• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/elf.h>
45 
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50 
51 #include <trace/events/task.h>
52 #include "internal.h"
53 
54 #include <trace/events/sched.h>
55 
56 static bool dump_vma_snapshot(struct coredump_params *cprm);
57 static void free_vma_snapshot(struct coredump_params *cprm);
58 
59 int core_uses_pid;
60 unsigned int core_pipe_limit;
61 char core_pattern[CORENAME_MAX_SIZE] = "core";
62 static int core_name_size = CORENAME_MAX_SIZE;
63 
64 struct core_name {
65 	char *corename;
66 	int used, size;
67 };
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
expand_corename(struct core_name * cn,int size)71 static int expand_corename(struct core_name *cn, int size)
72 {
73 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
74 
75 	if (!corename)
76 		return -ENOMEM;
77 
78 	if (size > core_name_size) /* racy but harmless */
79 		core_name_size = size;
80 
81 	cn->size = ksize(corename);
82 	cn->corename = corename;
83 	return 0;
84 }
85 
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)86 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
87 				     va_list arg)
88 {
89 	int free, need;
90 	va_list arg_copy;
91 
92 again:
93 	free = cn->size - cn->used;
94 
95 	va_copy(arg_copy, arg);
96 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
97 	va_end(arg_copy);
98 
99 	if (need < free) {
100 		cn->used += need;
101 		return 0;
102 	}
103 
104 	if (!expand_corename(cn, cn->size + need - free + 1))
105 		goto again;
106 
107 	return -ENOMEM;
108 }
109 
cn_printf(struct core_name * cn,const char * fmt,...)110 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
111 {
112 	va_list arg;
113 	int ret;
114 
115 	va_start(arg, fmt);
116 	ret = cn_vprintf(cn, fmt, arg);
117 	va_end(arg);
118 
119 	return ret;
120 }
121 
122 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)123 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
124 {
125 	int cur = cn->used;
126 	va_list arg;
127 	int ret;
128 
129 	va_start(arg, fmt);
130 	ret = cn_vprintf(cn, fmt, arg);
131 	va_end(arg);
132 
133 	if (ret == 0) {
134 		/*
135 		 * Ensure that this coredump name component can't cause the
136 		 * resulting corefile path to consist of a ".." or ".".
137 		 */
138 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
139 				(cn->used - cur == 2 && cn->corename[cur] == '.'
140 				&& cn->corename[cur+1] == '.'))
141 			cn->corename[cur] = '!';
142 
143 		/*
144 		 * Empty names are fishy and could be used to create a "//" in a
145 		 * corefile name, causing the coredump to happen one directory
146 		 * level too high. Enforce that all components of the core
147 		 * pattern are at least one character long.
148 		 */
149 		if (cn->used == cur)
150 			ret = cn_printf(cn, "!");
151 	}
152 
153 	for (; cur < cn->used; ++cur) {
154 		if (cn->corename[cur] == '/')
155 			cn->corename[cur] = '!';
156 	}
157 	return ret;
158 }
159 
cn_print_exe_file(struct core_name * cn,bool name_only)160 static int cn_print_exe_file(struct core_name *cn, bool name_only)
161 {
162 	struct file *exe_file;
163 	char *pathbuf, *path, *ptr;
164 	int ret;
165 
166 	exe_file = get_mm_exe_file(current->mm);
167 	if (!exe_file)
168 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
169 
170 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
171 	if (!pathbuf) {
172 		ret = -ENOMEM;
173 		goto put_exe_file;
174 	}
175 
176 	path = file_path(exe_file, pathbuf, PATH_MAX);
177 	if (IS_ERR(path)) {
178 		ret = PTR_ERR(path);
179 		goto free_buf;
180 	}
181 
182 	if (name_only) {
183 		ptr = strrchr(path, '/');
184 		if (ptr)
185 			path = ptr + 1;
186 	}
187 	ret = cn_esc_printf(cn, "%s", path);
188 
189 free_buf:
190 	kfree(pathbuf);
191 put_exe_file:
192 	fput(exe_file);
193 	return ret;
194 }
195 
196 /* format_corename will inspect the pattern parameter, and output a
197  * name into corename, which must have space for at least
198  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
199  */
format_corename(struct core_name * cn,struct coredump_params * cprm,size_t ** argv,int * argc)200 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
