• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 /**
220  * regulator_lock_two - lock two regulators
221  * @rdev1:		first regulator
222  * @rdev2:		second regulator
223  * @ww_ctx:		w/w mutex acquire context
224  *
225  * Locks both rdevs using the regulator_ww_class.
226  */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 			       struct regulator_dev *rdev2,
229 			       struct ww_acquire_ctx *ww_ctx)
230 {
231 	struct regulator_dev *tmp;
232 	int ret;
233 
234 	ww_acquire_init(ww_ctx, &regulator_ww_class);
235 
236 	/* Try to just grab both of them */
237 	ret = regulator_lock_nested(rdev1, ww_ctx);
238 	WARN_ON(ret);
239 	ret = regulator_lock_nested(rdev2, ww_ctx);
240 	if (ret != -EDEADLOCK) {
241 		WARN_ON(ret);
242 		goto exit;
243 	}
244 
245 	while (true) {
246 		/*
247 		 * Start of loop: rdev1 was locked and rdev2 was contended.
248 		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 		 * again.
250 		 */
251 		regulator_unlock(rdev1);
252 
253 		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 		rdev2->ref_cnt++;
255 		rdev2->mutex_owner = current;
256 		ret = regulator_lock_nested(rdev1, ww_ctx);
257 
258 		if (ret == -EDEADLOCK) {
259 			/* More contention; swap which needs to be slow */
260 			tmp = rdev1;
261 			rdev1 = rdev2;
262 			rdev2 = tmp;
263 		} else {
264 			WARN_ON(ret);
265 			break;
266 		}
267 	}
268 
269 exit:
270 	ww_acquire_done(ww_ctx);
271 }
272 
273 /**
274  * regulator_unlock_two - unlock two regulators
275  * @rdev1:		first regulator
276  * @rdev2:		second regulator
277  * @ww_ctx:		w/w mutex acquire context
278  *
279  * The inverse of regulator_lock_two().
280  */
281 
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 				 struct regulator_dev *rdev2,
284 				 struct ww_acquire_ctx *ww_ctx)
285 {
286 	regulator_unlock(rdev2);
287 	regulator_unlock(rdev1);
288 	ww_acquire_fini(ww_ctx);
289 }
290 
regulator_supply_is_couple(struct regulator_dev * rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 	struct regulator_dev *c_rdev;
294 	int i;
295 
296 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298 
299 		if (rdev->supply->rdev == c_rdev)
300 			return true;
301 	}
302 
303 	return false;
304 }
305 
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 				       unsigned int n_coupled)
308 {
309 	struct regulator_dev *c_rdev, *supply_rdev;
310 	int i, supply_n_coupled;
311 
312 	for (i = n_coupled; i > 0; i--) {
313 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314 
315 		if (!c_rdev)
316 			continue;
317 
318 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 			supply_rdev = c_rdev->supply->rdev;
320 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321 
322 			regulator_unlock_recursive(supply_rdev,
323 						   supply_n_coupled);
324 		}
325 
326 		regulator_unlock(c_rdev);
327 	}
328 }
329 
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 				    struct regulator_dev **new_contended_rdev,
332 				    struct regulator_dev **old_contended_rdev,
333 				    struct ww_acquire_ctx *ww_ctx)
334 {
335 	struct regulator_dev *c_rdev;
336 	int i, err;
337 
338 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340 
341 		if (!c_rdev)
342 			continue;
343 
344 		if (c_rdev != *old_contended_rdev) {
345 			err = regulator_lock_nested(c_rdev, ww_ctx);
346 			if (err) {
347 				if (err == -EDEADLK) {
348 					*new_contended_rdev = c_rdev;
349 					goto err_unlock;
350 				}
351 
352 				/* shouldn't happen */
353 				WARN_ON_ONCE(err != -EALREADY);
354 			}
355 		} else {
356 			*old_contended_rdev = NULL;
357 		}
358 
359 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 			err = regulator_lock_recursive(c_rdev->supply->rdev,
361 						       new_contended_rdev,
362 						       old_contended_rdev,
363 						       ww_ctx);
364 			if (err) {
365 				regulator_unlock(c_rdev);
366 				goto err_unlock;
367 			}
368 		}
369 	}
370 
371 	return 0;
372 
373 err_unlock:
374 	regulator_unlock_recursive(rdev, i);
375 
376 	return err;
377 }
378 
379 /**
380  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381  *				regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * Unlock all regulators related with rdev by coupling or supplying.
386  */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 				       struct ww_acquire_ctx *ww_ctx)
389 {
390 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 	ww_acquire_fini(ww_ctx);
392 }
393 
394 /**
395  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396  * @rdev:			regulator source
397  * @ww_ctx:			w/w mutex acquire context
398  *
399  * This function as a wrapper on regulator_lock_recursive(), which locks
400  * all regulators related with rdev by coupling or supplying.
401  */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 				     struct ww_acquire_ctx *ww_ctx)
404 {
405 	struct regulator_dev *new_contended_rdev = NULL;
406 	struct regulator_dev *old_contended_rdev = NULL;
407 	int err;
408 
409 	mutex_lock(&regulator_list_mutex);
410 
411 	ww_acquire_init(ww_ctx, &regulator_ww_class);
412 
413 	do {
414 		if (new_contended_rdev) {
415 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 			old_contended_rdev = new_contended_rdev;
417 			old_contended_rdev->ref_cnt++;
418 			old_contended_rdev->mutex_owner = current;
419 		}
420 
421 		err = regulator_lock_recursive(rdev,
422 					       &new_contended_rdev,
423 					       &old_contended_rdev,
424 					       ww_ctx);
425 
426 		if (old_contended_rdev)
427 			regulator_unlock(old_contended_rdev);
428 
429 	} while (err == -EDEADLK);
430 
431 	ww_acquire_done(ww_ctx);
432 
433 	mutex_unlock(&regulator_list_mutex);
434 }
435 
436 /**
437  * of_get_child_regulator - get a child regulator device node
438  * based on supply name
439  * @parent: Parent device node
440  * @prop_name: Combination regulator supply name and "-supply"
441  *
442  * Traverse all child nodes.
443  * Extract the child regulator device node corresponding to the supply name.
444  * returns the device node corresponding to the regulator if found, else
445  * returns NULL.
446  */
of_get_child_regulator(struct device_node * parent,const char * prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 						  const char *prop_name)
449 {
450 	struct device_node *regnode = NULL;
451 	struct device_node *child = NULL;
452 
453 	for_each_child_of_node(parent, child) {
454 		regnode = of_parse_phandle(child, prop_name, 0);
455 
456 		if (!regnode) {
457 			regnode = of_get_child_regulator(child, prop_name);
458 			if (regnode)
459 				goto err_node_put;
460 		} else {
461 			goto err_node_put;
462 		}
463 	}
464 	return NULL;
465 
466 err_node_put:
467 	of_node_put(child);
468 	return regnode;
469 }
470 
471 /**
472  * of_get_regulator - get a regulator device node based on supply name
473  * @dev: Device pointer for the consumer (of regulator) device
474  * @supply: regulator supply name
475  *
476  * Extract the regulator device node corresponding to the supply name.
477  * returns the device node corresponding to the regulator if found, else
478  * returns NULL.
479  */
of_get_regulator(struct device * dev,const char * supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 	struct device_node *regnode = NULL;
483 	char prop_name[64]; /* 64 is max size of property name */
484 
485 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486 
487 	snprintf(prop_name, 64, "%s-supply", supply);
488 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489 
490 	if (!regnode) {
491 		regnode = of_get_child_regulator(dev->of_node, prop_name);
492 		if (regnode)
493 			return regnode;
494 
495 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 				prop_name, dev->of_node);
497 		return NULL;
498 	}
499 	return regnode;
500 }
501 
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 			    int *min_uV, int *max_uV)
505 {
506 	BUG_ON(*min_uV > *max_uV);
507 
508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 		rdev_err(rdev, "voltage operation not allowed\n");
510 		return -EPERM;
511 	}
512 
513 	if (*max_uV > rdev->constraints->max_uV)
514 		*max_uV = rdev->constraints->max_uV;
515 	if (*min_uV < rdev->constraints->min_uV)
516 		*min_uV = rdev->constraints->min_uV;
517 
518 	if (*min_uV > *max_uV) {
519 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 			 *min_uV, *max_uV);
521 		return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532 
533 /* Make sure we select a voltage that suits the needs of all
534  * regulator consumers
535  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 			      int *min_uV, int *max_uV,
538 			      suspend_state_t state)
539 {
540 	struct regulator *regulator;
541 	struct regulator_voltage *voltage;
542 
543 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 		voltage = &regulator->voltage[state];
545 		/*
546 		 * Assume consumers that didn't say anything are OK
547 		 * with anything in the constraint range.
548 		 */
549 		if (!voltage->min_uV && !voltage->max_uV)
550 			continue;
551 
552 		if (*max_uV > voltage->max_uV)
553 			*max_uV = voltage->max_uV;
554 		if (*min_uV < voltage->min_uV)
555 			*min_uV = voltage->min_uV;
556 	}
557 
558 	if (*min_uV > *max_uV) {
559 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 			*min_uV, *max_uV);
561 		return -EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 					int *min_uA, int *max_uA)
570 {
571 	BUG_ON(*min_uA > *max_uA);
572 
573 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 		rdev_err(rdev, "current operation not allowed\n");
575 		return -EPERM;
576 	}
577 
578 	if (*max_uA > rdev->constraints->max_uA)
579 		*max_uA = rdev->constraints->max_uA;
580 	if (*min_uA < rdev->constraints->min_uA)
581 		*min_uA = rdev->constraints->min_uA;
582 
583 	if (*min_uA > *max_uA) {
584 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 			 *min_uA, *max_uA);
586 		return -EINVAL;
587 	}
588 
589 	return 0;
590 }
591 
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 				    unsigned int *mode)
595 {
596 	switch (*mode) {
597 	case REGULATOR_MODE_FAST:
598 	case REGULATOR_MODE_NORMAL:
599 	case REGULATOR_MODE_IDLE:
600 	case REGULATOR_MODE_STANDBY:
601 		break;
602 	default:
603 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 		return -EINVAL;
605 	}
606 
607 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 		rdev_err(rdev, "mode operation not allowed\n");
609 		return -EPERM;
610 	}
611 
612 	/* The modes are bitmasks, the most power hungry modes having
613 	 * the lowest values. If the requested mode isn't supported
614 	 * try higher modes. */
615 	while (*mode) {
616 		if (rdev->constraints->valid_modes_mask & *mode)
617 			return 0;
618 		*mode /= 2;
619 	}
620 
621 	return -EINVAL;
622 }
623 
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 	if (rdev->constraints == NULL)
628 		return NULL;
629 
630 	switch (state) {
631 	case PM_SUSPEND_STANDBY:
632 		return &rdev->constraints->state_standby;
633 	case PM_SUSPEND_MEM:
634 		return &rdev->constraints->state_mem;
635 	case PM_SUSPEND_MAX:
636 		return &rdev->constraints->state_disk;
637 	default:
638 		return NULL;
639 	}
640 }
641 
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 	const struct regulator_state *rstate;
646 
647 	rstate = regulator_get_suspend_state(rdev, state);
648 	if (rstate == NULL)
649 		return NULL;
650 
651 	/* If we have no suspend mode configuration don't set anything;
652 	 * only warn if the driver implements set_suspend_voltage or
653 	 * set_suspend_mode callback.
654 	 */
655 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 	    rstate->enabled != DISABLE_IN_SUSPEND) {
657 		if (rdev->desc->ops->set_suspend_voltage ||
658 		    rdev->desc->ops->set_suspend_mode)
659 			rdev_warn(rdev, "No configuration\n");
660 		return NULL;
661 	}
662 
663 	return rstate;
664 }
665 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 				struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	int uV;
671 
672 	regulator_lock(rdev);
673 	uV = regulator_get_voltage_rdev(rdev);
674 	regulator_unlock(rdev);
675 
676 	if (uV < 0)
677 		return uV;
678 	return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 				struct device_attribute *attr, char *buf)
684 {
685 	struct regulator_dev *rdev = dev_get_drvdata(dev);
686 
687 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690 
name_show(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct regulator_dev *rdev = dev_get_drvdata(dev);
695 
696 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699 
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 	switch (mode) {
703 	case REGULATOR_MODE_FAST:
704 		return "fast";
705 	case REGULATOR_MODE_NORMAL:
706 		return "normal";
707 	case REGULATOR_MODE_IDLE:
708 		return "idle";
709 	case REGULATOR_MODE_STANDBY:
710 		return "standby";
711 	}
712 	return "unknown";
713 }
714 
regulator_print_opmode(char * buf,int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 				    struct device_attribute *attr, char *buf)
722 {
723 	struct regulator_dev *rdev = dev_get_drvdata(dev);
724 
725 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728 
regulator_print_state(char * buf,int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 	if (state > 0)
732 		return sprintf(buf, "enabled\n");
733 	else if (state == 0)
734 		return sprintf(buf, "disabled\n");
735 	else
736 		return sprintf(buf, "unknown\n");
737 }
738 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_state_show(struct device *dev,
740 				   struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 	ssize_t ret;
744 
745 	regulator_lock(rdev);
746 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 	regulator_unlock(rdev);
748 
749 	return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)753 static ssize_t regulator_status_show(struct device *dev,
754 				   struct device_attribute *attr, char *buf)
755 {
756 	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 	int status;
758 	char *label;
759 
760 	status = rdev->desc->ops->get_status(rdev);
761 	if (status < 0)
762 		return status;
763 
764 	switch (status) {
765 	case REGULATOR_STATUS_OFF:
766 		label = "off";
767 		break;
768 	case REGULATOR_STATUS_ON:
769 		label = "on";
770 		break;
771 	case REGULATOR_STATUS_ERROR:
772 		label = "error";
773 		break;
774 	case REGULATOR_STATUS_FAST:
775 		label = "fast";
776 		break;
777 	case REGULATOR_STATUS_NORMAL:
778 		label = "normal";
779 		break;
780 	case REGULATOR_STATUS_IDLE:
781 		label = "idle";
782 		break;
783 	case REGULATOR_STATUS_STANDBY:
784 		label = "standby";
785 		break;
786 	case REGULATOR_STATUS_BYPASS:
787 		label = "bypass";
788 		break;
789 	case REGULATOR_STATUS_UNDEFINED:
790 		label = "undefined";
791 		break;
792 	default:
793 		return -ERANGE;
794 	}
795 
796 	return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 				    struct device_attribute *attr, char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	if (!rdev->constraints)
806 		return sprintf(buf, "constraint not defined\n");
807 
808 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 				    struct device_attribute *attr, char *buf)
814 {
815 	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 
817 	if (!rdev->constraints)
818 		return sprintf(buf, "constraint not defined\n");
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 				    struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	if (!rdev->constraints)
830 		return sprintf(buf, "constraint not defined\n");
831 
832 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 				    struct device_attribute *attr, char *buf)
838 {
839 	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 
841 	if (!rdev->constraints)
842 		return sprintf(buf, "constraint not defined\n");
843 
844 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 				      struct device_attribute *attr, char *buf)
850 {
851 	struct regulator_dev *rdev = dev_get_drvdata(dev);
852 	struct regulator *regulator;
853 	int uA = 0;
854 
855 	regulator_lock(rdev);
856 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 		if (regulator->enable_count)
858 			uA += regulator->uA_load;
859 	}
860 	regulator_unlock(rdev);
861 	return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 			      char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 	return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872 
type_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 			 char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	switch (rdev->desc->type) {
879 	case REGULATOR_VOLTAGE:
880 		return sprintf(buf, "voltage\n");
881 	case REGULATOR_CURRENT:
882 		return sprintf(buf, "current\n");
883 	}
884 	return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 				struct device_attribute *attr, char *buf)
890 {
891 	struct regulator_dev *rdev = dev_get_drvdata(dev);
892 
893 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 		regulator_suspend_mem_uV_show, NULL);
897 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 				struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 
903 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 		regulator_suspend_disk_uV_show, NULL);
907 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 				struct device_attribute *attr, char *buf)
910 {
911 	struct regulator_dev *rdev = dev_get_drvdata(dev);
912 
913 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 		regulator_suspend_standby_uV_show, NULL);
917 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 				struct device_attribute *attr, char *buf)
920 {
921 	struct regulator_dev *rdev = dev_get_drvdata(dev);
922 
923 	return regulator_print_opmode(buf,
924 		rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 		regulator_suspend_mem_mode_show, NULL);
928 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 				struct device_attribute *attr, char *buf)
931 {
932 	struct regulator_dev *rdev = dev_get_drvdata(dev);
933 
934 	return regulator_print_opmode(buf,
935 		rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 		regulator_suspend_disk_mode_show, NULL);
939 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 				struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_opmode(buf,
946 		rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 		regulator_suspend_standby_mode_show, NULL);
950 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 				   struct device_attribute *attr, char *buf)
953 {
954 	struct regulator_dev *rdev = dev_get_drvdata(dev);
955 
956 	return regulator_print_state(buf,
957 			rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 		regulator_suspend_mem_state_show, NULL);
961 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 				   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 
967 	return regulator_print_state(buf,
968 			rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 		regulator_suspend_disk_state_show, NULL);
972 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 				   struct device_attribute *attr, char *buf)
975 {
976 	struct regulator_dev *rdev = dev_get_drvdata(dev);
977 
978 	return regulator_print_state(buf,
979 			rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 		regulator_suspend_standby_state_show, NULL);
983 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 				     struct device_attribute *attr, char *buf)
986 {
987 	struct regulator_dev *rdev = dev_get_drvdata(dev);
988 	const char *report;
989 	bool bypass;
990 	int ret;
991 
992 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993 
994 	if (ret != 0)
995 		report = "unknown";
996 	else if (bypass)
997 		report = "enabled";
998 	else
999 		report = "disabled";
1000 
1001 	return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 		   regulator_bypass_show, NULL);
1005 
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/* get output voltage */
1047 		output_uV = regulator_get_voltage_rdev(rdev);
1048 		if (output_uV <= 0) {
1049 			rdev_err(rdev, "invalid output voltage found\n");
1050 			return -EINVAL;
1051 		}
1052 
1053 		/* get input voltage */
1054 		input_uV = 0;
1055 		if (rdev->supply)
1056 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 		if (input_uV <= 0)
1058 			input_uV = rdev->constraints->input_uV;
1059 		if (input_uV <= 0) {
1060 			rdev_err(rdev, "invalid input voltage found\n");
1061 			return -EINVAL;
1062 		}
1063 
1064 		/* now get the optimum mode for our new total regulator load */
1065 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 							 output_uV, current_uA);
1067 
1068 		/* check the new mode is allowed */
1069 		err = regulator_mode_constrain(rdev, &mode);
1070 		if (err < 0) {
1071 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 			return err;
1074 		}
1075 
1076 		err = rdev->desc->ops->set_mode(rdev, mode);
1077 		if (err < 0)
1078 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 				 mode, ERR_PTR(err));
1080 	}
1081 
1082 	return err;
1083 }
1084 
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 			       const struct regulator_state *rstate)
1087 {
1088 	int ret = 0;
1089 
1090 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 		rdev->desc->ops->set_suspend_enable)
1092 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 		rdev->desc->ops->set_suspend_disable)
1095 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 		ret = 0;
1098 
1099 	if (ret < 0) {
1100 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 		return ret;
1102 	}
1103 
1104 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 		if (ret < 0) {
1107 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 			return ret;
1109 		}
1110 	}
1111 
1112 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 		if (ret < 0) {
1115 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	return ret;
1121 }
1122 
suspend_set_initial_state(struct regulator_dev * rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 	const struct regulator_state *rstate;
1126 
1127 	rstate = regulator_get_suspend_state_check(rdev,
1128 			rdev->constraints->initial_state);
1129 	if (!rstate)
1130 		return 0;
1131 
1132 	return __suspend_set_state(rdev, rstate);
1133 }
1134 
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 	char buf[160] = "";
1140 	size_t len = sizeof(buf) - 1;
1141 	int count = 0;
1142 	int ret;
1143 
1144 	if (constraints->min_uV && constraints->max_uV) {
1145 		if (constraints->min_uV == constraints->max_uV)
1146 			count += scnprintf(buf + count, len - count, "%d mV ",
1147 					   constraints->min_uV / 1000);
1148 		else
1149 			count += scnprintf(buf + count, len - count,
1150 					   "%d <--> %d mV ",
1151 					   constraints->min_uV / 1000,
1152 					   constraints->max_uV / 1000);
1153 	}
1154 
1155 	if (!constraints->min_uV ||
1156 	    constraints->min_uV != constraints->max_uV) {
1157 		ret = regulator_get_voltage_rdev(rdev);
1158 		if (ret > 0)
1159 			count += scnprintf(buf + count, len - count,
1160 					   "at %d mV ", ret / 1000);
1161 	}
1162 
1163 	if (constraints->uV_offset)
1164 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 				   constraints->uV_offset / 1000);
1166 
1167 	if (constraints->min_uA && constraints->max_uA) {
1168 		if (constraints->min_uA == constraints->max_uA)
1169 			count += scnprintf(buf + count, len - count, "%d mA ",
1170 					   constraints->min_uA / 1000);
1171 		else
1172 			count += scnprintf(buf + count, len - count,
1173 					   "%d <--> %d mA ",
1174 					   constraints->min_uA / 1000,
1175 					   constraints->max_uA / 1000);
1176 	}
1177 
1178 	if (!constraints->min_uA ||
1179 	    constraints->min_uA != constraints->max_uA) {
1180 		ret = _regulator_get_current_limit(rdev);
1181 		if (ret > 0)
1182 			count += scnprintf(buf + count, len - count,
1183 					   "at %d mA ", ret / 1000);
1184 	}
1185 
1186 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 		count += scnprintf(buf + count, len - count, "fast ");
1188 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 		count += scnprintf(buf + count, len - count, "normal ");
1190 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 		count += scnprintf(buf + count, len - count, "idle ");
1192 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 		count += scnprintf(buf + count, len - count, "standby ");
1194 
1195 	if (!count)
1196 		count = scnprintf(buf, len, "no parameters");
1197 	else
1198 		--count;
1199 
1200 	count += scnprintf(buf + count, len - count, ", %s",
1201 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202 
1203 	rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208 
print_constraints(struct regulator_dev * rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 	struct regulation_constraints *constraints = rdev->constraints;
1212 
1213 	print_constraints_debug(rdev);
1214 
1215 	if ((constraints->min_uV != constraints->max_uV) &&
1216 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 		rdev_warn(rdev,
1218 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 	struct regulation_constraints *constraints)
1223 {
1224 	const struct regulator_ops *ops = rdev->desc->ops;
1225 	int ret;
1226 
1227 	/* do we need to apply the constraint voltage */
1228 	if (rdev->constraints->apply_uV &&
1229 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 		int target_min, target_max;
1231 		int current_uV = regulator_get_voltage_rdev(rdev);
1232 
1233 		if (current_uV == -ENOTRECOVERABLE) {
1234 			/* This regulator can't be read and must be initialized */
1235 			rdev_info(rdev, "Setting %d-%duV\n",
1236 				  rdev->constraints->min_uV,
1237 				  rdev->constraints->max_uV);
1238 			_regulator_do_set_voltage(rdev,
1239 						  rdev->constraints->min_uV,
1240 						  rdev->constraints->max_uV);
1241 			current_uV = regulator_get_voltage_rdev(rdev);
1242 		}
1243 
1244 		if (current_uV < 0) {
1245 			rdev_err(rdev,
1246 				 "failed to get the current voltage: %pe\n",
1247 				 ERR_PTR(current_uV));
1248 			return current_uV;
1249 		}
1250 
1251 		/*
1252 		 * If we're below the minimum voltage move up to the
1253 		 * minimum voltage, if we're above the maximum voltage
1254 		 * then move down to the maximum.
