• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
ext4_init_es(void)159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162 					   sizeof(struct extent_status),
163 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
164 	if (ext4_es_cachep == NULL)
165 		return -ENOMEM;
166 	return 0;
167 }
168 
ext4_exit_es(void)169 void ext4_exit_es(void)
170 {
171 	kmem_cache_destroy(ext4_es_cachep);
172 }
173 
ext4_es_init_tree(struct ext4_es_tree * tree)174 void ext4_es_init_tree(struct ext4_es_tree *tree)
175 {
176 	tree->root = RB_ROOT;
177 	tree->cache_es = NULL;
178 }
179 
180 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)181 static void ext4_es_print_tree(struct inode *inode)
182 {
183 	struct ext4_es_tree *tree;
184 	struct rb_node *node;
185 
186 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187 	tree = &EXT4_I(inode)->i_es_tree;
188 	node = rb_first(&tree->root);
189 	while (node) {
190 		struct extent_status *es;
191 		es = rb_entry(node, struct extent_status, rb_node);
192 		printk(KERN_DEBUG " [%u/%u) %llu %x",
193 		       es->es_lblk, es->es_len,
194 		       ext4_es_pblock(es), ext4_es_status(es));
195 		node = rb_next(node);
196 	}
197 	printk(KERN_DEBUG "\n");
198 }
199 #else
200 #define ext4_es_print_tree(inode)
201 #endif
202 
ext4_es_end(struct extent_status * es)203 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204 {
205 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206 	return es->es_lblk + es->es_len - 1;
207 }
208 
209 /*
210  * search through the tree for an delayed extent with a given offset.  If
211  * it can't be found, try to find next extent.
212  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)213 static struct extent_status *__es_tree_search(struct rb_root *root,
214 					      ext4_lblk_t lblk)
215 {
216 	struct rb_node *node = root->rb_node;
217 	struct extent_status *es = NULL;
218 
219 	while (node) {
220 		es = rb_entry(node, struct extent_status, rb_node);
221 		if (lblk < es->es_lblk)
222 			node = node->rb_left;
223 		else if (lblk > ext4_es_end(es))
224 			node = node->rb_right;
225 		else
226 			return es;
227 	}
228 
229 	if (es && lblk < es->es_lblk)
230 		return es;
231 
232 	if (es && lblk > ext4_es_end(es)) {
233 		node = rb_next(&es->rb_node);
234 		return node ? rb_entry(node, struct extent_status, rb_node) :
235 			      NULL;
236 	}
237 
238 	return NULL;
239 }
240 
241 /*
242  * ext4_es_find_extent_range - find extent with specified status within block
243  *                             range or next extent following block range in
244  *                             extents status tree
245  *
246  * @inode - file containing the range
247  * @matching_fn - pointer to function that matches extents with desired status
248  * @lblk - logical block defining start of range
249  * @end - logical block defining end of range
250  * @es - extent found, if any
251  *
252  * Find the first extent within the block range specified by @lblk and @end
253  * in the extents status tree that satisfies @matching_fn.  If a match
254  * is found, it's returned in @es.  If not, and a matching extent is found
255  * beyond the block range, it's returned in @es.  If no match is found, an
256  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257  * are 0.
258  */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)259 static void __es_find_extent_range(struct inode *inode,
260 				   int (*matching_fn)(struct extent_status *es),
261 				   ext4_lblk_t lblk, ext4_lblk_t end,
262 				   struct extent_status *es)
263 {
264 	struct ext4_es_tree *tree = NULL;
265 	struct extent_status *es1 = NULL;
266 	struct rb_node *node;
267 
268 	WARN_ON(es == NULL);
269 	WARN_ON(end < lblk);
270 
271 	tree = &EXT4_I(inode)->i_es_tree;
272 
273 	/* see if the extent has been cached */
274 	es->es_lblk = es->es_len = es->es_pblk = 0;
275 	es1 = READ_ONCE(tree->cache_es);
276 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277 		es_debug("%u cached by [%u/%u) %llu %x\n",
278 			 lblk, es1->es_lblk, es1->es_len,
279 			 ext4_es_pblock(es1), ext4_es_status(es1));
280 		goto out;
281 	}
282 
283 	es1 = __es_tree_search(&tree->root, lblk);
284 
285 out:
286 	if (es1 && !matching_fn(es1)) {
287 		while ((node = rb_next(&es1->rb_node)) != NULL) {
288 			es1 = rb_entry(node, struct extent_status, rb_node);
289 			if (es1->es_lblk > end) {
290 				es1 = NULL;
291 				break;
292 			}
293 			if (matching_fn(es1))
294 				break;
295 		}
296 	}
297 
298 	if (es1 && matching_fn(es1)) {
299 		WRITE_ONCE(tree->cache_es, es1);
300 		es->es_lblk = es1->es_lblk;
301 		es->es_len = es1->es_len;
302 		es->es_pblk = es1->es_pblk;
303 	}
304 
305 }
306 
307 /*
308  * Locking for __es_find_extent_range() for external use
309  */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)310 void ext4_es_find_extent_range(struct inode *inode,
311 			       int (*matching_fn)(struct extent_status *es),
312 			       ext4_lblk_t lblk, ext4_lblk_t end,
313 			       struct extent_status *es)
314 {
315 	es->es_lblk = es->es_len = es->es_pblk = 0;
316 
317 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
318 		return;
319 
320 	trace_ext4_es_find_extent_range_enter(inode, lblk);
321 
322 	read_lock(&EXT4_I(inode)->i_es_lock);