201 			   size_t **argv, int *argc)
202 {
203 	const struct cred *cred = current_cred();
204 	const char *pat_ptr = core_pattern;
205 	int ispipe = (*pat_ptr == '|');
206 	bool was_space = false;
207 	int pid_in_pattern = 0;
208 	int err = 0;
209 
210 	cn->used = 0;
211 	cn->corename = NULL;
212 	if (expand_corename(cn, core_name_size))
213 		return -ENOMEM;
214 	cn->corename[0] = '\0';
215 
216 	if (ispipe) {
217 		int argvs = sizeof(core_pattern) / 2;
218 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
219 		if (!(*argv))
220 			return -ENOMEM;
221 		(*argv)[(*argc)++] = 0;
222 		++pat_ptr;
223 		if (!(*pat_ptr))
224 			return -ENOMEM;
225 	}
226 
227 	/* Repeat as long as we have more pattern to process and more output
228 	   space */
229 	while (*pat_ptr) {
230 		/*
231 		 * Split on spaces before doing template expansion so that
232 		 * %e and %E don't get split if they have spaces in them
233 		 */
234 		if (ispipe) {
235 			if (isspace(*pat_ptr)) {
236 				if (cn->used != 0)
237 					was_space = true;
238 				pat_ptr++;
239 				continue;
240 			} else if (was_space) {
241 				was_space = false;
242 				err = cn_printf(cn, "%c", '\0');
243 				if (err)
244 					return err;
245 				(*argv)[(*argc)++] = cn->used;
246 			}
247 		}
248 		if (*pat_ptr != '%') {
249 			err = cn_printf(cn, "%c", *pat_ptr++);
250 		} else {
251 			switch (*++pat_ptr) {
252 			/* single % at the end, drop that */
253 			case 0:
254 				goto out;
255 			/* Double percent, output one percent */
256 			case '%':
257 				err = cn_printf(cn, "%c", '%');
258 				break;
259 			/* pid */
260 			case 'p':
261 				pid_in_pattern = 1;
262 				err = cn_printf(cn, "%d",
263 					      task_tgid_vnr(current));
264 				break;
265 			/* global pid */
266 			case 'P':
267 				err = cn_printf(cn, "%d",
268 					      task_tgid_nr(current));
269 				break;
270 			case 'i':
271 				err = cn_printf(cn, "%d",
272 					      task_pid_vnr(current));
273 				break;
274 			case 'I':
275 				err = cn_printf(cn, "%d",
276 					      task_pid_nr(current));
277 				break;
278 			/* uid */
279 			case 'u':
280 				err = cn_printf(cn, "%u",
281 						from_kuid(&init_user_ns,
282 							  cred->uid));
283 				break;
284 			/* gid */
285 			case 'g':
286 				err = cn_printf(cn, "%u",
287 						from_kgid(&init_user_ns,
288 							  cred->gid));
289 				break;
290 			case 'd':
291 				err = cn_printf(cn, "%d",
292 					__get_dumpable(cprm->mm_flags));
293 				break;
294 			/* signal that caused the coredump */
295 			case 's':
296 				err = cn_printf(cn, "%d",
297 						cprm->siginfo->si_signo);
298 				break;
299 			/* UNIX time of coredump */
300 			case 't': {
301 				time64_t time;
302 
303 				time = ktime_get_real_seconds();
304 				err = cn_printf(cn, "%lld", time);
305 				break;
306 			}
307 			/* hostname */
308 			case 'h':
309 				down_read(&uts_sem);
310 				err = cn_esc_printf(cn, "%s",
311 					      utsname()->nodename);
312 				up_read(&uts_sem);
313 				break;
314 			/* executable, could be changed by prctl PR_SET_NAME etc */
315 			case 'e':
316 				err = cn_esc_printf(cn, "%s", current->comm);
317 				break;
318 			/* file name of executable */
319 			case 'f':
320 				err = cn_print_exe_file(cn, true);
321 				break;
322 			case 'E':
323 				err = cn_print_exe_file(cn, false);
324 				break;
325 			/* core limit size */
326 			case 'c':
327 				err = cn_printf(cn, "%lu",
328 					      rlimit(RLIMIT_CORE));
329 				break;
330 			default:
331 				break;
332 			}
333 			++pat_ptr;
334 		}
335 
336 		if (err)
337 			return err;
338 	}
339 
340 out:
341 	/* Backward compatibility with core_uses_pid:
342 	 *
343 	 * If core_pattern does not include a %p (as is the default)
344 	 * and core_uses_pid is set, then .%pid will be appended to
345 	 * the filename. Do not do this for piped commands. */
346 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
347 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
348 		if (err)
349 			return err;
350 	}
351 	return ispipe;
352 }
353 
