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1687 {
1688 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1689 
1690 	if (size <= dev->bar_mapped_size)
1691 		return 0;
1692 	if (size > pci_resource_len(pdev, 0))
1693 		return -ENOMEM;
1694 	if (dev->bar)
1695 		iounmap(dev->bar);
1696 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1697 	if (!dev->bar) {
1698 		dev->bar_mapped_size = 0;
1699 		return -ENOMEM;
1700 	}
1701 	dev->bar_mapped_size = size;
1702 	dev->dbs = dev->bar + NVME_REG_DBS;
1703 
1704 	return 0;
1705 }
1706 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1707 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1708 {
1709 	int result;
1710 	u32 aqa;
1711 	struct nvme_queue *nvmeq;
1712 
1713 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1714 	if (result < 0)
1715 		return result;
1716 
1717 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1718 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1719 
1720 	if (dev->subsystem &&
1721 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1722 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1723 
1724 	result = nvme_disable_ctrl(&dev->ctrl);
1725 	if (result < 0)
1726 		return result;
1727 
1728 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1729 	if (result)
1730 		return result;
1731 
1732 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1733 
1734 	nvmeq = &dev->queues[0];
1735 	aqa = nvmeq->q_depth - 1;
1736 	aqa |= aqa << 16;
1737 
1738 	writel(aqa, dev->bar + NVME_REG_AQA);
1739 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1740 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1741 
1742 	result = nvme_enable_ctrl(&dev->ctrl);
1743 	if (result)
1744 		return result;
1745 
1746 	nvmeq->cq_vector = 0;
1747 	nvme_init_queue(nvmeq, 0);
1748 	result = queue_request_irq(nvmeq);
1749 	if (result) {
1750 		dev->online_queues--;
1751 		return result;
1752 	}
1753 
1754 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1755 	return result;
1756 }
1757 
nvme_create_io_queues(struct nvme_dev * dev)1758 static int nvme_create_io_queues(struct nvme_dev *dev)
1759 {
1760 	unsigned i, max, rw_queues;
1761 	int ret = 0;
1762 
1763 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1764 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1765 			ret = -ENOMEM;
1766 			break;
1767 		}
1768 	}
1769 
1770 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1771 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1772 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1773 				dev->io_queues[HCTX_TYPE_READ];
1774 	} else {
1775 		rw_queues = max;
1776 	}
1777 
1778 	for (i = dev->online_queues; i <= max; i++) {
1779 		bool polled = i > rw_queues;
1780 
1781 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1782 		if (ret)
1783 			break;
1784 	}
1785 
1786 	/*
1787 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1788 	 * than the desired amount of queues, and even a controller without
1789 	 * I/O queues can still be used to issue admin commands.  This might
1790 	 * be useful to upgrade a buggy firmware for example.
1791 	 */
1792 	return ret >= 0 ? 0 : ret;
1793 }
1794 
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1795 static ssize_t nvme_cmb_show(struct device *dev,
1796 			     struct device_attribute *attr,
1797 			     char *buf)
1798 {
1799 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1800 
1801 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1802 		       ndev->cmbloc, ndev->cmbsz);
1803 }
1804 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1805 
nvme_cmb_size_unit(struct nvme_dev * dev)1806 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1807 {
1808 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1809 
1810 	return 1ULL << (12 + 4 * szu);
1811 }
1812 
nvme_cmb_size(struct nvme_dev * dev)1813 static u32 nvme_cmb_size(struct nvme_dev *dev)
1814 {
1815 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1816 }
1817 
nvme_map_cmb(struct nvme_dev * dev)1818 static void nvme_map_cmb(struct nvme_dev *dev)
1819 {
1820 	u64 size, offset;
1821 	resource_size_t bar_size;
1822 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1823 	int bar;
1824 
1825 	if (dev->cmb_size)
1826 		return;
1827 
1828 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1829 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1830 
1831 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1832 	if (!dev->cmbsz)
1833 		return;
1834 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1835 
1836 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1837 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1838 	bar = NVME_CMB_BIR(dev->cmbloc);
1839 	bar_size = pci_resource_len(pdev, bar);
1840 
1841 	if (offset > bar_size)
1842 		return;
1843 
1844 	/*
1845 	 * Tell the controller about the host side address mapping the CMB,
1846 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1847 	 */
1848 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1849 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1850 			     (pci_bus_address(pdev, bar) + offset),
1851 			     dev->bar + NVME_REG_CMBMSC);
1852 	}
1853 
1854 	/*
1855 	 * Controllers may support a CMB size larger than their BAR,
1856 	 * for example, due to being behind a bridge. Reduce the CMB to
1857 	 * the reported size of the BAR
1858 	 */
1859 	if (size > bar_size - offset)
1860 		size = bar_size - offset;
1861 
1862 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1863 		dev_warn(dev->ctrl.device,
1864 			 "failed to register the CMB\n");
1865 		return;
1866 	}
1867 
1868 	dev->cmb_size = size;
1869 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1870 
1871 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1872 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1873 		pci_p2pmem_publish(pdev, true);
1874 
1875 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1876 				    &dev_attr_cmb.attr, NULL))
1877 		dev_warn(dev->ctrl.device,
1878 			 "failed to add sysfs attribute for CMB\n");
1879 }
1880 
nvme_release_cmb(struct nvme_dev * dev)1881 static inline void nvme_release_cmb(struct nvme_dev *dev)
1882 {
1883 	if (dev->cmb_size) {
1884 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1885 					     &dev_attr_cmb.attr, NULL);
1886 		dev->cmb_size = 0;
1887 	}
1888 }
1889 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1891 {
1892 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1893 	u64 dma_addr = dev->host_mem_descs_dma;
1894 	struct nvme_command c;
1895 	int ret;
1896 
1897 	memset(&c, 0, sizeof(c));
1898 	c.features.opcode	= nvme_admin_set_features;
1899 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1900 	c.features.dword11	= cpu_to_le32(bits);
1901 	c.features.dword12	= cpu_to_le32(host_mem_size);
1902 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1903 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1904 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1905 
