1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25 * struct usb_udc - describes one usb device controller
26 * @driver: the gadget driver pointer. For use by the class code
27 * @dev: the child device to the actual controller
28 * @gadget: the gadget. For use by the class code
29 * @list: for use by the udc class driver
30 * @vbus: for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
32 *
33 * This represents the internal data structure which is used by the UDC-class
34 * to hold information about udc driver and gadget together.
35 */
36 struct usb_udc {
37 struct usb_gadget_driver *driver;
38 struct usb_gadget *gadget;
39 struct device dev;
40 struct list_head list;
41 bool vbus;
42 };
43
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 struct usb_gadget_driver *driver);
51
52 /* ------------------------------------------------------------------------- */
53
54 /**
55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56 * @ep:the endpoint being configured
57 * @maxpacket_limit:value of maximum packet size limit
58 *
59 * This function should be used only in UDC drivers to initialize endpoint
60 * (usually in probe function).
61 */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 unsigned maxpacket_limit)
64 {
65 ep->maxpacket_limit = maxpacket_limit;
66 ep->maxpacket = maxpacket_limit;
67
68 trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71
72 /**
73 * usb_ep_enable - configure endpoint, making it usable
74 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
75 * drivers discover endpoints through the ep_list of a usb_gadget.
76 *
77 * When configurations are set, or when interface settings change, the driver
78 * will enable or disable the relevant endpoints. while it is enabled, an
79 * endpoint may be used for i/o until the driver receives a disconnect() from
80 * the host or until the endpoint is disabled.
81 *
82 * the ep0 implementation (which calls this routine) must ensure that the
83 * hardware capabilities of each endpoint match the descriptor provided
84 * for it. for example, an endpoint named "ep2in-bulk" would be usable
85 * for interrupt transfers as well as bulk, but it likely couldn't be used
86 * for iso transfers or for endpoint 14. some endpoints are fully
87 * configurable, with more generic names like "ep-a". (remember that for
88 * USB, "in" means "towards the USB host".)
89 *
90 * This routine must be called in process context.
91 *
92 * returns zero, or a negative error code.
93 */
usb_ep_enable(struct usb_ep * ep)94 int usb_ep_enable(struct usb_ep *ep)
95 {
96 int ret = 0;
97
98 if (ep->enabled)
99 goto out;
100
101 /* UDC drivers can't handle endpoints with maxpacket size 0 */
102 if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) {
103 WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name,
104 (!ep->desc) ? "NULL descriptor" : "maxpacket 0");
105
106 ret = -EINVAL;
107 goto out;
108 }
109
110 ret = ep->ops->enable(ep, ep->desc);
111 if (ret)
112 goto out;
113
114 ep->enabled = true;
115
116 out:
117 trace_usb_ep_enable(ep, ret);
118
119 return ret;
120 }
121 EXPORT_SYMBOL_GPL(usb_ep_enable);
122
123 /**
124 * usb_ep_disable - endpoint is no longer usable
125 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
126 *
127 * no other task may be using this endpoint when this is called.
128 * any pending and uncompleted requests will complete with status
129 * indicating disconnect (-ESHUTDOWN) before this call returns.
130 * gadget drivers must call usb_ep_enable() again before queueing
131 * requests to the endpoint.
132 *
133 * This routine must be called in process context.
134 *
135 * returns zero, or a negative error code.
136 */
usb_ep_disable(struct usb_ep * ep)137 int usb_ep_disable(struct usb_ep *ep)
138 {
139 int ret = 0;
140
141 if (!ep->enabled)
142 goto out;
143
144 ret = ep->ops->disable(ep);
145 if (ret)
146 goto out;
147
148 ep->enabled = false;
149
150 out:
151 trace_usb_ep_disable(ep, ret);
152
153 return ret;
154 }
155 EXPORT_SYMBOL_GPL(usb_ep_disable);
156
157 /**
158 * usb_ep_alloc_request - allocate a request object to use with this endpoint
159 * @ep:the endpoint to be used with with the request
160 * @gfp_flags:GFP_* flags to use
161 *
162 * Request objects must be allocated with this call, since they normally
163 * need controller-specific setup and may even need endpoint-specific
164 * resources such as allocation of DMA descriptors.
165 * Requests may be submitted with usb_ep_queue(), and receive a single
166 * completion callback. Free requests with usb_ep_free_request(), when
167 * they are no longer needed.
168 *
169 * Returns the request, or null if one could not be allocated.
170 */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)171 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
172 gfp_t gfp_flags)
173 {
174 struct usb_request *req = NULL;
175
176 req = ep->ops->alloc_request(ep, gfp_flags);
177
178 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
179
180 return req;
181 }
182 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
183
184 /**
185 * usb_ep_free_request - frees a request object
186 * @ep:the endpoint associated with the request
187 * @req:the request being freed
188 *
189 * Reverses the effect of usb_ep_alloc_request().
190 * Caller guarantees the request is not queued, and that it will
191 * no longer be requeued (or otherwise used).
192 */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)193 void usb_ep_free_request(struct usb_ep *ep,
194 struct usb_request *req)
195 {
196 trace_usb_ep_free_request(ep, req, 0);
197 ep->ops->free_request(ep, req);
198 }
199 EXPORT_SYMBOL_GPL(usb_ep_free_request);
200
201 /**
202 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
203 * @ep:the endpoint associated with the request
204 * @req:the request being submitted
205 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
206 * pre-allocate all necessary memory with the request.
207 *
208 * This tells the device controller to perform the specified request through
209 * that endpoint (reading or writing a buffer). When the request completes,
210 * including being canceled by usb_ep_dequeue(), the request's completion
211 * routine is called to return the request to the driver. Any endpoint
212 * (except control endpoints like ep0) may have more than one transfer
213 * request queued; they complete in FIFO order. Once a gadget driver
214 * submits a request, that request may not be examined or modified until it
215 * is given back to that driver through the completion callback.
216 *
217 * Each request is turned into one or more packets. The controller driver
218 * never merges adjacent requests into the same packet. OUT transfers
219 * will sometimes use data that's already buffered in the hardware.
220 * Drivers can rely on the fact that the first byte of the request's buffer
221 * always corresponds to the first byte of some USB packet, for both
222 * IN and OUT transfers.
