• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71 
72 #include <trace/events/task.h>
73 #include "internal.h"
74 
75 #include <trace/events/sched.h>
76 #include <linux/hck/lite_hck_ced.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	if (WARN_ON(!fmt->load_binary))
89 		return;
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
unregister_binfmt(struct linux_binfmt * fmt)98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
put_binfmt(struct linux_binfmt * fmt)107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
path_noexec(const struct path * path)112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
SYSCALL_DEFINE1(uselib,const char __user *,library)125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * Check do_open_execat() for an explanation.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152 	    path_noexec(&file->f_path))
153 		goto exit;
154 
155 	fsnotify_open(file);
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176   	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	int ret;
204 	unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207 	if (write) {
208 		ret = expand_downwards(bprm->vma, pos);
209 		if (ret < 0)
210 			return NULL;
211 	}
212 #endif
213 
214 	if (write)
215 		gup_flags |= FOLL_WRITE;
216 
217 	/*
218 	 * We are doing an exec().  'current' is the process
219 	 * doing the exec and bprm->mm is the new process's mm.
220 	 */
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	if (ret <= 0)
224 		return NULL;
225 
226 	if (write)
227 		acct_arg_size(bprm, vma_pages(bprm->vma));
228 
229 	return page;
230 }
231 
put_arg_page(struct page * page)232 static void put_arg_page(struct page *page)
233 {
234 	put_page(page);
235 }
236 
free_arg_pages(struct linux_binprm * bprm)237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 		struct page *page)
243 {
244 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
__bprm_mm_init(struct linux_binprm * bprm)247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249 	int err;
250 	struct vm_area_struct *vma = NULL;
251 	struct mm_struct *mm = bprm->mm;
252 
253 	bprm->vma = vma = vm_area_alloc(mm);
254 	if (!vma)
255 		return -ENOMEM;
256 	vma_set_anonymous(vma);
257 
258 	if (mmap_write_lock_killable(mm)) {
259 		err = -EINTR;
260 		goto err_free;
261 	}
262 
263 	/*
264 	 * Place the stack at the largest stack address the architecture
265 	 * supports. Later, we'll move this to an appropriate place. We don't
266 	 * use STACK_TOP because that can depend on attributes which aren't
267 	 * configured yet.
268 	 */
269 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
270 	vma->vm_end = STACK_TOP_MAX;
271 	vma->vm_start = vma->vm_end - PAGE_SIZE;
272 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
273 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	mmap_write_unlock(mm);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	mmap_write_unlock(mm);
285 err_free:
286 	bprm->vma = NULL;
287 	vm_area_free(vma);
288 	return err;
289 }
290 
valid_arg_len(struct linux_binprm * bprm,long len)291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 	return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 		int write)
304 {
305 	struct page *page;
306 
307 	page = bprm->page[pos / PAGE_SIZE];
308 	if (!page && write) {
309 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 		if (!page)
311 			return NULL;
312 		bprm->page[pos / PAGE_SIZE] = page;
313 	}
314 
315 	return page;
316 }
317 
put_arg_page(struct page * page)318 static void put_arg_page(struct page *page)
319 {
320 }
321 
free_arg_page(struct linux_binprm * bprm,int i)322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 	if (bprm->page[i]) {
325 		__free_page(bprm->page[i]);
326 		bprm->page[i] = NULL;
327 	}
328 }
329 
free_arg_pages(struct linux_binprm * bprm)330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 	int i;
333 
334 	for (i = 0; i < MAX_ARG_PAGES; i++)
335 		free_arg_page(bprm, i);
336 }
337 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 		struct page *page)
340 {
341 }
342 
__bprm_mm_init(struct linux_binprm * bprm)343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 	return 0;
347 }
348 
valid_arg_len(struct linux_binprm * bprm,long len)349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 	return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
bprm_mm_init(struct linux_binprm * bprm)362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 	int err;
365 	struct mm_struct *mm = NULL;
366 
367 	bprm->mm = mm = mm_alloc();
368 	err = -ENOMEM;
369 	if (!mm)
370 		goto err;
371 
372 	/* Save current stack limit for all calculations made during exec. */
373 	task_lock(current->group_leader);
374 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
375 	task_unlock(current->group_leader);
376 
377 	err = __bprm_mm_init(bprm);
378 	if (err)
379 		goto err;
380 
381 	return 0;
382 
383 err:
384 	if (mm) {
385 		bprm->mm = NULL;
386 		mmdrop(mm);
387 	}
388 
389 	return err;
390 }
391 
392 struct user_arg_ptr {
393 #ifdef CONFIG_COMPAT
394 	bool is_compat;
395 #endif
396 	union {
397 		const char __user *const __user *native;
398 #ifdef CONFIG_COMPAT
399 		const compat_uptr_t __user *compat;
400 #endif
401 	} ptr;
402 };
403 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
405 {
406 	const char __user *native;
407 
408 #ifdef CONFIG_COMPAT
409 	if (unlikely(argv.is_compat)) {
410 		compat_uptr_t compat;
411 
412 		if (get_user(compat, argv.ptr.compat + nr))
413 			return ERR_PTR(-EFAULT);
414 
415 		return compat_ptr(compat);
416 	}
417 #endif
418 
419 	if (get_user(native, argv.ptr.native + nr))
420 		return ERR_PTR(-EFAULT);
421 
422 	return native;
423 }
424 
425 /*
426  * count() counts the number of strings in array ARGV.
427  */
count(struct user_arg_ptr argv,int max)428 static int count(struct user_arg_ptr argv, int max)
429 {
430 	int i = 0;
431 
432 	if (argv.ptr.native != NULL) {
433 		for (;;) {
434 			const char __user *p = get_user_arg_ptr(argv, i);
435 
436 			if (!p)
437 				break;
438 
439 			if (IS_ERR(p))
440 				return -EFAULT;
441 
442 			if (i >= max)
443 				return -E2BIG;
444 			++i;
445 
446 			if (fatal_signal_pending(current))
447 				return -ERESTARTNOHAND;
448 			cond_resched();
449 		}
450 	}
451 	return i;
452 }
453 
count_strings_kernel(const char * const * argv)454 static int count_strings_kernel(const char *const *argv)
455 {
456 	int i;
457 
458 	if (!argv)
459 		return 0;
460 
461 	for (i = 0; argv[i]; ++i) {
462 		if (i >= MAX_ARG_STRINGS)
463 			return -E2BIG;
464 		if (fatal_signal_pending(current))
465 			return -ERESTARTNOHAND;
466 		cond_resched();
467 	}
468 	return i;
469 }
470 
bprm_stack_limits(struct linux_binprm * bprm)471 static int bprm_stack_limits(struct linux_binprm *bprm)
472 {
473 	unsigned long limit, ptr_size;
474 
475 	/*
476 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477 	 * (whichever is smaller) for the argv+env strings.
478 	 * This ensures that:
479 	 *  - the remaining binfmt code will not run out of stack space,
480 	 *  - the program will have a reasonable amount of stack left
481 	 *    to work from.
482 	 */
483 	limit = _STK_LIM / 4 * 3;
484 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
485 	/*
486 	 * We've historically supported up to 32 pages (ARG_MAX)
487 	 * of argument strings even with small stacks
488 	 */
489 	limit = max_t(unsigned long, limit, ARG_MAX);
490 	/*
491 	 * We must account for the size of all the argv and envp pointers to
492 	 * the argv and envp strings, since they will also take up space in
493 	 * the stack. They aren't stored until much later when we can't
494 	 * signal to the parent that the child has run out of stack space.
495 	 * Instead, calculate it here so it's possible to fail gracefully.
