• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19 
20 #include "ptp_private.h"
21 
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26 
27 /* private globals */
28 
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31 
32 static DEFINE_IDA(ptp_clocks_map);
33 
34 /* time stamp event queue operations */
35 
queue_free(struct timestamp_event_queue * q)36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40 
enqueue_external_timestamp(struct timestamp_event_queue * queue,struct ptp_clock_event * src)41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 				       struct ptp_clock_event *src)
43 {
44 	struct ptp_extts_event *dst;
45 	unsigned long flags;
46 	s64 seconds;
47 	u32 remainder;
48 
49 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50 
51 	spin_lock_irqsave(&queue->lock, flags);
52 
53 	dst = &queue->buf[queue->tail];
54 	dst->index = src->index;
55 	dst->t.sec = seconds;
56 	dst->t.nsec = remainder;
57 
58 	/* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
59 	if (!queue_free(queue))
60 		WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
61 
62 	WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
63 
64 	spin_unlock_irqrestore(&queue->lock, flags);
65 }
66 
scaled_ppm_to_ppb(long ppm)67 long scaled_ppm_to_ppb(long ppm)
68 {
69 	/*
70 	 * The 'freq' field in the 'struct timex' is in parts per
71 	 * million, but with a 16 bit binary fractional field.
72 	 *
73 	 * We want to calculate
74 	 *
75 	 *    ppb = scaled_ppm * 1000 / 2^16
76 	 *
77 	 * which simplifies to
78 	 *
79 	 *    ppb = scaled_ppm * 125 / 2^13
80 	 */
81 	s64 ppb = 1 + ppm;
82 	ppb *= 125;
83 	ppb >>= 13;
84 	return (long) ppb;
85 }
86 EXPORT_SYMBOL(scaled_ppm_to_ppb);
87 
88 /* posix clock implementation */
89 
ptp_clock_getres(struct posix_clock * pc,struct timespec64 * tp)90 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
91 {
92 	tp->tv_sec = 0;
93 	tp->tv_nsec = 1;
94 	return 0;
95 }
96 
ptp_clock_settime(struct posix_clock * pc,const struct timespec64 * tp)97 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
98 {
99 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
100 
101 	return  ptp->info->settime64(ptp->info, tp);
102 }
103 
ptp_clock_gettime(struct posix_clock * pc,struct timespec64 * tp)104 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
105 {
106 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
107 	int err;
108 
109 	if (ptp->info->gettimex64)
110 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
111 	else
112 		err = ptp->info->gettime64(ptp->info, tp);
113 	return err;
114 }
115 
ptp_clock_adjtime(struct posix_clock * pc,struct __kernel_timex * tx)116 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
117 {
118 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
119 	struct ptp_clock_info *ops;
120 	int err = -EOPNOTSUPP;
121 
122 	ops = ptp->info;
123 
124 	if (tx->modes & ADJ_SETOFFSET) {
125 		struct timespec64 ts;
126 		ktime_t kt;
127 		s64 delta;
128 
129 		ts.tv_sec  = tx->time.tv_sec;
130 		ts.tv_nsec = tx->time.tv_usec;
131 
132 		if (!(tx->modes & ADJ_NANO))
133 			ts.tv_nsec *= 1000;
134 
135 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
136 			return -EINVAL;
137 
138 		kt = timespec64_to_ktime(ts);
139 		delta = ktime_to_ns(kt);
140 		err = ops->adjtime(ops, delta);
141 	} else if (tx->modes & ADJ_FREQUENCY) {
142 		long ppb = scaled_ppm_to_ppb(tx->freq);
143 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
144 			return -ERANGE;
145 		if (ops->adjfine)
146 			err = ops->adjfine(ops, tx->freq);
147 		else
148 			err = ops->adjfreq(ops, ppb);
149 		ptp->dialed_frequency = tx->freq;
150 	} else if (tx->modes & ADJ_OFFSET) {
151 		if (ops->adjphase) {
152 			s32 offset = tx->offset;
153 
154 			if (!(tx->modes & ADJ_NANO))
155 				offset *= NSEC_PER_USEC;
156 
157 			err = ops->adjphase(ops, offset);
158 		}
159 	} else if (tx->modes == 0) {
160 		tx->freq = ptp->dialed_frequency;
161 		err = 0;
162 	}
163 
164 	return err;
165 }
166 