223 *
224 * Bulk endpoints can queue any amount of data; the transfer is packetized
225 * automatically. The last packet will be short if the request doesn't fill it
226 * out completely. Zero length packets (ZLPs) should be avoided in portable
227 * protocols since not all usb hardware can successfully handle zero length
228 * packets. (ZLPs may be explicitly written, and may be implicitly written if
229 * the request 'zero' flag is set.) Bulk endpoints may also be used
230 * for interrupt transfers; but the reverse is not true, and some endpoints
231 * won't support every interrupt transfer. (Such as 768 byte packets.)
232 *
233 * Interrupt-only endpoints are less functional than bulk endpoints, for
234 * example by not supporting queueing or not handling buffers that are
235 * larger than the endpoint's maxpacket size. They may also treat data
236 * toggle differently.
237 *
238 * Control endpoints ... after getting a setup() callback, the driver queues
239 * one response (even if it would be zero length). That enables the
240 * status ack, after transferring data as specified in the response. Setup
241 * functions may return negative error codes to generate protocol stalls.
242 * (Note that some USB device controllers disallow protocol stall responses
243 * in some cases.) When control responses are deferred (the response is
244 * written after the setup callback returns), then usb_ep_set_halt() may be
245 * used on ep0 to trigger protocol stalls. Depending on the controller,
246 * it may not be possible to trigger a status-stage protocol stall when the
247 * data stage is over, that is, from within the response's completion
248 * routine.
249 *
250 * For periodic endpoints, like interrupt or isochronous ones, the usb host
251 * arranges to poll once per interval, and the gadget driver usually will
252 * have queued some data to transfer at that time.
253 *
254 * Note that @req's ->complete() callback must never be called from
255 * within usb_ep_queue() as that can create deadlock situations.
256 *
257 * This routine may be called in interrupt context.
258 *
259 * Returns zero, or a negative error code. Endpoints that are not enabled
260 * report errors; errors will also be
261 * reported when the usb peripheral is disconnected.
262 *
263 * If and only if @req is successfully queued (the return value is zero),
264 * @req->complete() will be called exactly once, when the Gadget core and
265 * UDC are finished with the request. When the completion function is called,
266 * control of the request is returned to the device driver which submitted it.
267 * The completion handler may then immediately free or reuse @req.
268 */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)269 int usb_ep_queue(struct usb_ep *ep,
270 struct usb_request *req, gfp_t gfp_flags)
271 {
272 int ret = 0;
273
274 if (!ep->enabled && ep->address) {
275 pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
276 ep->address, ep->name);
277 ret = -ESHUTDOWN;
278 goto out;
279 }
280
281 ret = ep->ops->queue(ep, req, gfp_flags);
282
283 out:
284 trace_usb_ep_queue(ep, req, ret);
285
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_queue);
289
290 /**
291 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
292 * @ep:the endpoint associated with the request
293 * @req:the request being canceled
294 *
295 * If the request is still active on the endpoint, it is dequeued and
296 * eventually its completion routine is called (with status -ECONNRESET);
297 * else a negative error code is returned. This routine is asynchronous,
298 * that is, it may return before the completion routine runs.
299 *
300 * Note that some hardware can't clear out write fifos (to unlink the request
301 * at the head of the queue) except as part of disconnecting from usb. Such
302 * restrictions prevent drivers from supporting configuration changes,
303 * even to configuration zero (a "chapter 9" requirement).
304 *
305 * This routine may be called in interrupt context.
306 */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
308 {
309 int ret;
310
311 ret = ep->ops->dequeue(ep, req);
312 trace_usb_ep_dequeue(ep, req, ret);
313
314 return ret;
315 }
316 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
317
318 /**
319 * usb_ep_set_halt - sets the endpoint halt feature.
320 * @ep: the non-isochronous endpoint being stalled
321 *
322 * Use this to stall an endpoint, perhaps as an error report.
323 * Except for control endpoints,
324 * the endpoint stays halted (will not stream any data) until the host
325 * clears this feature; drivers may need to empty the endpoint's request
326 * queue first, to make sure no inappropriate transfers happen.
327 *
328 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
329 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
330 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
331 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
332 *
333 * This routine may be called in interrupt context.
334 *
335 * Returns zero, or a negative error code. On success, this call sets
336 * underlying hardware state that blocks data transfers.
337 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
338 * transfer requests are still queued, or if the controller hardware
339 * (usually a FIFO) still holds bytes that the host hasn't collected.
340 */
usb_ep_set_halt(struct usb_ep * ep)341 int usb_ep_set_halt(struct usb_ep *ep)
342 {
343 int ret;
344
345 ret = ep->ops->set_halt(ep, 1);
346 trace_usb_ep_set_halt(ep, ret);
347
348 return ret;
349 }
350 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
351
352 /**
353 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
354 * @ep:the bulk or interrupt endpoint being reset
355 *
356 * Use this when responding to the standard usb "set interface" request,
357 * for endpoints that aren't reconfigured, after clearing any other state
358 * in the endpoint's i/o queue.
359 *
360 * This routine may be called in interrupt context.
361 *
362 * Returns zero, or a negative error code. On success, this call clears
363 * the underlying hardware state reflecting endpoint halt and data toggle.
364 * Note that some hardware can't support this request (like pxa2xx_udc),
365 * and accordingly can't correctly implement interface altsettings.
366 */
usb_ep_clear_halt(struct usb_ep * ep)367 int usb_ep_clear_halt(struct usb_ep *ep)
368 {
369 int ret;
370
371 ret = ep->ops->set_halt(ep, 0);
372 trace_usb_ep_clear_halt(ep, ret);
373
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
377
378 /**
379 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
380 * @ep: the endpoint being wedged
381 *
382 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
383 * requests. If the gadget driver clears the halt status, it will
384 * automatically unwedge the endpoint.
385 *
386 * This routine may be called in interrupt context.
387 *
388 * Returns zero on success, else negative errno.
389 */
usb_ep_set_wedge(struct usb_ep * ep)390 int usb_ep_set_wedge(struct usb_ep *ep)
391 {
392 int ret;
393
394 if (ep->ops->set_wedge)
395 ret = ep->ops->set_wedge(ep);
396 else
397 ret = ep->ops->set_halt(ep, 1);
398
399 trace_usb_ep_set_wedge(ep, ret);
400
401 return ret;
402 }
403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
404
405 /**
406 * usb_ep_fifo_status - returns number of bytes in fifo, or error
407 * @ep: the endpoint whose fifo status is being checked.