1255 		 */
1256 		target_min = current_uV;
1257 		target_max = current_uV;
1258 
1259 		if (current_uV < rdev->constraints->min_uV) {
1260 			target_min = rdev->constraints->min_uV;
1261 			target_max = rdev->constraints->min_uV;
1262 		}
1263 
1264 		if (current_uV > rdev->constraints->max_uV) {
1265 			target_min = rdev->constraints->max_uV;
1266 			target_max = rdev->constraints->max_uV;
1267 		}
1268 
1269 		if (target_min != current_uV || target_max != current_uV) {
1270 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 				  current_uV, target_min, target_max);
1272 			ret = _regulator_do_set_voltage(
1273 				rdev, target_min, target_max);
1274 			if (ret < 0) {
1275 				rdev_err(rdev,
1276 					"failed to apply %d-%duV constraint: %pe\n",
1277 					target_min, target_max, ERR_PTR(ret));
1278 				return ret;
1279 			}
1280 		}
1281 	}
1282 
1283 	/* constrain machine-level voltage specs to fit
1284 	 * the actual range supported by this regulator.
1285 	 */
1286 	if (ops->list_voltage && rdev->desc->n_voltages) {
1287 		int	count = rdev->desc->n_voltages;
1288 		int	i;
1289 		int	min_uV = INT_MAX;
1290 		int	max_uV = INT_MIN;
1291 		int	cmin = constraints->min_uV;
1292 		int	cmax = constraints->max_uV;
1293 
1294 		/* it's safe to autoconfigure fixed-voltage supplies
1295 		   and the constraints are used by list_voltage. */
1296 		if (count == 1 && !cmin) {
1297 			cmin = 1;
1298 			cmax = INT_MAX;
1299 			constraints->min_uV = cmin;
1300 			constraints->max_uV = cmax;
1301 		}
1302 
1303 		/* voltage constraints are optional */
1304 		if ((cmin == 0) && (cmax == 0))
1305 			return 0;
1306 
1307 		/* else require explicit machine-level constraints */
1308 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 			rdev_err(rdev, "invalid voltage constraints\n");
1310 			return -EINVAL;
1311 		}
1312 
1313 		/* no need to loop voltages if range is continuous */
1314 		if (rdev->desc->continuous_voltage_range)
1315 			return 0;
1316 
1317 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 		for (i = 0; i < count; i++) {
1319 			int	value;
1320 
1321 			value = ops->list_voltage(rdev, i);
1322 			if (value <= 0)
1323 				continue;
1324 
1325 			/* maybe adjust [min_uV..max_uV] */
1326 			if (value >= cmin && value < min_uV)
1327 				min_uV = value;
1328 			if (value <= cmax && value > max_uV)
1329 				max_uV = value;
1330 		}
1331 
1332 		/* final: [min_uV..max_uV] valid iff constraints valid */
1333 		if (max_uV < min_uV) {
1334 			rdev_err(rdev,
1335 				 "unsupportable voltage constraints %u-%uuV\n",
1336 				 min_uV, max_uV);
1337 			return -EINVAL;
1338 		}
1339 
1340 		/* use regulator's subset of machine constraints */
1341 		if (constraints->min_uV < min_uV) {
1342 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 				 constraints->min_uV, min_uV);
1344 			constraints->min_uV = min_uV;
1345 		}
1346 		if (constraints->max_uV > max_uV) {
1347 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 				 constraints->max_uV, max_uV);
1349 			constraints->max_uV = max_uV;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 	struct regulation_constraints *constraints)
1358 {
1359 	const struct regulator_ops *ops = rdev->desc->ops;
1360 	int ret;
1361 
1362 	if (!constraints->min_uA && !constraints->max_uA)
1363 		return 0;
1364 
1365 	if (constraints->min_uA > constraints->max_uA) {
1366 		rdev_err(rdev, "Invalid current constraints\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	if (!ops->set_current_limit || !ops->get_current_limit) {
1371 		rdev_warn(rdev, "Operation of current configuration missing\n");
1372 		return 0;
1373 	}
1374 
1375 	/* Set regulator current in constraints range */
1376 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 			constraints->max_uA);
1378 	if (ret < 0) {
1379 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 		return ret;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387 
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
set_machine_constraints(struct regulator_dev * rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 	int ret = 0;
1401 	const struct regulator_ops *ops = rdev->desc->ops;
1402 
1403 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 	if (ret != 0)
1405 		return ret;
1406 
1407 	ret = machine_constraints_current(rdev, rdev->constraints);
1408 	if (ret != 0)
1409 		return ret;
1410 
1411 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 		ret = ops->set_input_current_limit(rdev,
1413 						   rdev->constraints->ilim_uA);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 			return ret;
1417 		}
1418 	}
1419 
1420 	/* do we need to setup our suspend state */
1421 	if (rdev->constraints->initial_state) {
1422 		ret = suspend_set_initial_state(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	if (rdev->constraints->initial_mode) {
1430 		if (!ops->set_mode) {
1431 			rdev_err(rdev, "no set_mode operation\n");
1432 			return -EINVAL;
1433 		}
1434 
1435 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 		if (ret < 0) {
1437 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 			return ret;
1439 		}
1440 	} else if (rdev->constraints->system_load) {
1441 		/*
1442 		 * We'll only apply the initial system load if an
1443 		 * initial mode wasn't specified.
1444 		 */
1445 		drms_uA_update(rdev);
1446 	}
1447 
1448 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 		&& ops->set_ramp_delay) {
1450 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 		ret = ops->set_pull_down(rdev);
1459 		if (ret < 0) {
1460 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 			return ret;
1462 		}
1463 	}
1464 
1465 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 		ret = ops->set_soft_start(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	if (rdev->constraints->over_current_protection
1474 		&& ops->set_over_current_protection) {
1475 		ret = ops->set_over_current_protection(rdev);
1476 		if (ret < 0) {
1477 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 				 ERR_PTR(ret));
1479 			return ret;
1480 		}
1481 	}
1482 
1483 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 		bool ad_state = (rdev->constraints->active_discharge ==
1485 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486 
1487 		ret = ops->set_active_discharge(rdev, ad_state);
1488 		if (ret < 0) {
1489 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 			return ret;
1491 		}
1492 	}
1493 
1494 	/* If the constraints say the regulator should be on at this point
1495 	 * and we have control then make sure it is enabled.
1496 	 */
1497 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 		/* If we want to enable this regulator, make sure that we know
1499 		 * the supplying regulator.
1500 		 */
1501 		if (rdev->supply_name && !rdev->supply)
1502 			return -EPROBE_DEFER;
1503 
1504 		/* If supplying regulator has already been enabled,
1505 		 * it's not intended to have use_count increment
1506 		 * when rdev is only boot-on.
1507 		 */
1508 		if (rdev->supply &&
1509 		    (rdev->constraints->always_on ||
1510 		     !regulator_is_enabled(rdev->supply))) {
1511 			ret = regulator_enable(rdev->supply);
1512 			if (ret < 0) {
1513 				_regulator_put(rdev->supply);
1514 				rdev->supply = NULL;
1515 				return ret;
1516 			}
1517 		}
1518 
1519 		ret = _regulator_do_enable(rdev);
1520 		if (ret < 0 && ret != -EINVAL) {
1521 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 			return ret;
1523 		}
1524 
1525 		if (rdev->constraints->always_on)
1526 			rdev->use_count++;
1527 	} else if (rdev->desc->off_on_delay) {
1528 		rdev->last_off_jiffy = jiffies;
1529 	}
1530 
1531 	print_constraints(rdev);
1532 	return 0;
1533 }
1534 
1535 /**
1536  * set_supply - set regulator supply regulator
1537  * @rdev: regulator (locked)
1538  * @supply_rdev: supply regulator (locked))
1539  *
1540  * Called by platform initialisation code to set the supply regulator for this
1541  * regulator. This ensures that a regulators supply will also be enabled by the
1542  * core if it's child is enabled.
1543  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1544 static int set_supply(struct regulator_dev *rdev,
1545 		      struct regulator_dev *supply_rdev)
1546 {
1547 	int err;
1548 
1549 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550 
1551 	if (!try_module_get(supply_rdev->owner))
1552 		return -ENODEV;
1553 
1554 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555 	if (rdev->supply == NULL) {
1556 		module_put(supply_rdev->owner);
1557 		err = -ENOMEM;
1558 		return err;
1559 	}
1560 	supply_rdev->open_count++;
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567  * @rdev:         regulator source
1568  * @consumer_dev_name: dev_name() string for device supply applies to
1569  * @supply:       symbolic name for supply
1570  *
1571  * Allows platform initialisation code to map physical regulator
1572  * sources to symbolic names for supplies for use by devices.  Devices
1573  * should use these symbolic names to request regulators, avoiding the
1574  * need to provide board-specific regulator names as platform data.
1575  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1576 static int set_consumer_device_supply(struct regulator_dev *rdev,
1577 				      const char *consumer_dev_name,
1578 				      const char *supply)
1579 {
1580 	struct regulator_map *node, *new_node;
1581 	int has_dev;
1582 
1583 	if (supply == NULL)
1584 		return -EINVAL;
1585 
1586 	if (consumer_dev_name != NULL)
1587 		has_dev = 1;
1588 	else
1589 		has_dev = 0;
1590 
1591 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592 	if (new_node == NULL)
1593 		return -ENOMEM;
1594 
1595 	new_node->regulator = rdev;
1596 	new_node->supply = supply;
1597 
1598 	if (has_dev) {
1599 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600 		if (new_node->dev_name == NULL) {
1601 			kfree(new_node);
1602 			return -ENOMEM;
1603 		}
1604 	}
1605 
1606 	mutex_lock(&regulator_list_mutex);
1607 	list_for_each_entry(node, &regulator_map_list, list) {
1608 		if (node->dev_name && consumer_dev_name) {
1609 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610 				continue;
1611 		} else if (node->dev_name || consumer_dev_name) {
1612 			continue;
1613 		}
1614 
1615 		if (strcmp(node->supply, supply) != 0)
1616 			continue;
1617 
1618 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619 			 consumer_dev_name,
1620 			 dev_name(&node->regulator->dev),
1621 			 node->regulator->desc->name,
1622 			 supply,
1623 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1624 		goto fail;
1625 	}
1626 
1627 	list_add(&new_node->list, &regulator_map_list);
1628 	mutex_unlock(&regulator_list_mutex);
1629 
1630 	return 0;
1631 
1632 fail:
1633 	mutex_unlock(&regulator_list_mutex);
1634 	kfree(new_node->dev_name);
1635 	kfree(new_node);
1636 	return -EBUSY;
1637 }
1638 
unset_regulator_supplies(struct regulator_dev * rdev)1639 static void unset_regulator_supplies(struct regulator_dev *rdev)
1640 {
1641 	struct regulator_map *node, *n;
1642 
1643 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1644 		if (rdev == node->regulator) {
1645 			list_del(&node->list);
1646 			kfree(node->dev_name);
1647 			kfree(node);
1648 		}
1649 	}
1650 }
1651 
1652 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1653 static ssize_t constraint_flags_read_file(struct file *file,
1654 					  char __user *user_buf,
1655 					  size_t count, loff_t *ppos)
1656 {
1657 	const struct regulator *regulator = file->private_data;
1658 	const struct regulation_constraints *c = regulator->rdev->constraints;
1659 	char *buf;
1660 	ssize_t ret;
1661 
1662 	if (!c)
1663 		return 0;
1664 
1665 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666 	if (!buf)
1667 		return -ENOMEM;
1668 
1669 	ret = snprintf(buf, PAGE_SIZE,
1670 			"always_on: %u\n"
1671 			"boot_on: %u\n"
1672 			"apply_uV: %u\n"
1673 			"ramp_disable: %u\n"
1674 			"soft_start: %u\n"
1675 			"pull_down: %u\n"
1676 			"over_current_protection: %u\n",
1677 			c->always_on,
1678 			c->boot_on,
1679 			c->apply_uV,
1680 			c->ramp_disable,
1681 			c->soft_start,
1682 			c->pull_down,
1683 			c->over_current_protection);
1684 
1685 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686 	kfree(buf);
1687 
1688 	return ret;
1689 }
1690 
1691 #endif
1692 
1693 static const struct file_operations constraint_flags_fops = {
1694 #ifdef CONFIG_DEBUG_FS
1695 	.open = simple_open,
1696 	.read = constraint_flags_read_file,
1697 	.llseek = default_llseek,
1698 #endif
1699 };
1700 
1701 #define REG_STR_SIZE	64
1702 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1703 static struct regulator *create_regulator(struct regulator_dev *rdev,
1704 					  struct device *dev,
1705 					  const char *supply_name)
1706 {
1707 	struct regulator *regulator;
1708 	int err = 0;
1709 
1710 	lockdep_assert_held_once(&rdev->mutex.base);
1711 
1712 	if (dev) {
1713 		char buf[REG_STR_SIZE];
1714 		int size;
1715 
1716 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717 				dev->kobj.name, supply_name);
1718 		if (size >= REG_STR_SIZE)
1719 			return NULL;
1720 
1721 		supply_name = kstrdup(buf, GFP_KERNEL);
1722 		if (supply_name == NULL)
1723 			return NULL;
1724 	} else {
1725 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726 		if (supply_name == NULL)
1727 			return NULL;
1728 	}
1729 
1730 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731 	if (regulator == NULL) {
1732 		kfree_const(supply_name);
1733 		return NULL;
1734 	}
1735 
1736 	regulator->rdev = rdev;
1737 	regulator->supply_name = supply_name;
1738 
1739 	list_add(&regulator->list, &rdev->consumer_list);
1740 
1741 	if (dev) {
1742 		regulator->dev = dev;
1743 
1744 		/* Add a link to the device sysfs entry */
1745 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746 					       supply_name);
1747 		if (err) {
1748 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749 				  dev->kobj.name, ERR_PTR(err));
1750 			/* non-fatal */
1751 		}
1752 	}
1753 
1754 	if (err != -EEXIST)
1755 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756 	if (IS_ERR(regulator->debugfs))
1757 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758 
1759 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760 			   &regulator->uA_load);
1761 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1763 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1765 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1766 			    regulator, &constraint_flags_fops);
1767 
1768 	/*
1769 	 * Check now if the regulator is an always on regulator - if
1770 	 * it is then we don't need to do nearly so much work for
1771 	 * enable/disable calls.
1772 	 */
1773 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1774 	    _regulator_is_enabled(rdev))
1775 		regulator->always_on = true;
1776 
1777 	return regulator;
1778 }
1779 
_regulator_get_enable_time(struct regulator_dev * rdev)1780 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1781 {
1782 	if (rdev->constraints && rdev->constraints->enable_time)
1783 		return rdev->constraints->enable_time;
1784 	if (rdev->desc->ops->enable_time)
1785 		return rdev->desc->ops->enable_time(rdev);
1786 	return rdev->desc->enable_time;
1787 }
1788 
regulator_find_supply_alias(struct device * dev,const char * supply)1789 static struct regulator_supply_alias *regulator_find_supply_alias(
1790 		struct device *dev, const char *supply)
1791 {
1792 	struct regulator_supply_alias *map;
1793 
1794 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1795 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1796 			return map;
1797 
1798 	return NULL;
1799 }
1800 
regulator_supply_alias(struct device ** dev,const char ** supply)1801 static void regulator_supply_alias(struct device **dev, const char **supply)
1802 {
1803 	struct regulator_supply_alias *map;
1804 
1805 	map = regulator_find_supply_alias(*dev, *supply);
1806 	if (map) {
1807 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1808 				*supply, map->alias_supply,
1809 				dev_name(map->alias_dev));
1810 		*dev = map->alias_dev;
1811 		*supply = map->alias_supply;
1812 	}
1813 }
1814 
regulator_match(struct device * dev,const void * data)1815 static int regulator_match(struct device *dev, const void *data)
1816 {
1817 	struct regulator_dev *r = dev_to_rdev(dev);
1818 
1819 	return strcmp(rdev_get_name(r), data) == 0;
1820 }
1821 
regulator_lookup_by_name(const char * name)1822 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1823 {
1824 	struct device *dev;
1825 
1826 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1827 
1828 	return dev ? dev_to_rdev(dev) : NULL;
1829 }
1830 
1831 /**
1832  * regulator_dev_lookup - lookup a regulator device.
1833  * @dev: device for regulator "consumer".
1834  * @supply: Supply name or regulator ID.
1835  *
1836  * If successful, returns a struct regulator_dev that corresponds to the name
1837  * @supply and with the embedded struct device refcount incremented by one.
1838  * The refcount must be dropped by calling put_device().
1839  * On failure one of the following ERR-PTR-encoded values is returned:
1840  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1841  * in the future.
1842  */
regulator_dev_lookup(struct device * dev,const char * supply)1843 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1844 						  const char *supply)
1845 {
1846 	struct regulator_dev *r = NULL;
1847 	struct device_node *node;
1848 	struct regulator_map *map;
1849 	const char *devname = NULL;
1850 
1851 	regulator_supply_alias(&dev, &supply);
1852 
1853 	/* first do a dt based lookup */
1854 	if (dev && dev->of_node) {
1855 		node = of_get_regulator(dev, supply);
1856 		if (node) {
1857 			r = of_find_regulator_by_node(node);
1858 			of_node_put(node);
1859 			if (r)
1860 				return r;
1861 
1862 			/*
1863 			 * We have a node, but there is no device.
1864 			 * assume it has not registered yet.
1865 			 */
1866 			return ERR_PTR(-EPROBE_DEFER);
1867 		}
1868 	}
1869 
1870 	/* if not found, try doing it non-dt way */
1871 	if (dev)
1872 		devname = dev_name(dev);
1873 
1874 	mutex_lock(&regulator_list_mutex);
1875 	list_for_each_entry(map, &regulator_map_list, list) {
1876 		/* If the mapping has a device set up it must match */
1877 		if (map->dev_name &&
1878 		    (!devname || strcmp(map->dev_name, devname)))
1879 			continue;
1880 
1881 		if (strcmp(map->supply, supply) == 0 &&
1882 		    get_device(&map->regulator->dev)) {
1883 			r = map->regulator;
1884 			break;
1885 		}
1886 	}
1887 	mutex_unlock(&regulator_list_mutex);
1888 
1889 	if (r)
1890 		return r;
1891 
1892 	r = regulator_lookup_by_name(supply);
1893 	if (r)
1894 		return r;
1895 
1896 	return ERR_PTR(-ENODEV);
1897 }
1898 
regulator_resolve_supply(struct regulator_dev * rdev)1899 static int regulator_resolve_supply(struct regulator_dev *rdev)
1900 {
1901 	struct regulator_dev *r;
1902 	struct device *dev = rdev->dev.parent;
1903 	struct ww_acquire_ctx ww_ctx;
1904 	int ret = 0;
1905 
1906 	/* No supply to resolve? */
1907 	if (!rdev->supply_name)
1908 		return 0;
1909 
1910 	/* Supply already resolved? (fast-path without locking contention) */
1911 	if (rdev->supply)
1912 		return 0;
1913 
1914 	r = regulator_dev_lookup(dev, rdev->supply_name);
1915 	if (IS_ERR(r)) {
1916 		ret = PTR_ERR(r);
1917 
1918 		/* Did the lookup explicitly defer for us? */
1919 		if (ret == -EPROBE_DEFER)
1920 			goto out;
1921 
1922 		if (have_full_constraints()) {
1923 			r = dummy_regulator_rdev;
1924 			if (!r) {
1925 				ret = -EPROBE_DEFER;
1926 				goto out;
1927 			}
1928 			get_device(&r->dev);
1929 		} else {
1930 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1931 				rdev->supply_name, rdev->desc->name);
1932 			ret = -EPROBE_DEFER;
1933 			goto out;
1934 		}
1935 	}
1936 
1937 	if (r == rdev) {
1938 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1939 			rdev->desc->name, rdev->supply_name);
1940 		if (!have_full_constraints()) {
1941 			ret = -EINVAL;
1942 			goto out;
1943 		}
1944 		r = dummy_regulator_rdev;
1945 		if (!r) {
1946 			ret = -EPROBE_DEFER;
1947 			goto out;
1948 		}
1949 		get_device(&r->dev);
1950 	}
1951 
1952 	/*
1953 	 * If the supply's parent device is not the same as the
1954 	 * regulator's parent device, then ensure the parent device
1955 	 * is bound before we resolve the supply, in case the parent
1956 	 * device get probe deferred and unregisters the supply.