496 	 *
497 	 * In the case of argc = 0, make sure there is space for adding a
498 	 * empty string (which will bump argc to 1), to ensure confused
499 	 * userspace programs don't start processing from argv[1], thinking
500 	 * argc can never be 0, to keep them from walking envp by accident.
501 	 * See do_execveat_common().
502 	 */
503 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
504 	if (limit <= ptr_size)
505 		return -E2BIG;
506 	limit -= ptr_size;
507 
508 	bprm->argmin = bprm->p - limit;
509 	return 0;
510 }
511 
512 /*
513  * 'copy_strings()' copies argument/environment strings from the old
514  * processes's memory to the new process's stack.  The call to get_user_pages()
515  * ensures the destination page is created and not swapped out.
516  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)517 static int copy_strings(int argc, struct user_arg_ptr argv,
518 			struct linux_binprm *bprm)
519 {
520 	struct page *kmapped_page = NULL;
521 	char *kaddr = NULL;
522 	unsigned long kpos = 0;
523 	int ret;
524 
525 	while (argc-- > 0) {
526 		const char __user *str;
527 		int len;
528 		unsigned long pos;
529 
530 		ret = -EFAULT;
531 		str = get_user_arg_ptr(argv, argc);
532 		if (IS_ERR(str))
533 			goto out;
534 
535 		len = strnlen_user(str, MAX_ARG_STRLEN);
536 		if (!len)
537 			goto out;
538 
539 		ret = -E2BIG;
540 		if (!valid_arg_len(bprm, len))
541 			goto out;
542 
543 		/* We're going to work our way backwords. */
544 		pos = bprm->p;
545 		str += len;
546 		bprm->p -= len;
547 #ifdef CONFIG_MMU
548 		if (bprm->p < bprm->argmin)
549 			goto out;
550 #endif
551 
552 		while (len > 0) {
553 			int offset, bytes_to_copy;
554 
555 			if (fatal_signal_pending(current)) {
556 				ret = -ERESTARTNOHAND;
557 				goto out;
558 			}
559 			cond_resched();
560 
561 			offset = pos % PAGE_SIZE;
562 			if (offset == 0)
563 				offset = PAGE_SIZE;
564 
565 			bytes_to_copy = offset;
566 			if (bytes_to_copy > len)
567 				bytes_to_copy = len;
568 
569 			offset -= bytes_to_copy;
570 			pos -= bytes_to_copy;
571 			str -= bytes_to_copy;
572 			len -= bytes_to_copy;
573 
574 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
575 				struct page *page;
576 
577 				page = get_arg_page(bprm, pos, 1);
578 				if (!page) {
579 					ret = -E2BIG;
580 					goto out;
581 				}
582 
583 				if (kmapped_page) {
584 					flush_kernel_dcache_page(kmapped_page);
585 					kunmap(kmapped_page);
586 					put_arg_page(kmapped_page);
587 				}
588 				kmapped_page = page;
589 				kaddr = kmap(kmapped_page);
590 				kpos = pos & PAGE_MASK;
591 				flush_arg_page(bprm, kpos, kmapped_page);
592 			}
593 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
594 				ret = -EFAULT;
595 				goto out;
596 			}
597 		}
598 	}
599 	ret = 0;
600 out:
601 	if (kmapped_page) {
602 		flush_kernel_dcache_page(kmapped_page);
603 		kunmap(kmapped_page);
604 		put_arg_page(kmapped_page);
605 	}
606 	return ret;
607 }
608 
609 /*
610  * Copy and argument/environment string from the kernel to the processes stack.
611  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)612 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
613 {
614 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
615 	unsigned long pos = bprm->p;
616 
617 	if (len == 0)
618 		return -EFAULT;
619 	if (!valid_arg_len(bprm, len))
620 		return -E2BIG;
621 
622 	/* We're going to work our way backwards. */
623 	arg += len;
624 	bprm->p -= len;
625 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
626 		return -E2BIG;
627 
628 	while (len > 0) {
629 		unsigned int bytes_to_copy = min_t(unsigned int, len,
630 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
631 		struct page *page;
632 		char *kaddr;
633 
634 		pos -= bytes_to_copy;
635 		arg -= bytes_to_copy;
636 		len -= bytes_to_copy;
637 
638 		page = get_arg_page(bprm, pos, 1);
639 		if (!page)
640 			return -E2BIG;
641 		kaddr = kmap_atomic(page);
642 		flush_arg_page(bprm, pos & PAGE_MASK, page);
643 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
644 		flush_kernel_dcache_page(page);
645 		kunmap_atomic(kaddr);
646 		put_arg_page(page);
647 	}
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(copy_string_kernel);
652 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)653 static int copy_strings_kernel(int argc, const char *const *argv,
654 			       struct linux_binprm *bprm)
655 {
656 	while (argc-- > 0) {
657 		int ret = copy_string_kernel(argv[argc], bprm);
658 		if (ret < 0)
659 			return ret;
660 		if (fatal_signal_pending(current))
661 			return -ERESTARTNOHAND;
662 		cond_resched();
663 	}
664 	return 0;
665 }
666 
667 #ifdef CONFIG_MMU
668 
669 /*
670  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
671  * the binfmt code determines where the new stack should reside, we shift it to
672  * its final location.  The process proceeds as follows:
673  *
674  * 1) Use shift to calculate the new vma endpoints.
675  * 2) Extend vma to cover both the old and new ranges.  This ensures the
676  *    arguments passed to subsequent functions are consistent.
677  * 3) Move vma's page tables to the new range.
678  * 4) Free up any cleared pgd range.
679  * 5) Shrink the vma to cover only the new range.
680  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)681 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
682 {
683 	struct mm_struct *mm = vma->vm_mm;
684 	unsigned long old_start = vma->vm_start;
685 	unsigned long old_end = vma->vm_end;
686 	unsigned long length = old_end - old_start;
687 	unsigned long new_start = old_start - shift;
688 	unsigned long new_end = old_end - shift;
689 	struct mmu_gather tlb;
690 
691 	BUG_ON(new_start > new_end);
692 
693 	/*
694 	 * ensure there are no vmas between where we want to go
695 	 * and where we are
696 	 */
697 	if (vma != find_vma(mm, new_start))
698 		return -EFAULT;
699 
700 	/*
701 	 * cover the whole range: [new_start, old_end)
702 	 */
703 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
704 		return -ENOMEM;
705 
706 	/*
707 	 * move the page tables downwards, on failure we rely on
708 	 * process cleanup to remove whatever mess we made.
709 	 */
710 	if (length != move_page_tables(vma, old_start,
711 				       vma, new_start, length, false))
712 		return -ENOMEM;
713 
714 	lru_add_drain();
715 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
716 	if (new_end > old_start) {
717 		/*
718 		 * when the old and new regions overlap clear from new_end.
719 		 */
720 		free_pgd_range(&tlb, new_end, old_end, new_end,
721 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
722 	} else {
723 		/*
724 		 * otherwise, clean from old_start; this is done to not touch
725 		 * the address space in [new_end, old_start) some architectures
726 		 * have constraints on va-space that make this illegal (IA64) -
727 		 * for the others its just a little faster.
728 		 */
729 		free_pgd_range(&tlb, old_start, old_end, new_end,
730 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
731 	}
732 	tlb_finish_mmu(&tlb, old_start, old_end);
733 
734 	/*
735 	 * Shrink the vma to just the new range.  Always succeeds.
736 	 */
737 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
738 
739 	return 0;
740 }
741 
742 /*
743  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
744  * the stack is optionally relocated, and some extra space is added.