1906 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1907 	if (ret) {
1908 		dev_warn(dev->ctrl.device,
1909 			 "failed to set host mem (err %d, flags %#x).\n",
1910 			 ret, bits);
1911 	}
1912 	return ret;
1913 }
1914 
nvme_free_host_mem(struct nvme_dev * dev)1915 static void nvme_free_host_mem(struct nvme_dev *dev)
1916 {
1917 	int i;
1918 
1919 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1920 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1921 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1922 
1923 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1924 			       le64_to_cpu(desc->addr),
1925 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926 	}
1927 
1928 	kfree(dev->host_mem_desc_bufs);
1929 	dev->host_mem_desc_bufs = NULL;
1930 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1931 			dev->host_mem_descs, dev->host_mem_descs_dma);
1932 	dev->host_mem_descs = NULL;
1933 	dev->host_mem_descs_size = 0;
1934 	dev->nr_host_mem_descs = 0;
1935 }
1936 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1937 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1938 		u32 chunk_size)
1939 {
1940 	struct nvme_host_mem_buf_desc *descs;
1941 	u32 max_entries, len, descs_size;
1942 	dma_addr_t descs_dma;
1943 	int i = 0;
1944 	void **bufs;
1945 	u64 size, tmp;
1946 
1947 	tmp = (preferred + chunk_size - 1);
1948 	do_div(tmp, chunk_size);
1949 	max_entries = tmp;
1950 
1951 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1952 		max_entries = dev->ctrl.hmmaxd;
1953 
1954 	descs_size = max_entries * sizeof(*descs);
1955 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1956 			GFP_KERNEL);
1957 	if (!descs)
1958 		goto out;
1959 
1960 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1961 	if (!bufs)
1962 		goto out_free_descs;
1963 
1964 	for (size = 0; size < preferred && i < max_entries; size += len) {
1965 		dma_addr_t dma_addr;
1966 
1967 		len = min_t(u64, chunk_size, preferred - size);
1968 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1969 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970 		if (!bufs[i])
1971 			break;
1972 
1973 		descs[i].addr = cpu_to_le64(dma_addr);
1974 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1975 		i++;
1976 	}
1977 
1978 	if (!size)
1979 		goto out_free_bufs;
1980 
1981 	dev->nr_host_mem_descs = i;
1982 	dev->host_mem_size = size;
1983 	dev->host_mem_descs = descs;
1984 	dev->host_mem_descs_dma = descs_dma;
1985 	dev->host_mem_descs_size = descs_size;
1986 	dev->host_mem_desc_bufs = bufs;
1987 	return 0;
1988 
1989 out_free_bufs:
1990 	while (--i >= 0) {
1991 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1992 
1993 		dma_free_attrs(dev->dev, size, bufs[i],
1994 			       le64_to_cpu(descs[i].addr),
1995 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1996 	}
1997 
1998 	kfree(bufs);
1999 out_free_descs:
2000 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2001 out:
2002 	dev->host_mem_descs = NULL;
2003 	return -ENOMEM;
2004 }
2005 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2006 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2007 {
2008 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2009 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2010 	u64 chunk_size;
2011 
2012 	/* start big and work our way down */
2013 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2014 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2015 			if (!min || dev->host_mem_size >= min)
2016 				return 0;
2017 			nvme_free_host_mem(dev);
2018 		}
2019 	}
2020 
2021 	return -ENOMEM;
2022 }
2023 
nvme_setup_host_mem(struct nvme_dev * dev)2024 static int nvme_setup_host_mem(struct nvme_dev *dev)
2025 {
2026 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2027 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2028 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2029 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2030 	int ret;
2031 
2032 	preferred = min(preferred, max);
2033 	if (min > max) {
2034 		dev_warn(dev->ctrl.device,
2035 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2036 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2037 		nvme_free_host_mem(dev);
2038 		return 0;
2039 	}
2040 
2041 	/*
2042 	 * If we already have a buffer allocated check if we can reuse it.
2043 	 */
2044 	if (dev->host_mem_descs) {
2045 		if (dev->host_mem_size >= min)
2046 			enable_bits |= NVME_HOST_MEM_RETURN;
2047 		else
2048 			nvme_free_host_mem(dev);
2049 	}
2050 
2051 	if (!dev->host_mem_descs) {
2052 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2053 			dev_warn(dev->ctrl.device,
2054 				"failed to allocate host memory buffer.\n");
2055 			return 0; /* controller must work without HMB */
2056 		}
2057 
2058 		dev_info(dev->ctrl.device,
2059 			"allocated %lld MiB host memory buffer.\n",
2060 			dev->host_mem_size >> ilog2(SZ_1M));
2061 	}
2062 
2063 	ret = nvme_set_host_mem(dev, enable_bits);
2064 	if (ret)
2065 		nvme_free_host_mem(dev);
2066 	return ret;
2067 }
2068 
2069 /*
2070  * nirqs is the number of interrupts available for write and read
2071  * queues. The core already reserved an interrupt for the admin queue.
2072  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2073 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2074 {
2075 	struct nvme_dev *dev = affd->priv;
2076 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2077 
2078 	/*
2079 	 * If there is no interrupt available for queues, ensure that
2080 	 * the default queue is set to 1. The affinity set size is
2081 	 * also set to one, but the irq core ignores it for this case.
2082 	 *
2083 	 * If only one interrupt is available or 'write_queue' == 0, combine
2084 	 * write and read queues.
2085 	 *
2086 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2087 	 * queue.
2088 	 */
2089 	if (!nrirqs) {
2090 		nrirqs = 1;
2091 		nr_read_queues = 0;
2092 	} else if (nrirqs == 1 || !nr_write_queues) {
2093 		nr_read_queues = 0;
2094 	} else if (nr_write_queues >= nrirqs) {
2095 		nr_read_queues = 1;
2096 	} else {
2097 		nr_read_queues = nrirqs - nr_write_queues;
2098 	}
2099 
2100 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2101 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2102 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2103 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2104 	affd->nr_sets = nr_read_queues ? 2 : 1;
2105 }
2106 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2107 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2108 {
2109 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2110 	struct irq_affinity affd = {
2111 		.pre_vectors	= 1,
2112 		.calc_sets	= nvme_calc_irq_sets,
2113 		.priv		= dev,
2114 	};
2115 	unsigned int irq_queues, poll_queues;
2116 
2117 	/*
2118 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2119 	 * left over for non-polled I/O.