1957 	 */
1958 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1959 		if (!device_is_bound(r->dev.parent)) {
1960 			put_device(&r->dev);
1961 			ret = -EPROBE_DEFER;
1962 			goto out;
1963 		}
1964 	}
1965 
1966 	/* Recursively resolve the supply of the supply */
1967 	ret = regulator_resolve_supply(r);
1968 	if (ret < 0) {
1969 		put_device(&r->dev);
1970 		goto out;
1971 	}
1972 
1973 	/*
1974 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1975 	 * between rdev->supply null check and setting rdev->supply in
1976 	 * set_supply() from concurrent tasks.
1977 	 */
1978 	regulator_lock_two(rdev, r, &ww_ctx);
1979 
1980 	/* Supply just resolved by a concurrent task? */
1981 	if (rdev->supply) {
1982 		regulator_unlock_two(rdev, r, &ww_ctx);
1983 		put_device(&r->dev);
1984 		goto out;
1985 	}
1986 
1987 	ret = set_supply(rdev, r);
1988 	if (ret < 0) {
1989 		regulator_unlock_two(rdev, r, &ww_ctx);
1990 		put_device(&r->dev);
1991 		goto out;
1992 	}
1993 
1994 	regulator_unlock_two(rdev, r, &ww_ctx);
1995 
1996 	/*
1997 	 * In set_machine_constraints() we may have turned this regulator on
1998 	 * but we couldn't propagate to the supply if it hadn't been resolved
1999 	 * yet.  Do it now.
2000 	 */
2001 	if (rdev->use_count) {
2002 		ret = regulator_enable(rdev->supply);
2003 		if (ret < 0) {
2004 			_regulator_put(rdev->supply);
2005 			rdev->supply = NULL;
2006 			goto out;
2007 		}
2008 	}
2009 
2010 out:
2011 	return ret;
2012 }
2013 
2014 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2015 struct regulator *_regulator_get(struct device *dev, const char *id,
2016 				 enum regulator_get_type get_type)
2017 {
2018 	struct regulator_dev *rdev;
2019 	struct regulator *regulator;
2020 	struct device_link *link;
2021 	int ret;
2022 
2023 	if (get_type >= MAX_GET_TYPE) {
2024 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2025 		return ERR_PTR(-EINVAL);
2026 	}
2027 
2028 	if (id == NULL) {
2029 		pr_err("get() with no identifier\n");
2030 		return ERR_PTR(-EINVAL);
2031 	}
2032 
2033 	rdev = regulator_dev_lookup(dev, id);
2034 	if (IS_ERR(rdev)) {
2035 		ret = PTR_ERR(rdev);
2036 
2037 		/*
2038 		 * If regulator_dev_lookup() fails with error other
2039 		 * than -ENODEV our job here is done, we simply return it.
2040 		 */
2041 		if (ret != -ENODEV)
2042 			return ERR_PTR(ret);
2043 
2044 		if (!have_full_constraints()) {
2045 			dev_warn(dev,
2046 				 "incomplete constraints, dummy supplies not allowed\n");
2047 			return ERR_PTR(-ENODEV);
2048 		}
2049 
2050 		switch (get_type) {
2051 		case NORMAL_GET:
2052 			/*
2053 			 * Assume that a regulator is physically present and
2054 			 * enabled, even if it isn't hooked up, and just
2055 			 * provide a dummy.
2056 			 */
2057 			rdev = dummy_regulator_rdev;
2058 			if (!rdev)
2059 				return ERR_PTR(-EPROBE_DEFER);
2060 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2061 			get_device(&rdev->dev);
2062 			break;
2063 
2064 		case EXCLUSIVE_GET:
2065 			dev_warn(dev,
2066 				 "dummy supplies not allowed for exclusive requests\n");
2067 			fallthrough;
2068 
2069 		default:
2070 			return ERR_PTR(-ENODEV);
2071 		}
2072 	}
2073 
2074 	if (rdev->exclusive) {
2075 		regulator = ERR_PTR(-EPERM);
2076 		put_device(&rdev->dev);
2077 		return regulator;
2078 	}
2079 
2080 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2081 		regulator = ERR_PTR(-EBUSY);
2082 		put_device(&rdev->dev);
2083 		return regulator;
2084 	}
2085 
2086 	mutex_lock(&regulator_list_mutex);
2087 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2088 	mutex_unlock(&regulator_list_mutex);
2089 
2090 	if (ret != 0) {
2091 		regulator = ERR_PTR(-EPROBE_DEFER);
2092 		put_device(&rdev->dev);
2093 		return regulator;
2094 	}
2095 
2096 	ret = regulator_resolve_supply(rdev);
2097 	if (ret < 0) {
2098 		regulator = ERR_PTR(ret);
2099 		put_device(&rdev->dev);
2100 		return regulator;
2101 	}
2102 
2103 	if (!try_module_get(rdev->owner)) {
2104 		regulator = ERR_PTR(-EPROBE_DEFER);
2105 		put_device(&rdev->dev);
2106 		return regulator;
2107 	}
2108 
2109 	regulator_lock(rdev);
2110 	regulator = create_regulator(rdev, dev, id);
2111 	regulator_unlock(rdev);
2112 	if (regulator == NULL) {
2113 		regulator = ERR_PTR(-ENOMEM);
2114 		module_put(rdev->owner);
2115 		put_device(&rdev->dev);
2116 		return regulator;
2117 	}
2118 
2119 	rdev->open_count++;
2120 	if (get_type == EXCLUSIVE_GET) {
2121 		rdev->exclusive = 1;
2122 
2123 		ret = _regulator_is_enabled(rdev);
2124 		if (ret > 0) {
2125 			rdev->use_count = 1;
2126 			regulator->enable_count = 1;
2127 		} else {
2128 			rdev->use_count = 0;
2129 			regulator->enable_count = 0;
2130 		}
2131 	}
2132 
2133 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2134 	if (!IS_ERR_OR_NULL(link))
2135 		regulator->device_link = true;
2136 
2137 	return regulator;
2138 }
2139 
2140 /**
2141  * regulator_get - lookup and obtain a reference to a regulator.
2142  * @dev: device for regulator "consumer"
2143  * @id: Supply name or regulator ID.
2144  *
2145  * Returns a struct regulator corresponding to the regulator producer,
2146  * or IS_ERR() condition containing errno.
2147  *
2148  * Use of supply names configured via regulator_set_device_supply() is
2149  * strongly encouraged.  It is recommended that the supply name used
2150  * should match the name used for the supply and/or the relevant
2151  * device pins in the datasheet.
2152  */
regulator_get(struct device * dev,const char * id)2153 struct regulator *regulator_get(struct device *dev, const char *id)
2154 {
2155 	return _regulator_get(dev, id, NORMAL_GET);
2156 }
2157 EXPORT_SYMBOL_GPL(regulator_get);
2158 
2159 /**
2160  * regulator_get_exclusive - obtain exclusive access to a regulator.
2161  * @dev: device for regulator "consumer"
2162  * @id: Supply name or regulator ID.
2163  *
2164  * Returns a struct regulator corresponding to the regulator producer,
2165  * or IS_ERR() condition containing errno.  Other consumers will be
2166  * unable to obtain this regulator while this reference is held and the
2167  * use count for the regulator will be initialised to reflect the current
2168  * state of the regulator.
2169  *
2170  * This is intended for use by consumers which cannot tolerate shared
2171  * use of the regulator such as those which need to force the
2172  * regulator off for correct operation of the hardware they are
2173  * controlling.
2174  *
2175  * Use of supply names configured via regulator_set_device_supply() is
2176  * strongly encouraged.  It is recommended that the supply name used
2177  * should match the name used for the supply and/or the relevant
2178  * device pins in the datasheet.
2179  */
regulator_get_exclusive(struct device * dev,const char * id)2180 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2181 {
2182 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2185 
2186 /**
2187  * regulator_get_optional - obtain optional access to a regulator.
2188  * @dev: device for regulator "consumer"
2189  * @id: Supply name or regulator ID.
2190  *
2191  * Returns a struct regulator corresponding to the regulator producer,
2192  * or IS_ERR() condition containing errno.
2193  *
2194  * This is intended for use by consumers for devices which can have
2195  * some supplies unconnected in normal use, such as some MMC devices.
2196  * It can allow the regulator core to provide stub supplies for other
2197  * supplies requested using normal regulator_get() calls without
2198  * disrupting the operation of drivers that can handle absent
2199  * supplies.
2200  *
2201  * Use of supply names configured via regulator_set_device_supply() is
2202  * strongly encouraged.  It is recommended that the supply name used
2203  * should match the name used for the supply and/or the relevant
2204  * device pins in the datasheet.
2205  */
regulator_get_optional(struct device * dev,const char * id)2206 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2207 {
2208 	return _regulator_get(dev, id, OPTIONAL_GET);
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_get_optional);
2211 
destroy_regulator(struct regulator * regulator)2212 static void destroy_regulator(struct regulator *regulator)
2213 {
2214 	struct regulator_dev *rdev = regulator->rdev;
2215 
2216 	debugfs_remove_recursive(regulator->debugfs);
2217 
2218 	if (regulator->dev) {
2219 		if (regulator->device_link)
2220 			device_link_remove(regulator->dev, &rdev->dev);
2221 
2222 		/* remove any sysfs entries */
2223 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2224 	}
2225 
2226 	regulator_lock(rdev);
2227 	list_del(&regulator->list);
2228 
2229 	rdev->open_count--;
2230 	rdev->exclusive = 0;
2231 	regulator_unlock(rdev);
2232 
2233 	kfree_const(regulator->supply_name);
2234 	kfree(regulator);
2235 }
2236 
2237 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2238 static void _regulator_put(struct regulator *regulator)
2239 {
2240 	struct regulator_dev *rdev;
2241 
2242 	if (IS_ERR_OR_NULL(regulator))
2243 		return;
2244 
2245 	lockdep_assert_held_once(&regulator_list_mutex);
2246 
2247 	/* Docs say you must disable before calling regulator_put() */
2248 	WARN_ON(regulator->enable_count);
2249 
2250 	rdev = regulator->rdev;
2251 
2252 	destroy_regulator(regulator);
2253 
2254 	module_put(rdev->owner);
2255 	put_device(&rdev->dev);
2256 }
2257 
2258 /**
2259  * regulator_put - "free" the regulator source
2260  * @regulator: regulator source
2261  *
2262  * Note: drivers must ensure that all regulator_enable calls made on this
2263  * regulator source are balanced by regulator_disable calls prior to calling
2264  * this function.
2265  */
regulator_put(struct regulator * regulator)2266 void regulator_put(struct regulator *regulator)
2267 {
2268 	mutex_lock(&regulator_list_mutex);
2269 	_regulator_put(regulator);
2270 	mutex_unlock(&regulator_list_mutex);
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_put);
2273 
2274 /**
2275  * regulator_register_supply_alias - Provide device alias for supply lookup
2276  *
2277  * @dev: device that will be given as the regulator "consumer"
2278  * @id: Supply name or regulator ID
2279  * @alias_dev: device that should be used to lookup the supply
2280  * @alias_id: Supply name or regulator ID that should be used to lookup the
2281  * supply
2282  *
2283  * All lookups for id on dev will instead be conducted for alias_id on
2284  * alias_dev.
2285  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2286 int regulator_register_supply_alias(struct device *dev, const char *id,
2287 				    struct device *alias_dev,
2288 				    const char *alias_id)
2289 {
2290 	struct regulator_supply_alias *map;
2291 
2292 	map = regulator_find_supply_alias(dev, id);
2293 	if (map)
2294 		return -EEXIST;
2295 
2296 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2297 	if (!map)
2298 		return -ENOMEM;
2299 
2300 	map->src_dev = dev;
2301 	map->src_supply = id;
2302 	map->alias_dev = alias_dev;
2303 	map->alias_supply = alias_id;
2304 
2305 	list_add(&map->list, &regulator_supply_alias_list);
2306 
2307 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2308 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2309 
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2313 
2314 /**
2315  * regulator_unregister_supply_alias - Remove device alias
2316  *
2317  * @dev: device that will be given as the regulator "consumer"
2318  * @id: Supply name or regulator ID
2319  *
2320  * Remove a lookup alias if one exists for id on dev.
2321  */
regulator_unregister_supply_alias(struct device * dev,const char * id)2322 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2323 {
2324 	struct regulator_supply_alias *map;
2325 
2326 	map = regulator_find_supply_alias(dev, id);
2327 	if (map) {
2328 		list_del(&map->list);
2329 		kfree(map);
2330 	}
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2333 
2334 /**
2335  * regulator_bulk_register_supply_alias - register multiple aliases
2336  *
2337  * @dev: device that will be given as the regulator "consumer"
2338  * @id: List of supply names or regulator IDs
2339  * @alias_dev: device that should be used to lookup the supply
2340  * @alias_id: List of supply names or regulator IDs that should be used to
2341  * lookup the supply
2342  * @num_id: Number of aliases to register
2343  *
2344  * @return 0 on success, an errno on failure.
2345  *
2346  * This helper function allows drivers to register several supply
2347  * aliases in one operation.  If any of the aliases cannot be
2348  * registered any aliases that were registered will be removed
2349  * before returning to the caller.
2350  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2351 int regulator_bulk_register_supply_alias(struct device *dev,
2352 					 const char *const *id,
2353 					 struct device *alias_dev,
2354 					 const char *const *alias_id,
2355 					 int num_id)
2356 {
2357 	int i;
2358 	int ret;
2359 
2360 	for (i = 0; i < num_id; ++i) {
2361 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2362 						      alias_id[i]);
2363 		if (ret < 0)
2364 			goto err;
2365 	}
2366 
2367 	return 0;
2368 
2369 err:
2370 	dev_err(dev,
2371 		"Failed to create supply alias %s,%s -> %s,%s\n",
2372 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2373 
2374 	while (--i >= 0)
2375 		regulator_unregister_supply_alias(dev, id[i]);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2380 
2381 /**
2382  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2383  *
2384  * @dev: device that will be given as the regulator "consumer"
2385  * @id: List of supply names or regulator IDs
2386  * @num_id: Number of aliases to unregister
2387  *
2388  * This helper function allows drivers to unregister several supply
2389  * aliases in one operation.
2390  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2391 void regulator_bulk_unregister_supply_alias(struct device *dev,
2392 					    const char *const *id,
2393 					    int num_id)
2394 {
2395 	int i;
2396 
2397 	for (i = 0; i < num_id; ++i)
2398 		regulator_unregister_supply_alias(dev, id[i]);
2399 }
2400 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2401 
2402 
2403 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2404 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2405 				const struct regulator_config *config)
2406 {
2407 	struct regulator_enable_gpio *pin, *new_pin;
2408 	struct gpio_desc *gpiod;
2409 
2410 	gpiod = config->ena_gpiod;
2411 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2412 
2413 	mutex_lock(&regulator_list_mutex);
2414 
2415 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2416 		if (pin->gpiod == gpiod) {
2417 			rdev_dbg(rdev, "GPIO is already used\n");
2418 			goto update_ena_gpio_to_rdev;
2419 		}
2420 	}
2421 
2422 	if (new_pin == NULL) {
2423 		mutex_unlock(&regulator_list_mutex);
2424 		return -ENOMEM;
2425 	}
2426 
2427 	pin = new_pin;
2428 	new_pin = NULL;
2429 
2430 	pin->gpiod = gpiod;
2431 	list_add(&pin->list, &regulator_ena_gpio_list);
2432 
2433 update_ena_gpio_to_rdev:
2434 	pin->request_count++;
2435 	rdev->ena_pin = pin;
2436 
2437 	mutex_unlock(&regulator_list_mutex);
2438 	kfree(new_pin);
2439 
2440 	return 0;
2441 }
2442 
regulator_ena_gpio_free(struct regulator_dev * rdev)2443 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2444 {
2445 	struct regulator_enable_gpio *pin, *n;
2446 
2447 	if (!rdev->ena_pin)
2448 		return;
2449 
2450 	/* Free the GPIO only in case of no use */
2451 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2452 		if (pin != rdev->ena_pin)
2453 			continue;
2454 
2455 		if (--pin->request_count)
2456 			break;
2457 
2458 		gpiod_put(pin->gpiod);
2459 		list_del(&pin->list);
2460 		kfree(pin);
2461 		break;
2462 	}
2463 
2464 	rdev->ena_pin = NULL;
2465 }
2466 
2467 /**
2468  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2469  * @rdev: regulator_dev structure
2470  * @enable: enable GPIO at initial use?
2471  *
2472  * GPIO is enabled in case of initial use. (enable_count is 0)
2473  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2474  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2475 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2476 {
2477 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2478 
2479 	if (!pin)
2480 		return -EINVAL;
2481 
2482 	if (enable) {
2483 		/* Enable GPIO at initial use */
2484 		if (pin->enable_count == 0)
2485 			gpiod_set_value_cansleep(pin->gpiod, 1);
2486 
2487 		pin->enable_count++;
2488 	} else {
2489 		if (pin->enable_count > 1) {
2490 			pin->enable_count--;
2491 			return 0;
2492 		}
2493 
2494 		/* Disable GPIO if not used */
2495 		if (pin->enable_count <= 1) {
2496 			gpiod_set_value_cansleep(pin->gpiod, 0);
2497 			pin->enable_count = 0;
2498 		}
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 /**
2505  * _regulator_enable_delay - a delay helper function
2506  * @delay: time to delay in microseconds
2507  *
2508  * Delay for the requested amount of time as per the guidelines in:
2509  *
2510  *     Documentation/timers/timers-howto.rst
2511  *
2512  * The assumption here is that regulators will never be enabled in
2513  * atomic context and therefore sleeping functions can be used.
2514  */
_regulator_enable_delay(unsigned int delay)2515 static void _regulator_enable_delay(unsigned int delay)
2516 {
2517 	unsigned int ms = delay / 1000;
2518 	unsigned int us = delay % 1000;
2519 
2520 	if (ms > 0) {
2521 		/*
2522 		 * For small enough values, handle super-millisecond
2523 		 * delays in the usleep_range() call below.
2524 		 */
2525 		if (ms < 20)
2526 			us += ms * 1000;
2527 		else
2528 			msleep(ms);
2529 	}
2530 
2531 	/*
2532 	 * Give the scheduler some room to coalesce with any other
2533 	 * wakeup sources. For delays shorter than 10 us, don't even
2534 	 * bother setting up high-resolution timers and just busy-
2535 	 * loop.
2536 	 */
2537 	if (us >= 10)
2538 		usleep_range(us, us + 100);
2539 	else
2540 		udelay(us);
2541 }
2542 
2543 /**
2544  * _regulator_check_status_enabled
2545  *
2546  * A helper function to check if the regulator status can be interpreted
2547  * as 'regulator is enabled'.
2548  * @rdev: the regulator device to check
2549  *
2550  * Return:
2551  * * 1			- if status shows regulator is in enabled state
2552  * * 0			- if not enabled state
2553  * * Error Value	- as received from ops->get_status()
2554  */
_regulator_check_status_enabled(struct regulator_dev * rdev)2555 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2556 {
2557 	int ret = rdev->desc->ops->get_status(rdev);
2558 
2559 	if (ret < 0) {
2560 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2561 		return ret;
2562 	}
2563 
2564 	switch (ret) {
2565 	case REGULATOR_STATUS_OFF:
2566 	case REGULATOR_STATUS_ERROR:
2567 	case REGULATOR_STATUS_UNDEFINED:
2568 		return 0;
2569 	default:
2570 		return 1;
2571 	}
2572 }
2573 
_regulator_do_enable(struct regulator_dev * rdev)2574 static int _regulator_do_enable(struct regulator_dev *rdev)
2575 {
2576 	int ret, delay;
2577 
2578 	/* Query before enabling in case configuration dependent.  */
2579 	ret = _regulator_get_enable_time(rdev);
2580 	if (ret >= 0) {
2581 		delay = ret;
2582 	} else {
2583 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2584 		delay = 0;
2585 	}
2586 
2587 	trace_regulator_enable(rdev_get_name(rdev));
2588 
2589 	if (rdev->desc->off_on_delay) {
2590 		/* if needed, keep a distance of off_on_delay from last time
2591 		 * this regulator was disabled.
2592 		 */
2593 		unsigned long start_jiffy = jiffies;
2594 		unsigned long intended, max_delay, remaining;
2595 
2596 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2597 		intended = rdev->last_off_jiffy + max_delay;
2598 
2599 		if (time_before(start_jiffy, intended)) {
2600 			/* calc remaining jiffies to deal with one-time
2601 			 * timer wrapping.
2602 			 * in case of multiple timer wrapping, either it can be
2603 			 * detected by out-of-range remaining, or it cannot be
2604 			 * detected and we get a penalty of
2605 			 * _regulator_enable_delay().
2606 			 */
2607 			remaining = intended - start_jiffy;
2608 			if (remaining <= max_delay)
2609 				_regulator_enable_delay(
2610 						jiffies_to_usecs(remaining));
2611 		}
2612 	}
2613 
2614 	if (rdev->ena_pin) {
2615 		if (!rdev->ena_gpio_state) {
2616 			ret = regulator_ena_gpio_ctrl(rdev, true);
2617 			if (ret < 0)
2618 				return ret;
2619 			rdev->ena_gpio_state = 1;
2620 		}
2621 	} else if (rdev->desc->ops->enable) {
2622 		ret = rdev->desc->ops->enable(rdev);
2623 		if (ret < 0)
2624 			return ret;
2625 	} else {
2626 		return -EINVAL;
2627 	}
2628 
2629 	/* Allow the regulator to ramp; it would be useful to extend
2630 	 * this for bulk operations so that the regulators can ramp
2631 	 * together.  */
2632 	trace_regulator_enable_delay(rdev_get_name(rdev));
2633 
2634 	/* If poll_enabled_time is set, poll upto the delay calculated
2635 	 * above, delaying poll_enabled_time uS to check if the regulator
2636 	 * actually got enabled.