zap_process(struct task_struct * start,int exit_code,int flags)354 static int zap_process(struct task_struct *start, int exit_code, int flags)
355 {
356 	struct task_struct *t;
357 	int nr = 0;
358 
359 	/* ignore all signals except SIGKILL, see prepare_signal() */
360 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
361 	start->signal->group_exit_code = exit_code;
362 	start->signal->group_stop_count = 0;
363 
364 	for_each_thread(start, t) {
365 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
366 		if (t != current && t->mm) {
367 			sigaddset(&t->pending.signal, SIGKILL);
368 			signal_wake_up(t, 1);
369 			nr++;
370 		}
371 	}
372 
373 	return nr;
374 }
375 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)376 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
377 			struct core_state *core_state, int exit_code)
378 {
379 	struct task_struct *g, *p;
380 	unsigned long flags;
381 	int nr = -EAGAIN;
382 
383 	spin_lock_irq(&tsk->sighand->siglock);
384 	if (!signal_group_exit(tsk->signal)) {
385 		mm->core_state = core_state;
386 		tsk->signal->group_exit_task = tsk;
387 		nr = zap_process(tsk, exit_code, 0);
388 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
389 	}
390 	spin_unlock_irq(&tsk->sighand->siglock);
391 	if (unlikely(nr < 0))
392 		return nr;
393 
394 	tsk->flags |= PF_DUMPCORE;
395 	if (atomic_read(&mm->mm_users) == nr + 1)
396 		goto done;
397 	/*
398 	 * We should find and kill all tasks which use this mm, and we should
399 	 * count them correctly into ->nr_threads. We don't take tasklist
400 	 * lock, but this is safe wrt:
401 	 *
402 	 * fork:
403 	 *	None of sub-threads can fork after zap_process(leader). All
404 	 *	processes which were created before this point should be
405 	 *	visible to zap_threads() because copy_process() adds the new
406 	 *	process to the tail of init_task.tasks list, and lock/unlock
407 	 *	of ->siglock provides a memory barrier.
408 	 *
409 	 * do_exit:
410 	 *	The caller holds mm->mmap_lock. This means that the task which
411 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
412 	 *	its ->mm.
413 	 *
414 	 * de_thread:
415 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
416 	 *	we must see either old or new leader, this does not matter.
417 	 *	However, it can change p->sighand, so lock_task_sighand(p)
418 	 *	must be used. Since p->mm != NULL and we hold ->mmap_lock
419 	 *	it can't fail.
420 	 *
421 	 *	Note also that "g" can be the old leader with ->mm == NULL
422 	 *	and already unhashed and thus removed from ->thread_group.
423 	 *	This is OK, __unhash_process()->list_del_rcu() does not
424 	 *	clear the ->next pointer, we will find the new leader via
425 	 *	next_thread().
426 	 */
427 	rcu_read_lock();
428 	for_each_process(g) {
429 		if (g == tsk->group_leader)
430 			continue;
431 		if (g->flags & PF_KTHREAD)
432 			continue;
433 
434 		for_each_thread(g, p) {
435 			if (unlikely(!p->mm))
436 				continue;
437 			if (unlikely(p->mm == mm)) {
438 				lock_task_sighand(p, &flags);
439 				nr += zap_process(p, exit_code,
440 							SIGNAL_GROUP_EXIT);
441 				unlock_task_sighand(p, &flags);
442 			}
443 			break;
444 		}
445 	}
446 	rcu_read_unlock();
447 done:
448 	atomic_set(&core_state->nr_threads, nr);
449 	return nr;
450 }
451 
coredump_wait(int exit_code,struct core_state * core_state)452 static int coredump_wait(int exit_code, struct core_state *core_state)
453 {
454 	struct task_struct *tsk = current;
455 	struct mm_struct *mm = tsk->mm;
456 	int core_waiters = -EBUSY;
457 
458 	init_completion(&core_state->startup);
459 	core_state->dumper.task = tsk;
460 	core_state->dumper.next = NULL;
461 
462 	if (mmap_write_lock_killable(mm))
463 		return -EINTR;
464 
465 	if (!mm->core_state)
466 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
467 	mmap_write_unlock(mm);
468 
469 	if (core_waiters > 0) {
470 		struct core_thread *ptr;
471 
472 		freezer_do_not_count();
473 		wait_for_completion(&core_state->startup);
474 		freezer_count();
475 		/*
476 		 * Wait for all the threads to become inactive, so that
477 		 * all the thread context (extended register state, like
478 		 * fpu etc) gets copied to the memory.