745  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)746 int setup_arg_pages(struct linux_binprm *bprm,
747 		    unsigned long stack_top,
748 		    int executable_stack)
749 {
750 	unsigned long ret;
751 	unsigned long stack_shift;
752 	struct mm_struct *mm = current->mm;
753 	struct vm_area_struct *vma = bprm->vma;
754 	struct vm_area_struct *prev = NULL;
755 	unsigned long vm_flags;
756 	unsigned long stack_base;
757 	unsigned long stack_size;
758 	unsigned long stack_expand;
759 	unsigned long rlim_stack;
760 
761 #ifdef CONFIG_STACK_GROWSUP
762 	/* Limit stack size */
763 	stack_base = bprm->rlim_stack.rlim_max;
764 	if (stack_base > STACK_SIZE_MAX)
765 		stack_base = STACK_SIZE_MAX;
766 
767 	/* Add space for stack randomization. */
768 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
769 
770 	/* Make sure we didn't let the argument array grow too large. */
771 	if (vma->vm_end - vma->vm_start > stack_base)
772 		return -ENOMEM;
773 
774 	stack_base = PAGE_ALIGN(stack_top - stack_base);
775 
776 	stack_shift = vma->vm_start - stack_base;
777 	mm->arg_start = bprm->p - stack_shift;
778 	bprm->p = vma->vm_end - stack_shift;
779 #else
780 	stack_top = arch_align_stack(stack_top);
781 	stack_top = PAGE_ALIGN(stack_top);
782 
783 	if (unlikely(stack_top < mmap_min_addr) ||
784 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
785 		return -ENOMEM;
786 
787 	stack_shift = vma->vm_end - stack_top;
788 
789 	bprm->p -= stack_shift;
790 	mm->arg_start = bprm->p;
791 #endif
792 
793 	if (bprm->loader)
794 		bprm->loader -= stack_shift;
795 	bprm->exec -= stack_shift;
796 
797 	if (mmap_write_lock_killable(mm))
798 		return -EINTR;
799 
800 	vm_flags = VM_STACK_FLAGS;
801 
802 	/*
803 	 * Adjust stack execute permissions; explicitly enable for
804 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
805 	 * (arch default) otherwise.
806 	 */
807 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
808 		vm_flags |= VM_EXEC;
809 	else if (executable_stack == EXSTACK_DISABLE_X)
810 		vm_flags &= ~VM_EXEC;
811 	vm_flags |= mm->def_flags;
812 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
813 
814 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
815 			vm_flags);
816 	if (ret)
817 		goto out_unlock;
818 	BUG_ON(prev != vma);
819 
820 	if (unlikely(vm_flags & VM_EXEC)) {
821 		pr_warn_once("process '%pD4' started with executable stack\n",
822 			     bprm->file);
823 	}
824 
825 	/* Move stack pages down in memory. */
826 	if (stack_shift) {
827 		ret = shift_arg_pages(vma, stack_shift);
828 		if (ret)
829 			goto out_unlock;
830 	}
831 
832 	/* mprotect_fixup is overkill to remove the temporary stack flags */
833 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
834 
835 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
836 	stack_size = vma->vm_end - vma->vm_start;
837 	/*
838 	 * Align this down to a page boundary as expand_stack
839 	 * will align it up.
840 	 */
841 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
842 #ifdef CONFIG_STACK_GROWSUP
843 	if (stack_size + stack_expand > rlim_stack)
844 		stack_base = vma->vm_start + rlim_stack;
845 	else
846 		stack_base = vma->vm_end + stack_expand;
847 #else
848 	if (stack_size + stack_expand > rlim_stack)
849 		stack_base = vma->vm_end - rlim_stack;
850 	else
851 		stack_base = vma->vm_start - stack_expand;
852 #endif
853 	current->mm->start_stack = bprm->p;
854 	ret = expand_stack(vma, stack_base);
855 	if (ret)
856 		ret = -EFAULT;
857 
858 out_unlock:
859 	mmap_write_unlock(mm);
860 	return ret;
861 }
862 EXPORT_SYMBOL(setup_arg_pages);
863 
864 #else
865 
866 /*
867  * Transfer the program arguments and environment from the holding pages
868  * onto the stack. The provided stack pointer is adjusted accordingly.
869  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)870 int transfer_args_to_stack(struct linux_binprm *bprm,
871 			   unsigned long *sp_location)
872 {
873 	unsigned long index, stop, sp;
874 	int ret = 0;
875 
876 	stop = bprm->p >> PAGE_SHIFT;
877 	sp = *sp_location;
878 
879 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
880 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
881 		char *src = kmap(bprm->page[index]) + offset;
882 		sp -= PAGE_SIZE - offset;
883 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
884 			ret = -EFAULT;
885 		kunmap(bprm->page[index]);
886 		if (ret)
887 			goto out;
888 	}
889 
890 	*sp_location = sp;
891 
892 out:
893 	return ret;
894 }
895 EXPORT_SYMBOL(transfer_args_to_stack);
896 
897 #endif /* CONFIG_MMU */
898 
do_open_execat(int fd,struct filename * name,int flags)899 static struct file *do_open_execat(int fd, struct filename *name, int flags)
900 {
901 	struct file *file;
902 	int err;
903 	struct open_flags open_exec_flags = {
904 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
905 		.acc_mode = MAY_EXEC,
906 		.intent = LOOKUP_OPEN,
907 		.lookup_flags = LOOKUP_FOLLOW,
908 	};
909 
910 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
911 		return ERR_PTR(-EINVAL);
912 	if (flags & AT_SYMLINK_NOFOLLOW)
913 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
914 	if (flags & AT_EMPTY_PATH)
915 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
916 
917 	file = do_filp_open(fd, name, &open_exec_flags);
918 	if (IS_ERR(file))
919 		return file;
920 
921 	/*
922 	 * In the past the regular type check was here. It moved to may_open() in
923 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
924 	 * an invariant that all non-regular files error out before we get here.
925 	 */
926 	err = -EACCES;
927 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
928 	    path_noexec(&file->f_path))
929 		goto exit;
930 
931 	err = deny_write_access(file);
932 	if (err)
933 		goto exit;
934 
935 	if (name->name[0] != '\0')
936 		fsnotify_open(file);
937 
938 	return file;
939 
940 exit:
941 	fput(file);
942 	return ERR_PTR(err);
943 }
944 
open_exec(const char * name)945 struct file *open_exec(const char *name)
946 {
947 	struct filename *filename = getname_kernel(name);
948 	struct file *f = ERR_CAST(filename);
949 
950 	if (!IS_ERR(filename)) {
951 		f = do_open_execat(AT_FDCWD, filename, 0);
952 		putname(filename);
953 	}
954 	return f;
955 }
956 EXPORT_SYMBOL(open_exec);
957 
958 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
959     defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)960 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
961 {
962 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
963 	if (res > 0)
964 		flush_icache_user_range(addr, addr + len);
965 	return res;
966 }
967 EXPORT_SYMBOL(read_code);
968 #endif
969 
970 /*
971  * Maps the mm_struct mm into the current task struct.
972  * On success, this function returns with exec_update_lock
973  * held for writing.