2120 	 */
2121 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2122 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2123 
2124 	/*
2125 	 * Initialize for the single interrupt case, will be updated in
2126 	 * nvme_calc_irq_sets().
2127 	 */
2128 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2129 	dev->io_queues[HCTX_TYPE_READ] = 0;
2130 
2131 	/*
2132 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2133 	 * but some Apple controllers require all queues to use the first
2134 	 * vector.
2135 	 */
2136 	irq_queues = 1;
2137 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2138 		irq_queues += (nr_io_queues - poll_queues);
2139 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2140 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2141 }
2142 
nvme_disable_io_queues(struct nvme_dev * dev)2143 static void nvme_disable_io_queues(struct nvme_dev *dev)
2144 {
2145 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2146 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2147 }
2148 
nvme_max_io_queues(struct nvme_dev * dev)2149 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2150 {
2151 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2152 }
2153 
nvme_setup_io_queues(struct nvme_dev * dev)2154 static int nvme_setup_io_queues(struct nvme_dev *dev)
2155 {
2156 	struct nvme_queue *adminq = &dev->queues[0];
2157 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2158 	unsigned int nr_io_queues;
2159 	unsigned long size;
2160 	int result;
2161 
2162 	/*
2163 	 * Sample the module parameters once at reset time so that we have
2164 	 * stable values to work with.
2165 	 */
2166 	dev->nr_write_queues = write_queues;
2167 	dev->nr_poll_queues = poll_queues;
2168 
2169 	/*
2170 	 * If tags are shared with admin queue (Apple bug), then
2171 	 * make sure we only use one IO queue.
2172 	 */
2173 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2174 		nr_io_queues = 1;
2175 	else
2176 		nr_io_queues = min(nvme_max_io_queues(dev),
2177 				   dev->nr_allocated_queues - 1);
2178 
2179 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2180 	if (result < 0)
2181 		return result;
2182 
2183 	if (nr_io_queues == 0)
2184 		return 0;
2185 
2186 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2187 
2188 	if (dev->cmb_use_sqes) {
2189 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2190 				sizeof(struct nvme_command));
2191 		if (result > 0)
2192 			dev->q_depth = result;
2193 		else
2194 			dev->cmb_use_sqes = false;
2195 	}
2196 
2197 	do {
2198 		size = db_bar_size(dev, nr_io_queues);
2199 		result = nvme_remap_bar(dev, size);
2200 		if (!result)
2201 			break;
2202 		if (!--nr_io_queues)
2203 			return -ENOMEM;
2204 	} while (1);
2205 	adminq->q_db = dev->dbs;
2206 
2207  retry:
2208 	/* Deregister the admin queue's interrupt */
2209 	pci_free_irq(pdev, 0, adminq);
2210 
2211 	/*
2212 	 * If we enable msix early due to not intx, disable it again before
2213 	 * setting up the full range we need.
2214 	 */
2215 	pci_free_irq_vectors(pdev);
2216 
2217 	result = nvme_setup_irqs(dev, nr_io_queues);
2218 	if (result <= 0)
2219 		return -EIO;
2220 
2221 	dev->num_vecs = result;
2222 	result = max(result - 1, 1);
2223 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2224 
2225 	/*
2226 	 * Should investigate if there's a performance win from allocating
2227 	 * more queues than interrupt vectors; it might allow the submission
2228 	 * path to scale better, even if the receive path is limited by the
2229 	 * number of interrupts.
2230 	 */
2231 	result = queue_request_irq(adminq);
2232 	if (result)
2233 		return result;
2234 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2235 
2236 	result = nvme_create_io_queues(dev);
2237 	if (result || dev->online_queues < 2)
2238 		return result;
2239 
2240 	if (dev->online_queues - 1 < dev->max_qid) {
2241 		nr_io_queues = dev->online_queues - 1;
2242 		nvme_disable_io_queues(dev);
2243 		nvme_suspend_io_queues(dev);
2244 		goto retry;
2245 	}
2246 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2247 					dev->io_queues[HCTX_TYPE_DEFAULT],
2248 					dev->io_queues[HCTX_TYPE_READ],
2249 					dev->io_queues[HCTX_TYPE_POLL]);
2250 	return 0;
2251 }
2252 
nvme_del_queue_end(struct request * req,blk_status_t error)2253 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2254 {
2255 	struct nvme_queue *nvmeq = req->end_io_data;
2256 
2257 	blk_mq_free_request(req);
2258 	complete(&nvmeq->delete_done);
2259 }
2260 
nvme_del_cq_end(struct request * req,blk_status_t error)2261 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2262 {
2263 	struct nvme_queue *nvmeq = req->end_io_data;
2264 
2265 	if (error)
2266 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2267 
2268 	nvme_del_queue_end(req, error);
2269 }
2270 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2271 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2272 {
2273 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2274 	struct request *req;
2275 	struct nvme_command cmd;
2276 
2277 	memset(&cmd, 0, sizeof(cmd));
2278 	cmd.delete_queue.opcode = opcode;
2279 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2280 
2281 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2282 	if (IS_ERR(req))
2283 		return PTR_ERR(req);
2284 
2285 	req->end_io_data = nvmeq;
2286 
2287 	init_completion(&nvmeq->delete_done);
2288 	blk_execute_rq_nowait(q, NULL, req, false,
2289 			opcode == nvme_admin_delete_cq ?
2290 				nvme_del_cq_end : nvme_del_queue_end);
2291 	return 0;
2292 }
2293 
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2294 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2295 {
2296 	int nr_queues = dev->online_queues - 1, sent = 0;
2297 	unsigned long timeout;
2298 
2299  retry:
2300 	timeout = ADMIN_TIMEOUT;
2301 	while (nr_queues > 0) {
2302 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2303 			break;
2304 		nr_queues--;
2305 		sent++;
2306 	}
2307 	while (sent) {
2308 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2309 
2310 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2311 				timeout);
2312 		if (timeout == 0)
2313 			return false;
2314 
2315 		sent--;
2316 		if (nr_queues)
2317 			goto retry;
2318 	}
2319 	return true;
2320 }
2321 
nvme_pci_alloc_tag_set(struct nvme_dev * dev)2322 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2323 {
2324 	struct blk_mq_tag_set * set = &dev->tagset;
2325 	int ret;
2326 
2327 	set->ops = &nvme_mq_ops;
2328 	set->nr_hw_queues = dev->online_queues - 1;
2329 	set->nr_maps = 2; /* default + read */
2330 	if (dev->io_queues[HCTX_TYPE_POLL])
2331 		set->nr_maps++;
2332 	set->timeout = NVME_IO_TIMEOUT;
2333 	set->numa_node = dev->ctrl.numa_node;
2334 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2335 	set->cmd_size = sizeof(struct nvme_iod);
2336 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2337 	set->driver_data = dev;
2338 
2339 	/*
2340 	 * Some Apple controllers requires tags to be unique
2341 	 * across admin and IO queue, so reserve the first 32
2342 	 * tags of the IO queue.