479 		 */
480 		ptr = core_state->dumper.next;
481 		while (ptr != NULL) {
482 			wait_task_inactive(ptr->task, 0);
483 			ptr = ptr->next;
484 		}
485 	}
486 
487 	return core_waiters;
488 }
489 
coredump_finish(struct mm_struct * mm,bool core_dumped)490 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
491 {
492 	struct core_thread *curr, *next;
493 	struct task_struct *task;
494 
495 	spin_lock_irq(&current->sighand->siglock);
496 	if (core_dumped && !__fatal_signal_pending(current))
497 		current->signal->group_exit_code |= 0x80;
498 	current->signal->group_exit_task = NULL;
499 	current->signal->flags = SIGNAL_GROUP_EXIT;
500 	spin_unlock_irq(&current->sighand->siglock);
501 
502 	next = mm->core_state->dumper.next;
503 	while ((curr = next) != NULL) {
504 		next = curr->next;
505 		task = curr->task;
506 		/*
507 		 * see exit_mm(), curr->task must not see
508 		 * ->task == NULL before we read ->next.
509 		 */
510 		smp_mb();
511 		curr->task = NULL;
512 		wake_up_process(task);
513 	}
514 
515 	mm->core_state = NULL;
516 }
517 
dump_interrupted(void)518 static bool dump_interrupted(void)
519 {
520 	/*
521 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
522 	 * can do try_to_freeze() and check __fatal_signal_pending(),
523 	 * but then we need to teach dump_write() to restart and clear
524 	 * TIF_SIGPENDING.
525 	 */
526 	return fatal_signal_pending(current) || freezing(current);
527 }
528 
wait_for_dump_helpers(struct file * file)529 static void wait_for_dump_helpers(struct file *file)
530 {
531 	struct pipe_inode_info *pipe = file->private_data;
532 
533 	pipe_lock(pipe);
534 	pipe->readers++;
535 	pipe->writers--;
536 	wake_up_interruptible_sync(&pipe->rd_wait);
537 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
538 	pipe_unlock(pipe);
539 
540 	/*
541 	 * We actually want wait_event_freezable() but then we need
542 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
543 	 */
544 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
545 
546 	pipe_lock(pipe);
547 	pipe->readers--;
548 	pipe->writers++;
549 	pipe_unlock(pipe);
550 }
551 
552 /*
553  * umh_pipe_setup
554  * helper function to customize the process used
555  * to collect the core in userspace.  Specifically
556  * it sets up a pipe and installs it as fd 0 (stdin)
557  * for the process.  Returns 0 on success, or
558  * PTR_ERR on failure.
559  * Note that it also sets the core limit to 1.  This
560  * is a special value that we use to trap recursive
561  * core dumps
562  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)563 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
564 {
565 	struct file *files[2];
566 	struct coredump_params *cp = (struct coredump_params *)info->data;
567 	int err = create_pipe_files(files, 0);
568 	if (err)
569 		return err;
570 
571 	cp->file = files[1];
572 
573 	err = replace_fd(0, files[0], 0);
574 	fput(files[0]);
575 	/* and disallow core files too */
576 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
577 
578 	return err;
579 }
580 
do_coredump(const kernel_siginfo_t * siginfo)581 void do_coredump(const kernel_siginfo_t *siginfo)
582 {
583 	struct core_state core_state;
584 	struct core_name cn;
585 	struct mm_struct *mm = current->mm;
586 	struct linux_binfmt * binfmt;
587 	const struct cred *old_cred;
588 	struct cred *cred;
589 	int retval = 0;
590 	int ispipe;
591 	size_t *argv = NULL;
592 	int argc = 0;
593 	struct files_struct *displaced;
594 	/* require nonrelative corefile path and be extra careful */
595 	bool need_suid_safe = false;
596 	bool core_dumped = false;
597 	static atomic_t core_dump_count = ATOMIC_INIT(0);
598 	struct coredump_params cprm = {
599 		.siginfo = siginfo,
600 		.regs = signal_pt_regs(),
601 		.limit = rlimit(RLIMIT_CORE),
602 		/*
603 		 * We must use the same mm->flags while dumping core to avoid
604 		 * inconsistency of bit flags, since this flag is not protected
605 		 * by any locks.