323 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
324 	read_unlock(&EXT4_I(inode)->i_es_lock);
325 
326 	trace_ext4_es_find_extent_range_exit(inode, es);
327 }
328 
329 /*
330  * __es_scan_range - search block range for block with specified status
331  *                   in extents status tree
332  *
333  * @inode - file containing the range
334  * @matching_fn - pointer to function that matches extents with desired status
335  * @lblk - logical block defining start of range
336  * @end - logical block defining end of range
337  *
338  * Returns true if at least one block in the specified block range satisfies
339  * the criterion specified by @matching_fn, and false if not.  If at least
340  * one extent has the specified status, then there is at least one block
341  * in the cluster with that status.  Should only be called by code that has
342  * taken i_es_lock.
343  */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)344 static bool __es_scan_range(struct inode *inode,
345 			    int (*matching_fn)(struct extent_status *es),
346 			    ext4_lblk_t start, ext4_lblk_t end)
347 {
348 	struct extent_status es;
349 
350 	__es_find_extent_range(inode, matching_fn, start, end, &es);
351 	if (es.es_len == 0)
352 		return false;   /* no matching extent in the tree */
353 	else if (es.es_lblk <= start &&
354 		 start < es.es_lblk + es.es_len)
355 		return true;
356 	else if (start <= es.es_lblk && es.es_lblk <= end)
357 		return true;
358 	else
359 		return false;
360 }
361 /*
362  * Locking for __es_scan_range() for external use
363  */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)364 bool ext4_es_scan_range(struct inode *inode,
365 			int (*matching_fn)(struct extent_status *es),
366 			ext4_lblk_t lblk, ext4_lblk_t end)
367 {
368 	bool ret;
369 
370 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
371 		return false;
372 
373 	read_lock(&EXT4_I(inode)->i_es_lock);
374 	ret = __es_scan_range(inode, matching_fn, lblk, end);
375 	read_unlock(&EXT4_I(inode)->i_es_lock);
376 
377 	return ret;
378 }
379 
380 /*
381  * __es_scan_clu - search cluster for block with specified status in
382  *                 extents status tree
383  *
384  * @inode - file containing the cluster
385  * @matching_fn - pointer to function that matches extents with desired status
386  * @lblk - logical block in cluster to be searched
387  *
388  * Returns true if at least one extent in the cluster containing @lblk
389  * satisfies the criterion specified by @matching_fn, and false if not.  If at
390  * least one extent has the specified status, then there is at least one block
391  * in the cluster with that status.  Should only be called by code that has
392  * taken i_es_lock.
393  */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)394 static bool __es_scan_clu(struct inode *inode,
395 			  int (*matching_fn)(struct extent_status *es),
396 			  ext4_lblk_t lblk)
397 {
398 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
399 	ext4_lblk_t lblk_start, lblk_end;
400 
401 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
402 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
403 
404 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
405 }
406 
407 /*
408  * Locking for __es_scan_clu() for external use
409  */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)410 bool ext4_es_scan_clu(struct inode *inode,
411 		      int (*matching_fn)(struct extent_status *es),
412 		      ext4_lblk_t lblk)
413 {
414 	bool ret;
415 
416 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
417 		return false;
418 
419 	read_lock(&EXT4_I(inode)->i_es_lock);
420 	ret = __es_scan_clu(inode, matching_fn, lblk);
421 	read_unlock(&EXT4_I(inode)->i_es_lock);
422 
423 	return ret;
424 }
425 
ext4_es_list_add(struct inode * inode)426 static void ext4_es_list_add(struct inode *inode)
427 {
428 	struct ext4_inode_info *ei = EXT4_I(inode);
429 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
430 
431 	if (!list_empty(&ei->i_es_list))
432 		return;
433 
434 	spin_lock(&sbi->s_es_lock);
435 	if (list_empty(&ei->i_es_list)) {
436 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
437 		sbi->s_es_nr_inode++;
438 	}
439 	spin_unlock(&sbi->s_es_lock);
440 }
441 
ext4_es_list_del(struct inode * inode)442 static void ext4_es_list_del(struct inode *inode)
443 {
444 	struct ext4_inode_info *ei = EXT4_I(inode);
445 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
446 
447 	spin_lock(&sbi->s_es_lock);
448 	if (!list_empty(&ei->i_es_list)) {
449 		list_del_init(&ei->i_es_list);
450 		sbi->s_es_nr_inode--;
451 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
452 	}
453 	spin_unlock(&sbi->s_es_lock);
454 }
455 
__alloc_pending(bool nofail)456 static inline struct pending_reservation *__alloc_pending(bool nofail)
457 {
458 	if (!nofail)
459 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
460 
461 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
462 }
463 
__free_pending(struct pending_reservation * pr)464 static inline void __free_pending(struct pending_reservation *pr)
465 {
466 	kmem_cache_free(ext4_pending_cachep, pr);
467 }
468 
469 /*
470  * Returns true if we cannot fail to allocate memory for this extent_status
471  * entry and cannot reclaim it until its status changes.