2343 	 */
2344 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2345 		set->reserved_tags = NVME_AQ_DEPTH;
2346 
2347 	ret = blk_mq_alloc_tag_set(set);
2348 	if (ret) {
2349 		dev_warn(dev->ctrl.device,
2350 			"IO queues tagset allocation failed %d\n", ret);
2351 		return;
2352 	}
2353 	dev->ctrl.tagset = set;
2354 }
2355 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2356 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2357 {
2358 	/* Give up if we are racing with nvme_dev_disable() */
2359 	if (!mutex_trylock(&dev->shutdown_lock))
2360 		return false;
2361 
2362 	/* Check if nvme_dev_disable() has been executed already */
2363 	if (!dev->online_queues) {
2364 		mutex_unlock(&dev->shutdown_lock);
2365 		return false;
2366 	}
2367 
2368 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2369 	/* free previously allocated queues that are no longer usable */
2370 	nvme_free_queues(dev, dev->online_queues);
2371 	mutex_unlock(&dev->shutdown_lock);
2372 	return true;
2373 }
2374 
nvme_pci_enable(struct nvme_dev * dev)2375 static int nvme_pci_enable(struct nvme_dev *dev)
2376 {
2377 	int result = -ENOMEM;
2378 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2379 
2380 	if (pci_enable_device_mem(pdev))
2381 		return result;
2382 
2383 	pci_set_master(pdev);
2384 
2385 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2386 		goto disable;
2387 
2388 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2389 		result = -ENODEV;
2390 		goto disable;
2391 	}
2392 
2393 	/*
2394 	 * Some devices and/or platforms don't advertise or work with INTx
2395 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2396 	 * adjust this later.
2397 	 */
2398 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2399 	if (result < 0)
2400 		return result;
2401 
2402 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2403 
2404 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2405 				io_queue_depth);
2406 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2407 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2408 	dev->dbs = dev->bar + 4096;
2409 
2410 	/*
2411 	 * Some Apple controllers require a non-standard SQE size.
2412 	 * Interestingly they also seem to ignore the CC:IOSQES register
2413 	 * so we don't bother updating it here.
2414 	 */
2415 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2416 		dev->io_sqes = 7;
2417 	else
2418 		dev->io_sqes = NVME_NVM_IOSQES;
2419 
2420 	/*
2421 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2422 	 * some MacBook7,1 to avoid controller resets and data loss.
2423 	 */
2424 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2425 		dev->q_depth = 2;
2426 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2427 			"set queue depth=%u to work around controller resets\n",
2428 			dev->q_depth);
2429 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2430 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2431 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2432 		dev->q_depth = 64;
2433 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2434                         "set queue depth=%u\n", dev->q_depth);
2435 	}
2436 
2437 	/*
2438 	 * Controllers with the shared tags quirk need the IO queue to be
2439 	 * big enough so that we get 32 tags for the admin queue
2440 	 */
2441 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2442 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2443 		dev->q_depth = NVME_AQ_DEPTH + 2;
2444 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2445 			 dev->q_depth);
2446 	}
2447 
2448 
2449 	nvme_map_cmb(dev);
2450 
2451 	pci_enable_pcie_error_reporting(pdev);
2452 	pci_save_state(pdev);
2453 	return 0;
2454 
2455  disable:
2456 	pci_disable_device(pdev);
2457 	return result;
2458 }
2459 
nvme_dev_unmap(struct nvme_dev * dev)2460 static void nvme_dev_unmap(struct nvme_dev *dev)
2461 {
2462 	if (dev->bar)
2463 		iounmap(dev->bar);
2464 	pci_release_mem_regions(to_pci_dev(dev->dev));
2465 }
2466 
nvme_pci_disable(struct nvme_dev * dev)2467 static void nvme_pci_disable(struct nvme_dev *dev)
2468 {
2469 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2470 
2471 	pci_free_irq_vectors(pdev);
2472 
2473 	if (pci_is_enabled(pdev)) {
2474 		pci_disable_pcie_error_reporting(pdev);
2475 		pci_disable_device(pdev);
2476 	}
2477 }
2478 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2479 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2480 {
2481 	bool dead = true, freeze = false;
2482 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2483 
2484 	mutex_lock(&dev->shutdown_lock);
2485 	if (pci_is_enabled(pdev)) {
2486 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2487 
2488 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2489 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2490 			freeze = true;
2491 			nvme_start_freeze(&dev->ctrl);
2492 		}
2493 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2494 			pdev->error_state  != pci_channel_io_normal);
2495 	}
2496 
2497 	/*
2498 	 * Give the controller a chance to complete all entered requests if
2499 	 * doing a safe shutdown.
2500 	 */
2501 	if (!dead && shutdown && freeze)
2502 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2503 
2504 	nvme_stop_queues(&dev->ctrl);
2505 
2506 	if (!dead && dev->ctrl.queue_count > 0) {
2507 		nvme_disable_io_queues(dev);
2508 		nvme_disable_admin_queue(dev, shutdown);
2509 	}
2510 	nvme_suspend_io_queues(dev);
2511 	nvme_suspend_queue(&dev->queues[0]);
2512 	nvme_pci_disable(dev);
2513 	nvme_reap_pending_cqes(dev);
2514 
2515 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2516 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2517 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2518 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2519 
2520 	/*
2521 	 * The driver will not be starting up queues again if shutting down so
2522 	 * must flush all entered requests to their failed completion to avoid
2523 	 * deadlocking blk-mq hot-cpu notifier.