2637 	 * If the regulator isn't enabled after enable_delay has
2638 	 * expired, return -ETIMEDOUT.
2639 	 */
2640 	if (rdev->desc->poll_enabled_time) {
2641 		int time_remaining = delay;
2642 
2643 		while (time_remaining > 0) {
2644 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2645 
2646 			if (rdev->desc->ops->get_status) {
2647 				ret = _regulator_check_status_enabled(rdev);
2648 				if (ret < 0)
2649 					return ret;
2650 				else if (ret)
2651 					break;
2652 			} else if (rdev->desc->ops->is_enabled(rdev))
2653 				break;
2654 
2655 			time_remaining -= rdev->desc->poll_enabled_time;
2656 		}
2657 
2658 		if (time_remaining <= 0) {
2659 			rdev_err(rdev, "Enabled check timed out\n");
2660 			return -ETIMEDOUT;
2661 		}
2662 	} else {
2663 		_regulator_enable_delay(delay);
2664 	}
2665 
2666 	trace_regulator_enable_complete(rdev_get_name(rdev));
2667 
2668 	return 0;
2669 }
2670 
2671 /**
2672  * _regulator_handle_consumer_enable - handle that a consumer enabled
2673  * @regulator: regulator source
2674  *
2675  * Some things on a regulator consumer (like the contribution towards total
2676  * load on the regulator) only have an effect when the consumer wants the
2677  * regulator enabled.  Explained in example with two consumers of the same
2678  * regulator:
2679  *   consumer A: set_load(100);       => total load = 0
2680  *   consumer A: regulator_enable();  => total load = 100
2681  *   consumer B: set_load(1000);      => total load = 100
2682  *   consumer B: regulator_enable();  => total load = 1100
2683  *   consumer A: regulator_disable(); => total_load = 1000
2684  *
2685  * This function (together with _regulator_handle_consumer_disable) is
2686  * responsible for keeping track of the refcount for a given regulator consumer
2687  * and applying / unapplying these things.
2688  *
2689  * Returns 0 upon no error; -error upon error.
2690  */
_regulator_handle_consumer_enable(struct regulator * regulator)2691 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2692 {
2693 	int ret;
2694 	struct regulator_dev *rdev = regulator->rdev;
2695 
2696 	lockdep_assert_held_once(&rdev->mutex.base);
2697 
2698 	regulator->enable_count++;
2699 	if (regulator->uA_load && regulator->enable_count == 1) {
2700 		ret = drms_uA_update(rdev);
2701 		if (ret)
2702 			regulator->enable_count--;
2703 		return ret;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 /**
2710  * _regulator_handle_consumer_disable - handle that a consumer disabled
2711  * @regulator: regulator source
2712  *
2713  * The opposite of _regulator_handle_consumer_enable().
2714  *
2715  * Returns 0 upon no error; -error upon error.
2716  */
_regulator_handle_consumer_disable(struct regulator * regulator)2717 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2718 {
2719 	struct regulator_dev *rdev = regulator->rdev;
2720 
2721 	lockdep_assert_held_once(&rdev->mutex.base);
2722 
2723 	if (!regulator->enable_count) {
2724 		rdev_err(rdev, "Underflow of regulator enable count\n");
2725 		return -EINVAL;
2726 	}
2727 
2728 	regulator->enable_count--;
2729 	if (regulator->uA_load && regulator->enable_count == 0)
2730 		return drms_uA_update(rdev);
2731 
2732 	return 0;
2733 }
2734 
2735 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2736 static int _regulator_enable(struct regulator *regulator)
2737 {
2738 	struct regulator_dev *rdev = regulator->rdev;
2739 	int ret;
2740 
2741 	lockdep_assert_held_once(&rdev->mutex.base);
2742 
2743 	if (rdev->use_count == 0 && rdev->supply) {
2744 		ret = _regulator_enable(rdev->supply);
2745 		if (ret < 0)
2746 			return ret;
2747 	}
2748 
2749 	/* balance only if there are regulators coupled */
2750 	if (rdev->coupling_desc.n_coupled > 1) {
2751 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2752 		if (ret < 0)
2753 			goto err_disable_supply;
2754 	}
2755 
2756 	ret = _regulator_handle_consumer_enable(regulator);
2757 	if (ret < 0)
2758 		goto err_disable_supply;
2759 
2760 	if (rdev->use_count == 0) {
2761 		/* The regulator may on if it's not switchable or left on */
2762 		ret = _regulator_is_enabled(rdev);
2763 		if (ret == -EINVAL || ret == 0) {
2764 			if (!regulator_ops_is_valid(rdev,
2765 					REGULATOR_CHANGE_STATUS)) {
2766 				ret = -EPERM;
2767 				goto err_consumer_disable;
2768 			}
2769 
2770 			ret = _regulator_do_enable(rdev);
2771 			if (ret < 0)
2772 				goto err_consumer_disable;
2773 
2774 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2775 					     NULL);
2776 		} else if (ret < 0) {
2777 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2778 			goto err_consumer_disable;
2779 		}
2780 		/* Fallthrough on positive return values - already enabled */
2781 	}
2782 
2783 	if (regulator->enable_count == 1)
2784 		rdev->use_count++;
2785 
2786 	return 0;
2787 
2788 err_consumer_disable:
2789 	_regulator_handle_consumer_disable(regulator);
2790 
2791 err_disable_supply:
2792 	if (rdev->use_count == 0 && rdev->supply)
2793 		_regulator_disable(rdev->supply);
2794 
2795 	return ret;
2796 }
2797 
2798 /**
2799  * regulator_enable - enable regulator output
2800  * @regulator: regulator source
2801  *
2802  * Request that the regulator be enabled with the regulator output at
2803  * the predefined voltage or current value.  Calls to regulator_enable()
2804  * must be balanced with calls to regulator_disable().
2805  *
2806  * NOTE: the output value can be set by other drivers, boot loader or may be
2807  * hardwired in the regulator.
2808  */
regulator_enable(struct regulator * regulator)2809 int regulator_enable(struct regulator *regulator)
2810 {
2811 	struct regulator_dev *rdev = regulator->rdev;
2812 	struct ww_acquire_ctx ww_ctx;
2813 	int ret;
2814 
2815 	regulator_lock_dependent(rdev, &ww_ctx);
2816 	ret = _regulator_enable(regulator);
2817 	regulator_unlock_dependent(rdev, &ww_ctx);
2818 
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(regulator_enable);
2822 
_regulator_do_disable(struct regulator_dev * rdev)2823 static int _regulator_do_disable(struct regulator_dev *rdev)
2824 {
2825 	int ret;
2826 
2827 	trace_regulator_disable(rdev_get_name(rdev));
2828 
2829 	if (rdev->ena_pin) {
2830 		if (rdev->ena_gpio_state) {
2831 			ret = regulator_ena_gpio_ctrl(rdev, false);
2832 			if (ret < 0)
2833 				return ret;
2834 			rdev->ena_gpio_state = 0;
2835 		}
2836 
2837 	} else if (rdev->desc->ops->disable) {
2838 		ret = rdev->desc->ops->disable(rdev);
2839 		if (ret != 0)
2840 			return ret;
2841 	}
2842 
2843 	/* cares about last_off_jiffy only if off_on_delay is required by
2844 	 * device.
2845 	 */
2846 	if (rdev->desc->off_on_delay)
2847 		rdev->last_off_jiffy = jiffies;
2848 
2849 	trace_regulator_disable_complete(rdev_get_name(rdev));
2850 
2851 	return 0;
2852 }
2853 
2854 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2855 static int _regulator_disable(struct regulator *regulator)
2856 {
2857 	struct regulator_dev *rdev = regulator->rdev;
2858 	int ret = 0;
2859 
2860 	lockdep_assert_held_once(&rdev->mutex.base);
2861 
2862 	if (WARN(regulator->enable_count == 0,
2863 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2864 		return -EIO;
2865 
2866 	if (regulator->enable_count == 1) {
2867 	/* disabling last enable_count from this regulator */
2868 		/* are we the last user and permitted to disable ? */
2869 		if (rdev->use_count == 1 &&
2870 		    (rdev->constraints && !rdev->constraints->always_on)) {
2871 
2872 			/* we are last user */
2873 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2874 				ret = _notifier_call_chain(rdev,
2875 							   REGULATOR_EVENT_PRE_DISABLE,
2876 							   NULL);
2877 				if (ret & NOTIFY_STOP_MASK)
2878 					return -EINVAL;
2879 
2880 				ret = _regulator_do_disable(rdev);
2881 				if (ret < 0) {
2882 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2883 					_notifier_call_chain(rdev,
2884 							REGULATOR_EVENT_ABORT_DISABLE,
2885 							NULL);
2886 					return ret;
2887 				}
2888 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2889 						NULL);
2890 			}
2891 
2892 			rdev->use_count = 0;
2893 		} else if (rdev->use_count > 1) {
2894 			rdev->use_count--;
2895 		}
2896 	}
2897 
2898 	if (ret == 0)
2899 		ret = _regulator_handle_consumer_disable(regulator);
2900 
2901 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2902 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903 
2904 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2905 		ret = _regulator_disable(rdev->supply);
2906 
2907 	return ret;
2908 }
2909 
2910 /**
2911  * regulator_disable - disable regulator output
2912  * @regulator: regulator source
2913  *
2914  * Disable the regulator output voltage or current.  Calls to
2915  * regulator_enable() must be balanced with calls to
2916  * regulator_disable().
2917  *
2918  * NOTE: this will only disable the regulator output if no other consumer
2919  * devices have it enabled, the regulator device supports disabling and
2920  * machine constraints permit this operation.
2921  */
regulator_disable(struct regulator * regulator)2922 int regulator_disable(struct regulator *regulator)
2923 {
2924 	struct regulator_dev *rdev = regulator->rdev;
2925 	struct ww_acquire_ctx ww_ctx;
2926 	int ret;
2927 
2928 	regulator_lock_dependent(rdev, &ww_ctx);
2929 	ret = _regulator_disable(regulator);
2930 	regulator_unlock_dependent(rdev, &ww_ctx);
2931 
2932 	return ret;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_disable);
2935 
2936 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2937 static int _regulator_force_disable(struct regulator_dev *rdev)
2938 {
2939 	int ret = 0;
2940 
2941 	lockdep_assert_held_once(&rdev->mutex.base);
2942 
2943 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2944 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2945 	if (ret & NOTIFY_STOP_MASK)
2946 		return -EINVAL;
2947 
2948 	ret = _regulator_do_disable(rdev);
2949 	if (ret < 0) {
2950 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2951 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2952 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2953 		return ret;
2954 	}
2955 
2956 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2957 			REGULATOR_EVENT_DISABLE, NULL);
2958 
2959 	return 0;
2960 }
2961 
2962 /**
2963  * regulator_force_disable - force disable regulator output
2964  * @regulator: regulator source
2965  *
2966  * Forcibly disable the regulator output voltage or current.
2967  * NOTE: this *will* disable the regulator output even if other consumer
2968  * devices have it enabled. This should be used for situations when device
2969  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2970  */
regulator_force_disable(struct regulator * regulator)2971 int regulator_force_disable(struct regulator *regulator)
2972 {
2973 	struct regulator_dev *rdev = regulator->rdev;
2974 	struct ww_acquire_ctx ww_ctx;
2975 	int ret;
2976 
2977 	regulator_lock_dependent(rdev, &ww_ctx);
2978 
2979 	ret = _regulator_force_disable(regulator->rdev);
2980 
2981 	if (rdev->coupling_desc.n_coupled > 1)
2982 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2983 
2984 	if (regulator->uA_load) {
2985 		regulator->uA_load = 0;
2986 		ret = drms_uA_update(rdev);
2987 	}
2988 
2989 	if (rdev->use_count != 0 && rdev->supply)
2990 		_regulator_disable(rdev->supply);
2991 
2992 	regulator_unlock_dependent(rdev, &ww_ctx);
2993 
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_force_disable);
2997 
regulator_disable_work(struct work_struct * work)2998 static void regulator_disable_work(struct work_struct *work)
2999 {
3000 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3001 						  disable_work.work);
3002 	struct ww_acquire_ctx ww_ctx;
3003 	int count, i, ret;
3004 	struct regulator *regulator;
3005 	int total_count = 0;
3006 
3007 	regulator_lock_dependent(rdev, &ww_ctx);
3008 
3009 	/*
3010 	 * Workqueue functions queue the new work instance while the previous
3011 	 * work instance is being processed. Cancel the queued work instance
3012 	 * as the work instance under processing does the job of the queued
3013 	 * work instance.
3014 	 */
3015 	cancel_delayed_work(&rdev->disable_work);
3016 
3017 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3018 		count = regulator->deferred_disables;
3019 
3020 		if (!count)
3021 			continue;
3022 
3023 		total_count += count;
3024 		regulator->deferred_disables = 0;
3025 
3026 		for (i = 0; i < count; i++) {
3027 			ret = _regulator_disable(regulator);
3028 			if (ret != 0)
3029 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3030 					 ERR_PTR(ret));
3031 		}
3032 	}
3033 	WARN_ON(!total_count);
3034 
3035 	if (rdev->coupling_desc.n_coupled > 1)
3036 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3037 
3038 	regulator_unlock_dependent(rdev, &ww_ctx);
3039 }
3040 
3041 /**
3042  * regulator_disable_deferred - disable regulator output with delay
3043  * @regulator: regulator source
3044  * @ms: milliseconds until the regulator is disabled
3045  *
3046  * Execute regulator_disable() on the regulator after a delay.  This
3047  * is intended for use with devices that require some time to quiesce.
3048  *
3049  * NOTE: this will only disable the regulator output if no other consumer
3050  * devices have it enabled, the regulator device supports disabling and
3051  * machine constraints permit this operation.
3052  */
regulator_disable_deferred(struct regulator * regulator,int ms)3053 int regulator_disable_deferred(struct regulator *regulator, int ms)
3054 {
3055 	struct regulator_dev *rdev = regulator->rdev;
3056 
3057 	if (!ms)
3058 		return regulator_disable(regulator);
3059 
3060 	regulator_lock(rdev);
3061 	regulator->deferred_disables++;
3062 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3063 			 msecs_to_jiffies(ms));
3064 	regulator_unlock(rdev);
3065 
3066 	return 0;
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3069 
_regulator_is_enabled(struct regulator_dev * rdev)3070 static int _regulator_is_enabled(struct regulator_dev *rdev)
3071 {
3072 	/* A GPIO control always takes precedence */
3073 	if (rdev->ena_pin)
3074 		return rdev->ena_gpio_state;
3075 
3076 	/* If we don't know then assume that the regulator is always on */
3077 	if (!rdev->desc->ops->is_enabled)
3078 		return 1;
3079 
3080 	return rdev->desc->ops->is_enabled(rdev);
3081 }
3082 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3083 static int _regulator_list_voltage(struct regulator_dev *rdev,
3084 				   unsigned selector, int lock)
3085 {
3086 	const struct regulator_ops *ops = rdev->desc->ops;
3087 	int ret;
3088 
3089 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3090 		return rdev->desc->fixed_uV;
3091 
3092 	if (ops->list_voltage) {
3093 		if (selector >= rdev->desc->n_voltages)
3094 			return -EINVAL;
3095 		if (lock)
3096 			regulator_lock(rdev);
3097 		ret = ops->list_voltage(rdev, selector);
3098 		if (lock)
3099 			regulator_unlock(rdev);
3100 	} else if (rdev->is_switch && rdev->supply) {
3101 		ret = _regulator_list_voltage(rdev->supply->rdev,
3102 					      selector, lock);
3103 	} else {
3104 		return -EINVAL;
3105 	}
3106 
3107 	if (ret > 0) {
3108 		if (ret < rdev->constraints->min_uV)
3109 			ret = 0;
3110 		else if (ret > rdev->constraints->max_uV)
3111 			ret = 0;
3112 	}
3113 
3114 	return ret;
3115 }
3116 
3117 /**
3118  * regulator_is_enabled - is the regulator output enabled
3119  * @regulator: regulator source
3120  *
3121  * Returns positive if the regulator driver backing the source/client
3122  * has requested that the device be enabled, zero if it hasn't, else a
3123  * negative errno code.
3124  *
3125  * Note that the device backing this regulator handle can have multiple
3126  * users, so it might be enabled even if regulator_enable() was never
3127  * called for this particular source.
3128  */
regulator_is_enabled(struct regulator * regulator)3129 int regulator_is_enabled(struct regulator *regulator)
3130 {
3131 	int ret;
3132 
3133 	if (regulator->always_on)
3134 		return 1;
3135 
3136 	regulator_lock(regulator->rdev);
3137 	ret = _regulator_is_enabled(regulator->rdev);
3138 	regulator_unlock(regulator->rdev);
3139 
3140 	return ret;
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3143 
3144 /**
3145  * regulator_count_voltages - count regulator_list_voltage() selectors
3146  * @regulator: regulator source
3147  *
3148  * Returns number of selectors, or negative errno.  Selectors are
3149  * numbered starting at zero, and typically correspond to bitfields
3150  * in hardware registers.
3151  */
regulator_count_voltages(struct regulator * regulator)3152 int regulator_count_voltages(struct regulator *regulator)
3153 {
3154 	struct regulator_dev	*rdev = regulator->rdev;
3155 
3156 	if (rdev->desc->n_voltages)
3157 		return rdev->desc->n_voltages;
3158 
3159 	if (!rdev->is_switch || !rdev->supply)
3160 		return -EINVAL;
3161 
3162 	return regulator_count_voltages(rdev->supply);
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3165 
3166 /**
3167  * regulator_list_voltage - enumerate supported voltages
3168  * @regulator: regulator source
3169  * @selector: identify voltage to list
3170  * Context: can sleep
3171  *
3172  * Returns a voltage that can be passed to @regulator_set_voltage(),
3173  * zero if this selector code can't be used on this system, or a
3174  * negative errno.
3175  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3176 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3177 {
3178 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3179 }
3180 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3181 
3182 /**
3183  * regulator_get_regmap - get the regulator's register map
3184  * @regulator: regulator source
3185  *
3186  * Returns the register map for the given regulator, or an ERR_PTR value
3187  * if the regulator doesn't use regmap.
3188  */
regulator_get_regmap(struct regulator * regulator)3189 struct regmap *regulator_get_regmap(struct regulator *regulator)
3190 {
3191 	struct regmap *map = regulator->rdev->regmap;
3192 
3193 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3194 }
3195 
3196 /**
3197  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3198  * @regulator: regulator source
3199  * @vsel_reg: voltage selector register, output parameter
3200  * @vsel_mask: mask for voltage selector bitfield, output parameter
3201  *
3202  * Returns the hardware register offset and bitmask used for setting the
3203  * regulator voltage. This might be useful when configuring voltage-scaling
3204  * hardware or firmware that can make I2C requests behind the kernel's back,
3205  * for example.
3206  *
3207  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3208  * and 0 is returned, otherwise a negative errno is returned.
3209  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3210 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3211 					 unsigned *vsel_reg,
3212 					 unsigned *vsel_mask)
3213 {
3214 	struct regulator_dev *rdev = regulator->rdev;
3215 	const struct regulator_ops *ops = rdev->desc->ops;
3216 
3217 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3218 		return -EOPNOTSUPP;
3219 
3220 	*vsel_reg = rdev->desc->vsel_reg;
3221 	*vsel_mask = rdev->desc->vsel_mask;
3222 
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3226 
3227 /**
3228  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3229  * @regulator: regulator source
3230  * @selector: identify voltage to list
3231  *
3232  * Converts the selector to a hardware-specific voltage selector that can be
3233  * directly written to the regulator registers. The address of the voltage
3234  * register can be determined by calling @regulator_get_hardware_vsel_register.
3235  *
3236  * On error a negative errno is returned.
3237  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3238 int regulator_list_hardware_vsel(struct regulator *regulator,
3239 				 unsigned selector)
3240 {
3241 	struct regulator_dev *rdev = regulator->rdev;
3242 	const struct regulator_ops *ops = rdev->desc->ops;
3243 
3244 	if (selector >= rdev->desc->n_voltages)
3245 		return -EINVAL;
3246 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3247 		return -EOPNOTSUPP;
3248 
3249 	return selector;
3250 }
3251 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3252 
3253 /**
3254  * regulator_get_linear_step - return the voltage step size between VSEL values
3255  * @regulator: regulator source
3256  *
3257  * Returns the voltage step size between VSEL values for linear
3258  * regulators, or return 0 if the regulator isn't a linear regulator.
3259  */
regulator_get_linear_step(struct regulator * regulator)3260 unsigned int regulator_get_linear_step(struct regulator *regulator)
3261 {
3262 	struct regulator_dev *rdev = regulator->rdev;
3263 
3264 	return rdev->desc->uV_step;
3265 }
3266 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3267 
3268 /**
3269  * regulator_is_supported_voltage - check if a voltage range can be supported
3270  *
3271  * @regulator: Regulator to check.
3272  * @min_uV: Minimum required voltage in uV.
3273  * @max_uV: Maximum required voltage in uV.
3274  *
3275  * Returns a boolean.