472  */
ext4_es_must_keep(struct extent_status * es)473 static inline bool ext4_es_must_keep(struct extent_status *es)
474 {
475 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
476 	if (ext4_es_is_delayed(es))
477 		return true;
478 
479 	return false;
480 }
481 
__es_alloc_extent(bool nofail)482 static inline struct extent_status *__es_alloc_extent(bool nofail)
483 {
484 	if (!nofail)
485 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
486 
487 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
488 }
489 
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)490 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
491 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
492 {
493 	es->es_lblk = lblk;
494 	es->es_len = len;
495 	es->es_pblk = pblk;
496 
497 	/* We never try to reclaim a must kept extent, so we don't count it. */
498 	if (!ext4_es_must_keep(es)) {
499 		if (!EXT4_I(inode)->i_es_shk_nr++)
500 			ext4_es_list_add(inode);
501 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
502 					s_es_stats.es_stats_shk_cnt);
503 	}
504 
505 	EXT4_I(inode)->i_es_all_nr++;
506 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
507 }
508 
__es_free_extent(struct extent_status * es)509 static inline void __es_free_extent(struct extent_status *es)
510 {
511 	kmem_cache_free(ext4_es_cachep, es);
512 }
513 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)514 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
515 {
516 	EXT4_I(inode)->i_es_all_nr--;
517 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
518 
519 	/* Decrease the shrink counter when we can reclaim the extent. */
520 	if (!ext4_es_must_keep(es)) {
521 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
522 		if (!--EXT4_I(inode)->i_es_shk_nr)
523 			ext4_es_list_del(inode);
524 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
525 					s_es_stats.es_stats_shk_cnt);
526 	}
527 
528 	__es_free_extent(es);
529 }
530 
531 /*
532  * Check whether or not two extents can be merged
533  * Condition:
534  *  - logical block number is contiguous
535  *  - physical block number is contiguous
536  *  - status is equal
537  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)538 static int ext4_es_can_be_merged(struct extent_status *es1,
539 				 struct extent_status *es2)
540 {
541 	if (ext4_es_type(es1) != ext4_es_type(es2))
542 		return 0;
543 
544 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
545 		pr_warn("ES assertion failed when merging extents. "
546 			"The sum of lengths of es1 (%d) and es2 (%d) "
547 			"is bigger than allowed file size (%d)\n",
548 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
549 		WARN_ON(1);
550 		return 0;
551 	}
552 
553 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
554 		return 0;
555 
556 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
557 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
558 		return 1;
559 
560 	if (ext4_es_is_hole(es1))
561 		return 1;
562 
563 	/* we need to check delayed extent is without unwritten status */
564 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
565 		return 1;
566 
567 	return 0;
568 }
569 
570 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)571 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
572 {
573 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
574 	struct extent_status *es1;
575 	struct rb_node *node;
576 
577 	node = rb_prev(&es->rb_node);
578 	if (!node)
579 		return es;
580 
581 	es1 = rb_entry(node, struct extent_status, rb_node);
582 	if (ext4_es_can_be_merged(es1, es)) {
583 		es1->es_len += es->es_len;
584 		if (ext4_es_is_referenced(es))
585 			ext4_es_set_referenced(es1);
586 		rb_erase(&es->rb_node, &tree->root);
587 		ext4_es_free_extent(inode, es);
588 		es = es1;
589 	}
590 
591 	return es;
592 }
593 
594 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)595 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
596 {
597 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
598 	struct extent_status *es1;
599 	struct rb_node *node;
600 
601 	node = rb_next(&es->rb_node);
602 	if (!node)
603 		return es;
604 
605 	es1 = rb_entry(node, struct extent_status, rb_node);
606 	if (ext4_es_can_be_merged(es, es1)) {
607 		es->es_len += es1->es_len;
608 		if (ext4_es_is_referenced(es1))
609 			ext4_es_set_referenced(es);
610 		rb_erase(node, &tree->root);
611 		ext4_es_free_extent(inode, es1);
612 	}
613 
614 	return es;
615 }
616 
617 #ifdef ES_AGGRESSIVE_TEST
618 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
619 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)620 static void ext4_es_insert_extent_ext_check(struct inode *inode,
621 					    struct extent_status *es)
622 {
623 	struct ext4_ext_path *path = NULL;
624 	struct ext4_extent *ex;
625 	ext4_lblk_t ee_block;
626 	ext4_fsblk_t ee_start;
627 	unsigned short ee_len;
628 	int depth, ee_status, es_status;
629 
630 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
631 	if (IS_ERR(path))
632 		return;
633 
634 	depth = ext_depth(inode);
635 	ex = path[depth].p_ext;
636 
637 	if (ex) {
638 
639 		ee_block = le32_to_cpu(ex->ee_block);
640 		ee_start = ext4_ext_pblock(ex);
641 		ee_len = ext4_ext_get_actual_len(ex);
642 
643 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
644 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
645 
646 		/*
647 		 * Make sure ex and es are not overlap when we try to insert
648 		 * a delayed/hole extent.