408 *
409 * FIFO endpoints may have "unclaimed data" in them in certain cases,
410 * such as after aborted transfers. Hosts may not have collected all
411 * the IN data written by the gadget driver (and reported by a request
412 * completion). The gadget driver may not have collected all the data
413 * written OUT to it by the host. Drivers that need precise handling for
414 * fault reporting or recovery may need to use this call.
415 *
416 * This routine may be called in interrupt context.
417 *
418 * This returns the number of such bytes in the fifo, or a negative
419 * errno if the endpoint doesn't use a FIFO or doesn't support such
420 * precise handling.
421 */
usb_ep_fifo_status(struct usb_ep * ep)422 int usb_ep_fifo_status(struct usb_ep *ep)
423 {
424 int ret;
425
426 if (ep->ops->fifo_status)
427 ret = ep->ops->fifo_status(ep);
428 else
429 ret = -EOPNOTSUPP;
430
431 trace_usb_ep_fifo_status(ep, ret);
432
433 return ret;
434 }
435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
436
437 /**
438 * usb_ep_fifo_flush - flushes contents of a fifo
439 * @ep: the endpoint whose fifo is being flushed.
440 *
441 * This call may be used to flush the "unclaimed data" that may exist in
442 * an endpoint fifo after abnormal transaction terminations. The call
443 * must never be used except when endpoint is not being used for any
444 * protocol translation.
445 *
446 * This routine may be called in interrupt context.
447 */
usb_ep_fifo_flush(struct usb_ep * ep)448 void usb_ep_fifo_flush(struct usb_ep *ep)
449 {
450 if (ep->ops->fifo_flush)
451 ep->ops->fifo_flush(ep);
452
453 trace_usb_ep_fifo_flush(ep, 0);
454 }
455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
456
457 /* ------------------------------------------------------------------------- */
458
459 /**
460 * usb_gadget_frame_number - returns the current frame number
461 * @gadget: controller that reports the frame number
462 *
463 * Returns the usb frame number, normally eleven bits from a SOF packet,
464 * or negative errno if this device doesn't support this capability.
465 */
usb_gadget_frame_number(struct usb_gadget * gadget)466 int usb_gadget_frame_number(struct usb_gadget *gadget)
467 {
468 int ret;
469
470 ret = gadget->ops->get_frame(gadget);
471
472 trace_usb_gadget_frame_number(gadget, ret);
473
474 return ret;
475 }
476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
477
478 /**
479 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
480 * @gadget: controller used to wake up the host
481 *
482 * Returns zero on success, else negative error code if the hardware
483 * doesn't support such attempts, or its support has not been enabled
484 * by the usb host. Drivers must return device descriptors that report
485 * their ability to support this, or hosts won't enable it.
486 *
487 * This may also try to use SRP to wake the host and start enumeration,
488 * even if OTG isn't otherwise in use. OTG devices may also start
489 * remote wakeup even when hosts don't explicitly enable it.
490 */
usb_gadget_wakeup(struct usb_gadget * gadget)491 int usb_gadget_wakeup(struct usb_gadget *gadget)
492 {
493 int ret = 0;
494
495 if (!gadget->ops->wakeup) {
496 ret = -EOPNOTSUPP;
497 goto out;
498 }
499
500 ret = gadget->ops->wakeup(gadget);
501
502 out:
503 trace_usb_gadget_wakeup(gadget, ret);
504
505 return ret;
506 }
507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
508
509 /**
510 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
511 * @gadget:the device being declared as self-powered
512 *
513 * this affects the device status reported by the hardware driver
514 * to reflect that it now has a local power supply.
515 *
516 * returns zero on success, else negative errno.
517 */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
519 {
520 int ret = 0;
521
522 if (!gadget->ops->set_selfpowered) {
523 ret = -EOPNOTSUPP;
524 goto out;
525 }
526
527 ret = gadget->ops->set_selfpowered(gadget, 1);
528
529 out:
530 trace_usb_gadget_set_selfpowered(gadget, ret);
531
532 return ret;
533 }
534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
535
536 /**
537 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
538 * @gadget:the device being declared as bus-powered
539 *
540 * this affects the device status reported by the hardware driver.
541 * some hardware may not support bus-powered operation, in which
542 * case this feature's value can never change.
543 *
544 * returns zero on success, else negative errno.
545 */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
547 {
548 int ret = 0;
549
550 if (!gadget->ops->set_selfpowered) {
551 ret = -EOPNOTSUPP;
552 goto out;
553 }
554
555 ret = gadget->ops->set_selfpowered(gadget, 0);
556
557 out:
558 trace_usb_gadget_clear_selfpowered(gadget, ret);
559
560 return ret;
561 }
562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
563
564 /**
565 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
566 * @gadget:The device which now has VBUS power.
567 * Context: can sleep
568 *
569 * This call is used by a driver for an external transceiver (or GPIO)
570 * that detects a VBUS power session starting. Common responses include
571 * resuming the controller, activating the D+ (or D-) pullup to let the
572 * host detect that a USB device is attached, and starting to draw power
573 * (8mA or possibly more, especially after SET_CONFIGURATION).
574 *
575 * Returns zero on success, else negative errno.
576 */
usb_gadget_vbus_connect(struct usb_gadget * gadget)577 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
578 {
579 int ret = 0;
580
581 if (!gadget->ops->vbus_session) {
582 ret = -EOPNOTSUPP;
583 goto out;
584 }
585
586 ret = gadget->ops->vbus_session(gadget, 1);
587
588 out:
589 trace_usb_gadget_vbus_connect(gadget, ret);
590
591 return ret;
592 }
593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
594
595 /**
596 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
597 * @gadget:The device whose VBUS usage is being described
598 * @mA:How much current to draw, in milliAmperes. This should be twice
599 * the value listed in the configuration descriptor bMaxPower field.
600 *
601 * This call is used by gadget drivers during SET_CONFIGURATION calls,
602 * reporting how much power the device may consume. For example, this
603 * could affect how quickly batteries are recharged.
604 *
605 * Returns zero on success, else negative errno.
606 */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
608 {
609 int ret = 0;
610
611 if (!gadget->ops->vbus_draw) {
612 ret = -EOPNOTSUPP;
613 goto out;
614 }
615
616 ret = gadget->ops->vbus_draw(gadget, mA);
617 if (!ret)
618 gadget->mA = mA;
619
620 out:
621 trace_usb_gadget_vbus_draw(gadget, ret);
622
623 return ret;
624 }
625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
626
627 /**
628 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
629 * @gadget:the device whose VBUS supply is being described
630 * Context: can sleep
631 *
632 * This call is used by a driver for an external transceiver (or GPIO)
633 * that detects a VBUS power session ending. Common responses include
634 * reversing everything done in usb_gadget_vbus_connect().