606 		 */
607 		.mm_flags = mm->flags,
608 		.vma_meta = NULL,
609 	};
610 
611 	audit_core_dumps(siginfo->si_signo);
612 
613 	binfmt = mm->binfmt;
614 	if (!binfmt || !binfmt->core_dump)
615 		goto fail;
616 	if (!__get_dumpable(cprm.mm_flags))
617 		goto fail;
618 
619 	cred = prepare_creds();
620 	if (!cred)
621 		goto fail;
622 	/*
623 	 * We cannot trust fsuid as being the "true" uid of the process
624 	 * nor do we know its entire history. We only know it was tainted
625 	 * so we dump it as root in mode 2, and only into a controlled
626 	 * environment (pipe handler or fully qualified path).
627 	 */
628 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
629 		/* Setuid core dump mode */
630 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
631 		need_suid_safe = true;
632 	}
633 
634 	retval = coredump_wait(siginfo->si_signo, &core_state);
635 	if (retval < 0)
636 		goto fail_creds;
637 
638 	old_cred = override_creds(cred);
639 
640 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
641 
642 	if (ispipe) {
643 		int argi;
644 		int dump_count;
645 		char **helper_argv;
646 		struct subprocess_info *sub_info;
647 
648 		if (ispipe < 0) {
649 			printk(KERN_WARNING "format_corename failed\n");
650 			printk(KERN_WARNING "Aborting core\n");
651 			goto fail_unlock;
652 		}
653 
654 		if (cprm.limit == 1) {
655 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
656 			 *
657 			 * Normally core limits are irrelevant to pipes, since
658 			 * we're not writing to the file system, but we use
659 			 * cprm.limit of 1 here as a special value, this is a
660 			 * consistent way to catch recursive crashes.
661 			 * We can still crash if the core_pattern binary sets
662 			 * RLIM_CORE = !1, but it runs as root, and can do
663 			 * lots of stupid things.
664 			 *
665 			 * Note that we use task_tgid_vnr here to grab the pid
666 			 * of the process group leader.  That way we get the
667 			 * right pid if a thread in a multi-threaded
668 			 * core_pattern process dies.
669 			 */
670 			printk(KERN_WARNING
671 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
672 				task_tgid_vnr(current), current->comm);
673 			printk(KERN_WARNING "Aborting core\n");
674 			goto fail_unlock;
675 		}
676 		cprm.limit = RLIM_INFINITY;
677 
678 		dump_count = atomic_inc_return(&core_dump_count);
679 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
680 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
681 			       task_tgid_vnr(current), current->comm);
682 			printk(KERN_WARNING "Skipping core dump\n");
683 			goto fail_dropcount;
684 		}
685 
686 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
687 					    GFP_KERNEL);
688 		if (!helper_argv) {
689 			printk(KERN_WARNING "%s failed to allocate memory\n",
690 			       __func__);
691 			goto fail_dropcount;
692 		}
693 		for (argi = 0; argi < argc; argi++)
694 			helper_argv[argi] = cn.corename + argv[argi];
695 		helper_argv[argi] = NULL;
696 
697 		retval = -ENOMEM;
698 		sub_info = call_usermodehelper_setup(helper_argv[0],
699 						helper_argv, NULL, GFP_KERNEL,
700 						umh_pipe_setup, NULL, &cprm);
701 		if (sub_info)
702 			retval = call_usermodehelper_exec(sub_info,
703 							  UMH_WAIT_EXEC);
704 
705 		kfree(helper_argv);
706 		if (retval) {
707 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
708 			       cn.corename);
709 			goto close_fail;
710 		}
711 	} else {
712 		struct inode *inode;
713 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
714 				 O_LARGEFILE | O_EXCL;
715 
716 		if (cprm.limit < binfmt->min_coredump)
717 			goto fail_unlock;
718 
719 		if (need_suid_safe && cn.corename[0] != '/') {
720 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
721 				"to fully qualified path!\n",
722 				task_tgid_vnr(current), current->comm);
723 			printk(KERN_WARNING "Skipping core dump\n");
724 			goto fail_unlock;
725 		}
726 
727 		/*
728 		 * Unlink the file if it exists unless this is a SUID
729 		 * binary - in that case, we're running around with root
730 		 * privs and don't want to unlink another user's coredump.
731 		 */
732 		if (!need_suid_safe) {
733 			/*
734 			 * If it doesn't exist, that's fine. If there's some
735 			 * other problem, we'll catch it at the filp_open().
736 			 */
737 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
738 		}
739 
740 		/*
741 		 * There is a race between unlinking and creating the
742 		 * file, but if that causes an EEXIST here, that's
743 		 * fine - another process raced with us while creating
744 		 * the corefile, and the other process won. To userspace,
745 		 * what matters is that at least one of the two processes
746 		 * writes its coredump successfully, not which one.