2524 	 */
2525 	if (shutdown) {
2526 		nvme_start_queues(&dev->ctrl);
2527 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2528 			nvme_start_admin_queue(&dev->ctrl);
2529 	}
2530 	mutex_unlock(&dev->shutdown_lock);
2531 }
2532 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2533 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2534 {
2535 	if (!nvme_wait_reset(&dev->ctrl))
2536 		return -EBUSY;
2537 	nvme_dev_disable(dev, shutdown);
2538 	return 0;
2539 }
2540 
nvme_setup_prp_pools(struct nvme_dev * dev)2541 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2542 {
2543 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2544 						NVME_CTRL_PAGE_SIZE,
2545 						NVME_CTRL_PAGE_SIZE, 0);
2546 	if (!dev->prp_page_pool)
2547 		return -ENOMEM;
2548 
2549 	/* Optimisation for I/Os between 4k and 128k */
2550 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2551 						256, 256, 0);
2552 	if (!dev->prp_small_pool) {
2553 		dma_pool_destroy(dev->prp_page_pool);
2554 		return -ENOMEM;
2555 	}
2556 	return 0;
2557 }
2558 
nvme_release_prp_pools(struct nvme_dev * dev)2559 static void nvme_release_prp_pools(struct nvme_dev *dev)
2560 {
2561 	dma_pool_destroy(dev->prp_page_pool);
2562 	dma_pool_destroy(dev->prp_small_pool);
2563 }
2564 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2565 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2566 {
2567 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2568 	size_t alloc_size = sizeof(__le64 *) * npages +
2569 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2570 
2571 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2572 	dev->iod_mempool = mempool_create_node(1,
2573 			mempool_kmalloc, mempool_kfree,
2574 			(void *)alloc_size, GFP_KERNEL,
2575 			dev_to_node(dev->dev));
2576 	if (!dev->iod_mempool)
2577 		return -ENOMEM;
2578 	return 0;
2579 }
2580 
nvme_free_tagset(struct nvme_dev * dev)2581 static void nvme_free_tagset(struct nvme_dev *dev)
2582 {
2583 	if (dev->tagset.tags)
2584 		blk_mq_free_tag_set(&dev->tagset);
2585 	dev->ctrl.tagset = NULL;
2586 }
2587 
2588 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2589 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2590 {
2591 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2592 
2593 	nvme_dbbuf_dma_free(dev);
2594 	nvme_free_tagset(dev);
2595 	if (dev->ctrl.admin_q)
2596 		blk_put_queue(dev->ctrl.admin_q);
2597 	free_opal_dev(dev->ctrl.opal_dev);
2598 	mempool_destroy(dev->iod_mempool);
2599 	put_device(dev->dev);
2600 	kfree(dev->queues);
2601 	kfree(dev);
2602 }
2603 
nvme_remove_dead_ctrl(struct nvme_dev * dev)2604 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2605 {
2606 	/*
2607 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2608 	 * may be holding this pci_dev's device lock.
2609 	 */
2610 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2611 	nvme_get_ctrl(&dev->ctrl);
2612 	nvme_dev_disable(dev, false);
2613 	nvme_kill_queues(&dev->ctrl);
2614 	if (!queue_work(nvme_wq, &dev->remove_work))
2615 		nvme_put_ctrl(&dev->ctrl);
2616 }
2617 
nvme_reset_work(struct work_struct * work)2618 static void nvme_reset_work(struct work_struct *work)
2619 {
2620 	struct nvme_dev *dev =
2621 		container_of(work, struct nvme_dev, ctrl.reset_work);
2622 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2623 	int result;
2624 
2625 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2626 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2627 			 dev->ctrl.state);
2628 		result = -ENODEV;
2629 		goto out;
2630 	}
2631 
2632 	/*
2633 	 * If we're called to reset a live controller first shut it down before
2634 	 * moving on.
2635 	 */
2636 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2637 		nvme_dev_disable(dev, false);
2638 	nvme_sync_queues(&dev->ctrl);
2639 
2640 	mutex_lock(&dev->shutdown_lock);
2641 	result = nvme_pci_enable(dev);
2642 	if (result)
2643 		goto out_unlock;
2644 
2645 	result = nvme_pci_configure_admin_queue(dev);
2646 	if (result)
2647 		goto out_unlock;
2648 
2649 	result = nvme_alloc_admin_tags(dev);
2650 	if (result)
2651 		goto out_unlock;
2652 
2653 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2654 
2655 	/*
2656 	 * Limit the max command size to prevent iod->sg allocations going
2657 	 * over a single page.
2658 	 */
2659 	dev->ctrl.max_hw_sectors = min_t(u32,
2660 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2661 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2662 
2663 	/*
2664 	 * Don't limit the IOMMU merged segment size.
2665 	 */
2666 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2667 
2668 	mutex_unlock(&dev->shutdown_lock);
2669 
2670 	/*
2671 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2672 	 * initializing procedure here.
2673 	 */
2674 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2675 		dev_warn(dev->ctrl.device,
2676 			"failed to mark controller CONNECTING\n");
2677 		result = -EBUSY;
2678 		goto out;
2679 	}
2680 
2681 	/*
2682 	 * We do not support an SGL for metadata (yet), so we are limited to a
2683 	 * single integrity segment for the separate metadata pointer.
2684 	 */
2685 	dev->ctrl.max_integrity_segments = 1;
2686 
2687 	result = nvme_init_identify(&dev->ctrl);
2688 	if (result)
2689 		goto out;
2690 
2691 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2692 		if (!dev->ctrl.opal_dev)
2693 			dev->ctrl.opal_dev =
2694 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2695 		else if (was_suspend)
2696 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2697 	} else {
2698 		free_opal_dev(dev->ctrl.opal_dev);
2699 		dev->ctrl.opal_dev = NULL;
2700 	}
2701 
2702 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2703 		result = nvme_dbbuf_dma_alloc(dev);
2704 		if (result)
2705 			dev_warn(dev->dev,
2706 				 "unable to allocate dma for dbbuf\n");
2707 	}
2708 
2709 	if (dev->ctrl.hmpre) {
2710 		result = nvme_setup_host_mem(dev);
2711 		if (result < 0)
2712 			goto out;
2713 	}
2714 
2715 	result = nvme_setup_io_queues(dev);
2716 	if (result)
2717 		goto out;
2718 
2719 	if (dev->ctrl.tagset) {
2720 		/*
2721 		 * This is a controller reset and we already have a tagset.