635 *
636 * Returns zero on success, else negative errno.
637 */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
639 {
640 int ret = 0;
641
642 if (!gadget->ops->vbus_session) {
643 ret = -EOPNOTSUPP;
644 goto out;
645 }
646
647 ret = gadget->ops->vbus_session(gadget, 0);
648
649 out:
650 trace_usb_gadget_vbus_disconnect(gadget, ret);
651
652 return ret;
653 }
654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
655
656 /**
657 * usb_gadget_connect - software-controlled connect to USB host
658 * @gadget:the peripheral being connected
659 *
660 * Enables the D+ (or potentially D-) pullup. The host will start
661 * enumerating this gadget when the pullup is active and a VBUS session
662 * is active (the link is powered). This pullup is always enabled unless
663 * usb_gadget_disconnect() has been used to disable it.
664 *
665 * Returns zero on success, else negative errno.
666 */
usb_gadget_connect(struct usb_gadget * gadget)667 int usb_gadget_connect(struct usb_gadget *gadget)
668 {
669 int ret = 0;
670
671 if (!gadget->ops->pullup) {
672 ret = -EOPNOTSUPP;
673 goto out;
674 }
675
676 if (gadget->deactivated) {
677 /*
678 * If gadget is deactivated we only save new state.
679 * Gadget will be connected automatically after activation.
680 */
681 gadget->connected = true;
682 goto out;
683 }
684
685 ret = gadget->ops->pullup(gadget, 1);
686 if (!ret)
687 gadget->connected = 1;
688
689 out:
690 trace_usb_gadget_connect(gadget, ret);
691
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(usb_gadget_connect);
695
696 /**
697 * usb_gadget_disconnect - software-controlled disconnect from USB host
698 * @gadget:the peripheral being disconnected
699 *
700 * Disables the D+ (or potentially D-) pullup, which the host may see
701 * as a disconnect (when a VBUS session is active). Not all systems
702 * support software pullup controls.
703 *
704 * Following a successful disconnect, invoke the ->disconnect() callback
705 * for the current gadget driver so that UDC drivers don't need to.
706 *
707 * Returns zero on success, else negative errno.
708 */
usb_gadget_disconnect(struct usb_gadget * gadget)709 int usb_gadget_disconnect(struct usb_gadget *gadget)
710 {
711 int ret = 0;
712
713 if (!gadget->ops->pullup) {
714 ret = -EOPNOTSUPP;
715 goto out;
716 }
717
718 if (!gadget->connected)
719 goto out;
720
721 if (gadget->deactivated) {
722 /*
723 * If gadget is deactivated we only save new state.
724 * Gadget will stay disconnected after activation.
725 */
726 gadget->connected = false;
727 goto out;
728 }
729
730 ret = gadget->ops->pullup(gadget, 0);
731 if (!ret) {
732 gadget->connected = 0;
733 gadget->udc->driver->disconnect(gadget);
734 }
735
736 out:
737 trace_usb_gadget_disconnect(gadget, ret);
738
739 return ret;
740 }
741 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
742
743 /**
744 * usb_gadget_deactivate - deactivate function which is not ready to work
745 * @gadget: the peripheral being deactivated
746 *
747 * This routine may be used during the gadget driver bind() call to prevent
748 * the peripheral from ever being visible to the USB host, unless later
749 * usb_gadget_activate() is called. For example, user mode components may
750 * need to be activated before the system can talk to hosts.
751 *
752 * Returns zero on success, else negative errno.
753 */
usb_gadget_deactivate(struct usb_gadget * gadget)754 int usb_gadget_deactivate(struct usb_gadget *gadget)
755 {
756 int ret = 0;
757
758 if (gadget->deactivated)
759 goto out;
760
761 if (gadget->connected) {
762 ret = usb_gadget_disconnect(gadget);
763 if (ret)
764 goto out;
765
766 /*
767 * If gadget was being connected before deactivation, we want
768 * to reconnect it in usb_gadget_activate().
769 */
770 gadget->connected = true;
771 }
772 gadget->deactivated = true;
773
774 out:
775 trace_usb_gadget_deactivate(gadget, ret);
776
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
780
781 /**
782 * usb_gadget_activate - activate function which is not ready to work
783 * @gadget: the peripheral being activated
784 *
785 * This routine activates gadget which was previously deactivated with
786 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
787 *
788 * Returns zero on success, else negative errno.
789 */
usb_gadget_activate(struct usb_gadget * gadget)790 int usb_gadget_activate(struct usb_gadget *gadget)
791 {
792 int ret = 0;
793
794 if (!gadget->deactivated)
795 goto out;
796
797 gadget->deactivated = false;
798
799 /*
800 * If gadget has been connected before deactivation, or became connected
801 * while it was being deactivated, we call usb_gadget_connect().
802 */
803 if (gadget->connected)
804 ret = usb_gadget_connect(gadget);
805
806 out:
807 trace_usb_gadget_activate(gadget, ret);
808
809 return ret;
810 }
811 EXPORT_SYMBOL_GPL(usb_gadget_activate);
812
813 /* ------------------------------------------------------------------------- */
814
815 #ifdef CONFIG_HAS_DMA
816
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)817 int usb_gadget_map_request_by_dev(struct device *dev,
818 struct usb_request *req, int is_in)
819 {
820 if (req->length == 0)
821 return 0;
822
823 if (req->num_sgs) {
824 int mapped;
825
826 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
827 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
828 if (mapped == 0) {
829 dev_err(dev, "failed to map SGs\n");
830 return -EFAULT;
831 }
832
833 req->num_mapped_sgs = mapped;
834 } else {
835 if (is_vmalloc_addr(req->buf)) {
836 dev_err(dev, "buffer is not dma capable\n");
837 return -EFAULT;
838 } else if (object_is_on_stack(req->buf)) {
839 dev_err(dev, "buffer is on stack\n");
840 return -EFAULT;
841 }
842
843 req->dma = dma_map_single(dev, req->buf, req->length,
844 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
845
846 if (dma_mapping_error(dev, req->dma)) {
847 dev_err(dev, "failed to map buffer\n");
848 return -EFAULT;
849 }
850
851 req->dma_mapped = 1;
852 }
853
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
857
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)858 int usb_gadget_map_request(struct usb_gadget *gadget,
859 struct usb_request *req, int is_in)
860 {
861 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
862 }
863 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
864
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)865 void usb_gadget_unmap_request_by_dev(struct device *dev,
866 struct usb_request *req, int is_in)
867 {
868 if (req->length == 0)
869 return;
870
871 if (req->num_mapped_sgs) {
872 dma_unmap_sg(dev, req->sg, req->num_sgs,
873 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
874
875 req->num_mapped_sgs = 0;
876 } else if (req->dma_mapped) {
877 dma_unmap_single(dev, req->dma, req->length,
878 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
879 req->dma_mapped = 0;
880 }
881 }
882 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
883
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)884 void usb_gadget_unmap_request(struct usb_gadget *gadget,
885 struct usb_request *req, int is_in)
886 {
887 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
888 }
889 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
890
891 #endif /* CONFIG_HAS_DMA */
892
893 /* ------------------------------------------------------------------------- */
894
895 /**
896 * usb_gadget_giveback_request - give the request back to the gadget layer
897 * @ep: the endpoint to be used with with the request
898 * @req: the request being given back
899 *
900 * Context: in_interrupt()
901 *
902 * This is called by device controller drivers in order to return the
903 * completed request back to the gadget layer.