747 		 */
748 		if (need_suid_safe) {
749 			/*
750 			 * Using user namespaces, normal user tasks can change
751 			 * their current->fs->root to point to arbitrary
752 			 * directories. Since the intention of the "only dump
753 			 * with a fully qualified path" rule is to control where
754 			 * coredumps may be placed using root privileges,
755 			 * current->fs->root must not be used. Instead, use the
756 			 * root directory of init_task.
757 			 */
758 			struct path root;
759 
760 			task_lock(&init_task);
761 			get_fs_root(init_task.fs, &root);
762 			task_unlock(&init_task);
763 			cprm.file = file_open_root(&root, cn.corename,
764 						   open_flags, 0600);
765 			path_put(&root);
766 		} else {
767 			cprm.file = filp_open(cn.corename, open_flags, 0600);
768 		}
769 		if (IS_ERR(cprm.file))
770 			goto fail_unlock;
771 
772 		inode = file_inode(cprm.file);
773 		if (inode->i_nlink > 1)
774 			goto close_fail;
775 		if (d_unhashed(cprm.file->f_path.dentry))
776 			goto close_fail;
777 		/*
778 		 * AK: actually i see no reason to not allow this for named
779 		 * pipes etc, but keep the previous behaviour for now.
780 		 */
781 		if (!S_ISREG(inode->i_mode))
782 			goto close_fail;
783 		/*
784 		 * Don't dump core if the filesystem changed owner or mode
785 		 * of the file during file creation. This is an issue when
786 		 * a process dumps core while its cwd is e.g. on a vfat
787 		 * filesystem.
788 		 */
789 		if (!uid_eq(inode->i_uid, current_fsuid()))
790 			goto close_fail;
791 		if ((inode->i_mode & 0677) != 0600)
792 			goto close_fail;
793 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
794 			goto close_fail;
795 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
796 			goto close_fail;
797 	}
798 
799 	/* get us an unshared descriptor table; almost always a no-op */
800 	retval = unshare_files(&displaced);
801 	if (retval)
802 		goto close_fail;
803 	if (displaced)
804 		put_files_struct(displaced);
805 	if (!dump_interrupted()) {
806 		/*
807 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
808 		 * have this set to NULL.
809 		 */
810 		if (!cprm.file) {
811 			pr_info("Core dump to |%s disabled\n", cn.corename);
812 			goto close_fail;
813 		}
814 		if (!dump_vma_snapshot(&cprm))
815 			goto close_fail;
816 
817 		file_start_write(cprm.file);
818 		core_dumped = binfmt->core_dump(&cprm);
819 		file_end_write(cprm.file);
820 		free_vma_snapshot(&cprm);
821 	}
822 	if (ispipe && core_pipe_limit)
823 		wait_for_dump_helpers(cprm.file);
824 close_fail:
825 	if (cprm.file)
826 		filp_close(cprm.file, NULL);
827 fail_dropcount:
828 	if (ispipe)
829 		atomic_dec(&core_dump_count);
830 fail_unlock:
831 	kfree(argv);
832 	kfree(cn.corename);
833 	coredump_finish(mm, core_dumped);
834 	revert_creds(old_cred);
835 fail_creds:
836 	put_cred(cred);
837 fail:
838 	return;
839 }
840 
841 /*
842  * Core dumping helper functions.  These are the only things you should
843  * do on a core-file: use only these functions to write out all the
844  * necessary info.
845  */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)846 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
847 {
848 	struct file *file = cprm->file;
849 	loff_t pos = file->f_pos;
850 	ssize_t n;
851 	if (cprm->written + nr > cprm->limit)
852 		return 0;
853 
854 
855 	if (dump_interrupted())
856 		return 0;
857 	n = __kernel_write(file, addr, nr, &pos);
858 	if (n != nr)
859 		return 0;
860 	file->f_pos = pos;
861 	cprm->written += n;
862 	cprm->pos += n;
863 
864 	return 1;
865 }
866 EXPORT_SYMBOL(dump_emit);
867 
dump_skip(struct coredump_params * cprm,size_t nr)868 int dump_skip(struct coredump_params *cprm, size_t nr)
869 {
870 	static char zeroes[PAGE_SIZE];
871 	struct file *file = cprm->file;
872 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
873 		if (dump_interrupted() ||
874 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
875 			return 0;
876 		cprm->pos += nr;
877 		return 1;
878 	} else {
879 		while (nr > PAGE_SIZE) {
880 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
881 				return 0;
882 			nr -= PAGE_SIZE;
883 		}
884 		return dump_emit(cprm, zeroes, nr);
885 	}
886 }
887 EXPORT_SYMBOL(dump_skip);
888 
889 #ifdef CONFIG_ELF_CORE
dump_user_range(struct coredump_params * cprm,unsigned long start,unsigned long len)890 int dump_user_range(struct coredump_params *cprm, unsigned long start,
891 		    unsigned long len)
892 {
893 	unsigned long addr;
894 
895 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
896 		struct page *page;
897 		int stop;
898 
899 		/*
900 		 * To avoid having to allocate page tables for virtual address
901 		 * ranges that have never been used yet, and also to make it
902 		 * easy to generate sparse core files, use a helper that returns
903 		 * NULL when encountering an empty page table entry that would
904 		 * otherwise have been filled with the zero page.