3276  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3277 int regulator_is_supported_voltage(struct regulator *regulator,
3278 				   int min_uV, int max_uV)
3279 {
3280 	struct regulator_dev *rdev = regulator->rdev;
3281 	int i, voltages, ret;
3282 
3283 	/* If we can't change voltage check the current voltage */
3284 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3285 		ret = regulator_get_voltage(regulator);
3286 		if (ret >= 0)
3287 			return min_uV <= ret && ret <= max_uV;
3288 		else
3289 			return ret;
3290 	}
3291 
3292 	/* Any voltage within constrains range is fine? */
3293 	if (rdev->desc->continuous_voltage_range)
3294 		return min_uV >= rdev->constraints->min_uV &&
3295 				max_uV <= rdev->constraints->max_uV;
3296 
3297 	ret = regulator_count_voltages(regulator);
3298 	if (ret < 0)
3299 		return 0;
3300 	voltages = ret;
3301 
3302 	for (i = 0; i < voltages; i++) {
3303 		ret = regulator_list_voltage(regulator, i);
3304 
3305 		if (ret >= min_uV && ret <= max_uV)
3306 			return 1;
3307 	}
3308 
3309 	return 0;
3310 }
3311 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3312 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3313 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3314 				 int max_uV)
3315 {
3316 	const struct regulator_desc *desc = rdev->desc;
3317 
3318 	if (desc->ops->map_voltage)
3319 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3320 
3321 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3322 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3323 
3324 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3325 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3326 
3327 	if (desc->ops->list_voltage ==
3328 		regulator_list_voltage_pickable_linear_range)
3329 		return regulator_map_voltage_pickable_linear_range(rdev,
3330 							min_uV, max_uV);
3331 
3332 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3333 }
3334 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3335 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3336 				       int min_uV, int max_uV,
3337 				       unsigned *selector)
3338 {
3339 	struct pre_voltage_change_data data;
3340 	int ret;
3341 
3342 	data.old_uV = regulator_get_voltage_rdev(rdev);
3343 	data.min_uV = min_uV;
3344 	data.max_uV = max_uV;
3345 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3346 				   &data);
3347 	if (ret & NOTIFY_STOP_MASK)
3348 		return -EINVAL;
3349 
3350 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3351 	if (ret >= 0)
3352 		return ret;
3353 
3354 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3355 			     (void *)data.old_uV);
3356 
3357 	return ret;
3358 }
3359 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3360 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3361 					   int uV, unsigned selector)
3362 {
3363 	struct pre_voltage_change_data data;
3364 	int ret;
3365 
3366 	data.old_uV = regulator_get_voltage_rdev(rdev);
3367 	data.min_uV = uV;
3368 	data.max_uV = uV;
3369 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3370 				   &data);
3371 	if (ret & NOTIFY_STOP_MASK)
3372 		return -EINVAL;
3373 
3374 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3375 	if (ret >= 0)
3376 		return ret;
3377 
3378 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3379 			     (void *)data.old_uV);
3380 
3381 	return ret;
3382 }
3383 
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3384 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3385 					   int uV, int new_selector)
3386 {
3387 	const struct regulator_ops *ops = rdev->desc->ops;
3388 	int diff, old_sel, curr_sel, ret;
3389 
3390 	/* Stepping is only needed if the regulator is enabled. */
3391 	if (!_regulator_is_enabled(rdev))
3392 		goto final_set;
3393 
3394 	if (!ops->get_voltage_sel)
3395 		return -EINVAL;
3396 
3397 	old_sel = ops->get_voltage_sel(rdev);
3398 	if (old_sel < 0)
3399 		return old_sel;
3400 
3401 	diff = new_selector - old_sel;
3402 	if (diff == 0)
3403 		return 0; /* No change needed. */
3404 
3405 	if (diff > 0) {
3406 		/* Stepping up. */
3407 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3408 		     curr_sel < new_selector;
3409 		     curr_sel += rdev->desc->vsel_step) {
3410 			/*
3411 			 * Call the callback directly instead of using
3412 			 * _regulator_call_set_voltage_sel() as we don't
3413 			 * want to notify anyone yet. Same in the branch
3414 			 * below.
3415 			 */
3416 			ret = ops->set_voltage_sel(rdev, curr_sel);
3417 			if (ret)
3418 				goto try_revert;
3419 		}
3420 	} else {
3421 		/* Stepping down. */
3422 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3423 		     curr_sel > new_selector;
3424 		     curr_sel -= rdev->desc->vsel_step) {
3425 			ret = ops->set_voltage_sel(rdev, curr_sel);
3426 			if (ret)
3427 				goto try_revert;
3428 		}
3429 	}
3430 
3431 final_set:
3432 	/* The final selector will trigger the notifiers. */
3433 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3434 
3435 try_revert:
3436 	/*
3437 	 * At least try to return to the previous voltage if setting a new
3438 	 * one failed.
3439 	 */
3440 	(void)ops->set_voltage_sel(rdev, old_sel);
3441 	return ret;
3442 }
3443 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3444 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3445 				       int old_uV, int new_uV)
3446 {
3447 	unsigned int ramp_delay = 0;
3448 
3449 	if (rdev->constraints->ramp_delay)
3450 		ramp_delay = rdev->constraints->ramp_delay;
3451 	else if (rdev->desc->ramp_delay)
3452 		ramp_delay = rdev->desc->ramp_delay;
3453 	else if (rdev->constraints->settling_time)
3454 		return rdev->constraints->settling_time;
3455 	else if (rdev->constraints->settling_time_up &&
3456 		 (new_uV > old_uV))
3457 		return rdev->constraints->settling_time_up;
3458 	else if (rdev->constraints->settling_time_down &&
3459 		 (new_uV < old_uV))
3460 		return rdev->constraints->settling_time_down;
3461 
3462 	if (ramp_delay == 0) {
3463 		rdev_dbg(rdev, "ramp_delay not set\n");
3464 		return 0;
3465 	}
3466 
3467 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3468 }
3469 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3470 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3471 				     int min_uV, int max_uV)
3472 {
3473 	int ret;
3474 	int delay = 0;
3475 	int best_val = 0;
3476 	unsigned int selector;
3477 	int old_selector = -1;
3478 	const struct regulator_ops *ops = rdev->desc->ops;
3479 	int old_uV = regulator_get_voltage_rdev(rdev);
3480 
3481 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3482 
3483 	min_uV += rdev->constraints->uV_offset;
3484 	max_uV += rdev->constraints->uV_offset;
3485 
3486 	/*
3487 	 * If we can't obtain the old selector there is not enough
3488 	 * info to call set_voltage_time_sel().
3489 	 */
3490 	if (_regulator_is_enabled(rdev) &&
3491 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3492 		old_selector = ops->get_voltage_sel(rdev);
3493 		if (old_selector < 0)
3494 			return old_selector;
3495 	}
3496 
3497 	if (ops->set_voltage) {
3498 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3499 						  &selector);
3500 
3501 		if (ret >= 0) {
3502 			if (ops->list_voltage)
3503 				best_val = ops->list_voltage(rdev,
3504 							     selector);
3505 			else
3506 				best_val = regulator_get_voltage_rdev(rdev);
3507 		}
3508 
3509 	} else if (ops->set_voltage_sel) {
3510 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3511 		if (ret >= 0) {
3512 			best_val = ops->list_voltage(rdev, ret);
3513 			if (min_uV <= best_val && max_uV >= best_val) {
3514 				selector = ret;
3515 				if (old_selector == selector)
3516 					ret = 0;
3517 				else if (rdev->desc->vsel_step)
3518 					ret = _regulator_set_voltage_sel_step(
3519 						rdev, best_val, selector);
3520 				else
3521 					ret = _regulator_call_set_voltage_sel(
3522 						rdev, best_val, selector);
3523 			} else {
3524 				ret = -EINVAL;
3525 			}
3526 		}
3527 	} else {
3528 		ret = -EINVAL;
3529 	}
3530 
3531 	if (ret)
3532 		goto out;
3533 
3534 	if (ops->set_voltage_time_sel) {
3535 		/*
3536 		 * Call set_voltage_time_sel if successfully obtained
3537 		 * old_selector
3538 		 */
3539 		if (old_selector >= 0 && old_selector != selector)
3540 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3541 							  selector);
3542 	} else {
3543 		if (old_uV != best_val) {
3544 			if (ops->set_voltage_time)
3545 				delay = ops->set_voltage_time(rdev, old_uV,
3546 							      best_val);
3547 			else
3548 				delay = _regulator_set_voltage_time(rdev,
3549 								    old_uV,
3550 								    best_val);
3551 		}
3552 	}
3553 
3554 	if (delay < 0) {
3555 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3556 		delay = 0;
3557 	}
3558 
3559 	/* Insert any necessary delays */
3560 	if (delay >= 1000) {
3561 		mdelay(delay / 1000);
3562 		udelay(delay % 1000);
3563 	} else if (delay) {
3564 		udelay(delay);
3565 	}
3566 
3567 	if (best_val >= 0) {
3568 		unsigned long data = best_val;
3569 
3570 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3571 				     (void *)data);
3572 	}
3573 
3574 out:
3575 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3576 
3577 	return ret;
3578 }
3579 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3580 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3581 				  int min_uV, int max_uV, suspend_state_t state)
3582 {
3583 	struct regulator_state *rstate;
3584 	int uV, sel;
3585 
3586 	rstate = regulator_get_suspend_state(rdev, state);
3587 	if (rstate == NULL)
3588 		return -EINVAL;
3589 
3590 	if (min_uV < rstate->min_uV)
3591 		min_uV = rstate->min_uV;
3592 	if (max_uV > rstate->max_uV)
3593 		max_uV = rstate->max_uV;
3594 
3595 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3596 	if (sel < 0)
3597 		return sel;
3598 
3599 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3600 	if (uV >= min_uV && uV <= max_uV)
3601 		rstate->uV = uV;
3602 
3603 	return 0;
3604 }
3605 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3606 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3607 					  int min_uV, int max_uV,
3608 					  suspend_state_t state)
3609 {
3610 	struct regulator_dev *rdev = regulator->rdev;
3611 	struct regulator_voltage *voltage = &regulator->voltage[state];
3612 	int ret = 0;
3613 	int old_min_uV, old_max_uV;
3614 	int current_uV;
3615 
3616 	/* If we're setting the same range as last time the change
3617 	 * should be a noop (some cpufreq implementations use the same
3618 	 * voltage for multiple frequencies, for example).
3619 	 */
3620 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3621 		goto out;
3622 
3623 	/* If we're trying to set a range that overlaps the current voltage,
3624 	 * return successfully even though the regulator does not support
3625 	 * changing the voltage.
3626 	 */
3627 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3628 		current_uV = regulator_get_voltage_rdev(rdev);
3629 		if (min_uV <= current_uV && current_uV <= max_uV) {
3630 			voltage->min_uV = min_uV;
3631 			voltage->max_uV = max_uV;
3632 			goto out;
3633 		}
3634 	}
3635 
3636 	/* sanity check */
3637 	if (!rdev->desc->ops->set_voltage &&
3638 	    !rdev->desc->ops->set_voltage_sel) {
3639 		ret = -EINVAL;
3640 		goto out;
3641 	}
3642 
3643 	/* constraints check */
3644 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3645 	if (ret < 0)
3646 		goto out;
3647 
3648 	/* restore original values in case of error */
3649 	old_min_uV = voltage->min_uV;
3650 	old_max_uV = voltage->max_uV;
3651 	voltage->min_uV = min_uV;
3652 	voltage->max_uV = max_uV;
3653 
3654 	/* for not coupled regulators this will just set the voltage */
3655 	ret = regulator_balance_voltage(rdev, state);
3656 	if (ret < 0) {
3657 		voltage->min_uV = old_min_uV;
3658 		voltage->max_uV = old_max_uV;
3659 	}
3660 
3661 out:
3662 	return ret;
3663 }
3664 
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3665 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3666 			       int max_uV, suspend_state_t state)
3667 {
3668 	int best_supply_uV = 0;
3669 	int supply_change_uV = 0;
3670 	int ret;
3671 
3672 	if (rdev->supply &&
3673 	    regulator_ops_is_valid(rdev->supply->rdev,
3674 				   REGULATOR_CHANGE_VOLTAGE) &&
3675 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3676 					   rdev->desc->ops->get_voltage_sel))) {
3677 		int current_supply_uV;
3678 		int selector;
3679 
3680 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3681 		if (selector < 0) {
3682 			ret = selector;
3683 			goto out;
3684 		}
3685 
3686 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3687 		if (best_supply_uV < 0) {
3688 			ret = best_supply_uV;
3689 			goto out;
3690 		}
3691 
3692 		best_supply_uV += rdev->desc->min_dropout_uV;
3693 
3694 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3695 		if (current_supply_uV < 0) {
3696 			ret = current_supply_uV;
3697 			goto out;
3698 		}
3699 
3700 		supply_change_uV = best_supply_uV - current_supply_uV;
3701 	}
3702 
3703 	if (supply_change_uV > 0) {
3704 		ret = regulator_set_voltage_unlocked(rdev->supply,
3705 				best_supply_uV, INT_MAX, state);
3706 		if (ret) {
3707 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3708 				ERR_PTR(ret));
3709 			goto out;
3710 		}
3711 	}
3712 
3713 	if (state == PM_SUSPEND_ON)
3714 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3715 	else
3716 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3717 							max_uV, state);
3718 	if (ret < 0)
3719 		goto out;
3720 
3721 	if (supply_change_uV < 0) {
3722 		ret = regulator_set_voltage_unlocked(rdev->supply,
3723 				best_supply_uV, INT_MAX, state);
3724 		if (ret)
3725 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3726 				 ERR_PTR(ret));
3727 		/* No need to fail here */
3728 		ret = 0;
3729 	}
3730 
3731 out:
3732 	return ret;
3733 }
3734 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3735 
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3736 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3737 					int *current_uV, int *min_uV)
3738 {
3739 	struct regulation_constraints *constraints = rdev->constraints;
3740 
3741 	/* Limit voltage change only if necessary */
3742 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3743 		return 1;
3744 
3745 	if (*current_uV < 0) {
3746 		*current_uV = regulator_get_voltage_rdev(rdev);
3747 
3748 		if (*current_uV < 0)
3749 			return *current_uV;
3750 	}
3751 
3752 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3753 		return 1;
3754 
3755 	/* Clamp target voltage within the given step */
3756 	if (*current_uV < *min_uV)
3757 		*min_uV = min(*current_uV + constraints->max_uV_step,
3758 			      *min_uV);
3759 	else
3760 		*min_uV = max(*current_uV - constraints->max_uV_step,
3761 			      *min_uV);
3762 
3763 	return 0;
3764 }
3765 
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3766 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3767 					 int *current_uV,
3768 					 int *min_uV, int *max_uV,
3769 					 suspend_state_t state,
3770 					 int n_coupled)
3771 {
3772 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3773 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3774 	struct regulation_constraints *constraints = rdev->constraints;
3775 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3776 	int max_current_uV = 0, min_current_uV = INT_MAX;
3777 	int highest_min_uV = 0, target_uV, possible_uV;
3778 	int i, ret, max_spread;
3779 	bool done;
3780 
3781 	*current_uV = -1;
3782 
3783 	/*
3784 	 * If there are no coupled regulators, simply set the voltage
3785 	 * demanded by consumers.
3786 	 */
3787 	if (n_coupled == 1) {
3788 		/*
3789 		 * If consumers don't provide any demands, set voltage
3790 		 * to min_uV
3791 		 */
3792 		desired_min_uV = constraints->min_uV;
3793 		desired_max_uV = constraints->max_uV;
3794 
3795 		ret = regulator_check_consumers(rdev,
3796 						&desired_min_uV,
3797 						&desired_max_uV, state);
3798 		if (ret < 0)
3799 			return ret;
3800 
3801 		possible_uV = desired_min_uV;
3802 		done = true;
3803 
3804 		goto finish;
3805 	}
3806 
3807 	/* Find highest min desired voltage */
3808 	for (i = 0; i < n_coupled; i++) {
3809 		int tmp_min = 0;
3810 		int tmp_max = INT_MAX;
3811 
3812 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3813 
3814 		ret = regulator_check_consumers(c_rdevs[i],
3815 						&tmp_min,
3816 						&tmp_max, state);
3817 		if (ret < 0)
3818 			return ret;
3819 
3820 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3821 		if (ret < 0)
3822 			return ret;
3823 
3824 		highest_min_uV = max(highest_min_uV, tmp_min);
3825 
3826 		if (i == 0) {
3827 			desired_min_uV = tmp_min;
3828 			desired_max_uV = tmp_max;
3829 		}
3830 	}
3831 
3832 	max_spread = constraints->max_spread[0];
3833 
3834 	/*
3835 	 * Let target_uV be equal to the desired one if possible.
3836 	 * If not, set it to minimum voltage, allowed by other coupled
3837 	 * regulators.
3838 	 */
3839 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3840 
3841 	/*
3842 	 * Find min and max voltages, which currently aren't violating
3843 	 * max_spread.
3844 	 */
3845 	for (i = 1; i < n_coupled; i++) {
3846 		int tmp_act;
3847 
3848 		if (!_regulator_is_enabled(c_rdevs[i]))
3849 			continue;
3850 
3851 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3852 		if (tmp_act < 0)
3853 			return tmp_act;
3854 
3855 		min_current_uV = min(tmp_act, min_current_uV);
3856 		max_current_uV = max(tmp_act, max_current_uV);
3857 	}
3858 
3859 	/* There aren't any other regulators enabled */
3860 	if (max_current_uV == 0) {
3861 		possible_uV = target_uV;
3862 	} else {
3863 		/*
3864 		 * Correct target voltage, so as it currently isn't
3865 		 * violating max_spread
3866 		 */
3867 		possible_uV = max(target_uV, max_current_uV - max_spread);
3868 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3869 	}
3870 
3871 	if (possible_uV > desired_max_uV)
3872 		return -EINVAL;
3873 
3874 	done = (possible_uV == target_uV);
3875 	desired_min_uV = possible_uV;
3876 
3877 finish:
3878 	/* Apply max_uV_step constraint if necessary */
3879 	if (state == PM_SUSPEND_ON) {
3880 		ret = regulator_limit_voltage_step(rdev, current_uV,
3881 						   &desired_min_uV);
3882 		if (ret < 0)
3883 			return ret;
3884 
3885 		if (ret == 0)
3886 			done = false;
3887 	}
3888 
3889 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3890 	if (n_coupled > 1 && *current_uV == -1) {
3891 
3892 		if (_regulator_is_enabled(rdev)) {
3893 			ret = regulator_get_voltage_rdev(rdev);
3894 			if (ret < 0)
3895 				return ret;
3896 
3897 			*current_uV = ret;
3898 		} else {
3899 			*current_uV = desired_min_uV;
3900 		}
3901 	}
3902 
3903 	*min_uV = desired_min_uV;
3904 	*max_uV = desired_max_uV;
3905 
3906 	return done;
3907 }
3908 
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3909 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3910 				 suspend_state_t state, bool skip_coupled)
3911 {
3912 	struct regulator_dev **c_rdevs;
3913 	struct regulator_dev *best_rdev;
3914 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3915 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3916 	unsigned int delta, best_delta;
3917 	unsigned long c_rdev_done = 0;
3918 	bool best_c_rdev_done;
3919 
3920 	c_rdevs = c_desc->coupled_rdevs;
3921 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3922 
3923 	/*
3924 	 * Find the best possible voltage change on each loop. Leave the loop
3925 	 * if there isn't any possible change.
3926 	 */
3927 	do {
3928 		best_c_rdev_done = false;
3929 		best_delta = 0;
3930 		best_min_uV = 0;
3931 		best_max_uV = 0;
3932 		best_c_rdev = 0;
3933 		best_rdev = NULL;
3934 
3935 		/*
3936 		 * Find highest difference between optimal voltage
3937 		 * and current voltage.
3938 		 */
3939 		for (i = 0; i < n_coupled; i++) {
3940 			/*
3941 			 * optimal_uV is the best voltage that can be set for
3942 			 * i-th regulator at the moment without violating
3943 			 * max_spread constraint in order to balance
3944 			 * the coupled voltages.
3945 			 */
3946 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3947 
3948 			if (test_bit(i, &c_rdev_done))
3949 				continue;
3950 
3951 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3952 							    &current_uV,
3953 							    &optimal_uV,
3954 							    &optimal_max_uV,
3955 							    state, n_coupled);
3956 			if (ret < 0)
3957 				goto out;
3958 
3959 			delta = abs(optimal_uV - current_uV);
3960 
3961 			if (delta && best_delta <= delta) {
3962 				best_c_rdev_done = ret;
3963 				best_delta = delta;
3964 				best_rdev = c_rdevs[i];
3965 				best_min_uV = optimal_uV;
3966 				best_max_uV = optimal_max_uV;
3967 				best_c_rdev = i;
3968 			}
3969 		}
3970 
3971 		/* Nothing to change, return successfully */
3972 		if (!best_rdev) {
3973 			ret = 0;
3974 			goto out;
3975 		}
3976 
3977 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3978 						 best_max_uV, state);
3979 
3980 		if (ret < 0)
3981 			goto out;
3982 
3983 		if (best_c_rdev_done)
3984 			set_bit(best_c_rdev, &c_rdev_done);
3985 
3986 	} while (n_coupled > 1);
3987 
3988 out:
3989 	return ret;
3990 }
3991 
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3992 static int regulator_balance_voltage(struct regulator_dev *rdev,
3993 				     suspend_state_t state)
3994 {
3995 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3996 	struct regulator_coupler *coupler = c_desc->coupler;
3997 	bool skip_coupled = false;
3998 
3999 	/*
4000 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4001 	 * other coupled regulators.
4002 	 */
4003 	if (state != PM_SUSPEND_ON)
4004 		skip_coupled = true;
4005 
4006 	if (c_desc->n_resolved < c_desc->n_coupled) {
4007 		rdev_err(rdev, "Not all coupled regulators registered\n");
4008 		return -EPERM;
4009 	}
4010 
4011 	/* Invoke custom balancer for customized couplers */
4012 	if (coupler && coupler->balance_voltage)
4013 		return coupler->balance_voltage(coupler, rdev, state);
4014 
4015 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4016 }
4017 
4018 /**
4019  * regulator_set_voltage - set regulator output voltage
4020  * @regulator: regulator source
4021  * @min_uV: Minimum required voltage in uV
4022  * @max_uV: Maximum acceptable voltage in uV
4023  *
4024  * Sets a voltage regulator to the desired output voltage. This can be set
4025  * during any regulator state. IOW, regulator can be disabled or enabled.
4026  *
4027  * If the regulator is enabled then the voltage will change to the new value
4028  * immediately otherwise if the regulator is disabled the regulator will
4029  * output at the new voltage when enabled.
4030  *
4031  * NOTE: If the regulator is shared between several devices then the lowest
4032  * request voltage that meets the system constraints will be used.
4033  * Regulator system constraints must be set for this regulator before
4034  * calling this function otherwise this call will fail.