649 		 */
650 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
651 			if (in_range(es->es_lblk, ee_block, ee_len)) {
652 				pr_warn("ES insert assertion failed for "
653 					"inode: %lu we can find an extent "
654 					"at block [%d/%d/%llu/%c], but we "
655 					"want to add a delayed/hole extent "
656 					"[%d/%d/%llu/%x]\n",
657 					inode->i_ino, ee_block, ee_len,
658 					ee_start, ee_status ? 'u' : 'w',
659 					es->es_lblk, es->es_len,
660 					ext4_es_pblock(es), ext4_es_status(es));
661 			}
662 			goto out;
663 		}
664 
665 		/*
666 		 * We don't check ee_block == es->es_lblk, etc. because es
667 		 * might be a part of whole extent, vice versa.
668 		 */
669 		if (es->es_lblk < ee_block ||
670 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
671 			pr_warn("ES insert assertion failed for inode: %lu "
672 				"ex_status [%d/%d/%llu/%c] != "
673 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
674 				ee_block, ee_len, ee_start,
675 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
676 				ext4_es_pblock(es), es_status ? 'u' : 'w');
677 			goto out;
678 		}
679 
680 		if (ee_status ^ es_status) {
681 			pr_warn("ES insert assertion failed for inode: %lu "
682 				"ex_status [%d/%d/%llu/%c] != "
683 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
684 				ee_block, ee_len, ee_start,
685 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
686 				ext4_es_pblock(es), es_status ? 'u' : 'w');
687 		}
688 	} else {
689 		/*
690 		 * We can't find an extent on disk.  So we need to make sure
691 		 * that we don't want to add an written/unwritten extent.
692 		 */
693 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
694 			pr_warn("ES insert assertion failed for inode: %lu "
695 				"can't find an extent at block %d but we want "
696 				"to add a written/unwritten extent "
697 				"[%d/%d/%llu/%x]\n", inode->i_ino,
698 				es->es_lblk, es->es_lblk, es->es_len,
699 				ext4_es_pblock(es), ext4_es_status(es));
700 		}
701 	}
702 out:
703 	ext4_ext_drop_refs(path);
704 	kfree(path);
705 }
706 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)707 static void ext4_es_insert_extent_ind_check(struct inode *inode,
708 					    struct extent_status *es)
709 {
710 	struct ext4_map_blocks map;
711 	int retval;
712 
713 	/*
714 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
715 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
716 	 * access direct/indirect tree from outside.  It is too dirty to define
717 	 * this function in indirect.c file.
718 	 */
719 
720 	map.m_lblk = es->es_lblk;
721 	map.m_len = es->es_len;
722 
723 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
724 	if (retval > 0) {
725 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
726 			/*
727 			 * We want to add a delayed/hole extent but this
728 			 * block has been allocated.
729 			 */
730 			pr_warn("ES insert assertion failed for inode: %lu "
731 				"We can find blocks but we want to add a "
732 				"delayed/hole extent [%d/%d/%llu/%x]\n",
733 				inode->i_ino, es->es_lblk, es->es_len,
734 				ext4_es_pblock(es), ext4_es_status(es));
735 			return;
736 		} else if (ext4_es_is_written(es)) {
737 			if (retval != es->es_len) {
738 				pr_warn("ES insert assertion failed for "
739 					"inode: %lu retval %d != es_len %d\n",
740 					inode->i_ino, retval, es->es_len);
741 				return;
742 			}
743 			if (map.m_pblk != ext4_es_pblock(es)) {
744 				pr_warn("ES insert assertion failed for "
745 					"inode: %lu m_pblk %llu != "
746 					"es_pblk %llu\n",
747 					inode->i_ino, map.m_pblk,
748 					ext4_es_pblock(es));
749 				return;
750 			}
751 		} else {
752 			/*
753 			 * We don't need to check unwritten extent because
754 			 * indirect-based file doesn't have it.