904 */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)905 void usb_gadget_giveback_request(struct usb_ep *ep,
906 struct usb_request *req)
907 {
908 if (likely(req->status == 0))
909 usb_led_activity(USB_LED_EVENT_GADGET);
910
911 trace_usb_gadget_giveback_request(ep, req, 0);
912
913 req->complete(ep, req);
914 }
915 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
916
917 /* ------------------------------------------------------------------------- */
918
919 /**
920 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
921 * in second parameter or NULL if searched endpoint not found
922 * @g: controller to check for quirk
923 * @name: name of searched endpoint
924 */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)925 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
926 {
927 struct usb_ep *ep;
928
929 gadget_for_each_ep(ep, g) {
930 if (!strcmp(ep->name, name))
931 return ep;
932 }
933
934 return NULL;
935 }
936 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
937
938 /* ------------------------------------------------------------------------- */
939
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)940 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
941 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
942 struct usb_ss_ep_comp_descriptor *ep_comp)
943 {
944 u8 type;
945 u16 max;
946 int num_req_streams = 0;
947
948 /* endpoint already claimed? */
949 if (ep->claimed)
950 return 0;
951
952 type = usb_endpoint_type(desc);
953 max = usb_endpoint_maxp(desc);
954
955 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
956 return 0;
957 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
958 return 0;
959
960 if (max > ep->maxpacket_limit)
961 return 0;
962
963 /* "high bandwidth" works only at high speed */
964 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
965 return 0;
966
967 switch (type) {
968 case USB_ENDPOINT_XFER_CONTROL:
969 /* only support ep0 for portable CONTROL traffic */
970 return 0;
971 case USB_ENDPOINT_XFER_ISOC:
972 if (!ep->caps.type_iso)
973 return 0;
974 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
975 if (!gadget_is_dualspeed(gadget) && max > 1023)
976 return 0;
977 break;
978 case USB_ENDPOINT_XFER_BULK:
979 if (!ep->caps.type_bulk)
980 return 0;
981 if (ep_comp && gadget_is_superspeed(gadget)) {
982 /* Get the number of required streams from the
983 * EP companion descriptor and see if the EP
984 * matches it
985 */
986 num_req_streams = ep_comp->bmAttributes & 0x1f;
987 if (num_req_streams > ep->max_streams)
988 return 0;
989 }
990 break;
991 case USB_ENDPOINT_XFER_INT:
992 /* Bulk endpoints handle interrupt transfers,
993 * except the toggle-quirky iso-synch kind
994 */
995 if (!ep->caps.type_int && !ep->caps.type_bulk)
996 return 0;
997 /* INT: limit 64 bytes full speed, 1024 high/super speed */
998 if (!gadget_is_dualspeed(gadget) && max > 64)
999 return 0;
1000 break;
1001 }
1002
1003 return 1;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1006
1007 /**
1008 * usb_gadget_check_config - checks if the UDC can support the binded
1009 * configuration
1010 * @gadget: controller to check the USB configuration
1011 *
1012 * Ensure that a UDC is able to support the requested resources by a
1013 * configuration, and that there are no resource limitations, such as
1014 * internal memory allocated to all requested endpoints.
1015 *
1016 * Returns zero on success, else a negative errno.
1017 */
usb_gadget_check_config(struct usb_gadget * gadget)1018 int usb_gadget_check_config(struct usb_gadget *gadget)
1019 {
1020 if (gadget->ops->check_config)
1021 return gadget->ops->check_config(gadget);
1022 return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1025
1026 /* ------------------------------------------------------------------------- */
1027
usb_gadget_state_work(struct work_struct * work)1028 static void usb_gadget_state_work(struct work_struct *work)
1029 {
1030 struct usb_gadget *gadget = work_to_gadget(work);
1031 struct usb_udc *udc = gadget->udc;
1032
1033 if (udc)
1034 sysfs_notify(&udc->dev.kobj, NULL, "state");
1035 }
1036
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1037 void usb_gadget_set_state(struct usb_gadget *gadget,
1038 enum usb_device_state state)
1039 {
1040 gadget->state = state;
1041 schedule_work(&gadget->work);
1042 }
1043 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1044
1045 /* ------------------------------------------------------------------------- */
1046
usb_udc_connect_control(struct usb_udc * udc)1047 static void usb_udc_connect_control(struct usb_udc *udc)
1048 {
1049 if (udc->vbus)
1050 usb_gadget_connect(udc->gadget);
1051 else
1052 usb_gadget_disconnect(udc->gadget);
1053 }
1054
1055 /**
1056 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1057 * connect or disconnect gadget
1058 * @gadget: The gadget which vbus change occurs
1059 * @status: The vbus status
1060 *
1061 * The udc driver calls it when it wants to connect or disconnect gadget
1062 * according to vbus status.
1063 */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1064 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1065 {
1066 struct usb_udc *udc = gadget->udc;
1067
1068 if (udc) {
1069 udc->vbus = status;
1070 usb_udc_connect_control(udc);
1071 }
1072 }
1073 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1074
1075 /**
1076 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1077 * @gadget: The gadget which bus reset occurs
1078 * @driver: The gadget driver we want to notify
1079 *
1080 * If the udc driver has bus reset handler, it needs to call this when the bus
1081 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1082 * well as updates gadget state.