4035  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4036 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4037 {
4038 	struct ww_acquire_ctx ww_ctx;
4039 	int ret;
4040 
4041 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4042 
4043 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4044 					     PM_SUSPEND_ON);
4045 
4046 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4047 
4048 	return ret;
4049 }
4050 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4051 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4052 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4053 					   suspend_state_t state, bool en)
4054 {
4055 	struct regulator_state *rstate;
4056 
4057 	rstate = regulator_get_suspend_state(rdev, state);
4058 	if (rstate == NULL)
4059 		return -EINVAL;
4060 
4061 	if (!rstate->changeable)
4062 		return -EPERM;
4063 
4064 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4065 
4066 	return 0;
4067 }
4068 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4069 int regulator_suspend_enable(struct regulator_dev *rdev,
4070 				    suspend_state_t state)
4071 {
4072 	return regulator_suspend_toggle(rdev, state, true);
4073 }
4074 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4075 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4076 int regulator_suspend_disable(struct regulator_dev *rdev,
4077 				     suspend_state_t state)
4078 {
4079 	struct regulator *regulator;
4080 	struct regulator_voltage *voltage;
4081 
4082 	/*
4083 	 * if any consumer wants this regulator device keeping on in
4084 	 * suspend states, don't set it as disabled.
4085 	 */
4086 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4087 		voltage = &regulator->voltage[state];
4088 		if (voltage->min_uV || voltage->max_uV)
4089 			return 0;
4090 	}
4091 
4092 	return regulator_suspend_toggle(rdev, state, false);
4093 }
4094 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4095 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4096 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4097 					  int min_uV, int max_uV,
4098 					  suspend_state_t state)
4099 {
4100 	struct regulator_dev *rdev = regulator->rdev;
4101 	struct regulator_state *rstate;
4102 
4103 	rstate = regulator_get_suspend_state(rdev, state);
4104 	if (rstate == NULL)
4105 		return -EINVAL;
4106 
4107 	if (rstate->min_uV == rstate->max_uV) {
4108 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4109 		return -EPERM;
4110 	}
4111 
4112 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4113 }
4114 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4115 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4116 				  int max_uV, suspend_state_t state)
4117 {
4118 	struct ww_acquire_ctx ww_ctx;
4119 	int ret;
4120 
4121 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4122 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4123 		return -EINVAL;
4124 
4125 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4126 
4127 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4128 					     max_uV, state);
4129 
4130 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4131 
4132 	return ret;
4133 }
4134 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4135 
4136 /**
4137  * regulator_set_voltage_time - get raise/fall time
4138  * @regulator: regulator source
4139  * @old_uV: starting voltage in microvolts
4140  * @new_uV: target voltage in microvolts
4141  *
4142  * Provided with the starting and ending voltage, this function attempts to
4143  * calculate the time in microseconds required to rise or fall to this new
4144  * voltage.
4145  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4146 int regulator_set_voltage_time(struct regulator *regulator,
4147 			       int old_uV, int new_uV)
4148 {
4149 	struct regulator_dev *rdev = regulator->rdev;
4150 	const struct regulator_ops *ops = rdev->desc->ops;
4151 	int old_sel = -1;
4152 	int new_sel = -1;
4153 	int voltage;
4154 	int i;
4155 
4156 	if (ops->set_voltage_time)
4157 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4158 	else if (!ops->set_voltage_time_sel)
4159 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4160 
4161 	/* Currently requires operations to do this */
4162 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4163 		return -EINVAL;
4164 
4165 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4166 		/* We only look for exact voltage matches here */
4167 
4168 		if (old_sel >= 0 && new_sel >= 0)
4169 			break;
4170 
4171 		voltage = regulator_list_voltage(regulator, i);
4172 		if (voltage < 0)
4173 			return -EINVAL;
4174 		if (voltage == 0)
4175 			continue;
4176 		if (voltage == old_uV)
4177 			old_sel = i;
4178 		if (voltage == new_uV)
4179 			new_sel = i;
4180 	}
4181 
4182 	if (old_sel < 0 || new_sel < 0)
4183 		return -EINVAL;
4184 
4185 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4186 }
4187 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4188 
4189 /**
4190  * regulator_set_voltage_time_sel - get raise/fall time
4191  * @rdev: regulator source device
4192  * @old_selector: selector for starting voltage
4193  * @new_selector: selector for target voltage
4194  *
4195  * Provided with the starting and target voltage selectors, this function
4196  * returns time in microseconds required to rise or fall to this new voltage
4197  *
4198  * Drivers providing ramp_delay in regulation_constraints can use this as their
4199  * set_voltage_time_sel() operation.
4200  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4201 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4202 				   unsigned int old_selector,
4203 				   unsigned int new_selector)
4204 {
4205 	int old_volt, new_volt;
4206 
4207 	/* sanity check */
4208 	if (!rdev->desc->ops->list_voltage)
4209 		return -EINVAL;
4210 
4211 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4212 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4213 
4214 	if (rdev->desc->ops->set_voltage_time)
4215 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4216 							 new_volt);
4217 	else
4218 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4219 }
4220 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4221 
4222 /**
4223  * regulator_sync_voltage - re-apply last regulator output voltage
4224  * @regulator: regulator source
4225  *
4226  * Re-apply the last configured voltage.  This is intended to be used
4227  * where some external control source the consumer is cooperating with
4228  * has caused the configured voltage to change.
4229  */
regulator_sync_voltage(struct regulator * regulator)4230 int regulator_sync_voltage(struct regulator *regulator)
4231 {
4232 	struct regulator_dev *rdev = regulator->rdev;
4233 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4234 	int ret, min_uV, max_uV;
4235 
4236 	regulator_lock(rdev);
4237 
4238 	if (!rdev->desc->ops->set_voltage &&
4239 	    !rdev->desc->ops->set_voltage_sel) {
4240 		ret = -EINVAL;
4241 		goto out;
4242 	}
4243 
4244 	/* This is only going to work if we've had a voltage configured. */
4245 	if (!voltage->min_uV && !voltage->max_uV) {
4246 		ret = -EINVAL;
4247 		goto out;
4248 	}
4249 
4250 	min_uV = voltage->min_uV;
4251 	max_uV = voltage->max_uV;
4252 
4253 	/* This should be a paranoia check... */
4254 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4255 	if (ret < 0)
4256 		goto out;
4257 
4258 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4259 	if (ret < 0)
4260 		goto out;
4261 
4262 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4263 
4264 out:
4265 	regulator_unlock(rdev);
4266 	return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4269 
regulator_get_voltage_rdev(struct regulator_dev * rdev)4270 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4271 {
4272 	int sel, ret;
4273 	bool bypassed;
4274 
4275 	if (rdev->desc->ops->get_bypass) {
4276 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4277 		if (ret < 0)
4278 			return ret;
4279 		if (bypassed) {
4280 			/* if bypassed the regulator must have a supply */
4281 			if (!rdev->supply) {
4282 				rdev_err(rdev,
4283 					 "bypassed regulator has no supply!\n");
4284 				return -EPROBE_DEFER;
4285 			}
4286 
4287 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4288 		}
4289 	}
4290 
4291 	if (rdev->desc->ops->get_voltage_sel) {
4292 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4293 		if (sel < 0)
4294 			return sel;
4295 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4296 	} else if (rdev->desc->ops->get_voltage) {
4297 		ret = rdev->desc->ops->get_voltage(rdev);
4298 	} else if (rdev->desc->ops->list_voltage) {
4299 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4300 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4301 		ret = rdev->desc->fixed_uV;
4302 	} else if (rdev->supply) {
4303 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4304 	} else if (rdev->supply_name) {
4305 		return -EPROBE_DEFER;
4306 	} else {
4307 		return -EINVAL;
4308 	}
4309 
4310 	if (ret < 0)
4311 		return ret;
4312 	return ret - rdev->constraints->uV_offset;
4313 }
4314 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4315 
4316 /**
4317  * regulator_get_voltage - get regulator output voltage
4318  * @regulator: regulator source
4319  *
4320  * This returns the current regulator voltage in uV.
4321  *
4322  * NOTE: If the regulator is disabled it will return the voltage value. This
4323  * function should not be used to determine regulator state.
4324  */
regulator_get_voltage(struct regulator * regulator)4325 int regulator_get_voltage(struct regulator *regulator)
4326 {
4327 	struct ww_acquire_ctx ww_ctx;
4328 	int ret;
4329 
4330 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4331 	ret = regulator_get_voltage_rdev(regulator->rdev);
4332 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4333 
4334 	return ret;
4335 }
4336 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4337 
4338 /**
4339  * regulator_set_current_limit - set regulator output current limit
4340  * @regulator: regulator source
4341  * @min_uA: Minimum supported current in uA
4342  * @max_uA: Maximum supported current in uA
4343  *
4344  * Sets current sink to the desired output current. This can be set during
4345  * any regulator state. IOW, regulator can be disabled or enabled.
4346  *
4347  * If the regulator is enabled then the current will change to the new value
4348  * immediately otherwise if the regulator is disabled the regulator will
4349  * output at the new current when enabled.
4350  *
4351  * NOTE: Regulator system constraints must be set for this regulator before
4352  * calling this function otherwise this call will fail.
4353  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4354 int regulator_set_current_limit(struct regulator *regulator,
4355 			       int min_uA, int max_uA)
4356 {
4357 	struct regulator_dev *rdev = regulator->rdev;
4358 	int ret;
4359 
4360 	regulator_lock(rdev);
4361 
4362 	/* sanity check */
4363 	if (!rdev->desc->ops->set_current_limit) {
4364 		ret = -EINVAL;
4365 		goto out;
4366 	}
4367 
4368 	/* constraints check */
4369 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4370 	if (ret < 0)
4371 		goto out;
4372 
4373 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4374 out:
4375 	regulator_unlock(rdev);
4376 	return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4379 
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4380 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4381 {
4382 	/* sanity check */
4383 	if (!rdev->desc->ops->get_current_limit)
4384 		return -EINVAL;
4385 
4386 	return rdev->desc->ops->get_current_limit(rdev);
4387 }
4388 
_regulator_get_current_limit(struct regulator_dev * rdev)4389 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4390 {
4391 	int ret;
4392 
4393 	regulator_lock(rdev);
4394 	ret = _regulator_get_current_limit_unlocked(rdev);
4395 	regulator_unlock(rdev);
4396 
4397 	return ret;
4398 }
4399 
4400 /**
4401  * regulator_get_current_limit - get regulator output current
4402  * @regulator: regulator source
4403  *
4404  * This returns the current supplied by the specified current sink in uA.
4405  *
4406  * NOTE: If the regulator is disabled it will return the current value. This
4407  * function should not be used to determine regulator state.
4408  */
regulator_get_current_limit(struct regulator * regulator)4409 int regulator_get_current_limit(struct regulator *regulator)
4410 {
4411 	return _regulator_get_current_limit(regulator->rdev);
4412 }
4413 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4414 
4415 /**
4416  * regulator_set_mode - set regulator operating mode
4417  * @regulator: regulator source
4418  * @mode: operating mode - one of the REGULATOR_MODE constants
4419  *
4420  * Set regulator operating mode to increase regulator efficiency or improve
4421  * regulation performance.
4422  *
4423  * NOTE: Regulator system constraints must be set for this regulator before
4424  * calling this function otherwise this call will fail.
4425  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4426 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4427 {
4428 	struct regulator_dev *rdev = regulator->rdev;
4429 	int ret;
4430 	int regulator_curr_mode;
4431 
4432 	regulator_lock(rdev);
4433 
4434 	/* sanity check */
4435 	if (!rdev->desc->ops->set_mode) {
4436 		ret = -EINVAL;
4437 		goto out;
4438 	}
4439 
4440 	/* return if the same mode is requested */
4441 	if (rdev->desc->ops->get_mode) {
4442 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4443 		if (regulator_curr_mode == mode) {
4444 			ret = 0;
4445 			goto out;
4446 		}
4447 	}
4448 
4449 	/* constraints check */
4450 	ret = regulator_mode_constrain(rdev, &mode);
4451 	if (ret < 0)
4452 		goto out;
4453 
4454 	ret = rdev->desc->ops->set_mode(rdev, mode);
4455 out:
4456 	regulator_unlock(rdev);
4457 	return ret;
4458 }
4459 EXPORT_SYMBOL_GPL(regulator_set_mode);
4460 
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4461 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4462 {
4463 	/* sanity check */
4464 	if (!rdev->desc->ops->get_mode)
4465 		return -EINVAL;
4466 
4467 	return rdev->desc->ops->get_mode(rdev);
4468 }
4469 
_regulator_get_mode(struct regulator_dev * rdev)4470 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4471 {
4472 	int ret;
4473 
4474 	regulator_lock(rdev);
4475 	ret = _regulator_get_mode_unlocked(rdev);
4476 	regulator_unlock(rdev);
4477 
4478 	return ret;
4479 }
4480 
4481 /**
4482  * regulator_get_mode - get regulator operating mode
4483  * @regulator: regulator source
4484  *
4485  * Get the current regulator operating mode.
4486  */
regulator_get_mode(struct regulator * regulator)4487 unsigned int regulator_get_mode(struct regulator *regulator)
4488 {
4489 	return _regulator_get_mode(regulator->rdev);
4490 }
4491 EXPORT_SYMBOL_GPL(regulator_get_mode);
4492 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4493 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4494 					unsigned int *flags)
4495 {
4496 	int ret;
4497 
4498 	regulator_lock(rdev);
4499 
4500 	/* sanity check */
4501 	if (!rdev->desc->ops->get_error_flags) {
4502 		ret = -EINVAL;
4503 		goto out;
4504 	}
4505 
4506 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4507 out:
4508 	regulator_unlock(rdev);
4509 	return ret;
4510 }
4511 
4512 /**
4513  * regulator_get_error_flags - get regulator error information
4514  * @regulator: regulator source
4515  * @flags: pointer to store error flags
4516  *
4517  * Get the current regulator error information.
4518  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4519 int regulator_get_error_flags(struct regulator *regulator,
4520 				unsigned int *flags)
4521 {
4522 	return _regulator_get_error_flags(regulator->rdev, flags);
4523 }
4524 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4525 
4526 /**
4527  * regulator_set_load - set regulator load
4528  * @regulator: regulator source
4529  * @uA_load: load current
4530  *
4531  * Notifies the regulator core of a new device load. This is then used by
4532  * DRMS (if enabled by constraints) to set the most efficient regulator
4533  * operating mode for the new regulator loading.
4534  *
4535  * Consumer devices notify their supply regulator of the maximum power
4536  * they will require (can be taken from device datasheet in the power
4537  * consumption tables) when they change operational status and hence power
4538  * state. Examples of operational state changes that can affect power
4539  * consumption are :-
4540  *
4541  *    o Device is opened / closed.
4542  *    o Device I/O is about to begin or has just finished.
4543  *    o Device is idling in between work.
4544  *
4545  * This information is also exported via sysfs to userspace.
4546  *
4547  * DRMS will sum the total requested load on the regulator and change
4548  * to the most efficient operating mode if platform constraints allow.
4549  *
4550  * NOTE: when a regulator consumer requests to have a regulator
4551  * disabled then any load that consumer requested no longer counts
4552  * toward the total requested load.  If the regulator is re-enabled
4553  * then the previously requested load will start counting again.
4554  *
4555  * If a regulator is an always-on regulator then an individual consumer's
4556  * load will still be removed if that consumer is fully disabled.
4557  *
4558  * On error a negative errno is returned.
4559  */
regulator_set_load(struct regulator * regulator,int uA_load)4560 int regulator_set_load(struct regulator *regulator, int uA_load)
4561 {
4562 	struct regulator_dev *rdev = regulator->rdev;
4563 	int old_uA_load;
4564 	int ret = 0;
4565 
4566 	regulator_lock(rdev);
4567 	old_uA_load = regulator->uA_load;
4568 	regulator->uA_load = uA_load;
4569 	if (regulator->enable_count && old_uA_load != uA_load) {
4570 		ret = drms_uA_update(rdev);
4571 		if (ret < 0)
4572 			regulator->uA_load = old_uA_load;
4573 	}
4574 	regulator_unlock(rdev);
4575 
4576 	return ret;
4577 }
4578 EXPORT_SYMBOL_GPL(regulator_set_load);
4579 
4580 /**
4581  * regulator_allow_bypass - allow the regulator to go into bypass mode
4582  *
4583  * @regulator: Regulator to configure
4584  * @enable: enable or disable bypass mode
4585  *
4586  * Allow the regulator to go into bypass mode if all other consumers
4587  * for the regulator also enable bypass mode and the machine
4588  * constraints allow this.  Bypass mode means that the regulator is
4589  * simply passing the input directly to the output with no regulation.
4590  */
regulator_allow_bypass(struct regulator * regulator,bool enable)4591 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4592 {
4593 	struct regulator_dev *rdev = regulator->rdev;
4594 	const char *name = rdev_get_name(rdev);
4595 	int ret = 0;
4596 
4597 	if (!rdev->desc->ops->set_bypass)
4598 		return 0;
4599 
4600 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4601 		return 0;
4602 
4603 	regulator_lock(rdev);
4604 
4605 	if (enable && !regulator->bypass) {
4606 		rdev->bypass_count++;
4607 
4608 		if (rdev->bypass_count == rdev->open_count) {
4609 			trace_regulator_bypass_enable(name);
4610 
4611 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4612 			if (ret != 0)
4613 				rdev->bypass_count--;
4614 			else
4615 				trace_regulator_bypass_enable_complete(name);
4616 		}
4617 
4618 	} else if (!enable && regulator->bypass) {
4619 		rdev->bypass_count--;
4620 
4621 		if (rdev->bypass_count != rdev->open_count) {
4622 			trace_regulator_bypass_disable(name);
4623 
4624 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4625 			if (ret != 0)
4626 				rdev->bypass_count++;
4627 			else
4628 				trace_regulator_bypass_disable_complete(name);
4629 		}
4630 	}
4631 
4632 	if (ret == 0)
4633 		regulator->bypass = enable;
4634 
4635 	regulator_unlock(rdev);
4636 
4637 	return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4640 
4641 /**
4642  * regulator_register_notifier - register regulator event notifier
4643  * @regulator: regulator source
4644  * @nb: notifier block
4645  *
4646  * Register notifier block to receive regulator events.
4647  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4648 int regulator_register_notifier(struct regulator *regulator,
4649 			      struct notifier_block *nb)
4650 {
4651 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4652 						nb);
4653 }
4654 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4655 
4656 /**
4657  * regulator_unregister_notifier - unregister regulator event notifier
4658  * @regulator: regulator source
4659  * @nb: notifier block
4660  *
4661  * Unregister regulator event notifier block.
4662  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4663 int regulator_unregister_notifier(struct regulator *regulator,
4664 				struct notifier_block *nb)
4665 {
4666 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4667 						  nb);
4668 }
4669 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4670 
4671 /* notify regulator consumers and downstream regulator consumers.
4672  * Note mutex must be held by caller.
4673  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4674 static int _notifier_call_chain(struct regulator_dev *rdev,
4675 				  unsigned long event, void *data)
4676 {
4677 	/* call rdev chain first */
4678 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4679 }
4680 
4681 /**
4682  * regulator_bulk_get - get multiple regulator consumers
4683  *
4684  * @dev:           Device to supply
4685  * @num_consumers: Number of consumers to register
4686  * @consumers:     Configuration of consumers; clients are stored here.
4687  *
4688  * @return 0 on success, an errno on failure.
4689  *
4690  * This helper function allows drivers to get several regulator
4691  * consumers in one operation.  If any of the regulators cannot be
4692  * acquired then any regulators that were allocated will be freed
4693  * before returning to the caller.
4694  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4695 int regulator_bulk_get(struct device *dev, int num_consumers,
4696 		       struct regulator_bulk_data *consumers)
4697 {
4698 	int i;
4699 	int ret;
4700 
4701 	for (i = 0; i < num_consumers; i++)
4702 		consumers[i].consumer = NULL;
4703 
4704 	for (i = 0; i < num_consumers; i++) {
4705 		consumers[i].consumer = regulator_get(dev,
4706 						      consumers[i].supply);
4707 		if (IS_ERR(consumers[i].consumer)) {
4708 			ret = PTR_ERR(consumers[i].consumer);
4709 			consumers[i].consumer = NULL;
4710 			goto err;
4711 		}
4712 	}
4713 
4714 	return 0;
4715 
4716 err:
4717 	if (ret != -EPROBE_DEFER)
4718 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4719 			consumers[i].supply, ERR_PTR(ret));
4720 	else
4721 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4722 			consumers[i].supply);
4723 
4724 	while (--i >= 0)
4725 		regulator_put(consumers[i].consumer);
4726 
4727 	return ret;
4728 }
4729 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4730 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4731 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4732 {
4733 	struct regulator_bulk_data *bulk = data;
4734 
4735 	bulk->ret = regulator_enable(bulk->consumer);
4736 }
4737 
4738 /**
4739  * regulator_bulk_enable - enable multiple regulator consumers
4740  *
4741  * @num_consumers: Number of consumers
4742  * @consumers:     Consumer data; clients are stored here.
4743  * @return         0 on success, an errno on failure
4744  *
4745  * This convenience API allows consumers to enable multiple regulator
4746  * clients in a single API call.  If any consumers cannot be enabled
4747  * then any others that were enabled will be disabled again prior to
4748  * return.
4749  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4750 int regulator_bulk_enable(int num_consumers,
4751 			  struct regulator_bulk_data *consumers)
4752 {
4753 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4754 	int i;
4755 	int ret = 0;
4756 
4757 	for (i = 0; i < num_consumers; i++) {
4758 		async_schedule_domain(regulator_bulk_enable_async,
4759 				      &consumers[i], &async_domain);
4760 	}
4761 
4762 	async_synchronize_full_domain(&async_domain);
4763 
4764 	/* If any consumer failed we need to unwind any that succeeded */
4765 	for (i = 0; i < num_consumers; i++) {
4766 		if (consumers[i].ret != 0) {
4767 			ret = consumers[i].ret;
4768 			goto err;
4769 		}
4770 	}
4771 
4772 	return 0;
4773 
4774 err:
4775 	for (i = 0; i < num_consumers; i++) {
4776 		if (consumers[i].ret < 0)
4777 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4778 			       ERR_PTR(consumers[i].ret));
4779 		else
4780 			regulator_disable(consumers[i].consumer);
4781 	}
4782 
4783 	return ret;
4784 }
4785 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4786 
4787 /**
4788  * regulator_bulk_disable - disable multiple regulator consumers
4789  *
4790  * @num_consumers: Number of consumers
4791  * @consumers:     Consumer data; clients are stored here.