974  */
exec_mmap(struct mm_struct * mm)975 static int exec_mmap(struct mm_struct *mm)
976 {
977 	struct task_struct *tsk;
978 	struct mm_struct *old_mm, *active_mm;
979 	int ret;
980 
981 	/* Notify parent that we're no longer interested in the old VM */
982 	tsk = current;
983 	old_mm = current->mm;
984 	exec_mm_release(tsk, old_mm);
985 	if (old_mm)
986 		sync_mm_rss(old_mm);
987 
988 	ret = down_write_killable(&tsk->signal->exec_update_lock);
989 	if (ret)
990 		return ret;
991 
992 	if (old_mm) {
993 		/*
994 		 * Make sure that if there is a core dump in progress
995 		 * for the old mm, we get out and die instead of going
996 		 * through with the exec.  We must hold mmap_lock around
997 		 * checking core_state and changing tsk->mm.
998 		 */
999 		mmap_read_lock(old_mm);
1000 		if (unlikely(old_mm->core_state)) {
1001 			mmap_read_unlock(old_mm);
1002 			up_write(&tsk->signal->exec_update_lock);
1003 			return -EINTR;
1004 		}
1005 	}
1006 
1007 	task_lock(tsk);
1008 	membarrier_exec_mmap(mm);
1009 
1010 	local_irq_disable();
1011 	active_mm = tsk->active_mm;
1012 	tsk->active_mm = mm;
1013 	tsk->mm = mm;
1014 	/*
1015 	 * This prevents preemption while active_mm is being loaded and
1016 	 * it and mm are being updated, which could cause problems for
1017 	 * lazy tlb mm refcounting when these are updated by context
1018 	 * switches. Not all architectures can handle irqs off over
1019 	 * activate_mm yet.
1020 	 */
1021 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1022 		local_irq_enable();
1023 	activate_mm(active_mm, mm);
1024 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 		local_irq_enable();
1026 	tsk->mm->vmacache_seqnum = 0;
1027 	vmacache_flush(tsk);
1028 	task_unlock(tsk);
1029 	if (old_mm) {
1030 		mmap_read_unlock(old_mm);
1031 		BUG_ON(active_mm != old_mm);
1032 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033 		mm_update_next_owner(old_mm);
1034 		mmput(old_mm);
1035 		return 0;
1036 	}
1037 	mmdrop(active_mm);
1038 	return 0;
1039 }
1040 
de_thread(struct task_struct * tsk)1041 static int de_thread(struct task_struct *tsk)
1042 {
1043 	struct signal_struct *sig = tsk->signal;
1044 	struct sighand_struct *oldsighand = tsk->sighand;
1045 	spinlock_t *lock = &oldsighand->siglock;
1046 
1047 	if (thread_group_empty(tsk))
1048 		goto no_thread_group;
1049 
1050 	/*
1051 	 * Kill all other threads in the thread group.
1052 	 */
1053 	spin_lock_irq(lock);
1054 	if (signal_group_exit(sig)) {
1055 		/*
1056 		 * Another group action in progress, just
1057 		 * return so that the signal is processed.
1058 		 */
1059 		spin_unlock_irq(lock);
1060 		return -EAGAIN;
1061 	}
1062 
1063 	sig->group_exit_task = tsk;
1064 	sig->notify_count = zap_other_threads(tsk);
1065 	if (!thread_group_leader(tsk))
1066 		sig->notify_count--;
1067 
1068 	while (sig->notify_count) {
1069 		__set_current_state(TASK_KILLABLE);
1070 		spin_unlock_irq(lock);
1071 		schedule();
1072 		if (__fatal_signal_pending(tsk))
1073 			goto killed;
1074 		spin_lock_irq(lock);
1075 	}
1076 	spin_unlock_irq(lock);
1077 
1078 	/*
1079 	 * At this point all other threads have exited, all we have to
1080 	 * do is to wait for the thread group leader to become inactive,
1081 	 * and to assume its PID:
1082 	 */
1083 	if (!thread_group_leader(tsk)) {
1084 		struct task_struct *leader = tsk->group_leader;
1085 
1086 		for (;;) {
1087 			cgroup_threadgroup_change_begin(tsk);
1088 			write_lock_irq(&tasklist_lock);
1089 			/*
1090 			 * Do this under tasklist_lock to ensure that
1091 			 * exit_notify() can't miss ->group_exit_task
1092 			 */
1093 			sig->notify_count = -1;
1094 			if (likely(leader->exit_state))
1095 				break;
1096 			__set_current_state(TASK_KILLABLE);
1097 			write_unlock_irq(&tasklist_lock);
1098 			cgroup_threadgroup_change_end(tsk);
1099 			schedule();
1100 			if (__fatal_signal_pending(tsk))
1101 				goto killed;
1102 		}
1103 
1104 		/*
1105 		 * The only record we have of the real-time age of a
1106 		 * process, regardless of execs it's done, is start_time.
1107 		 * All the past CPU time is accumulated in signal_struct
1108 		 * from sister threads now dead.  But in this non-leader
1109 		 * exec, nothing survives from the original leader thread,
1110 		 * whose birth marks the true age of this process now.
1111 		 * When we take on its identity by switching to its PID, we
1112 		 * also take its birthdate (always earlier than our own).
1113 		 */
1114 		tsk->start_time = leader->start_time;
1115 		tsk->start_boottime = leader->start_boottime;
1116 
1117 		BUG_ON(!same_thread_group(leader, tsk));
1118 		/*
1119 		 * An exec() starts a new thread group with the
1120 		 * TGID of the previous thread group. Rehash the
1121 		 * two threads with a switched PID, and release
1122 		 * the former thread group leader:
1123 		 */
1124 
1125 		/* Become a process group leader with the old leader's pid.
1126 		 * The old leader becomes a thread of the this thread group.
1127 		 */
1128 		exchange_tids(tsk, leader);
1129 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1130 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1131 		transfer_pid(leader, tsk, PIDTYPE_SID);
1132 
1133 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1134 		list_replace_init(&leader->sibling, &tsk->sibling);
1135 
1136 		tsk->group_leader = tsk;
1137 		leader->group_leader = tsk;
1138 
1139 		tsk->exit_signal = SIGCHLD;
1140 		leader->exit_signal = -1;
1141 
1142 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1143 		leader->exit_state = EXIT_DEAD;
1144 
1145 		/*
1146 		 * We are going to release_task()->ptrace_unlink() silently,
1147 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1148 		 * the tracer wont't block again waiting for this thread.
1149 		 */
1150 		if (unlikely(leader->ptrace))
1151 			__wake_up_parent(leader, leader->parent);
1152 		write_unlock_irq(&tasklist_lock);
1153 		cgroup_threadgroup_change_end(tsk);
1154 
1155 		release_task(leader);
1156 	}
1157 
1158 	sig->group_exit_task = NULL;
1159 	sig->notify_count = 0;
1160 
1161 no_thread_group:
1162 	/* we have changed execution domain */
1163 	tsk->exit_signal = SIGCHLD;
1164 
1165 	BUG_ON(!thread_group_leader(tsk));
1166 	return 0;
1167 
1168 killed:
1169 	/* protects against exit_notify() and __exit_signal() */
1170 	read_lock(&tasklist_lock);
1171 	sig->group_exit_task = NULL;
1172 	sig->notify_count = 0;
1173 	read_unlock(&tasklist_lock);
1174 	return -EAGAIN;
1175 }
1176 
1177 
1178 /*
1179  * This function makes sure the current process has its own signal table,
1180  * so that flush_signal_handlers can later reset the handlers without
1181  * disturbing other processes.  (Other processes might share the signal
1182  * table via the CLONE_SIGHAND option to clone().)
1183  */
unshare_sighand(struct task_struct * me)1184 static int unshare_sighand(struct task_struct *me)
1185 {
1186 	struct sighand_struct *oldsighand = me->sighand;
1187 
1188 	if (refcount_read(&oldsighand->count) != 1) {
1189 		struct sighand_struct *newsighand;
1190 		/*
1191 		 * This ->sighand is shared with the CLONE_SIGHAND
1192 		 * but not CLONE_THREAD task, switch to the new one.