905 		 */
906 		page = get_dump_page(addr);
907 		if (page) {
908 			void *kaddr = kmap(page);
909 
910 			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
911 			kunmap(page);
912 			put_page(page);
913 		} else {
914 			stop = !dump_skip(cprm, PAGE_SIZE);
915 		}
916 		if (stop)
917 			return 0;
918 	}
919 	return 1;
920 }
921 #endif
922 
dump_align(struct coredump_params * cprm,int align)923 int dump_align(struct coredump_params *cprm, int align)
924 {
925 	unsigned mod = cprm->pos & (align - 1);
926 	if (align & (align - 1))
927 		return 0;
928 	return mod ? dump_skip(cprm, align - mod) : 1;
929 }
930 EXPORT_SYMBOL(dump_align);
931 
932 /*
933  * Ensures that file size is big enough to contain the current file
934  * postion. This prevents gdb from complaining about a truncated file
935  * if the last "write" to the file was dump_skip.
936  */
dump_truncate(struct coredump_params * cprm)937 void dump_truncate(struct coredump_params *cprm)
938 {
939 	struct file *file = cprm->file;
940 	loff_t offset;
941 
942 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
943 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
944 		if (i_size_read(file->f_mapping->host) < offset)
945 			do_truncate(file->f_path.dentry, offset, 0, file);
946 	}
947 }
948 EXPORT_SYMBOL(dump_truncate);
949 
950 /*
951  * The purpose of always_dump_vma() is to make sure that special kernel mappings
952  * that are useful for post-mortem analysis are included in every core dump.
953  * In that way we ensure that the core dump is fully interpretable later
954  * without matching up the same kernel and hardware config to see what PC values
955  * meant. These special mappings include - vDSO, vsyscall, and other
956  * architecture specific mappings
957  */
always_dump_vma(struct vm_area_struct * vma)958 static bool always_dump_vma(struct vm_area_struct *vma)
959 {
960 	/* Any vsyscall mappings? */
961 	if (vma == get_gate_vma(vma->vm_mm))
962 		return true;
963 
964 	/*
965 	 * Assume that all vmas with a .name op should always be dumped.
966 	 * If this changes, a new vm_ops field can easily be added.
967 	 */
968 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
969 		return true;
970 
971 	/*
972 	 * arch_vma_name() returns non-NULL for special architecture mappings,
973 	 * such as vDSO sections.
974 	 */
975 	if (arch_vma_name(vma))
976 		return true;
977 
978 	return false;
979 }
980 
981 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
982 
983 /*
984  * Decide how much of @vma's contents should be included in a core dump.
985  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)986 static unsigned long vma_dump_size(struct vm_area_struct *vma,
987 				   unsigned long mm_flags)
988 {
989 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
990 
991 	/* always dump the vdso and vsyscall sections */
992 	if (always_dump_vma(vma))
993 		goto whole;
994 
995 	if (vma->vm_flags & VM_DONTDUMP)
996 		return 0;
997 
998 	/* support for DAX */
999 	if (vma_is_dax(vma)) {
1000 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1001 			goto whole;
1002 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1003 			goto whole;
1004 		return 0;
1005 	}
1006 
1007 	/* Hugetlb memory check */
1008 	if (is_vm_hugetlb_page(vma)) {
1009 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1010 			goto whole;
1011 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1012 			goto whole;
1013 		return 0;
1014 	}
1015 
1016 	/* Do not dump I/O mapped devices or special mappings */
1017 	if (vma->vm_flags & VM_IO)
1018 		return 0;
1019 
1020 	/* By default, dump shared memory if mapped from an anonymous file. */
1021 	if (vma->vm_flags & VM_SHARED) {
1022 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1023 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1024 			goto whole;
1025 		return 0;
1026 	}
1027 
1028 	/* Dump segments that have been written to.  */
1029 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1030 		goto whole;
1031 	if (vma->vm_file == NULL)
1032 		return 0;
1033 
1034 	if (FILTER(MAPPED_PRIVATE))
1035 		goto whole;
1036 
1037 	/*
1038 	 * If this is the beginning of an executable file mapping,
1039 	 * dump the first page to aid in determining what was mapped here.