4792  * @return         0 on success, an errno on failure
4793  *
4794  * This convenience API allows consumers to disable multiple regulator
4795  * clients in a single API call.  If any consumers cannot be disabled
4796  * then any others that were disabled will be enabled again prior to
4797  * return.
4798  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4799 int regulator_bulk_disable(int num_consumers,
4800 			   struct regulator_bulk_data *consumers)
4801 {
4802 	int i;
4803 	int ret, r;
4804 
4805 	for (i = num_consumers - 1; i >= 0; --i) {
4806 		ret = regulator_disable(consumers[i].consumer);
4807 		if (ret != 0)
4808 			goto err;
4809 	}
4810 
4811 	return 0;
4812 
4813 err:
4814 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4815 	for (++i; i < num_consumers; ++i) {
4816 		r = regulator_enable(consumers[i].consumer);
4817 		if (r != 0)
4818 			pr_err("Failed to re-enable %s: %pe\n",
4819 			       consumers[i].supply, ERR_PTR(r));
4820 	}
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4825 
4826 /**
4827  * regulator_bulk_force_disable - force disable multiple regulator consumers
4828  *
4829  * @num_consumers: Number of consumers
4830  * @consumers:     Consumer data; clients are stored here.
4831  * @return         0 on success, an errno on failure
4832  *
4833  * This convenience API allows consumers to forcibly disable multiple regulator
4834  * clients in a single API call.
4835  * NOTE: This should be used for situations when device damage will
4836  * likely occur if the regulators are not disabled (e.g. over temp).
4837  * Although regulator_force_disable function call for some consumers can
4838  * return error numbers, the function is called for all consumers.
4839  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4840 int regulator_bulk_force_disable(int num_consumers,
4841 			   struct regulator_bulk_data *consumers)
4842 {
4843 	int i;
4844 	int ret = 0;
4845 
4846 	for (i = 0; i < num_consumers; i++) {
4847 		consumers[i].ret =
4848 			    regulator_force_disable(consumers[i].consumer);
4849 
4850 		/* Store first error for reporting */
4851 		if (consumers[i].ret && !ret)
4852 			ret = consumers[i].ret;
4853 	}
4854 
4855 	return ret;
4856 }
4857 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4858 
4859 /**
4860  * regulator_bulk_free - free multiple regulator consumers
4861  *
4862  * @num_consumers: Number of consumers
4863  * @consumers:     Consumer data; clients are stored here.
4864  *
4865  * This convenience API allows consumers to free multiple regulator
4866  * clients in a single API call.
4867  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4868 void regulator_bulk_free(int num_consumers,
4869 			 struct regulator_bulk_data *consumers)
4870 {
4871 	int i;
4872 
4873 	for (i = 0; i < num_consumers; i++) {
4874 		regulator_put(consumers[i].consumer);
4875 		consumers[i].consumer = NULL;
4876 	}
4877 }
4878 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4879 
4880 /**
4881  * regulator_notifier_call_chain - call regulator event notifier
4882  * @rdev: regulator source
4883  * @event: notifier block
4884  * @data: callback-specific data.
4885  *
4886  * Called by regulator drivers to notify clients a regulator event has
4887  * occurred.
4888  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4889 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4890 				  unsigned long event, void *data)
4891 {
4892 	_notifier_call_chain(rdev, event, data);
4893 	return NOTIFY_DONE;
4894 
4895 }
4896 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4897 
4898 /**
4899  * regulator_mode_to_status - convert a regulator mode into a status
4900  *
4901  * @mode: Mode to convert
4902  *
4903  * Convert a regulator mode into a status.
4904  */
regulator_mode_to_status(unsigned int mode)4905 int regulator_mode_to_status(unsigned int mode)
4906 {
4907 	switch (mode) {
4908 	case REGULATOR_MODE_FAST:
4909 		return REGULATOR_STATUS_FAST;
4910 	case REGULATOR_MODE_NORMAL:
4911 		return REGULATOR_STATUS_NORMAL;
4912 	case REGULATOR_MODE_IDLE:
4913 		return REGULATOR_STATUS_IDLE;
4914 	case REGULATOR_MODE_STANDBY:
4915 		return REGULATOR_STATUS_STANDBY;
4916 	default:
4917 		return REGULATOR_STATUS_UNDEFINED;
4918 	}
4919 }
4920 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4921 
4922 static struct attribute *regulator_dev_attrs[] = {
4923 	&dev_attr_name.attr,
4924 	&dev_attr_num_users.attr,
4925 	&dev_attr_type.attr,
4926 	&dev_attr_microvolts.attr,
4927 	&dev_attr_microamps.attr,
4928 	&dev_attr_opmode.attr,
4929 	&dev_attr_state.attr,
4930 	&dev_attr_status.attr,
4931 	&dev_attr_bypass.attr,
4932 	&dev_attr_requested_microamps.attr,
4933 	&dev_attr_min_microvolts.attr,
4934 	&dev_attr_max_microvolts.attr,
4935 	&dev_attr_min_microamps.attr,
4936 	&dev_attr_max_microamps.attr,
4937 	&dev_attr_suspend_standby_state.attr,
4938 	&dev_attr_suspend_mem_state.attr,
4939 	&dev_attr_suspend_disk_state.attr,
4940 	&dev_attr_suspend_standby_microvolts.attr,
4941 	&dev_attr_suspend_mem_microvolts.attr,
4942 	&dev_attr_suspend_disk_microvolts.attr,
4943 	&dev_attr_suspend_standby_mode.attr,
4944 	&dev_attr_suspend_mem_mode.attr,
4945 	&dev_attr_suspend_disk_mode.attr,
4946 	NULL
4947 };
4948 
4949 /*
4950  * To avoid cluttering sysfs (and memory) with useless state, only
4951  * create attributes that can be meaningfully displayed.
4952  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4953 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4954 					 struct attribute *attr, int idx)
4955 {
4956 	struct device *dev = kobj_to_dev(kobj);
4957 	struct regulator_dev *rdev = dev_to_rdev(dev);
4958 	const struct regulator_ops *ops = rdev->desc->ops;
4959 	umode_t mode = attr->mode;
4960 
4961 	/* these three are always present */
4962 	if (attr == &dev_attr_name.attr ||
4963 	    attr == &dev_attr_num_users.attr ||
4964 	    attr == &dev_attr_type.attr)
4965 		return mode;
4966 
4967 	/* some attributes need specific methods to be displayed */
4968 	if (attr == &dev_attr_microvolts.attr) {
4969 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4970 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4971 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4972 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4973 			return mode;
4974 		return 0;
4975 	}
4976 
4977 	if (attr == &dev_attr_microamps.attr)
4978 		return ops->get_current_limit ? mode : 0;
4979 
4980 	if (attr == &dev_attr_opmode.attr)
4981 		return ops->get_mode ? mode : 0;
4982 
4983 	if (attr == &dev_attr_state.attr)
4984 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4985 
4986 	if (attr == &dev_attr_status.attr)
4987 		return ops->get_status ? mode : 0;
4988 
4989 	if (attr == &dev_attr_bypass.attr)
4990 		return ops->get_bypass ? mode : 0;
4991 
4992 	/* constraints need specific supporting methods */
4993 	if (attr == &dev_attr_min_microvolts.attr ||
4994 	    attr == &dev_attr_max_microvolts.attr)
4995 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4996 
4997 	if (attr == &dev_attr_min_microamps.attr ||
4998 	    attr == &dev_attr_max_microamps.attr)
4999 		return ops->set_current_limit ? mode : 0;
5000 
5001 	if (attr == &dev_attr_suspend_standby_state.attr ||
5002 	    attr == &dev_attr_suspend_mem_state.attr ||
5003 	    attr == &dev_attr_suspend_disk_state.attr)
5004 		return mode;
5005 
5006 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5007 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5008 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5009 		return ops->set_suspend_voltage ? mode : 0;
5010 
5011 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5012 	    attr == &dev_attr_suspend_mem_mode.attr ||
5013 	    attr == &dev_attr_suspend_disk_mode.attr)
5014 		return ops->set_suspend_mode ? mode : 0;
5015 
5016 	return mode;
5017 }
5018 
5019 static const struct attribute_group regulator_dev_group = {
5020 	.attrs = regulator_dev_attrs,
5021 	.is_visible = regulator_attr_is_visible,
5022 };
5023 
5024 static const struct attribute_group *regulator_dev_groups[] = {
5025 	&regulator_dev_group,
5026 	NULL
5027 };
5028 
regulator_dev_release(struct device * dev)5029 static void regulator_dev_release(struct device *dev)
5030 {
5031 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5032 
5033 	debugfs_remove_recursive(rdev->debugfs);
5034 	kfree(rdev->constraints);
5035 	of_node_put(rdev->dev.of_node);
5036 	kfree(rdev);
5037 }
5038 
rdev_init_debugfs(struct regulator_dev * rdev)5039 static void rdev_init_debugfs(struct regulator_dev *rdev)
5040 {
5041 	struct device *parent = rdev->dev.parent;
5042 	const char *rname = rdev_get_name(rdev);
5043 	char name[NAME_MAX];
5044 
5045 	/* Avoid duplicate debugfs directory names */
5046 	if (parent && rname == rdev->desc->name) {
5047 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5048 			 rname);
5049 		rname = name;
5050 	}
5051 
5052 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5053 	if (IS_ERR(rdev->debugfs))
5054 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5055 
5056 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5057 			   &rdev->use_count);
5058 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5059 			   &rdev->open_count);
5060 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5061 			   &rdev->bypass_count);
5062 }
5063 
regulator_register_resolve_supply(struct device * dev,void * data)5064 static int regulator_register_resolve_supply(struct device *dev, void *data)
5065 {
5066 	struct regulator_dev *rdev = dev_to_rdev(dev);
5067 
5068 	if (regulator_resolve_supply(rdev))
5069 		rdev_dbg(rdev, "unable to resolve supply\n");
5070 
5071 	return 0;
5072 }
5073 
regulator_coupler_register(struct regulator_coupler * coupler)5074 int regulator_coupler_register(struct regulator_coupler *coupler)
5075 {
5076 	mutex_lock(&regulator_list_mutex);
5077 	list_add_tail(&coupler->list, &regulator_coupler_list);
5078 	mutex_unlock(&regulator_list_mutex);
5079 
5080 	return 0;
5081 }
5082 
5083 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5084 regulator_find_coupler(struct regulator_dev *rdev)
5085 {
5086 	struct regulator_coupler *coupler;
5087 	int err;
5088 
5089 	/*
5090 	 * Note that regulators are appended to the list and the generic
5091 	 * coupler is registered first, hence it will be attached at last
5092 	 * if nobody cared.
5093 	 */
5094 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5095 		err = coupler->attach_regulator(coupler, rdev);
5096 		if (!err) {
5097 			if (!coupler->balance_voltage &&
5098 			    rdev->coupling_desc.n_coupled > 2)
5099 				goto err_unsupported;
5100 
5101 			return coupler;
5102 		}
5103 
5104 		if (err < 0)
5105 			return ERR_PTR(err);
5106 
5107 		if (err == 1)
5108 			continue;
5109 
5110 		break;
5111 	}
5112 
5113 	return ERR_PTR(-EINVAL);
5114 
5115 err_unsupported:
5116 	if (coupler->detach_regulator)
5117 		coupler->detach_regulator(coupler, rdev);
5118 
5119 	rdev_err(rdev,
5120 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5121 
5122 	return ERR_PTR(-EPERM);
5123 }
5124 
regulator_resolve_coupling(struct regulator_dev * rdev)5125 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5126 {
5127 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5128 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5129 	int n_coupled = c_desc->n_coupled;
5130 	struct regulator_dev *c_rdev;
5131 	int i;
5132 
5133 	for (i = 1; i < n_coupled; i++) {
5134 		/* already resolved */
5135 		if (c_desc->coupled_rdevs[i])
5136 			continue;
5137 
5138 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5139 
5140 		if (!c_rdev)
5141 			continue;
5142 
5143 		if (c_rdev->coupling_desc.coupler != coupler) {
5144 			rdev_err(rdev, "coupler mismatch with %s\n",
5145 				 rdev_get_name(c_rdev));
5146 			return;
5147 		}
5148 
5149 		c_desc->coupled_rdevs[i] = c_rdev;
5150 		c_desc->n_resolved++;
5151 
5152 		regulator_resolve_coupling(c_rdev);
5153 	}
5154 }
5155 
regulator_remove_coupling(struct regulator_dev * rdev)5156 static void regulator_remove_coupling(struct regulator_dev *rdev)
5157 {
5158 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5159 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5160 	struct regulator_dev *__c_rdev, *c_rdev;
5161 	unsigned int __n_coupled, n_coupled;
5162 	int i, k;
5163 	int err;
5164 
5165 	n_coupled = c_desc->n_coupled;
5166 
5167 	for (i = 1; i < n_coupled; i++) {
5168 		c_rdev = c_desc->coupled_rdevs[i];
5169 
5170 		if (!c_rdev)
5171 			continue;
5172 
5173 		regulator_lock(c_rdev);
5174 
5175 		__c_desc = &c_rdev->coupling_desc;
5176 		__n_coupled = __c_desc->n_coupled;
5177 
5178 		for (k = 1; k < __n_coupled; k++) {
5179 			__c_rdev = __c_desc->coupled_rdevs[k];
5180 
5181 			if (__c_rdev == rdev) {
5182 				__c_desc->coupled_rdevs[k] = NULL;
5183 				__c_desc->n_resolved--;
5184 				break;
5185 			}
5186 		}
5187 
5188 		regulator_unlock(c_rdev);
5189 
5190 		c_desc->coupled_rdevs[i] = NULL;
5191 		c_desc->n_resolved--;
5192 	}
5193 
5194 	if (coupler && coupler->detach_regulator) {
5195 		err = coupler->detach_regulator(coupler, rdev);
5196 		if (err)
5197 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5198 				 ERR_PTR(err));
5199 	}
5200 
5201 	kfree(rdev->coupling_desc.coupled_rdevs);
5202 	rdev->coupling_desc.coupled_rdevs = NULL;
5203 }
5204 
regulator_init_coupling(struct regulator_dev * rdev)5205 static int regulator_init_coupling(struct regulator_dev *rdev)
5206 {
5207 	struct regulator_dev **coupled;
5208 	int err, n_phandles;
5209 
5210 	if (!IS_ENABLED(CONFIG_OF))
5211 		n_phandles = 0;
5212 	else
5213 		n_phandles = of_get_n_coupled(rdev);
5214 
5215 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5216 	if (!coupled)
5217 		return -ENOMEM;
5218 
5219 	rdev->coupling_desc.coupled_rdevs = coupled;
5220 
5221 	/*
5222 	 * Every regulator should always have coupling descriptor filled with
5223 	 * at least pointer to itself.
5224 	 */
5225 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5226 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5227 	rdev->coupling_desc.n_resolved++;
5228 
5229 	/* regulator isn't coupled */
5230 	if (n_phandles == 0)
5231 		return 0;
5232 
5233 	if (!of_check_coupling_data(rdev))
5234 		return -EPERM;
5235 
5236 	mutex_lock(&regulator_list_mutex);
5237 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5238 	mutex_unlock(&regulator_list_mutex);
5239 
5240 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5241 		err = PTR_ERR(rdev->coupling_desc.coupler);
5242 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5243 		return err;
5244 	}
5245 
5246 	return 0;
5247 }
5248 
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5249 static int generic_coupler_attach(struct regulator_coupler *coupler,
5250 				  struct regulator_dev *rdev)
5251 {
5252 	if (rdev->coupling_desc.n_coupled > 2) {
5253 		rdev_err(rdev,
5254 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5255 		return -EPERM;
5256 	}
5257 
5258 	if (!rdev->constraints->always_on) {
5259 		rdev_err(rdev,
5260 			 "Coupling of a non always-on regulator is unimplemented\n");
5261 		return -ENOTSUPP;
5262 	}
5263 
5264 	return 0;
5265 }
5266 
5267 static struct regulator_coupler generic_regulator_coupler = {
5268 	.attach_regulator = generic_coupler_attach,
5269 };
5270 
5271 /**
5272  * regulator_register - register regulator
5273  * @regulator_desc: regulator to register
5274  * @cfg: runtime configuration for regulator
5275  *
5276  * Called by regulator drivers to register a regulator.
5277  * Returns a valid pointer to struct regulator_dev on success
5278  * or an ERR_PTR() on error.
5279  */
5280 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5281 regulator_register(const struct regulator_desc *regulator_desc,
5282 		   const struct regulator_config *cfg)
5283 {
5284 	const struct regulator_init_data *init_data;
5285 	struct regulator_config *config = NULL;
5286 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5287 	struct regulator_dev *rdev;
5288 	bool dangling_cfg_gpiod = false;
5289 	bool dangling_of_gpiod = false;
5290 	struct device *dev;
5291 	int ret, i;
5292 
5293 	if (cfg == NULL)
5294 		return ERR_PTR(-EINVAL);
5295 	if (cfg->ena_gpiod)
5296 		dangling_cfg_gpiod = true;
5297 	if (regulator_desc == NULL) {
5298 		ret = -EINVAL;
5299 		goto rinse;
5300 	}
5301 
5302 	dev = cfg->dev;
5303 	WARN_ON(!dev);
5304 
5305 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5306 		ret = -EINVAL;
5307 		goto rinse;
5308 	}
5309 
5310 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5311 	    regulator_desc->type != REGULATOR_CURRENT) {
5312 		ret = -EINVAL;
5313 		goto rinse;
5314 	}
5315 
5316 	/* Only one of each should be implemented */
5317 	WARN_ON(regulator_desc->ops->get_voltage &&
5318 		regulator_desc->ops->get_voltage_sel);
5319 	WARN_ON(regulator_desc->ops->set_voltage &&
5320 		regulator_desc->ops->set_voltage_sel);
5321 
5322 	/* If we're using selectors we must implement list_voltage. */
5323 	if (regulator_desc->ops->get_voltage_sel &&
5324 	    !regulator_desc->ops->list_voltage) {
5325 		ret = -EINVAL;
5326 		goto rinse;
5327 	}
5328 	if (regulator_desc->ops->set_voltage_sel &&
5329 	    !regulator_desc->ops->list_voltage) {
5330 		ret = -EINVAL;
5331 		goto rinse;
5332 	}
5333 
5334 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5335 	if (rdev == NULL) {
5336 		ret = -ENOMEM;
5337 		goto rinse;
5338 	}
5339 	device_initialize(&rdev->dev);
5340 
5341 	/*
5342 	 * Duplicate the config so the driver could override it after
5343 	 * parsing init data.
5344 	 */
5345 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5346 	if (config == NULL) {
5347 		ret = -ENOMEM;
5348 		goto clean;
5349 	}
5350 
5351 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5352 					       &rdev->dev.of_node);
5353 
5354 	/*
5355 	 * Sometimes not all resources are probed already so we need to take
5356 	 * that into account. This happens most the time if the ena_gpiod comes
5357 	 * from a gpio extender or something else.
5358 	 */
5359 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5360 		ret = -EPROBE_DEFER;
5361 		goto clean;
5362 	}
5363 
5364 	/*
5365 	 * We need to keep track of any GPIO descriptor coming from the
5366 	 * device tree until we have handled it over to the core. If the
5367 	 * config that was passed in to this function DOES NOT contain
5368 	 * a descriptor, and the config after this call DOES contain
5369 	 * a descriptor, we definitely got one from parsing the device
5370 	 * tree.