2722 		 * Freeze and update the number of I/O queues as thos might have
2723 		 * changed.  If there are no I/O queues left after this reset,
2724 		 * keep the controller around but remove all namespaces.
2725 		 */
2726 		if (dev->online_queues > 1) {
2727 			nvme_start_queues(&dev->ctrl);
2728 			nvme_wait_freeze(&dev->ctrl);
2729 			if (!nvme_pci_update_nr_queues(dev))
2730 				goto out;
2731 			nvme_dbbuf_set(dev);
2732 			nvme_unfreeze(&dev->ctrl);
2733 		} else {
2734 			dev_warn(dev->ctrl.device, "IO queues lost\n");
2735 			nvme_kill_queues(&dev->ctrl);
2736 			nvme_remove_namespaces(&dev->ctrl);
2737 			nvme_free_tagset(dev);
2738 		}
2739 	} else {
2740 		/*
2741 		 * First probe.  Still allow the controller to show up even if
2742 		 * there are no namespaces.
2743 		 */
2744 		if (dev->online_queues > 1) {
2745 			nvme_pci_alloc_tag_set(dev);
2746 			nvme_dbbuf_set(dev);
2747 		} else {
2748 			dev_warn(dev->ctrl.device, "IO queues not created\n");
2749 		}
2750 	}
2751 
2752 	/*
2753 	 * If only admin queue live, keep it to do further investigation or
2754 	 * recovery.
2755 	 */
2756 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2757 		dev_warn(dev->ctrl.device,
2758 			"failed to mark controller live state\n");
2759 		result = -ENODEV;
2760 		goto out;
2761 	}
2762 
2763 	nvme_start_ctrl(&dev->ctrl);
2764 	return;
2765 
2766  out_unlock:
2767 	mutex_unlock(&dev->shutdown_lock);
2768  out:
2769 	if (result)
2770 		dev_warn(dev->ctrl.device,
2771 			 "Removing after probe failure status: %d\n", result);
2772 	nvme_remove_dead_ctrl(dev);
2773 }
2774 
nvme_remove_dead_ctrl_work(struct work_struct * work)2775 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2776 {
2777 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2778 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2779 
2780 	if (pci_get_drvdata(pdev))
2781 		device_release_driver(&pdev->dev);
2782 	nvme_put_ctrl(&dev->ctrl);
2783 }
2784 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2785 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2786 {
2787 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2788 	return 0;
2789 }
2790 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2791 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2792 {
2793 	writel(val, to_nvme_dev(ctrl)->bar + off);
2794 	return 0;
2795 }
2796 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2797 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2798 {
2799 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2800 	return 0;
2801 }
2802 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2803 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2804 {
2805 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2806 
2807 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2808 }
2809 
2810 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2811 	.name			= "pcie",
2812 	.module			= THIS_MODULE,
2813 	.flags			= NVME_F_METADATA_SUPPORTED |
2814 				  NVME_F_PCI_P2PDMA,
2815 	.reg_read32		= nvme_pci_reg_read32,
2816 	.reg_write32		= nvme_pci_reg_write32,
2817 	.reg_read64		= nvme_pci_reg_read64,
2818 	.free_ctrl		= nvme_pci_free_ctrl,
2819 	.submit_async_event	= nvme_pci_submit_async_event,
2820 	.get_address		= nvme_pci_get_address,
2821 };
2822 
nvme_dev_map(struct nvme_dev * dev)2823 static int nvme_dev_map(struct nvme_dev *dev)
2824 {
2825 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2826 
2827 	if (pci_request_mem_regions(pdev, "nvme"))
2828 		return -ENODEV;
2829 
2830 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2831 		goto release;
2832 
2833 	return 0;
2834   release:
2835 	pci_release_mem_regions(pdev);
2836 	return -ENODEV;
2837 }
2838 
check_vendor_combination_bug(struct pci_dev * pdev)2839 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2840 {
2841 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2842 		/*
2843 		 * Several Samsung devices seem to drop off the PCIe bus
2844 		 * randomly when APST is on and uses the deepest sleep state.
2845 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2846 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2847 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2848 		 * laptops.
2849 		 */
2850 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2851 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2852 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2853 			return NVME_QUIRK_NO_DEEPEST_PS;
2854 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2855 		/*
2856 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2857 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2858 		 * within few minutes after bootup on a Coffee Lake board -
2859 		 * ASUS PRIME Z370-A
2860 		 */
2861 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2862 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2863 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2864 			return NVME_QUIRK_NO_APST;
2865 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2866 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2867 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2868 		/*
2869 		 * Forcing to use host managed nvme power settings for
2870 		 * lowest idle power with quick resume latency on
2871 		 * Samsung and Toshiba SSDs based on suspend behavior
2872 		 * on Coffee Lake board for LENOVO C640
2873 		 */
2874 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2875 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2876 			return NVME_QUIRK_SIMPLE_SUSPEND;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
nvme_async_probe(void * data,async_cookie_t cookie)2882 static void nvme_async_probe(void *data, async_cookie_t cookie)
2883 {
2884 	struct nvme_dev *dev = data;
2885 
2886 	flush_work(&dev->ctrl.reset_work);
2887 	flush_work(&dev->ctrl.scan_work);
2888 	nvme_put_ctrl(&dev->ctrl);
2889 }
2890 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2891 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2892 		const struct pci_device_id *id)
2893 {
2894 	unsigned long quirks = id->driver_data;
2895 	int node = dev_to_node(&pdev->dev);
2896 	struct nvme_dev *dev;
2897 	int ret = -ENOMEM;
2898 
2899 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2900 	if (!dev)
2901 		return ERR_PTR(-ENOMEM);
2902 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2903 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2904 	mutex_init(&dev->shutdown_lock);
2905 
2906 	dev->nr_write_queues = write_queues;
2907 	dev->nr_poll_queues = poll_queues;
2908 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2909 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2910 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2911 	if (!dev->queues)
2912 		goto out_free_dev;
2913 
2914 	dev->dev = get_device(&pdev->dev);
2915 
2916 	quirks |= check_vendor_combination_bug(pdev);
2917 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2918 		/*
2919 		 * Some systems use a bios work around to ask for D3 on
2920 		 * platforms that support kernel managed suspend.