1040 	 */
1041 	if (FILTER(ELF_HEADERS) &&
1042 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1043 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1044 			return PAGE_SIZE;
1045 
1046 		/*
1047 		 * ELF libraries aren't always executable.
1048 		 * We'll want to check whether the mapping starts with the ELF
1049 		 * magic, but not now - we're holding the mmap lock,
1050 		 * so copy_from_user() doesn't work here.
1051 		 * Use a placeholder instead, and fix it up later in
1052 		 * dump_vma_snapshot().
1053 		 */
1054 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1055 	}
1056 
1057 #undef	FILTER
1058 
1059 	return 0;
1060 
1061 whole:
1062 	return vma->vm_end - vma->vm_start;
1063 }
1064 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)1065 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1066 					struct vm_area_struct *gate_vma)
1067 {
1068 	struct vm_area_struct *ret = tsk->mm->mmap;
1069 
1070 	if (ret)
1071 		return ret;
1072 	return gate_vma;
1073 }
1074 
1075 /*
1076  * Helper function for iterating across a vma list.  It ensures that the caller
1077  * will visit `gate_vma' prior to terminating the search.
1078  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)1079 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1080 				       struct vm_area_struct *gate_vma)
1081 {
1082 	struct vm_area_struct *ret;
1083 
1084 	ret = this_vma->vm_next;
1085 	if (ret)
1086 		return ret;
1087 	if (this_vma == gate_vma)
1088 		return NULL;
1089 	return gate_vma;
1090 }
1091 
free_vma_snapshot(struct coredump_params * cprm)1092 static void free_vma_snapshot(struct coredump_params *cprm)
1093 {
1094 	if (cprm->vma_meta) {
1095 		int i;
1096 		for (i = 0; i < cprm->vma_count; i++) {
1097 			struct file *file = cprm->vma_meta[i].file;
1098 			if (file)
1099 				fput(file);
1100 		}
1101 		kvfree(cprm->vma_meta);
1102 		cprm->vma_meta = NULL;
1103 	}
1104 }
1105 
1106 /*
1107  * Under the mmap_lock, take a snapshot of relevant information about the task's
1108  * VMAs.
1109  */
dump_vma_snapshot(struct coredump_params * cprm)1110 static bool dump_vma_snapshot(struct coredump_params *cprm)
1111 {
1112 	struct vm_area_struct *vma, *gate_vma;
1113 	struct mm_struct *mm = current->mm;
1114 	int i;
1115 
1116 	/*
1117 	 * Once the stack expansion code is fixed to not change VMA bounds
1118 	 * under mmap_lock in read mode, this can be changed to take the
1119 	 * mmap_lock in read mode.
1120 	 */
1121 	if (mmap_write_lock_killable(mm))
1122 		return false;
1123 
1124 	cprm->vma_data_size = 0;
1125 	gate_vma = get_gate_vma(mm);
1126 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1127 
1128 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1129 	if (!cprm->vma_meta) {
1130 		mmap_write_unlock(mm);
1131 		return false;
1132 	}
1133 
1134 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1135 			vma = next_vma(vma, gate_vma), i++) {
1136 		struct core_vma_metadata *m = cprm->vma_meta + i;
1137 
1138 		m->start = vma->vm_start;
1139 		m->end = vma->vm_end;
1140 		m->flags = vma->vm_flags;
1141 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1142 		m->pgoff = vma->vm_pgoff;
1143 
1144 		m->file = vma->vm_file;
1145 		if (m->file)
1146 			get_file(m->file);
1147 	}
1148 
1149 	mmap_write_unlock(mm);
1150 
1151 	for (i = 0; i < cprm->vma_count; i++) {
1152 		struct core_vma_metadata *m = cprm->vma_meta + i;
1153 
1154 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1155 			char elfmag[SELFMAG];
1156 
1157 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1158 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1159 				m->dump_size = 0;
1160 			} else {
1161 				m->dump_size = PAGE_SIZE;
1162 			}
1163 		}
1164 
1165 		cprm->vma_data_size += m->dump_size;
1166 	}
1167 
1168 	return true;
1169 }
1170