5371 	 */
5372 	if (!cfg->ena_gpiod && config->ena_gpiod)
5373 		dangling_of_gpiod = true;
5374 	if (!init_data) {
5375 		init_data = config->init_data;
5376 		rdev->dev.of_node = of_node_get(config->of_node);
5377 	}
5378 
5379 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5380 	rdev->reg_data = config->driver_data;
5381 	rdev->owner = regulator_desc->owner;
5382 	rdev->desc = regulator_desc;
5383 	if (config->regmap)
5384 		rdev->regmap = config->regmap;
5385 	else if (dev_get_regmap(dev, NULL))
5386 		rdev->regmap = dev_get_regmap(dev, NULL);
5387 	else if (dev->parent)
5388 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5389 	INIT_LIST_HEAD(&rdev->consumer_list);
5390 	INIT_LIST_HEAD(&rdev->list);
5391 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5392 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5393 
5394 	/* preform any regulator specific init */
5395 	if (init_data && init_data->regulator_init) {
5396 		ret = init_data->regulator_init(rdev->reg_data);
5397 		if (ret < 0)
5398 			goto clean;
5399 	}
5400 
5401 	if (config->ena_gpiod) {
5402 		ret = regulator_ena_gpio_request(rdev, config);
5403 		if (ret != 0) {
5404 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5405 				 ERR_PTR(ret));
5406 			goto clean;
5407 		}
5408 		/* The regulator core took over the GPIO descriptor */
5409 		dangling_cfg_gpiod = false;
5410 		dangling_of_gpiod = false;
5411 	}
5412 
5413 	/* register with sysfs */
5414 	rdev->dev.class = &regulator_class;
5415 	rdev->dev.parent = dev;
5416 	dev_set_name(&rdev->dev, "regulator.%lu",
5417 		    (unsigned long) atomic_inc_return(&regulator_no));
5418 	dev_set_drvdata(&rdev->dev, rdev);
5419 
5420 	/* set regulator constraints */
5421 	if (init_data)
5422 		rdev->constraints = kmemdup(&init_data->constraints,
5423 					    sizeof(*rdev->constraints),
5424 					    GFP_KERNEL);
5425 	else
5426 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5427 					    GFP_KERNEL);
5428 	if (!rdev->constraints) {
5429 		ret = -ENOMEM;
5430 		goto wash;
5431 	}
5432 
5433 	if (init_data && init_data->supply_regulator)
5434 		rdev->supply_name = init_data->supply_regulator;
5435 	else if (regulator_desc->supply_name)
5436 		rdev->supply_name = regulator_desc->supply_name;
5437 
5438 	ret = set_machine_constraints(rdev);
5439 	if (ret == -EPROBE_DEFER) {
5440 		/* Regulator might be in bypass mode and so needs its supply
5441 		 * to set the constraints */
5442 		/* FIXME: this currently triggers a chicken-and-egg problem
5443 		 * when creating -SUPPLY symlink in sysfs to a regulator
5444 		 * that is just being created */
5445 		ret = regulator_resolve_supply(rdev);
5446 		if (!ret)
5447 			ret = set_machine_constraints(rdev);
5448 		else
5449 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5450 				 ERR_PTR(ret));
5451 	}
5452 	if (ret < 0)
5453 		goto wash;
5454 
5455 	ret = regulator_init_coupling(rdev);
5456 	if (ret < 0)
5457 		goto wash;
5458 
5459 	/* add consumers devices */
5460 	if (init_data) {
5461 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5462 			ret = set_consumer_device_supply(rdev,
5463 				init_data->consumer_supplies[i].dev_name,
5464 				init_data->consumer_supplies[i].supply);
5465 			if (ret < 0) {
5466 				dev_err(dev, "Failed to set supply %s\n",
5467 					init_data->consumer_supplies[i].supply);
5468 				goto unset_supplies;
5469 			}
5470 		}
5471 	}
5472 
5473 	if (!rdev->desc->ops->get_voltage &&
5474 	    !rdev->desc->ops->list_voltage &&
5475 	    !rdev->desc->fixed_uV)
5476 		rdev->is_switch = true;
5477 
5478 	ret = device_add(&rdev->dev);
5479 	if (ret != 0)
5480 		goto unset_supplies;
5481 
5482 	rdev_init_debugfs(rdev);
5483 
5484 	/* try to resolve regulators coupling since a new one was registered */
5485 	mutex_lock(&regulator_list_mutex);
5486 	regulator_resolve_coupling(rdev);
5487 	mutex_unlock(&regulator_list_mutex);
5488 
5489 	/* try to resolve regulators supply since a new one was registered */
5490 	class_for_each_device(&regulator_class, NULL, NULL,
5491 			      regulator_register_resolve_supply);
5492 	kfree(config);
5493 	return rdev;
5494 
5495 unset_supplies:
5496 	mutex_lock(&regulator_list_mutex);
5497 	unset_regulator_supplies(rdev);
5498 	regulator_remove_coupling(rdev);
5499 	mutex_unlock(&regulator_list_mutex);
5500 wash:
5501 	regulator_put(rdev->supply);
5502 	kfree(rdev->coupling_desc.coupled_rdevs);
5503 	mutex_lock(&regulator_list_mutex);
5504 	regulator_ena_gpio_free(rdev);
5505 	mutex_unlock(&regulator_list_mutex);
5506 clean:
5507 	if (dangling_of_gpiod)
5508 		gpiod_put(config->ena_gpiod);
5509 	kfree(config);
5510 	put_device(&rdev->dev);
5511 rinse:
5512 	if (dangling_cfg_gpiod)
5513 		gpiod_put(cfg->ena_gpiod);
5514 	return ERR_PTR(ret);
5515 }
5516 EXPORT_SYMBOL_GPL(regulator_register);
5517 
5518 /**
5519  * regulator_unregister - unregister regulator
5520  * @rdev: regulator to unregister
5521  *
5522  * Called by regulator drivers to unregister a regulator.
5523  */
regulator_unregister(struct regulator_dev * rdev)5524 void regulator_unregister(struct regulator_dev *rdev)
5525 {
5526 	if (rdev == NULL)
5527 		return;
5528 
5529 	if (rdev->supply) {
5530 		while (rdev->use_count--)
5531 			regulator_disable(rdev->supply);
5532 		regulator_put(rdev->supply);
5533 	}
5534 
5535 	flush_work(&rdev->disable_work.work);
5536 
5537 	mutex_lock(&regulator_list_mutex);
5538 
5539 	WARN_ON(rdev->open_count);
5540 	regulator_remove_coupling(rdev);
5541 	unset_regulator_supplies(rdev);
5542 	list_del(&rdev->list);
5543 	regulator_ena_gpio_free(rdev);
5544 	device_unregister(&rdev->dev);
5545 
5546 	mutex_unlock(&regulator_list_mutex);
5547 }
5548 EXPORT_SYMBOL_GPL(regulator_unregister);
5549 
5550 #ifdef CONFIG_SUSPEND
5551 /**
5552  * regulator_suspend - prepare regulators for system wide suspend
5553  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5554  *
5555  * Configure each regulator with it's suspend operating parameters for state.
5556  */
regulator_suspend(struct device * dev)5557 static int regulator_suspend(struct device *dev)
5558 {
5559 	struct regulator_dev *rdev = dev_to_rdev(dev);
5560 	suspend_state_t state = pm_suspend_target_state;
5561 	int ret;
5562 	const struct regulator_state *rstate;
5563 
5564 	rstate = regulator_get_suspend_state_check(rdev, state);
5565 	if (!rstate)
5566 		return 0;
5567 
5568 	regulator_lock(rdev);
5569 	ret = __suspend_set_state(rdev, rstate);
5570 	regulator_unlock(rdev);
5571 
5572 	return ret;
5573 }
5574 
regulator_resume(struct device * dev)5575 static int regulator_resume(struct device *dev)
5576 {
5577 	suspend_state_t state = pm_suspend_target_state;
5578 	struct regulator_dev *rdev = dev_to_rdev(dev);
5579 	struct regulator_state *rstate;
5580 	int ret = 0;
5581 
5582 	rstate = regulator_get_suspend_state(rdev, state);
5583 	if (rstate == NULL)
5584 		return 0;
5585 
5586 	/* Avoid grabbing the lock if we don't need to */
5587 	if (!rdev->desc->ops->resume)
5588 		return 0;
5589 
5590 	regulator_lock(rdev);
5591 
5592 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5593 	    rstate->enabled == DISABLE_IN_SUSPEND)
5594 		ret = rdev->desc->ops->resume(rdev);
5595 
5596 	regulator_unlock(rdev);
5597 
5598 	return ret;
5599 }
5600 #else /* !CONFIG_SUSPEND */
5601 
5602 #define regulator_suspend	NULL
5603 #define regulator_resume	NULL
5604 
5605 #endif /* !CONFIG_SUSPEND */
5606 
5607 #ifdef CONFIG_PM
5608 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5609 	.suspend	= regulator_suspend,
5610 	.resume		= regulator_resume,
5611 };
5612 #endif
5613 
5614 struct class regulator_class = {
5615 	.name = "regulator",
5616 	.dev_release = regulator_dev_release,
5617 	.dev_groups = regulator_dev_groups,
5618 #ifdef CONFIG_PM
5619 	.pm = &regulator_pm_ops,
5620 #endif
5621 };
5622 /**
5623  * regulator_has_full_constraints - the system has fully specified constraints
5624  *
5625  * Calling this function will cause the regulator API to disable all
5626  * regulators which have a zero use count and don't have an always_on
5627  * constraint in a late_initcall.
5628  *
5629  * The intention is that this will become the default behaviour in a
5630  * future kernel release so users are encouraged to use this facility
5631  * now.
5632  */
regulator_has_full_constraints(void)5633 void regulator_has_full_constraints(void)
5634 {
5635 	has_full_constraints = 1;
5636 }
5637 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5638 
5639 /**
5640  * rdev_get_drvdata - get rdev regulator driver data
5641  * @rdev: regulator
5642  *
5643  * Get rdev regulator driver private data. This call can be used in the
5644  * regulator driver context.
5645  */
rdev_get_drvdata(struct regulator_dev * rdev)5646 void *rdev_get_drvdata(struct regulator_dev *rdev)
5647 {
5648 	return rdev->reg_data;
5649 }
5650 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5651 
5652 /**
5653  * regulator_get_drvdata - get regulator driver data
5654  * @regulator: regulator
5655  *
5656  * Get regulator driver private data. This call can be used in the consumer
5657  * driver context when non API regulator specific functions need to be called.
5658  */
regulator_get_drvdata(struct regulator * regulator)5659 void *regulator_get_drvdata(struct regulator *regulator)
5660 {
5661 	return regulator->rdev->reg_data;
5662 }
5663 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5664 
5665 /**
5666  * regulator_set_drvdata - set regulator driver data
5667  * @regulator: regulator
5668  * @data: data
5669  */
regulator_set_drvdata(struct regulator * regulator,void * data)5670 void regulator_set_drvdata(struct regulator *regulator, void *data)
5671 {
5672 	regulator->rdev->reg_data = data;
5673 }
5674 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5675 
5676 /**
5677  * regulator_get_id - get regulator ID
5678  * @rdev: regulator
5679  */
rdev_get_id(struct regulator_dev * rdev)5680 int rdev_get_id(struct regulator_dev *rdev)
5681 {
5682 	return rdev->desc->id;
5683 }
5684 EXPORT_SYMBOL_GPL(rdev_get_id);
5685 
rdev_get_dev(struct regulator_dev * rdev)5686 struct device *rdev_get_dev(struct regulator_dev *rdev)
5687 {
5688 	return &rdev->dev;
5689 }
5690 EXPORT_SYMBOL_GPL(rdev_get_dev);
5691 
rdev_get_regmap(struct regulator_dev * rdev)5692 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5693 {
5694 	return rdev->regmap;
5695 }
5696 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5697 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5698 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5699 {
5700 	return reg_init_data->driver_data;
5701 }
5702 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5703 
5704 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5705 static int supply_map_show(struct seq_file *sf, void *data)
5706 {
5707 	struct regulator_map *map;
5708 
5709 	list_for_each_entry(map, &regulator_map_list, list) {
5710 		seq_printf(sf, "%s -> %s.%s\n",
5711 				rdev_get_name(map->regulator), map->dev_name,
5712 				map->supply);
5713 	}
5714 
5715 	return 0;
5716 }
5717 DEFINE_SHOW_ATTRIBUTE(supply_map);
5718 
5719 struct summary_data {
5720 	struct seq_file *s;
5721 	struct regulator_dev *parent;
5722 	int level;
5723 };
5724 
5725 static void regulator_summary_show_subtree(struct seq_file *s,
5726 					   struct regulator_dev *rdev,
5727 					   int level);
5728 
regulator_summary_show_children(struct device * dev,void * data)5729 static int regulator_summary_show_children(struct device *dev, void *data)
5730 {
5731 	struct regulator_dev *rdev = dev_to_rdev(dev);
5732 	struct summary_data *summary_data = data;
5733 
5734 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5735 		regulator_summary_show_subtree(summary_data->s, rdev,
5736 					       summary_data->level + 1);
5737 
5738 	return 0;
5739 }
5740 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5741 static void regulator_summary_show_subtree(struct seq_file *s,
5742 					   struct regulator_dev *rdev,
5743 					   int level)
5744 {
5745 	struct regulation_constraints *c;
5746 	struct regulator *consumer;
5747 	struct summary_data summary_data;
5748 	unsigned int opmode;
5749 
5750 	if (!rdev)
5751 		return;
5752 
5753 	opmode = _regulator_get_mode_unlocked(rdev);
5754 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5755 		   level * 3 + 1, "",
5756 		   30 - level * 3, rdev_get_name(rdev),
5757 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5758 		   regulator_opmode_to_str(opmode));
5759 
5760 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5761 	seq_printf(s, "%5dmA ",
5762 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5763 
5764 	c = rdev->constraints;
5765 	if (c) {
5766 		switch (rdev->desc->type) {
5767 		case REGULATOR_VOLTAGE:
5768 			seq_printf(s, "%5dmV %5dmV ",
5769 				   c->min_uV / 1000, c->max_uV / 1000);
5770 			break;
5771 		case REGULATOR_CURRENT:
5772 			seq_printf(s, "%5dmA %5dmA ",
5773 				   c->min_uA / 1000, c->max_uA / 1000);
5774 			break;
5775 		}
5776 	}
5777 
5778 	seq_puts(s, "\n");
5779 
5780 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5781 		if (consumer->dev && consumer->dev->class == &regulator_class)
5782 			continue;
5783 
5784 		seq_printf(s, "%*s%-*s ",
5785 			   (level + 1) * 3 + 1, "",
5786 			   30 - (level + 1) * 3,
5787 			   consumer->supply_name ? consumer->supply_name :
5788 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5789 
5790 		switch (rdev->desc->type) {
5791 		case REGULATOR_VOLTAGE:
5792 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5793 				   consumer->enable_count,
5794 				   consumer->uA_load / 1000,
5795 				   consumer->uA_load && !consumer->enable_count ?
5796 				   '*' : ' ',
5797 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5798 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5799 			break;
5800 		case REGULATOR_CURRENT:
5801 			break;
5802 		}
5803 
5804 		seq_puts(s, "\n");
5805 	}
5806 
5807 	summary_data.s = s;
5808 	summary_data.level = level;
5809 	summary_data.parent = rdev;
5810 
5811 	class_for_each_device(&regulator_class, NULL, &summary_data,
5812 			      regulator_summary_show_children);
5813 }
5814 
5815 struct summary_lock_data {
5816 	struct ww_acquire_ctx *ww_ctx;
5817 	struct regulator_dev **new_contended_rdev;
5818 	struct regulator_dev **old_contended_rdev;
5819 };
5820 
regulator_summary_lock_one(struct device * dev,void * data)5821 static int regulator_summary_lock_one(struct device *dev, void *data)
5822 {
5823 	struct regulator_dev *rdev = dev_to_rdev(dev);
5824 	struct summary_lock_data *lock_data = data;
5825 	int ret = 0;
5826 
5827 	if (rdev != *lock_data->old_contended_rdev) {
5828 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5829 
5830 		if (ret == -EDEADLK)
5831 			*lock_data->new_contended_rdev = rdev;
5832 		else
5833 			WARN_ON_ONCE(ret);
5834 	} else {
5835 		*lock_data->old_contended_rdev = NULL;
5836 	}
5837 
5838 	return ret;
5839 }
5840 
regulator_summary_unlock_one(struct device * dev,void * data)5841 static int regulator_summary_unlock_one(struct device *dev, void *data)
5842 {
5843 	struct regulator_dev *rdev = dev_to_rdev(dev);
5844 	struct summary_lock_data *lock_data = data;
5845 
5846 	if (lock_data) {
5847 		if (rdev == *lock_data->new_contended_rdev)
5848 			return -EDEADLK;
5849 	}
5850 
5851 	regulator_unlock(rdev);
5852 
5853 	return 0;
5854 }
5855 
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5856 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5857 				      struct regulator_dev **new_contended_rdev,
5858 				      struct regulator_dev **old_contended_rdev)
5859 {
5860 	struct summary_lock_data lock_data;
5861 	int ret;
5862 
5863 	lock_data.ww_ctx = ww_ctx;
5864 	lock_data.new_contended_rdev = new_contended_rdev;
5865 	lock_data.old_contended_rdev = old_contended_rdev;
5866 
5867 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5868 				    regulator_summary_lock_one);
5869 	if (ret)
5870 		class_for_each_device(&regulator_class, NULL, &lock_data,
5871 				      regulator_summary_unlock_one);
5872 
5873 	return ret;
5874 }
5875 
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5876 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5877 {
5878 	struct regulator_dev *new_contended_rdev = NULL;
5879 	struct regulator_dev *old_contended_rdev = NULL;
5880 	int err;
5881 
5882 	mutex_lock(&regulator_list_mutex);
5883 
5884 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5885 
5886 	do {
5887 		if (new_contended_rdev) {
5888 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5889 			old_contended_rdev = new_contended_rdev;
5890 			old_contended_rdev->ref_cnt++;
5891 			old_contended_rdev->mutex_owner = current;
5892 		}
5893 
5894 		err = regulator_summary_lock_all(ww_ctx,
5895 						 &new_contended_rdev,
5896 						 &old_contended_rdev);
5897 
5898 		if (old_contended_rdev)
5899 			regulator_unlock(old_contended_rdev);
5900 
5901 	} while (err == -EDEADLK);
5902 
5903 	ww_acquire_done(ww_ctx);
5904 }
5905 
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5906 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5907 {
5908 	class_for_each_device(&regulator_class, NULL, NULL,
5909 			      regulator_summary_unlock_one);
5910 	ww_acquire_fini(ww_ctx);
5911 
5912 	mutex_unlock(&regulator_list_mutex);
5913 }
5914 
regulator_summary_show_roots(struct device * dev,void * data)5915 static int regulator_summary_show_roots(struct device *dev, void *data)
5916 {
5917 	struct regulator_dev *rdev = dev_to_rdev(dev);
5918 	struct seq_file *s = data;
5919 
5920 	if (!rdev->supply)
5921 		regulator_summary_show_subtree(s, rdev, 0);
5922 
5923 	return 0;
5924 }
5925 
regulator_summary_show(struct seq_file * s,void * data)5926 static int regulator_summary_show(struct seq_file *s, void *data)
5927 {
5928 	struct ww_acquire_ctx ww_ctx;
5929 
5930 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5931 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5932 
5933 	regulator_summary_lock(&ww_ctx);
5934 
5935 	class_for_each_device(&regulator_class, NULL, s,
5936 			      regulator_summary_show_roots);
5937 
5938 	regulator_summary_unlock(&ww_ctx);
5939 
5940 	return 0;
5941 }
5942 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5943 #endif /* CONFIG_DEBUG_FS */
5944 
regulator_init(void)5945 static int __init regulator_init(void)
5946 {
5947 	int ret;
5948 
5949 	ret = class_register(&regulator_class);
5950 
5951 	debugfs_root = debugfs_create_dir("regulator", NULL);
5952 	if (IS_ERR(debugfs_root))
5953 		pr_debug("regulator: Failed to create debugfs directory\n");
5954 
5955 #ifdef CONFIG_DEBUG_FS
5956 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5957 			    &supply_map_fops);
5958 
5959 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5960 			    NULL, &regulator_summary_fops);
5961 #endif
5962 	regulator_dummy_init();
5963 
5964 	regulator_coupler_register(&generic_regulator_coupler);
5965 
5966 	return ret;
5967 }
5968 
5969 /* init early to allow our consumers to complete system booting */
5970 core_initcall(regulator_init);
5971 
regulator_late_cleanup(struct device * dev,void * data)5972 static int regulator_late_cleanup(struct device *dev, void *data)
5973 {
5974 	struct regulator_dev *rdev = dev_to_rdev(dev);
5975 	struct regulation_constraints *c = rdev->constraints;
5976 	int ret;
5977 
5978 	if (c && c->always_on)
5979 		return 0;
5980 
5981 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5982 		return 0;
5983 
5984 	regulator_lock(rdev);
5985 
5986 	if (rdev->use_count)
5987 		goto unlock;
5988 
5989 	/* If reading the status failed, assume that it's off. */
5990 	if (_regulator_is_enabled(rdev) <= 0)
5991 		goto unlock;
5992 
5993 	if (have_full_constraints()) {
5994 		/* We log since this may kill the system if it goes
5995 		 * wrong. */
5996 		rdev_info(rdev, "disabling\n");
5997 		ret = _regulator_do_disable(rdev);
5998 		if (ret != 0)
5999 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6000 	} else {
6001 		/* The intention is that in future we will
6002 		 * assume that full constraints are provided
6003 		 * so warn even if we aren't going to do
6004 		 * anything here.
6005 		 */
6006 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6007 	}
6008 
6009 unlock:
6010 	regulator_unlock(rdev);
6011 
6012 	return 0;
6013 }
6014 
regulator_init_complete_work_function(struct work_struct * work)6015 static void regulator_init_complete_work_function(struct work_struct *work)
6016 {
6017 	/*
6018 	 * Regulators may had failed to resolve their input supplies
6019 	 * when were registered, either because the input supply was
6020 	 * not registered yet or because its parent device was not
6021 	 * bound yet. So attempt to resolve the input supplies for
6022 	 * pending regulators before trying to disable unused ones.
6023 	 */
6024 	class_for_each_device(&regulator_class, NULL, NULL,
6025 			      regulator_register_resolve_supply);
6026 
6027 	/* If we have a full configuration then disable any regulators
6028 	 * we have permission to change the status for and which are
6029 	 * not in use or always_on.  This is effectively the default
6030 	 * for DT and ACPI as they have full constraints.
6031 	 */
6032 	class_for_each_device(&regulator_class, NULL, NULL,
6033 			      regulator_late_cleanup);
6034 }
6035 
6036 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6037 			    regulator_init_complete_work_function);
6038 
regulator_init_complete(void)6039 static int __init regulator_init_complete(void)
6040 {
6041 	/*
6042 	 * Since DT doesn't provide an idiomatic mechanism for
6043 	 * enabling full constraints and since it's much more natural
6044 	 * with DT to provide them just assume that a DT enabled
6045 	 * system has full constraints.
6046 	 */
6047 	if (of_have_populated_dt())
6048 		has_full_constraints = true;
6049 
6050 	/*
6051 	 * We punt completion for an arbitrary amount of time since
6052 	 * systems like distros will load many drivers from userspace
6053 	 * so consumers might not always be ready yet, this is
6054 	 * particularly an issue with laptops where this might bounce
6055 	 * the display off then on.  Ideally we'd get a notification
6056 	 * from userspace when this happens but we don't so just wait
6057 	 * a bit and hope we waited long enough.  It'd be better if
6058 	 * we'd only do this on systems that need it, and a kernel
6059 	 * command line option might be useful.
6060 	 */
6061 	schedule_delayed_work(&regulator_init_complete_work,
6062 			      msecs_to_jiffies(30000));
6063 
6064 	return 0;
6065 }
6066 late_initcall_sync(regulator_init_complete);
6067