1083 */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1084 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1085 struct usb_gadget_driver *driver)
1086 {
1087 driver->reset(gadget);
1088 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1089 }
1090 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1091
1092 /**
1093 * usb_gadget_udc_start - tells usb device controller to start up
1094 * @udc: The UDC to be started
1095 *
1096 * This call is issued by the UDC Class driver when it's about
1097 * to register a gadget driver to the device controller, before
1098 * calling gadget driver's bind() method.
1099 *
1100 * It allows the controller to be powered off until strictly
1101 * necessary to have it powered on.
1102 *
1103 * Returns zero on success, else negative errno.
1104 */
usb_gadget_udc_start(struct usb_udc * udc)1105 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1106 {
1107 return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1108 }
1109
1110 /**
1111 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1112 * @udc: The UDC to be stopped
1113 *
1114 * This call is issued by the UDC Class driver after calling
1115 * gadget driver's unbind() method.
1116 *
1117 * The details are implementation specific, but it can go as
1118 * far as powering off UDC completely and disable its data
1119 * line pullups.
1120 */
usb_gadget_udc_stop(struct usb_udc * udc)1121 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1122 {
1123 udc->gadget->ops->udc_stop(udc->gadget);
1124 }
1125
1126 /**
1127 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1128 * current driver
1129 * @udc: The device we want to set maximum speed
1130 * @speed: The maximum speed to allowed to run
1131 *
1132 * This call is issued by the UDC Class driver before calling
1133 * usb_gadget_udc_start() in order to make sure that we don't try to
1134 * connect on speeds the gadget driver doesn't support.
1135 */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1136 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1137 enum usb_device_speed speed)
1138 {
1139 if (udc->gadget->ops->udc_set_speed) {
1140 enum usb_device_speed s;
1141
1142 s = min(speed, udc->gadget->max_speed);
1143 udc->gadget->ops->udc_set_speed(udc->gadget, s);
1144 }
1145 }
1146
1147 /**
1148 * usb_udc_release - release the usb_udc struct
1149 * @dev: the dev member within usb_udc
1150 *
1151 * This is called by driver's core in order to free memory once the last
1152 * reference is released.
1153 */
usb_udc_release(struct device * dev)1154 static void usb_udc_release(struct device *dev)
1155 {
1156 struct usb_udc *udc;
1157
1158 udc = container_of(dev, struct usb_udc, dev);
1159 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1160 kfree(udc);
1161 }
1162
1163 static const struct attribute_group *usb_udc_attr_groups[];
1164
usb_udc_nop_release(struct device * dev)1165 static void usb_udc_nop_release(struct device *dev)
1166 {
1167 dev_vdbg(dev, "%s\n", __func__);
1168 }
1169
1170 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1171 static int check_pending_gadget_drivers(struct usb_udc *udc)
1172 {
1173 struct usb_gadget_driver *driver;
1174 int ret = 0;
1175
1176 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1177 if (!driver->udc_name || strcmp(driver->udc_name,
1178 dev_name(&udc->dev)) == 0) {
1179 ret = udc_bind_to_driver(udc, driver);
1180 if (ret != -EPROBE_DEFER)
1181 list_del_init(&driver->pending);
1182 break;
1183 }
1184
1185 return ret;
1186 }
1187
1188 /**
1189 * usb_initialize_gadget - initialize a gadget and its embedded struct device
1190 * @parent: the parent device to this udc. Usually the controller driver's
1191 * device.
1192 * @gadget: the gadget to be initialized.
1193 * @release: a gadget release function.
1194 *
1195 * Returns zero on success, negative errno otherwise.
1196 * Calls the gadget release function in the latter case.
1197 */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1198 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1199 void (*release)(struct device *dev))
1200 {
1201 dev_set_name(&gadget->dev, "gadget");
1202 INIT_WORK(&gadget->work, usb_gadget_state_work);
1203 gadget->dev.parent = parent;
1204
1205 if (release)
1206 gadget->dev.release = release;
1207 else
1208 gadget->dev.release = usb_udc_nop_release;
1209
1210 device_initialize(&gadget->dev);
1211 }
1212 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1213
1214 /**
1215 * usb_add_gadget - adds a new gadget to the udc class driver list
1216 * @gadget: the gadget to be added to the list.
1217 *
1218 * Returns zero on success, negative errno otherwise.
1219 * Does not do a final usb_put_gadget() if an error occurs.
1220 */
usb_add_gadget(struct usb_gadget * gadget)1221 int usb_add_gadget(struct usb_gadget *gadget)
1222 {
1223 struct usb_udc *udc;
1224 int ret = -ENOMEM;
1225
1226 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1227 if (!udc)
1228 goto error;
1229
1230 device_initialize(&udc->dev);
1231 udc->dev.release = usb_udc_release;
1232 udc->dev.class = udc_class;
1233 udc->dev.groups = usb_udc_attr_groups;
1234 udc->dev.parent = gadget->dev.parent;
1235 ret = dev_set_name(&udc->dev, "%s",
1236 kobject_name(&gadget->dev.parent->kobj));
1237 if (ret)
1238 goto err_put_udc;
1239
1240 ret = device_add(&gadget->dev);
1241 if (ret)
1242 goto err_put_udc;
1243
1244 udc->gadget = gadget;
1245 gadget->udc = udc;
1246
1247 mutex_lock(&udc_lock);
1248 list_add_tail(&udc->list, &udc_list);
1249
1250 ret = device_add(&udc->dev);
1251 if (ret)
1252 goto err_unlist_udc;
1253
1254 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1255 udc->vbus = true;
1256
1257 /* pick up one of pending gadget drivers */
1258 ret = check_pending_gadget_drivers(udc);
1259 if (ret)
1260 goto err_del_udc;
1261
1262 mutex_unlock(&udc_lock);
1263
1264 return 0;
1265
1266 err_del_udc:
1267 flush_work(&gadget->work);
1268 device_del(&udc->dev);
1269
1270 err_unlist_udc:
1271 list_del(&udc->list);
1272 mutex_unlock(&udc_lock);
1273
1274 device_del(&gadget->dev);
1275
1276 err_put_udc:
1277 put_device(&udc->dev);
1278
1279 error:
1280 return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(usb_add_gadget);
1283
1284 /**
1285 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1286 * @parent: the parent device to this udc. Usually the controller driver's
1287 * device.