755 			 */
756 			BUG();
757 		}
758 	} else if (retval == 0) {
759 		if (ext4_es_is_written(es)) {
760 			pr_warn("ES insert assertion failed for inode: %lu "
761 				"We can't find the block but we want to add "
762 				"a written extent [%d/%d/%llu/%x]\n",
763 				inode->i_ino, es->es_lblk, es->es_len,
764 				ext4_es_pblock(es), ext4_es_status(es));
765 			return;
766 		}
767 	}
768 }
769 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)770 static inline void ext4_es_insert_extent_check(struct inode *inode,
771 					       struct extent_status *es)
772 {
773 	/*
774 	 * We don't need to worry about the race condition because
775 	 * caller takes i_data_sem locking.
776 	 */
777 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
778 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
779 		ext4_es_insert_extent_ext_check(inode, es);
780 	else
781 		ext4_es_insert_extent_ind_check(inode, es);
782 }
783 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)784 static inline void ext4_es_insert_extent_check(struct inode *inode,
785 					       struct extent_status *es)
786 {
787 }
788 #endif
789 
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)790 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
791 			      struct extent_status *prealloc)
792 {
793 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
794 	struct rb_node **p = &tree->root.rb_node;
795 	struct rb_node *parent = NULL;
796 	struct extent_status *es;
797 
798 	while (*p) {
799 		parent = *p;
800 		es = rb_entry(parent, struct extent_status, rb_node);
801 
802 		if (newes->es_lblk < es->es_lblk) {
803 			if (ext4_es_can_be_merged(newes, es)) {
804 				/*
805 				 * Here we can modify es_lblk directly
806 				 * because it isn't overlapped.
807 				 */
808 				es->es_lblk = newes->es_lblk;
809 				es->es_len += newes->es_len;
810 				if (ext4_es_is_written(es) ||
811 				    ext4_es_is_unwritten(es))
812 					ext4_es_store_pblock(es,
813 							     newes->es_pblk);
814 				es = ext4_es_try_to_merge_left(inode, es);
815 				goto out;
816 			}
817 			p = &(*p)->rb_left;
818 		} else if (newes->es_lblk > ext4_es_end(es)) {
819 			if (ext4_es_can_be_merged(es, newes)) {
820 				es->es_len += newes->es_len;
821 				es = ext4_es_try_to_merge_right(inode, es);
822 				goto out;
823 			}
824 			p = &(*p)->rb_right;
825 		} else {
826 			BUG();
827 			return -EINVAL;
828 		}
829 	}
830 
831 	if (prealloc)
832 		es = prealloc;
833 	else
834 		es = __es_alloc_extent(false);
835 	if (!es)
836 		return -ENOMEM;
837 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
838 			    newes->es_pblk);
839 
840 	rb_link_node(&es->rb_node, parent, p);
841 	rb_insert_color(&es->rb_node, &tree->root);
842 
843 out:
844 	tree->cache_es = es;
845 	return 0;
846 }
847 
848 /*
849  * ext4_es_insert_extent() adds information to an inode's extent
850  * status tree.
851  *
852  * Return 0 on success, error code on failure.
853  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)854 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
855 			  ext4_lblk_t len, ext4_fsblk_t pblk,
856 			  unsigned int status)
857 {
858 	struct extent_status newes;
859 	ext4_lblk_t end = lblk + len - 1;
860 	int err1 = 0, err2 = 0, err3 = 0;
861 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
862 	struct extent_status *es1 = NULL;
863 	struct extent_status *es2 = NULL;
864 	struct pending_reservation *pr = NULL;
865 	bool revise_pending = false;
866 
867 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
868 		return 0;
869 
870 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
871 		 lblk, len, pblk, status, inode->i_ino);
872 
873 	if (!len)
874 		return 0;
875 
876 	BUG_ON(end < lblk);
877 
878 	if ((status & EXTENT_STATUS_DELAYED) &&
879 	    (status & EXTENT_STATUS_WRITTEN)) {
880 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
881 				" delayed and written which can potentially "
882 				" cause data loss.", lblk, len);
883 		WARN_ON(1);
884 	}
885 
886 	newes.es_lblk = lblk;
887 	newes.es_len = len;
888 	ext4_es_store_pblock_status(&newes, pblk, status);
889 	trace_ext4_es_insert_extent(inode, &newes);
890 
891 	ext4_es_insert_extent_check(inode, &newes);
892 
893 	revise_pending = sbi->s_cluster_ratio > 1 &&
894 			 test_opt(inode->i_sb, DELALLOC) &&
895 			 (status & (EXTENT_STATUS_WRITTEN |
896 				    EXTENT_STATUS_UNWRITTEN));
897 retry:
898 	if (err1 && !es1)
899 		es1 = __es_alloc_extent(true);
900 	if ((err1 || err2) && !es2)
901 		es2 = __es_alloc_extent(true);