1193 		 */
1194 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195 		if (!newsighand)
1196 			return -ENOMEM;
1197 
1198 		refcount_set(&newsighand->count, 1);
1199 
1200 		write_lock_irq(&tasklist_lock);
1201 		spin_lock(&oldsighand->siglock);
1202 		memcpy(newsighand->action, oldsighand->action,
1203 		       sizeof(newsighand->action));
1204 		rcu_assign_pointer(me->sighand, newsighand);
1205 		spin_unlock(&oldsighand->siglock);
1206 		write_unlock_irq(&tasklist_lock);
1207 
1208 		__cleanup_sighand(oldsighand);
1209 	}
1210 	return 0;
1211 }
1212 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1214 {
1215 	task_lock(tsk);
1216 	strncpy(buf, tsk->comm, buf_size);
1217 	task_unlock(tsk);
1218 	return buf;
1219 }
1220 EXPORT_SYMBOL_GPL(__get_task_comm);
1221 
1222 /*
1223  * These functions flushes out all traces of the currently running executable
1224  * so that a new one can be started
1225  */
1226 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1227 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228 {
1229 	task_lock(tsk);
1230 	trace_task_rename(tsk, buf);
1231 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1232 	task_unlock(tsk);
1233 	perf_event_comm(tsk, exec);
1234 }
1235 
1236 /*
1237  * Calling this is the point of no return. None of the failures will be
1238  * seen by userspace since either the process is already taking a fatal
1239  * signal (via de_thread() or coredump), or will have SEGV raised
1240  * (after exec_mmap()) by search_binary_handler (see below).
1241  */
begin_new_exec(struct linux_binprm * bprm)1242 int begin_new_exec(struct linux_binprm * bprm)
1243 {
1244 	struct task_struct *me = current;
1245 	struct files_struct *displaced;
1246 	int retval;
1247 
1248 	/* Once we are committed compute the creds */
1249 	retval = bprm_creds_from_file(bprm);
1250 	if (retval)
1251 		return retval;
1252 
1253 	/*
1254 	 * Ensure all future errors are fatal.
1255 	 */
1256 	bprm->point_of_no_return = true;
1257 
1258 	/*
1259 	 * Make this the only thread in the thread group.
1260 	 */
1261 	retval = de_thread(me);
1262 	if (retval)
1263 		goto out;
1264 
1265 	/* Ensure the files table is not shared. */
1266 	retval = unshare_files(&displaced);
1267 	if (retval)
1268 		goto out;
1269 	if (displaced)
1270 		put_files_struct(displaced);
1271 
1272 	/*
1273 	 * Must be called _before_ exec_mmap() as bprm->mm is
1274 	 * not visibile until then. This also enables the update
1275 	 * to be lockless.
1276 	 */
1277 	set_mm_exe_file(bprm->mm, bprm->file);
1278 
1279 	/* If the binary is not readable then enforce mm->dumpable=0 */
1280 	would_dump(bprm, bprm->file);
1281 	if (bprm->have_execfd)
1282 		would_dump(bprm, bprm->executable);
1283 
1284 	/*
1285 	 * Release all of the old mmap stuff
1286 	 */
1287 	acct_arg_size(bprm, 0);
1288 	retval = exec_mmap(bprm->mm);
1289 	if (retval)
1290 		goto out;
1291 
1292 	bprm->mm = NULL;
1293 
1294 #ifdef CONFIG_POSIX_TIMERS
1295 	spin_lock_irq(&me->sighand->siglock);
1296 	posix_cpu_timers_exit(me);
1297 	spin_unlock_irq(&me->sighand->siglock);
1298 	exit_itimers(me);
1299 	flush_itimer_signals();
1300 #endif
1301 
1302 	/*
1303 	 * Make the signal table private.
1304 	 */
1305 	retval = unshare_sighand(me);
1306 	if (retval)
1307 		goto out_unlock;
1308 
1309 	/*
1310 	 * Ensure that the uaccess routines can actually operate on userspace
1311 	 * pointers:
1312 	 */
1313 	force_uaccess_begin();
1314 
1315 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1316 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1317 	flush_thread();
1318 	me->personality &= ~bprm->per_clear;
1319 
1320 	/*
1321 	 * We have to apply CLOEXEC before we change whether the process is
1322 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1323 	 * trying to access the should-be-closed file descriptors of a process
1324 	 * undergoing exec(2).
1325 	 */
1326 	do_close_on_exec(me->files);
1327 
1328 	if (bprm->secureexec) {
1329 		/* Make sure parent cannot signal privileged process. */
1330 		me->pdeath_signal = 0;
1331 
1332 		/*
1333 		 * For secureexec, reset the stack limit to sane default to
1334 		 * avoid bad behavior from the prior rlimits. This has to
1335 		 * happen before arch_pick_mmap_layout(), which examines
1336 		 * RLIMIT_STACK, but after the point of no return to avoid
1337 		 * needing to clean up the change on failure.
1338 		 */
1339 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1340 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1341 	}
1342 
1343 	me->sas_ss_sp = me->sas_ss_size = 0;
1344 
1345 	/*
1346 	 * Figure out dumpability. Note that this checking only of current
1347 	 * is wrong, but userspace depends on it. This should be testing
1348 	 * bprm->secureexec instead.
1349 	 */
1350 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1351 	    !(uid_eq(current_euid(), current_uid()) &&
1352 	      gid_eq(current_egid(), current_gid())))
1353 		set_dumpable(current->mm, suid_dumpable);
1354 	else
1355 		set_dumpable(current->mm, SUID_DUMP_USER);
1356 
1357 	perf_event_exec();
1358 	__set_task_comm(me, kbasename(bprm->filename), true);
1359 
1360 	/* An exec changes our domain. We are no longer part of the thread
1361 	   group */
1362 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1363 	flush_signal_handlers(me, 0);
1364 
1365 	/*
1366 	 * install the new credentials for this executable
1367 	 */
1368 	security_bprm_committing_creds(bprm);
1369 
1370 	commit_creds(bprm->cred);
1371 	bprm->cred = NULL;
1372 
1373 	/*
1374 	 * Disable monitoring for regular users
1375 	 * when executing setuid binaries. Must
1376 	 * wait until new credentials are committed
1377 	 * by commit_creds() above
1378 	 */
1379 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1380 		perf_event_exit_task(me);
1381 	/*
1382 	 * cred_guard_mutex must be held at least to this point to prevent
1383 	 * ptrace_attach() from altering our determination of the task's
1384 	 * credentials; any time after this it may be unlocked.