1288 * @gadget: the gadget to be added to the list.
1289 * @release: a gadget release function.
1290 *
1291 * Returns zero on success, negative errno otherwise.
1292 * Calls the gadget release function in the latter case.
1293 */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1294 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1295 void (*release)(struct device *dev))
1296 {
1297 int ret;
1298
1299 usb_initialize_gadget(parent, gadget, release);
1300 ret = usb_add_gadget(gadget);
1301 if (ret)
1302 usb_put_gadget(gadget);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1306
1307 /**
1308 * usb_get_gadget_udc_name - get the name of the first UDC controller
1309 * This functions returns the name of the first UDC controller in the system.
1310 * Please note that this interface is usefull only for legacy drivers which
1311 * assume that there is only one UDC controller in the system and they need to
1312 * get its name before initialization. There is no guarantee that the UDC
1313 * of the returned name will be still available, when gadget driver registers
1314 * itself.
1315 *
1316 * Returns pointer to string with UDC controller name on success, NULL
1317 * otherwise. Caller should kfree() returned string.
1318 */
usb_get_gadget_udc_name(void)1319 char *usb_get_gadget_udc_name(void)
1320 {
1321 struct usb_udc *udc;
1322 char *name = NULL;
1323
1324 /* For now we take the first available UDC */
1325 mutex_lock(&udc_lock);
1326 list_for_each_entry(udc, &udc_list, list) {
1327 if (!udc->driver) {
1328 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1329 break;
1330 }
1331 }
1332 mutex_unlock(&udc_lock);
1333 return name;
1334 }
1335 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1336
1337 /**
1338 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1339 * @parent: the parent device to this udc. Usually the controller
1340 * driver's device.
1341 * @gadget: the gadget to be added to the list
1342 *
1343 * Returns zero on success, negative errno otherwise.
1344 */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1345 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1346 {
1347 return usb_add_gadget_udc_release(parent, gadget, NULL);
1348 }
1349 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1350
usb_gadget_remove_driver(struct usb_udc * udc)1351 static void usb_gadget_remove_driver(struct usb_udc *udc)
1352 {
1353 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1354 udc->driver->function);
1355
1356 usb_gadget_disconnect(udc->gadget);
1357 if (udc->gadget->irq)
1358 synchronize_irq(udc->gadget->irq);
1359 udc->driver->unbind(udc->gadget);
1360 usb_gadget_udc_stop(udc);
1361
1362 udc->driver = NULL;
1363 udc->gadget->dev.driver = NULL;
1364
1365 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1366 }
1367
1368 /**
1369 * usb_del_gadget - deletes @udc from udc_list
1370 * @gadget: the gadget to be removed.
1371 *
1372 * This will call usb_gadget_unregister_driver() if
1373 * the @udc is still busy.
1374 * It will not do a final usb_put_gadget().
1375 */
usb_del_gadget(struct usb_gadget * gadget)1376 void usb_del_gadget(struct usb_gadget *gadget)
1377 {
1378 struct usb_udc *udc = gadget->udc;
1379
1380 if (!udc)
1381 return;
1382
1383 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1384
1385 mutex_lock(&udc_lock);
1386 list_del(&udc->list);
1387
1388 if (udc->driver) {
1389 struct usb_gadget_driver *driver = udc->driver;
1390
1391 usb_gadget_remove_driver(udc);
1392 list_add(&driver->pending, &gadget_driver_pending_list);
1393 }
1394 mutex_unlock(&udc_lock);
1395
1396 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1397 device_unregister(&udc->dev);
1398 device_del(&gadget->dev);
1399 flush_work(&gadget->work);
1400 }
1401 EXPORT_SYMBOL_GPL(usb_del_gadget);
1402
1403 /**
1404 * usb_del_gadget_udc - deletes @udc from udc_list
1405 * @gadget: the gadget to be removed.
1406 *
1407 * Calls usb_del_gadget() and does a final usb_put_gadget().
1408 */
usb_del_gadget_udc(struct usb_gadget * gadget)1409 void usb_del_gadget_udc(struct usb_gadget *gadget)
1410 {
1411 usb_del_gadget(gadget);
1412 usb_put_gadget(gadget);
1413 }
1414 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1415
1416 /* ------------------------------------------------------------------------- */
1417
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1418 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1419 {
1420 int ret;
1421
1422 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1423 driver->function);
1424
1425 udc->driver = driver;
1426 udc->gadget->dev.driver = &driver->driver;
1427
1428 usb_gadget_udc_set_speed(udc, driver->max_speed);
1429
1430 ret = driver->bind(udc->gadget, driver);
1431 if (ret)
1432 goto err1;
1433 ret = usb_gadget_udc_start(udc);
1434 if (ret) {
1435 driver->unbind(udc->gadget);
1436 goto err1;
1437 }
1438 usb_udc_connect_control(udc);
1439
1440 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1441 return 0;
1442 err1:
1443 if (ret != -EISNAM)
1444 dev_err(&udc->dev, "failed to start %s: %d\n",
1445 udc->driver->function, ret);
1446 udc->driver = NULL;
1447 udc->gadget->dev.driver = NULL;
1448 return ret;
1449 }
1450
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1451 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1452 {
1453 struct usb_udc *udc = NULL;
1454 int ret = -ENODEV;
1455
1456 if (!driver || !driver->bind || !driver->setup)
1457 return -EINVAL;
1458
1459 mutex_lock(&udc_lock);
1460 if (driver->udc_name) {
1461 list_for_each_entry(udc, &udc_list, list) {
1462 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1463 if (!ret)
1464 break;
1465 }
1466 if (ret)
1467 ret = -ENODEV;
1468 else if (udc->driver)
1469 ret = -EBUSY;
1470 else
1471 goto found;
1472 } else {
1473 list_for_each_entry(udc, &udc_list, list) {
1474 /* For now we take the first one */
1475 if (!udc->driver)
1476 goto found;
1477 }
1478 }
1479
1480 if (!driver->match_existing_only) {
1481 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1482 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1483 driver->function);
1484 ret = 0;
1485 }
1486
1487 mutex_unlock(&udc_lock);
1488 if (ret)
1489 pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1490 return ret;
1491 found:
1492 ret = udc_bind_to_driver(udc, driver);
1493 mutex_unlock(&udc_lock);
1494 return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1497
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1498 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1499 {
1500 struct usb_udc *udc = NULL;
1501 int ret = -ENODEV;
1502
1503 if (!driver || !driver->unbind)
1504 return -EINVAL;
1505
1506 mutex_lock(&udc_lock);
1507 list_for_each_entry(udc, &udc_list, list) {
1508 if (udc->driver == driver) {
1509 usb_gadget_remove_driver(udc);
1510 usb_gadget_set_state(udc->gadget,
1511 USB_STATE_NOTATTACHED);
1512
1513 /* Maybe there is someone waiting for this UDC? */
1514 check_pending_gadget_drivers(udc);
1515 /*
1516 * For now we ignore bind errors as probably it's
1517 * not a valid reason to fail other's gadget unbind
1518 */
1519 ret = 0;
1520 break;
1521 }
1522 }
1523
1524 if (ret) {
1525 list_del(&driver->pending);
1526 ret = 0;
1527 }
1528 mutex_unlock(&udc_lock);
1529 return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1532
1533 /* ------------------------------------------------------------------------- */
1534
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1535 static ssize_t srp_store(struct device *dev,
1536 struct device_attribute *attr, const char *buf, size_t n)
1537 {
1538 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1539
1540 if (sysfs_streq(buf, "1"))
1541 usb_gadget_wakeup(udc->gadget);
1542
1543 return n;
1544 }
1545 static DEVICE_ATTR_WO(srp);
1546
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1547 static ssize_t soft_connect_store(struct device *dev,
1548 struct device_attribute *attr, const char *buf, size_t n)
1549 {
1550 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1551 ssize_t ret;
1552
1553 mutex_lock(&udc_lock);
1554 if (!udc->driver) {
1555 dev_err(dev, "soft-connect without a gadget driver\n");
1556 ret = -EOPNOTSUPP;
1557 goto out;
1558 }
1559
1560 if (sysfs_streq(buf, "connect")) {
1561 usb_gadget_udc_start(udc);
1562 usb_gadget_connect(udc->gadget);
1563 } else if (sysfs_streq(buf, "disconnect")) {
1564 usb_gadget_disconnect(udc->gadget);
1565 usb_gadget_udc_stop(udc);
1566 } else {
1567 dev_err(dev, "unsupported command '%s'\n", buf);
1568 ret = -EINVAL;
1569 goto out;
1570 }
1571
1572 ret = n;
1573 out:
1574 mutex_unlock(&udc_lock);
1575 return ret;
1576 }
1577 static DEVICE_ATTR_WO(soft_connect);
1578
state_show(struct device * dev,struct device_attribute * attr,char * buf)1579 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1580 char *buf)
1581 {
1582 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1583 struct usb_gadget *gadget = udc->gadget;
1584
1585 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1586 }
1587 static DEVICE_ATTR_RO(state);
1588
function_show(struct device * dev,struct device_attribute * attr,char * buf)1589 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1590 char *buf)
1591 {
1592 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1593 struct usb_gadget_driver *drv = udc->driver;
1594
1595 if (!drv || !drv->function)
1596 return 0;
1597 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1598 }
1599 static DEVICE_ATTR_RO(function);
1600
1601 #define USB_UDC_SPEED_ATTR(name, param) \
1602 ssize_t name##_show(struct device *dev, \
1603 struct device_attribute *attr, char *buf) \
1604 { \
1605 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1606 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1607 usb_speed_string(udc->gadget->param)); \
1608 } \
1609 static DEVICE_ATTR_RO(name)
1610
1611 static USB_UDC_SPEED_ATTR(current_speed, speed);
1612 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1613
1614 #define USB_UDC_ATTR(name) \
1615 ssize_t name##_show(struct device *dev, \
1616 struct device_attribute *attr, char *buf) \
1617 { \
1618 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1619 struct usb_gadget *gadget = udc->gadget; \
1620 \
1621 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1622 } \
1623 static DEVICE_ATTR_RO(name)
1624
1625 static USB_UDC_ATTR(is_otg);
1626 static USB_UDC_ATTR(is_a_peripheral);
1627 static USB_UDC_ATTR(b_hnp_enable);
1628 static USB_UDC_ATTR(a_hnp_support);
1629 static USB_UDC_ATTR(a_alt_hnp_support);
1630 static USB_UDC_ATTR(is_selfpowered);
1631
1632 static struct attribute *usb_udc_attrs[] = {
1633 &dev_attr_srp.attr,
1634 &dev_attr_soft_connect.attr,
1635 &dev_attr_state.attr,
1636 &dev_attr_function.attr,
1637 &dev_attr_current_speed.attr,
1638 &dev_attr_maximum_speed.attr,
1639
1640 &dev_attr_is_otg.attr,
1641 &dev_attr_is_a_peripheral.attr,
1642 &dev_attr_b_hnp_enable.attr,
1643 &dev_attr_a_hnp_support.attr,
1644 &dev_attr_a_alt_hnp_support.attr,
1645 &dev_attr_is_selfpowered.attr,
1646 NULL,
1647 };
1648
1649 static const struct attribute_group usb_udc_attr_group = {
1650 .attrs = usb_udc_attrs,
1651 };
1652
1653 static const struct attribute_group *usb_udc_attr_groups[] = {
1654 &usb_udc_attr_group,
1655 NULL,
1656 };
1657
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1658 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1659 {
1660 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1661 int ret;
1662
1663 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1664 if (ret) {
1665 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1666 return ret;
1667 }
1668
1669 if (udc->driver) {
1670 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1671 udc->driver->function);
1672 if (ret) {
1673 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1674 return ret;
1675 }
1676 }
1677
1678 return 0;
1679 }
1680
usb_udc_init(void)1681 static int __init usb_udc_init(void)
1682 {
1683 udc_class = class_create(THIS_MODULE, "udc");
1684 if (IS_ERR(udc_class)) {
1685 pr_err("failed to create udc class --> %ld\n",
1686 PTR_ERR(udc_class));
1687 return PTR_ERR(udc_class);
1688 }
1689
1690 udc_class->dev_uevent = usb_udc_uevent;
1691 return 0;
1692 }
1693 subsys_initcall(usb_udc_init);
1694
usb_udc_exit(void)1695 static void __exit usb_udc_exit(void)
1696 {
1697 class_destroy(udc_class);
1698 }
1699 module_exit(usb_udc_exit);
1700
1701 MODULE_DESCRIPTION("UDC Framework");
1702 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1703 MODULE_LICENSE("GPL v2");
1704