902 	if ((err1 || err2 || err3) && revise_pending && !pr)
903 		pr = __alloc_pending(true);
904 	write_lock(&EXT4_I(inode)->i_es_lock);
905 
906 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
907 	if (err1 != 0)
908 		goto error;
909 	/* Free preallocated extent if it didn't get used. */
910 	if (es1) {
911 		if (!es1->es_len)
912 			__es_free_extent(es1);
913 		es1 = NULL;
914 	}
915 
916 	err2 = __es_insert_extent(inode, &newes, es2);
917 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
918 		err2 = 0;
919 	if (err2 != 0)
920 		goto error;
921 	/* Free preallocated extent if it didn't get used. */
922 	if (es2) {
923 		if (!es2->es_len)
924 			__es_free_extent(es2);
925 		es2 = NULL;
926 	}
927 
928 	if (revise_pending) {
929 		err3 = __revise_pending(inode, lblk, len, &pr);
930 		if (err3 != 0)
931 			goto error;
932 		if (pr) {
933 			__free_pending(pr);
934 			pr = NULL;
935 		}
936 	}
937 error:
938 	write_unlock(&EXT4_I(inode)->i_es_lock);
939 	if (err1 || err2 || err3)
940 		goto retry;
941 
942 	ext4_es_print_tree(inode);
943 	return 0;
944 }
945 
946 /*
947  * ext4_es_cache_extent() inserts information into the extent status
948  * tree if and only if there isn't information about the range in
949  * question already.
950  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)951 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
952 			  ext4_lblk_t len, ext4_fsblk_t pblk,
953 			  unsigned int status)
954 {
955 	struct extent_status *es;
956 	struct extent_status newes;
957 	ext4_lblk_t end = lblk + len - 1;
958 
959 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
960 		return;
961 
962 	newes.es_lblk = lblk;
963 	newes.es_len = len;
964 	ext4_es_store_pblock_status(&newes, pblk, status);
965 	trace_ext4_es_cache_extent(inode, &newes);
966 
967 	if (!len)
968 		return;
969 
970 	BUG_ON(end < lblk);
971 
972 	write_lock(&EXT4_I(inode)->i_es_lock);
973 
974 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
975 	if (!es || es->es_lblk > end)
976 		__es_insert_extent(inode, &newes, NULL);
977 	write_unlock(&EXT4_I(inode)->i_es_lock);
978 }
979 
980 /*
981  * ext4_es_lookup_extent() looks up an extent in extent status tree.
982  *
983  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
984  *
985  * Return: 1 on found, 0 on not
986  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)987 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
988 			  ext4_lblk_t *next_lblk,
989 			  struct extent_status *es)
990 {
991 	struct ext4_es_tree *tree;
992 	struct ext4_es_stats *stats;
993 	struct extent_status *es1 = NULL;
994 	struct rb_node *node;
995 	int found = 0;
996 
997 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
998 		return 0;
999 
1000 	trace_ext4_es_lookup_extent_enter(inode, lblk);
1001 	es_debug("lookup extent in block %u\n", lblk);
1002 
1003 	tree = &EXT4_I(inode)->i_es_tree;
1004 	read_lock(&EXT4_I(inode)->i_es_lock);
1005 
1006 	/* find extent in cache firstly */
1007 	es->es_lblk = es->es_len = es->es_pblk = 0;
1008 	es1 = READ_ONCE(tree->cache_es);
1009 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1010 		es_debug("%u cached by [%u/%u)\n",
1011 			 lblk, es1->es_lblk, es1->es_len);
1012 		found = 1;
1013 		goto out;
1014 	}
1015 
1016 	node = tree->root.rb_node;
1017 	while (node) {
1018 		es1 = rb_entry(node, struct extent_status, rb_node);
1019 		if (lblk < es1->es_lblk)
1020 			node = node->rb_left;
1021 		else if (lblk > ext4_es_end(es1))
1022 			node = node->rb_right;
1023 		else {
1024 			found = 1;
1025 			break;
1026 		}
1027 	}
1028 
1029 out:
1030 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1031 	if (found) {
1032 		BUG_ON(!es1);
1033 		es->es_lblk = es1->es_lblk;
1034 		es->es_len = es1->es_len;
1035 		es->es_pblk = es1->es_pblk;
1036 		if (!ext4_es_is_referenced(es1))
1037 			ext4_es_set_referenced(es1);
1038 		percpu_counter_inc(&stats->es_stats_cache_hits);
1039 		if (next_lblk) {
1040 			node = rb_next(&es1->rb_node);
1041 			if (node) {
1042 				es1 = rb_entry(node, struct extent_status,
1043 					       rb_node);
1044 				*next_lblk = es1->es_lblk;
1045 			} else
1046 				*next_lblk = 0;
1047 		}
1048 	} else {
1049 		percpu_counter_inc(&stats->es_stats_cache_misses);
1050 	}
1051 
1052 	read_unlock(&EXT4_I(inode)->i_es_lock);
1053 
1054 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1055 	return found;
1056 }
1057 
1058 struct rsvd_count {
1059 	int ndelonly;
1060 	bool first_do_lblk_found;
1061 	ext4_lblk_t first_do_lblk;
1062 	ext4_lblk_t last_do_lblk;