1385 	 */
1386 	security_bprm_committed_creds(bprm);
1387 
1388 	/* Pass the opened binary to the interpreter. */
1389 	if (bprm->have_execfd) {
1390 		retval = get_unused_fd_flags(0);
1391 		if (retval < 0)
1392 			goto out_unlock;
1393 		fd_install(retval, bprm->executable);
1394 		bprm->executable = NULL;
1395 		bprm->execfd = retval;
1396 	}
1397 	return 0;
1398 
1399 out_unlock:
1400 	up_write(&me->signal->exec_update_lock);
1401 	if (!bprm->cred)
1402 		mutex_unlock(&me->signal->cred_guard_mutex);
1403 
1404 out:
1405 	return retval;
1406 }
1407 EXPORT_SYMBOL(begin_new_exec);
1408 
would_dump(struct linux_binprm * bprm,struct file * file)1409 void would_dump(struct linux_binprm *bprm, struct file *file)
1410 {
1411 	struct inode *inode = file_inode(file);
1412 	if (inode_permission(inode, MAY_READ) < 0) {
1413 		struct user_namespace *old, *user_ns;
1414 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1415 
1416 		/* Ensure mm->user_ns contains the executable */
1417 		user_ns = old = bprm->mm->user_ns;
1418 		while ((user_ns != &init_user_ns) &&
1419 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1420 			user_ns = user_ns->parent;
1421 
1422 		if (old != user_ns) {
1423 			bprm->mm->user_ns = get_user_ns(user_ns);
1424 			put_user_ns(old);
1425 		}
1426 	}
1427 }
1428 EXPORT_SYMBOL(would_dump);
1429 
setup_new_exec(struct linux_binprm * bprm)1430 void setup_new_exec(struct linux_binprm * bprm)
1431 {
1432 	/* Setup things that can depend upon the personality */
1433 	struct task_struct *me = current;
1434 
1435 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1436 
1437 	arch_setup_new_exec();
1438 
1439 	/* Set the new mm task size. We have to do that late because it may
1440 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1441 	 * some architectures like powerpc
1442 	 */
1443 	me->mm->task_size = TASK_SIZE;
1444 	up_write(&me->signal->exec_update_lock);
1445 	mutex_unlock(&me->signal->cred_guard_mutex);
1446 }
1447 EXPORT_SYMBOL(setup_new_exec);
1448 
1449 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1450 void finalize_exec(struct linux_binprm *bprm)
1451 {
1452 	/* Store any stack rlimit changes before starting thread. */
1453 	task_lock(current->group_leader);
1454 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1455 	task_unlock(current->group_leader);
1456 }
1457 EXPORT_SYMBOL(finalize_exec);
1458 
1459 /*
1460  * Prepare credentials and lock ->cred_guard_mutex.
1461  * setup_new_exec() commits the new creds and drops the lock.
1462  * Or, if exec fails before, free_bprm() should release ->cred and
1463  * and unlock.
1464  */
prepare_bprm_creds(struct linux_binprm * bprm)1465 static int prepare_bprm_creds(struct linux_binprm *bprm)
1466 {
1467 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1468 		return -ERESTARTNOINTR;
1469 
1470 	bprm->cred = prepare_exec_creds();
1471 	if (likely(bprm->cred))
1472 		return 0;
1473 
1474 	mutex_unlock(&current->signal->cred_guard_mutex);
1475 	return -ENOMEM;
1476 }
1477 
free_bprm(struct linux_binprm * bprm)1478 static void free_bprm(struct linux_binprm *bprm)
1479 {
1480 	if (bprm->mm) {
1481 		acct_arg_size(bprm, 0);
1482 		mmput(bprm->mm);
1483 	}
1484 	free_arg_pages(bprm);
1485 	if (bprm->cred) {
1486 		mutex_unlock(&current->signal->cred_guard_mutex);
1487 		abort_creds(bprm->cred);
1488 	}
1489 	if (bprm->file) {
1490 		allow_write_access(bprm->file);
1491 		fput(bprm->file);
1492 	}
1493 	if (bprm->executable)
1494 		fput(bprm->executable);
1495 	/* If a binfmt changed the interp, free it. */
1496 	if (bprm->interp != bprm->filename)
1497 		kfree(bprm->interp);
1498 	kfree(bprm->fdpath);
1499 	kfree(bprm);
1500 }
1501 
alloc_bprm(int fd,struct filename * filename)1502 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1503 {
1504 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1505 	int retval = -ENOMEM;
1506 	if (!bprm)
1507 		goto out;
1508 
1509 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1510 		bprm->filename = filename->name;
1511 	} else {
1512 		if (filename->name[0] == '\0')
1513 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1514 		else
1515 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1516 						  fd, filename->name);
1517 		if (!bprm->fdpath)
1518 			goto out_free;
1519 
1520 		bprm->filename = bprm->fdpath;
1521 	}
1522 	bprm->interp = bprm->filename;
1523 
1524 	retval = bprm_mm_init(bprm);
1525 	if (retval)
1526 		goto out_free;
1527 	return bprm;
1528 
1529 out_free:
1530 	free_bprm(bprm);
1531 out:
1532 	return ERR_PTR(retval);
1533 }
1534 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1535 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1536 {
1537 	/* If a binfmt changed the interp, free it first. */
1538 	if (bprm->interp != bprm->filename)
1539 		kfree(bprm->interp);
1540 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1541 	if (!bprm->interp)
1542 		return -ENOMEM;
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL(bprm_change_interp);
1546 
1547 /*
1548  * determine how safe it is to execute the proposed program
1549  * - the caller must hold ->cred_guard_mutex to protect against
1550  *   PTRACE_ATTACH or seccomp thread-sync
1551  */
check_unsafe_exec(struct linux_binprm * bprm)1552 static void check_unsafe_exec(struct linux_binprm *bprm)
1553 {
1554 	struct task_struct *p = current, *t;
1555 	unsigned n_fs;
1556 
1557 	if (p->ptrace)
1558 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1559 
1560 	/*
1561 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1562 	 * mess up.
1563 	 */
1564 	if (task_no_new_privs(current))
1565 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1566 
1567 	t = p;
1568 	n_fs = 1;
1569 	spin_lock(&p->fs->lock);
1570 	rcu_read_lock();
1571 	while_each_thread(p, t) {
1572 		if (t->fs == p->fs)
1573 			n_fs++;
1574 	}
1575 	rcu_read_unlock();
1576 
1577 	if (p->fs->users > n_fs)
1578 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1579 	else
1580 		p->fs->in_exec = 1;
1581 	spin_unlock(&p->fs->lock);
1582 }
1583 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1584 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1585 {
1586 	/* Handle suid and sgid on files */
1587 	struct inode *inode;
1588 	unsigned int mode;
1589 	kuid_t uid;
1590 	kgid_t gid;
1591 	int err;
1592 
1593 	if (!mnt_may_suid(file->f_path.mnt))
1594 		return;
1595 
1596 	if (task_no_new_privs(current))
1597 		return;
1598 
1599 	inode = file->f_path.dentry->d_inode;
1600 	mode = READ_ONCE(inode->i_mode);
1601 	if (!(mode & (S_ISUID|S_ISGID)))
1602 		return;
1603 
1604 	/* Be careful if suid/sgid is set */
1605 	inode_lock(inode);
1606 
1607 	/* Atomically reload and check mode/uid/gid now that lock held. */
1608 	mode = inode->i_mode;
1609 	uid = inode->i_uid;
1610 	gid = inode->i_gid;
1611 	err = inode_permission(inode, MAY_EXEC);
1612 	inode_unlock(inode);
1613 
1614 	/* Did the exec bit vanish out from under us? Give up. */
1615 	if (err)
1616 		return;
1617 
1618 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1619 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1620 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1621 		return;
1622 
1623 	if (mode & S_ISUID) {
1624 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1625 		bprm->cred->euid = uid;
1626 	}
1627 
1628 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1630 		bprm->cred->egid = gid;
1631 	}
1632 }
1633 
1634 /*
1635  * Compute brpm->cred based upon the final binary.
1636  */
bprm_creds_from_file(struct linux_binprm * bprm)1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639 	/* Compute creds based on which file? */
1640 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641 
1642 	bprm_fill_uid(bprm, file);
1643 	return security_bprm_creds_from_file(bprm, file);
1644 }
1645 
1646 /*
1647  * Fill the binprm structure from the inode.
1648  * Read the first BINPRM_BUF_SIZE bytes
1649  *
1650  * This may be called multiple times for binary chains (scripts for example).