2921 		 */
2922 		dev_info(&pdev->dev,
2923 			 "platform quirk: setting simple suspend\n");
2924 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2925 	}
2926 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2927 			     quirks);
2928 	if (ret)
2929 		goto out_put_device;
2930 	return dev;
2931 
2932 out_put_device:
2933 	put_device(dev->dev);
2934 	kfree(dev->queues);
2935 out_free_dev:
2936 	kfree(dev);
2937 	return ERR_PTR(ret);
2938 }
2939 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2940 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2941 {
2942 	struct nvme_dev *dev;
2943 	int result = -ENOMEM;
2944 
2945 	dev = nvme_pci_alloc_dev(pdev, id);
2946 	if (IS_ERR(dev))
2947 		return PTR_ERR(dev);
2948 
2949 	result = nvme_dev_map(dev);
2950 	if (result)
2951 		goto out_uninit_ctrl;
2952 
2953 	result = nvme_setup_prp_pools(dev);
2954 	if (result)
2955 		goto out_dev_unmap;
2956 
2957 	result = nvme_pci_alloc_iod_mempool(dev);
2958 	if (result)
2959 		goto out_release_prp_pools;
2960 
2961 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2962 	pci_set_drvdata(pdev, dev);
2963 
2964 	nvme_reset_ctrl(&dev->ctrl);
2965 	async_schedule(nvme_async_probe, dev);
2966 	return 0;
2967 
2968 out_release_prp_pools:
2969 	nvme_release_prp_pools(dev);
2970 out_dev_unmap:
2971 	nvme_dev_unmap(dev);
2972 out_uninit_ctrl:
2973 	nvme_uninit_ctrl(&dev->ctrl);
2974 	return result;
2975 }
2976 
nvme_reset_prepare(struct pci_dev * pdev)2977 static void nvme_reset_prepare(struct pci_dev *pdev)
2978 {
2979 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2980 
2981 	/*
2982 	 * We don't need to check the return value from waiting for the reset
2983 	 * state as pci_dev device lock is held, making it impossible to race
2984 	 * with ->remove().
2985 	 */
2986 	nvme_disable_prepare_reset(dev, false);
2987 	nvme_sync_queues(&dev->ctrl);
2988 }
2989 
nvme_reset_done(struct pci_dev * pdev)2990 static void nvme_reset_done(struct pci_dev *pdev)
2991 {
2992 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2993 
2994 	if (!nvme_try_sched_reset(&dev->ctrl))
2995 		flush_work(&dev->ctrl.reset_work);
2996 }
2997 
nvme_shutdown(struct pci_dev * pdev)2998 static void nvme_shutdown(struct pci_dev *pdev)
2999 {
3000 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3001 
3002 	nvme_disable_prepare_reset(dev, true);
3003 }
3004 
3005 /*
3006  * The driver's remove may be called on a device in a partially initialized
3007  * state. This function must not have any dependencies on the device state in
3008  * order to proceed.
3009  */
nvme_remove(struct pci_dev * pdev)3010 static void nvme_remove(struct pci_dev *pdev)
3011 {
3012 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3013 
3014 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015 	pci_set_drvdata(pdev, NULL);
3016 
3017 	if (!pci_device_is_present(pdev)) {
3018 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3019 		nvme_dev_disable(dev, true);
3020 	}
3021 
3022 	flush_work(&dev->ctrl.reset_work);
3023 	nvme_stop_ctrl(&dev->ctrl);
3024 	nvme_remove_namespaces(&dev->ctrl);
3025 	nvme_dev_disable(dev, true);
3026 	nvme_release_cmb(dev);
3027 	nvme_free_host_mem(dev);
3028 	nvme_dev_remove_admin(dev);
3029 	nvme_free_queues(dev, 0);
3030 	nvme_release_prp_pools(dev);
3031 	nvme_dev_unmap(dev);
3032 	nvme_uninit_ctrl(&dev->ctrl);
3033 }
3034 
3035 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3036 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3037 {
3038 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3039 }
3040 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3041 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3042 {
3043 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3044 }
3045 
nvme_resume(struct device * dev)3046 static int nvme_resume(struct device *dev)
3047 {
3048 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3049 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3050 
3051 	if (ndev->last_ps == U32_MAX ||
3052 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3053 		return nvme_try_sched_reset(&ndev->ctrl);
3054 	return 0;
3055 }
3056 
nvme_suspend(struct device * dev)3057 static int nvme_suspend(struct device *dev)
3058 {
3059 	struct pci_dev *pdev = to_pci_dev(dev);
3060 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3061 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3062 	int ret = -EBUSY;
3063 
3064 	ndev->last_ps = U32_MAX;
3065 
3066 	/*
3067 	 * The platform does not remove power for a kernel managed suspend so
3068 	 * use host managed nvme power settings for lowest idle power if
3069 	 * possible. This should have quicker resume latency than a full device
3070 	 * shutdown.  But if the firmware is involved after the suspend or the
3071 	 * device does not support any non-default power states, shut down the
3072 	 * device fully.
3073 	 *
3074 	 * If ASPM is not enabled for the device, shut down the device and allow
3075 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3076 	 * down, so as to allow the platform to achieve its minimum low-power
3077 	 * state (which may not be possible if the link is up).
3078 	 *
3079 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3080 	 * specification allows the device to access the host memory buffer in
3081 	 * host DRAM from all power states, but hosts will fail access to DRAM
3082 	 * during S3.
3083 	 */
3084 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3085 	    !pcie_aspm_enabled(pdev) ||
3086 	    ndev->nr_host_mem_descs ||
3087 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3088 		return nvme_disable_prepare_reset(ndev, true);
3089 
3090 	nvme_start_freeze(ctrl);
3091 	nvme_wait_freeze(ctrl);
3092 	nvme_sync_queues(ctrl);
3093 
3094 	if (ctrl->state != NVME_CTRL_LIVE)
3095 		goto unfreeze;
3096 
3097 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3098 	if (ret < 0)
3099 		goto unfreeze;
3100 
3101 	/*
3102 	 * A saved state prevents pci pm from generically controlling the
3103 	 * device's power. If we're using protocol specific settings, we don't
3104 	 * want pci interfering.