1063 	struct extent_status *left_es;
1064 	bool partial;
1065 	ext4_lblk_t lclu;
1066 };
1067 
1068 /*
1069  * init_rsvd - initialize reserved count data before removing block range
1070  *	       in file from extent status tree
1071  *
1072  * @inode - file containing range
1073  * @lblk - first block in range
1074  * @es - pointer to first extent in range
1075  * @rc - pointer to reserved count data
1076  *
1077  * Assumes es is not NULL
1078  */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1079 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1080 		      struct extent_status *es, struct rsvd_count *rc)
1081 {
1082 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1083 	struct rb_node *node;
1084 
1085 	rc->ndelonly = 0;
1086 
1087 	/*
1088 	 * for bigalloc, note the first delonly block in the range has not
1089 	 * been found, record the extent containing the block to the left of
1090 	 * the region to be removed, if any, and note that there's no partial
1091 	 * cluster to track
1092 	 */
1093 	if (sbi->s_cluster_ratio > 1) {
1094 		rc->first_do_lblk_found = false;
1095 		if (lblk > es->es_lblk) {
1096 			rc->left_es = es;
1097 		} else {
1098 			node = rb_prev(&es->rb_node);
1099 			rc->left_es = node ? rb_entry(node,
1100 						      struct extent_status,
1101 						      rb_node) : NULL;
1102 		}
1103 		rc->partial = false;
1104 	}
1105 }
1106 
1107 /*
1108  * count_rsvd - count the clusters containing delayed and not unwritten
1109  *		(delonly) blocks in a range within an extent and add to
1110  *	        the running tally in rsvd_count
1111  *
1112  * @inode - file containing extent
1113  * @lblk - first block in range
1114  * @len - length of range in blocks
1115  * @es - pointer to extent containing clusters to be counted
1116  * @rc - pointer to reserved count data
1117  *
1118  * Tracks partial clusters found at the beginning and end of extents so
1119  * they aren't overcounted when they span adjacent extents
1120  */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1121 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1122 		       struct extent_status *es, struct rsvd_count *rc)
1123 {
1124 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1125 	ext4_lblk_t i, end, nclu;
1126 
1127 	if (!ext4_es_is_delonly(es))
1128 		return;
1129 
1130 	WARN_ON(len <= 0);
1131 
1132 	if (sbi->s_cluster_ratio == 1) {
1133 		rc->ndelonly += (int) len;
1134 		return;
1135 	}
1136 
1137 	/* bigalloc */
1138 
1139 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1140 	end = lblk + (ext4_lblk_t) len - 1;
1141 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1142 
1143 	/* record the first block of the first delonly extent seen */
1144 	if (!rc->first_do_lblk_found) {
1145 		rc->first_do_lblk = i;
1146 		rc->first_do_lblk_found = true;
1147 	}
1148 
1149 	/* update the last lblk in the region seen so far */
1150 	rc->last_do_lblk = end;
1151 
1152 	/*
1153 	 * if we're tracking a partial cluster and the current extent
1154 	 * doesn't start with it, count it and stop tracking
1155 	 */
1156 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1157 		rc->ndelonly++;
1158 		rc->partial = false;
1159 	}
1160 
1161 	/*
1162 	 * if the first cluster doesn't start on a cluster boundary but
1163 	 * ends on one, count it
1164 	 */
1165 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1166 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1167 			rc->ndelonly++;
1168 			rc->partial = false;
1169 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * if the current cluster starts on a cluster boundary, count the
1175 	 * number of whole delonly clusters in the extent
1176 	 */
1177 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1178 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1179 		rc->ndelonly += nclu;
1180 		i += nclu << sbi->s_cluster_bits;
1181 	}
1182 
1183 	/*
1184 	 * start tracking a partial cluster if there's a partial at the end
1185 	 * of the current extent and we're not already tracking one
1186 	 */
1187 	if (!rc->partial && i <= end) {
1188 		rc->partial = true;
1189 		rc->lclu = EXT4_B2C(sbi, i);
1190 	}
1191 }
1192 
1193 /*
1194  * __pr_tree_search - search for a pending cluster reservation
1195  *
1196  * @root - root of pending reservation tree
1197  * @lclu - logical cluster to search for
1198  *
1199  * Returns the pending reservation for the cluster identified by @lclu
1200  * if found.  If not, returns a reservation for the next cluster if any,
1201  * and if not, returns NULL.