1651  */
prepare_binprm(struct linux_binprm * bprm)1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654 	loff_t pos = 0;
1655 
1656 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659 
1660 /*
1661  * Arguments are '\0' separated strings found at the location bprm->p
1662  * points to; chop off the first by relocating brpm->p to right after
1663  * the first '\0' encountered.
1664  */
remove_arg_zero(struct linux_binprm * bprm)1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667 	int ret = 0;
1668 	unsigned long offset;
1669 	char *kaddr;
1670 	struct page *page;
1671 
1672 	if (!bprm->argc)
1673 		return 0;
1674 
1675 	do {
1676 		offset = bprm->p & ~PAGE_MASK;
1677 		page = get_arg_page(bprm, bprm->p, 0);
1678 		if (!page) {
1679 			ret = -EFAULT;
1680 			goto out;
1681 		}
1682 		kaddr = kmap_atomic(page);
1683 
1684 		for (; offset < PAGE_SIZE && kaddr[offset];
1685 				offset++, bprm->p++)
1686 			;
1687 
1688 		kunmap_atomic(kaddr);
1689 		put_arg_page(page);
1690 	} while (offset == PAGE_SIZE);
1691 
1692 	bprm->p++;
1693 	bprm->argc--;
1694 	ret = 0;
1695 
1696 out:
1697 	return ret;
1698 }
1699 EXPORT_SYMBOL(remove_arg_zero);
1700 
1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1702 /*
1703  * cycle the list of binary formats handler, until one recognizes the image
1704  */
search_binary_handler(struct linux_binprm * bprm)1705 static int search_binary_handler(struct linux_binprm *bprm)
1706 {
1707 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1708 	struct linux_binfmt *fmt;
1709 	int retval;
1710 
1711 	retval = prepare_binprm(bprm);
1712 	if (retval < 0)
1713 		return retval;
1714 
1715 	retval = security_bprm_check(bprm);
1716 	if (retval)
1717 		return retval;
1718 
1719 	retval = -ENOENT;
1720  retry:
1721 	read_lock(&binfmt_lock);
1722 	list_for_each_entry(fmt, &formats, lh) {
1723 		if (!try_module_get(fmt->module))
1724 			continue;
1725 		read_unlock(&binfmt_lock);
1726 
1727 		retval = fmt->load_binary(bprm);
1728 
1729 		read_lock(&binfmt_lock);
1730 		put_binfmt(fmt);
1731 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1732 			read_unlock(&binfmt_lock);
1733 			return retval;
1734 		}
1735 	}
1736 	read_unlock(&binfmt_lock);
1737 
1738 	if (need_retry) {
1739 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1740 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1741 			return retval;
1742 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1743 			return retval;
1744 		need_retry = false;
1745 		goto retry;
1746 	}
1747 
1748 	return retval;
1749 }
1750 
exec_binprm(struct linux_binprm * bprm)1751 static int exec_binprm(struct linux_binprm *bprm)
1752 {
1753 	pid_t old_pid, old_vpid;
1754 	int ret, depth;
1755 
1756 	/* Need to fetch pid before load_binary changes it */
1757 	old_pid = current->pid;
1758 	rcu_read_lock();
1759 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1760 	rcu_read_unlock();
1761 
1762 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1763 	for (depth = 0;; depth++) {
1764 		struct file *exec;
1765 		if (depth > 5)
1766 			return -ELOOP;
1767 
1768 		ret = search_binary_handler(bprm);
1769 		if (ret < 0)
1770 			return ret;
1771 		if (!bprm->interpreter)
1772 			break;
1773 
1774 		exec = bprm->file;
1775 		bprm->file = bprm->interpreter;
1776 		bprm->interpreter = NULL;
1777 
1778 		allow_write_access(exec);
1779 		if (unlikely(bprm->have_execfd)) {
1780 			if (bprm->executable) {
1781 				fput(exec);
1782 				return -ENOEXEC;
1783 			}
1784 			bprm->executable = exec;
1785 		} else
1786 			fput(exec);
1787 	}
1788 
1789 	audit_bprm(bprm);
1790 	trace_sched_process_exec(current, old_pid, bprm);
1791 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1792 	proc_exec_connector(current);
1793 	return 0;
1794 }
1795 
1796 /*
1797  * sys_execve() executes a new program.
1798  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1799 static int bprm_execve(struct linux_binprm *bprm,
1800 		       int fd, struct filename *filename, int flags)
1801 {
1802 	struct file *file;
1803 	int retval;
1804 
1805 	/*
1806 	 * Cancel any io_uring activity across execve
1807 	 */
1808 	io_uring_task_cancel();
1809 
1810 	retval = prepare_bprm_creds(bprm);
1811 	if (retval)
1812 		return retval;
1813 
1814 	check_unsafe_exec(bprm);
1815 	current->in_execve = 1;
1816 
1817 	file = do_open_execat(fd, filename, flags);
1818 	retval = PTR_ERR(file);
1819 	if (IS_ERR(file))
1820 		goto out_unmark;
1821 
1822 	sched_exec();
1823 
1824 	bprm->file = file;
1825 	/*
1826 	 * Record that a name derived from an O_CLOEXEC fd will be
1827 	 * inaccessible after exec.  This allows the code in exec to
1828 	 * choose to fail when the executable is not mmaped into the
1829 	 * interpreter and an open file descriptor is not passed to
1830 	 * the interpreter.  This makes for a better user experience
1831 	 * than having the interpreter start and then immediately fail
1832 	 * when it finds the executable is inaccessible.
1833 	 */
1834 	if (bprm->fdpath && get_close_on_exec(fd))
1835 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1836 
1837 	/* Set the unchanging part of bprm->cred */
1838 	retval = security_bprm_creds_for_exec(bprm);
1839 	if (retval)
1840 		goto out;
1841 
1842 	retval = exec_binprm(bprm);
1843 	if (retval < 0)
1844 		goto out;
1845 
1846 	/* execve succeeded */
1847 	current->fs->in_exec = 0;
1848 	current->in_execve = 0;
1849 	rseq_execve(current);
1850 	acct_update_integrals(current);
1851 	task_numa_free(current, false);
1852 	CALL_HCK_LITE_HOOK(ced_detection_lhck, current);
1853 	return retval;
1854 
1855 out:
1856 	/*
1857 	 * If past the point of no return ensure the the code never
1858 	 * returns to the userspace process.  Use an existing fatal
1859 	 * signal if present otherwise terminate the process with
1860 	 * SIGSEGV.
1861 	 */
1862 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1863 		force_sigsegv(SIGSEGV);
1864 
1865 out_unmark:
1866 	current->fs->in_exec = 0;
1867 	current->in_execve = 0;
1868 
1869 	return retval;
1870 }
1871 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1872 static int do_execveat_common(int fd, struct filename *filename,
1873 			      struct user_arg_ptr argv,
1874 			      struct user_arg_ptr envp,
1875 			      int flags)
1876 {
1877 	struct linux_binprm *bprm;
1878 	int retval;
1879 
1880 	if (IS_ERR(filename))
1881 		return PTR_ERR(filename);
1882 
1883 	/*
1884 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1885 	 * set*uid() to execve() because too many poorly written programs
1886 	 * don't check setuid() return code.  Here we additionally recheck
1887 	 * whether NPROC limit is still exceeded.