167 static struct posix_clock_operations ptp_clock_ops = {
168 	.owner		= THIS_MODULE,
169 	.clock_adjtime	= ptp_clock_adjtime,
170 	.clock_gettime	= ptp_clock_gettime,
171 	.clock_getres	= ptp_clock_getres,
172 	.clock_settime	= ptp_clock_settime,
173 	.ioctl		= ptp_ioctl,
174 	.open		= ptp_open,
175 	.poll		= ptp_poll,
176 	.read		= ptp_read,
177 };
178 
ptp_clock_release(struct device * dev)179 static void ptp_clock_release(struct device *dev)
180 {
181 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
182 
183 	ptp_cleanup_pin_groups(ptp);
184 	mutex_destroy(&ptp->tsevq_mux);
185 	mutex_destroy(&ptp->pincfg_mux);
186 	ida_simple_remove(&ptp_clocks_map, ptp->index);
187 	kfree(ptp);
188 }
189 
ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int on)190 static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on)
191 {
192 	return -EOPNOTSUPP;
193 }
194 
ptp_aux_kworker(struct kthread_work * work)195 static void ptp_aux_kworker(struct kthread_work *work)
196 {
197 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
198 					     aux_work.work);
199 	struct ptp_clock_info *info = ptp->info;
200 	long delay;
201 
202 	delay = info->do_aux_work(info);
203 
204 	if (delay >= 0)
205 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
206 }
207 
208 /* public interface */
209 
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)210 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
211 				     struct device *parent)
212 {
213 	struct ptp_clock *ptp;
214 	int err = 0, index, major = MAJOR(ptp_devt);
215 
216 	if (info->n_alarm > PTP_MAX_ALARMS)
217 		return ERR_PTR(-EINVAL);
218 
219 	/* Initialize a clock structure. */
220 	err = -ENOMEM;
221 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
222 	if (ptp == NULL)
223 		goto no_memory;
224 
225 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
226 	if (index < 0) {
227 		err = index;
228 		goto no_slot;
229 	}
230 
231 	ptp->clock.ops = ptp_clock_ops;
232 	ptp->info = info;
233 	ptp->devid = MKDEV(major, index);
234 	ptp->index = index;
235 	spin_lock_init(&ptp->tsevq.lock);
236 	mutex_init(&ptp->tsevq_mux);
237 	mutex_init(&ptp->pincfg_mux);
238 	init_waitqueue_head(&ptp->tsev_wq);
239 
240 	if (!ptp->info->enable)
241 		ptp->info->enable = ptp_enable;
242 
243 	if (ptp->info->do_aux_work) {
244 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
245 		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
246 		if (IS_ERR(ptp->kworker)) {
247 			err = PTR_ERR(ptp->kworker);
248 			pr_err("failed to create ptp aux_worker %d\n", err);
249 			goto kworker_err;
250 		}
251 	}
252 
253 	err = ptp_populate_pin_groups(ptp);
254 	if (err)
255 		goto no_pin_groups;
256 
257 	/* Register a new PPS source. */
258 	if (info->pps) {
259 		struct pps_source_info pps;
260 		memset(&pps, 0, sizeof(pps));
261 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
262 		pps.mode = PTP_PPS_MODE;
263 		pps.owner = info->owner;
264 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
265 		if (IS_ERR(ptp->pps_source)) {
266 			err = PTR_ERR(ptp->pps_source);
267 			pr_err("failed to register pps source\n");
268 			goto no_pps;
269 		}
270 	}
271 
272 	/* Initialize a new device of our class in our clock structure. */
273 	device_initialize(&ptp->dev);
274 	ptp->dev.devt = ptp->devid;
275 	ptp->dev.class = ptp_class;
276 	ptp->dev.parent = parent;
277 	ptp->dev.groups = ptp->pin_attr_groups;
278 	ptp->dev.release = ptp_clock_release;
279 	dev_set_drvdata(&ptp->dev, ptp);
280 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
281 
282 	/* Create a posix clock and link it to the device. */
283 	err = posix_clock_register(&ptp->clock, &ptp->dev);
284 	if (err) {
285 		pr_err("failed to create posix clock\n");
286 		goto no_clock;
287 	}
288 
289 	return ptp;
290 
291 no_clock:
292 	if (ptp->pps_source)
293 		pps_unregister_source(ptp->pps_source);
294 no_pps:
295 	ptp_cleanup_pin_groups(ptp);
296 no_pin_groups:
297 	if (ptp->kworker)
298 		kthread_destroy_worker(ptp->kworker);
299 kworker_err:
300 	mutex_destroy(&ptp->tsevq_mux);
301 	mutex_destroy(&ptp->pincfg_mux);
302 	ida_simple_remove(&ptp_clocks_map, index);
303 no_slot:
304 	kfree(ptp);
305 no_memory:
306 	return ERR_PTR(err);
307 }
308 EXPORT_SYMBOL(ptp_clock_register);
309 
ptp_clock_unregister(struct ptp_clock * ptp)310 int ptp_clock_unregister(struct ptp_clock *ptp)
311 {
312 	ptp->defunct = 1;
313 	wake_up_interruptible(&ptp->tsev_wq);
314 
315 	if (ptp->kworker) {
316 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
317 		kthread_destroy_worker(ptp->kworker);
318 	}
319 
320 	/* Release the clock's resources. */
321 	if (ptp->pps_source)
322 		pps_unregister_source(ptp->pps_source);
323 
324 	posix_clock_unregister(&ptp->clock);
325 
326 	return 0;
327 }
328 EXPORT_SYMBOL(ptp_clock_unregister);
329 
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)330 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
331 {
332 	struct pps_event_time evt;
333 
334 	switch (event->type) {
335 
336 	case PTP_CLOCK_ALARM:
337 		break;
338 
339 	case PTP_CLOCK_EXTTS:
340 		enqueue_external_timestamp(&ptp->tsevq, event);
341 		wake_up_interruptible(&ptp->tsev_wq);
342 		break;
343 
344 	case PTP_CLOCK_PPS:
345 		pps_get_ts(&evt);
346 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
347 		break;
348 
349 	case PTP_CLOCK_PPSUSR:
350 		pps_event(ptp->pps_source, &event->pps_times,
351 			  PTP_PPS_EVENT, NULL);
352 		break;
353 	}
354 }
355 EXPORT_SYMBOL(ptp_clock_event);
356 
ptp_clock_index(struct ptp_clock * ptp)357 int ptp_clock_index(struct ptp_clock *ptp)
358 {
359 	return ptp->index;
360 }
361 EXPORT_SYMBOL(ptp_clock_index);
362 
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)363 int ptp_find_pin(struct ptp_clock *ptp,
364 		 enum ptp_pin_function func, unsigned int chan)
365 {
366 	struct ptp_pin_desc *pin = NULL;
367 	int i;
368 
369 	for (i = 0; i < ptp->info->n_pins; i++) {
370 		if (ptp->info->pin_config[i].func == func &&
371 		    ptp->info->pin_config[i].chan == chan) {
372 			pin = &ptp->info->pin_config[i];
373 			break;
374 		}
375 	}
376 
377 	return pin ? i : -1;
378 }
379 EXPORT_SYMBOL(ptp_find_pin);
380 
ptp_find_pin_unlocked(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)381 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
382 			  enum ptp_pin_function func, unsigned int chan)
383 {
384 	int result;
385 
386 	mutex_lock(&ptp->pincfg_mux);
387 
388 	result = ptp_find_pin(ptp, func, chan);
389 
390 	mutex_unlock(&ptp->pincfg_mux);
391 
392 	return result;
393 }
394 EXPORT_SYMBOL(ptp_find_pin_unlocked);
395 
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)396 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
397 {
398 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
399 }
400 EXPORT_SYMBOL(ptp_schedule_worker);
401 
ptp_cancel_worker_sync(struct ptp_clock * ptp)402 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
403 {
404 	kthread_cancel_delayed_work_sync(&ptp->aux_work);
405 }
406 EXPORT_SYMBOL(ptp_cancel_worker_sync);
407 
408 /* module operations */
409 
ptp_exit(void)410 static void __exit ptp_exit(void)
411 {
412 	class_destroy(ptp_class);
413 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
414 	ida_destroy(&ptp_clocks_map);
415 }
416 
ptp_init(void)417 static int __init ptp_init(void)
418 {
419 	int err;
420 
421 	ptp_class = class_create(THIS_MODULE, "ptp");
422 	if (IS_ERR(ptp_class)) {
423 		pr_err("ptp: failed to allocate class\n");
424 		return PTR_ERR(ptp_class);
425 	}
426 
427 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
428 	if (err < 0) {
429 		pr_err("ptp: failed to allocate device region\n");
430 		goto no_region;
431 	}
432 
433 	ptp_class->dev_groups = ptp_groups;
434 	pr_info("PTP clock support registered\n");
435 	return 0;
436 
437 no_region:
438 	class_destroy(ptp_class);
439 	return err;
440 }
441 
442 subsys_initcall(ptp_init);
443 module_exit(ptp_exit);
444 
445 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
446 MODULE_DESCRIPTION("PTP clocks support");
447 MODULE_LICENSE("GPL");
448