3105 	 */
3106 	pci_save_state(pdev);
3107 
3108 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3109 	if (ret < 0)
3110 		goto unfreeze;
3111 
3112 	if (ret) {
3113 		/* discard the saved state */
3114 		pci_load_saved_state(pdev, NULL);
3115 
3116 		/*
3117 		 * Clearing npss forces a controller reset on resume. The
3118 		 * correct value will be rediscovered then.
3119 		 */
3120 		ret = nvme_disable_prepare_reset(ndev, true);
3121 		ctrl->npss = 0;
3122 	}
3123 unfreeze:
3124 	nvme_unfreeze(ctrl);
3125 	return ret;
3126 }
3127 
nvme_simple_suspend(struct device * dev)3128 static int nvme_simple_suspend(struct device *dev)
3129 {
3130 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3131 
3132 	return nvme_disable_prepare_reset(ndev, true);
3133 }
3134 
nvme_simple_resume(struct device * dev)3135 static int nvme_simple_resume(struct device *dev)
3136 {
3137 	struct pci_dev *pdev = to_pci_dev(dev);
3138 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3139 
3140 	return nvme_try_sched_reset(&ndev->ctrl);
3141 }
3142 
3143 static const struct dev_pm_ops nvme_dev_pm_ops = {
3144 	.suspend	= nvme_suspend,
3145 	.resume		= nvme_resume,
3146 	.freeze		= nvme_simple_suspend,
3147 	.thaw		= nvme_simple_resume,
3148 	.poweroff	= nvme_simple_suspend,
3149 	.restore	= nvme_simple_resume,
3150 };
3151 #endif /* CONFIG_PM_SLEEP */
3152 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3153 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3154 						pci_channel_state_t state)
3155 {
3156 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3157 
3158 	/*
3159 	 * A frozen channel requires a reset. When detected, this method will
3160 	 * shutdown the controller to quiesce. The controller will be restarted
3161 	 * after the slot reset through driver's slot_reset callback.
3162 	 */
3163 	switch (state) {
3164 	case pci_channel_io_normal:
3165 		return PCI_ERS_RESULT_CAN_RECOVER;
3166 	case pci_channel_io_frozen:
3167 		dev_warn(dev->ctrl.device,
3168 			"frozen state error detected, reset controller\n");
3169 		nvme_dev_disable(dev, false);
3170 		return PCI_ERS_RESULT_NEED_RESET;
3171 	case pci_channel_io_perm_failure:
3172 		dev_warn(dev->ctrl.device,
3173 			"failure state error detected, request disconnect\n");
3174 		return PCI_ERS_RESULT_DISCONNECT;
3175 	}
3176 	return PCI_ERS_RESULT_NEED_RESET;
3177 }
3178 
nvme_slot_reset(struct pci_dev * pdev)3179 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3180 {
3181 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3182 
3183 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3184 	pci_restore_state(pdev);
3185 	nvme_reset_ctrl(&dev->ctrl);
3186 	return PCI_ERS_RESULT_RECOVERED;
3187 }
3188 
nvme_error_resume(struct pci_dev * pdev)3189 static void nvme_error_resume(struct pci_dev *pdev)
3190 {
3191 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3192 
3193 	flush_work(&dev->ctrl.reset_work);
3194 }
3195 
3196 static const struct pci_error_handlers nvme_err_handler = {
3197 	.error_detected	= nvme_error_detected,
3198 	.slot_reset	= nvme_slot_reset,
3199 	.resume		= nvme_error_resume,
3200 	.reset_prepare	= nvme_reset_prepare,
3201 	.reset_done	= nvme_reset_done,
3202 };
3203 
3204 static const struct pci_device_id nvme_id_table[] = {
3205 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3206 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3207 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3208 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3209 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3210 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3211 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3212 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3213 				NVME_QUIRK_DEALLOCATE_ZEROES |
3214 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3215 				NVME_QUIRK_BOGUS_NID, },
3216 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3217 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3218 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3219 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3220 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3221 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3222 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3223 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3224 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3225 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3226 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3227 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3228 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3229 				NVME_QUIRK_BOGUS_NID, },
3230 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3231 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3232 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3233 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3234 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3235 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3236 				NVME_QUIRK_NO_NS_DESC_LIST, },
3237 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3238 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3239 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3240 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3241 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3242 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3243 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3244 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3245 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3246 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3247 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3248 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3249 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3250 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3251 				NVME_QUIRK_BOGUS_NID, },
3252 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3253 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3254 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3255 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3256 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3257 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3258 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3259 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3260 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3261 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3262 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3263 				NVME_QUIRK_BOGUS_NID, },
3264 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3265 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3266 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3267 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3268 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3269 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3270 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3271 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3272 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3273 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3274 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3275 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3276 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3277 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3278 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3279 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3280 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3281 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3282 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3283 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3284 				NVME_QUIRK_128_BYTES_SQES |
3285 				NVME_QUIRK_SHARED_TAGS |
3286 				NVME_QUIRK_SKIP_CID_GEN },
3287 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3288 	{ 0, }
3289 };
3290 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3291 
3292 static struct pci_driver nvme_driver = {
3293 	.name		= "nvme",
3294 	.id_table	= nvme_id_table,
3295 	.probe		= nvme_probe,
3296 	.remove		= nvme_remove,
3297 	.shutdown	= nvme_shutdown,
3298 #ifdef CONFIG_PM_SLEEP
3299 	.driver		= {
3300 		.pm	= &nvme_dev_pm_ops,
3301 	},
3302 #endif
3303 	.sriov_configure = pci_sriov_configure_simple,
3304 	.err_handler	= &nvme_err_handler,
3305 };
3306 
nvme_init(void)3307 static int __init nvme_init(void)
3308 {
3309 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3310 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3311 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3312 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3313 
3314 	return pci_register_driver(&nvme_driver);
3315 }
3316 
nvme_exit(void)3317 static void __exit nvme_exit(void)
3318 {
3319 	pci_unregister_driver(&nvme_driver);
3320 	flush_workqueue(nvme_wq);
3321 }
3322 
3323 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3324 MODULE_LICENSE("GPL");
3325 MODULE_VERSION("1.0");
3326 module_init(nvme_init);
3327 module_exit(nvme_exit);
3328