1888 	 */
1889 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1890 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1891 		retval = -EAGAIN;
1892 		goto out_ret;
1893 	}
1894 
1895 	/* We're below the limit (still or again), so we don't want to make
1896 	 * further execve() calls fail. */
1897 	current->flags &= ~PF_NPROC_EXCEEDED;
1898 
1899 	bprm = alloc_bprm(fd, filename);
1900 	if (IS_ERR(bprm)) {
1901 		retval = PTR_ERR(bprm);
1902 		goto out_ret;
1903 	}
1904 
1905 	retval = count(argv, MAX_ARG_STRINGS);
1906 	if (retval == 0)
1907 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1908 			     current->comm, bprm->filename);
1909 	if (retval < 0)
1910 		goto out_free;
1911 	bprm->argc = retval;
1912 
1913 	retval = count(envp, MAX_ARG_STRINGS);
1914 	if (retval < 0)
1915 		goto out_free;
1916 	bprm->envc = retval;
1917 
1918 	retval = bprm_stack_limits(bprm);
1919 	if (retval < 0)
1920 		goto out_free;
1921 
1922 	retval = copy_string_kernel(bprm->filename, bprm);
1923 	if (retval < 0)
1924 		goto out_free;
1925 	bprm->exec = bprm->p;
1926 
1927 	retval = copy_strings(bprm->envc, envp, bprm);
1928 	if (retval < 0)
1929 		goto out_free;
1930 
1931 	retval = copy_strings(bprm->argc, argv, bprm);
1932 	if (retval < 0)
1933 		goto out_free;
1934 
1935 	/*
1936 	 * When argv is empty, add an empty string ("") as argv[0] to
1937 	 * ensure confused userspace programs that start processing
1938 	 * from argv[1] won't end up walking envp. See also
1939 	 * bprm_stack_limits().
1940 	 */
1941 	if (bprm->argc == 0) {
1942 		retval = copy_string_kernel("", bprm);
1943 		if (retval < 0)
1944 			goto out_free;
1945 		bprm->argc = 1;
1946 	}
1947 
1948 	retval = bprm_execve(bprm, fd, filename, flags);
1949 out_free:
1950 	free_bprm(bprm);
1951 
1952 out_ret:
1953 	putname(filename);
1954 	return retval;
1955 }
1956 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1957 int kernel_execve(const char *kernel_filename,
1958 		  const char *const *argv, const char *const *envp)
1959 {
1960 	struct filename *filename;
1961 	struct linux_binprm *bprm;
1962 	int fd = AT_FDCWD;
1963 	int retval;
1964 
1965 	filename = getname_kernel(kernel_filename);
1966 	if (IS_ERR(filename))
1967 		return PTR_ERR(filename);
1968 
1969 	bprm = alloc_bprm(fd, filename);
1970 	if (IS_ERR(bprm)) {
1971 		retval = PTR_ERR(bprm);
1972 		goto out_ret;
1973 	}
1974 
1975 	retval = count_strings_kernel(argv);
1976 	if (WARN_ON_ONCE(retval == 0))
1977 		retval = -EINVAL;
1978 	if (retval < 0)
1979 		goto out_free;
1980 	bprm->argc = retval;
1981 
1982 	retval = count_strings_kernel(envp);
1983 	if (retval < 0)
1984 		goto out_free;
1985 	bprm->envc = retval;
1986 
1987 	retval = bprm_stack_limits(bprm);
1988 	if (retval < 0)
1989 		goto out_free;
1990 
1991 	retval = copy_string_kernel(bprm->filename, bprm);
1992 	if (retval < 0)
1993 		goto out_free;
1994 	bprm->exec = bprm->p;
1995 
1996 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1997 	if (retval < 0)
1998 		goto out_free;
1999 
2000 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2001 	if (retval < 0)
2002 		goto out_free;
2003 
2004 	retval = bprm_execve(bprm, fd, filename, 0);
2005 out_free:
2006 	free_bprm(bprm);
2007 out_ret:
2008 	putname(filename);
2009 	return retval;
2010 }
2011 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2012 static int do_execve(struct filename *filename,
2013 	const char __user *const __user *__argv,
2014 	const char __user *const __user *__envp)
2015 {
2016 	struct user_arg_ptr argv = { .ptr.native = __argv };
2017 	struct user_arg_ptr envp = { .ptr.native = __envp };
2018 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2019 }
2020 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2021 static int do_execveat(int fd, struct filename *filename,
2022 		const char __user *const __user *__argv,
2023 		const char __user *const __user *__envp,
2024 		int flags)
2025 {
2026 	struct user_arg_ptr argv = { .ptr.native = __argv };
2027 	struct user_arg_ptr envp = { .ptr.native = __envp };
2028 
2029 	return do_execveat_common(fd, filename, argv, envp, flags);
2030 }
2031 
2032 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2033 static int compat_do_execve(struct filename *filename,
2034 	const compat_uptr_t __user *__argv,
2035 	const compat_uptr_t __user *__envp)
2036 {
2037 	struct user_arg_ptr argv = {
2038 		.is_compat = true,
2039 		.ptr.compat = __argv,
2040 	};
2041 	struct user_arg_ptr envp = {
2042 		.is_compat = true,
2043 		.ptr.compat = __envp,
2044 	};
2045 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2046 }
2047 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2048 static int compat_do_execveat(int fd, struct filename *filename,
2049 			      const compat_uptr_t __user *__argv,
2050 			      const compat_uptr_t __user *__envp,
2051 			      int flags)
2052 {
2053 	struct user_arg_ptr argv = {
2054 		.is_compat = true,
2055 		.ptr.compat = __argv,
2056 	};
2057 	struct user_arg_ptr envp = {
2058 		.is_compat = true,
2059 		.ptr.compat = __envp,
2060 	};
2061 	return do_execveat_common(fd, filename, argv, envp, flags);
2062 }
2063 #endif
2064 
set_binfmt(struct linux_binfmt * new)2065 void set_binfmt(struct linux_binfmt *new)
2066 {
2067 	struct mm_struct *mm = current->mm;
2068 
2069 	if (mm->binfmt)
2070 		module_put(mm->binfmt->module);
2071 
2072 	mm->binfmt = new;
2073 	if (new)
2074 		__module_get(new->module);
2075 }
2076 EXPORT_SYMBOL(set_binfmt);
2077 
2078 /*
2079  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2080  */
set_dumpable(struct mm_struct * mm,int value)2081 void set_dumpable(struct mm_struct *mm, int value)
2082 {
2083 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2084 		return;
2085 
2086 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2087 }
2088 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2089 SYSCALL_DEFINE3(execve,
2090 		const char __user *, filename,
2091 		const char __user *const __user *, argv,
2092 		const char __user *const __user *, envp)
2093 {
2094 	return do_execve(getname(filename), argv, envp);
2095 }
2096 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2097 SYSCALL_DEFINE5(execveat,
2098 		int, fd, const char __user *, filename,
2099 		const char __user *const __user *, argv,
2100 		const char __user *const __user *, envp,
2101 		int, flags)
2102 {
2103 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2104 
2105 	return do_execveat(fd,
2106 			   getname_flags(filename, lookup_flags, NULL),
2107 			   argv, envp, flags);
2108 }
2109 
2110 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2111 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2112 	const compat_uptr_t __user *, argv,
2113 	const compat_uptr_t __user *, envp)
2114 {
2115 	return compat_do_execve(getname(filename), argv, envp);
2116 }
2117 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2118 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2119 		       const char __user *, filename,
2120 		       const compat_uptr_t __user *, argv,
2121 		       const compat_uptr_t __user *, envp,
2122 		       int,  flags)
2123 {
2124 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2125 
2126 	return compat_do_execveat(fd,
2127 				  getname_flags(filename, lookup_flags, NULL),
2128 				  argv, envp, flags);
2129 }
2130 #endif
2131