1202  */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1203 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1204 						    ext4_lblk_t lclu)
1205 {
1206 	struct rb_node *node = root->rb_node;
1207 	struct pending_reservation *pr = NULL;
1208 
1209 	while (node) {
1210 		pr = rb_entry(node, struct pending_reservation, rb_node);
1211 		if (lclu < pr->lclu)
1212 			node = node->rb_left;
1213 		else if (lclu > pr->lclu)
1214 			node = node->rb_right;
1215 		else
1216 			return pr;
1217 	}
1218 	if (pr && lclu < pr->lclu)
1219 		return pr;
1220 	if (pr && lclu > pr->lclu) {
1221 		node = rb_next(&pr->rb_node);
1222 		return node ? rb_entry(node, struct pending_reservation,
1223 				       rb_node) : NULL;
1224 	}
1225 	return NULL;
1226 }
1227 
1228 /*
1229  * get_rsvd - calculates and returns the number of cluster reservations to be
1230  *	      released when removing a block range from the extent status tree
1231  *	      and releases any pending reservations within the range
1232  *
1233  * @inode - file containing block range
1234  * @end - last block in range
1235  * @right_es - pointer to extent containing next block beyond end or NULL
1236  * @rc - pointer to reserved count data
1237  *
1238  * The number of reservations to be released is equal to the number of
1239  * clusters containing delayed and not unwritten (delonly) blocks within
1240  * the range, minus the number of clusters still containing delonly blocks
1241  * at the ends of the range, and minus the number of pending reservations
1242  * within the range.
1243  */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1244 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1245 			     struct extent_status *right_es,
1246 			     struct rsvd_count *rc)
1247 {
1248 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249 	struct pending_reservation *pr;
1250 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1251 	struct rb_node *node;
1252 	ext4_lblk_t first_lclu, last_lclu;
1253 	bool left_delonly, right_delonly, count_pending;
1254 	struct extent_status *es;
1255 
1256 	if (sbi->s_cluster_ratio > 1) {
1257 		/* count any remaining partial cluster */
1258 		if (rc->partial)
1259 			rc->ndelonly++;
1260 
1261 		if (rc->ndelonly == 0)
1262 			return 0;
1263 
1264 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1265 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1266 
1267 		/*
1268 		 * decrease the delonly count by the number of clusters at the
1269 		 * ends of the range that still contain delonly blocks -
1270 		 * these clusters still need to be reserved
1271 		 */
1272 		left_delonly = right_delonly = false;
1273 
1274 		es = rc->left_es;
1275 		while (es && ext4_es_end(es) >=
1276 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1277 			if (ext4_es_is_delonly(es)) {
1278 				rc->ndelonly--;
1279 				left_delonly = true;
1280 				break;
1281 			}
1282 			node = rb_prev(&es->rb_node);
1283 			if (!node)
1284 				break;
1285 			es = rb_entry(node, struct extent_status, rb_node);
1286 		}
1287 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1288 			if (end < ext4_es_end(right_es)) {
1289 				es = right_es;
1290 			} else {
1291 				node = rb_next(&right_es->rb_node);
1292 				es = node ? rb_entry(node, struct extent_status,
1293 						     rb_node) : NULL;
1294 			}
1295 			while (es && es->es_lblk <=
1296 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1297 				if (ext4_es_is_delonly(es)) {
1298 					rc->ndelonly--;
1299 					right_delonly = true;
1300 					break;
1301 				}
1302 				node = rb_next(&es->rb_node);
1303 				if (!node)
1304 					break;
1305 				es = rb_entry(node, struct extent_status,
1306 					      rb_node);
1307 			}
1308 		}
1309 
1310 		/*
1311 		 * Determine the block range that should be searched for
1312 		 * pending reservations, if any.  Clusters on the ends of the
1313 		 * original removed range containing delonly blocks are
1314 		 * excluded.  They've already been accounted for and it's not
1315 		 * possible to determine if an associated pending reservation
1316 		 * should be released with the information available in the
1317 		 * extents status tree.
1318 		 */
1319 		if (first_lclu == last_lclu) {
1320 			if (left_delonly | right_delonly)
1321 				count_pending = false;
1322 			else
1323 				count_pending = true;
1324 		} else {
1325 			if (left_delonly)
1326 				first_lclu++;
1327 			if (right_delonly)
1328 				last_lclu--;
1329 			if (first_lclu <= last_lclu)
1330 				count_pending = true;
1331 			else
1332 				count_pending = false;
1333 		}
1334 
1335 		/*
1336 		 * a pending reservation found between first_lclu and last_lclu
1337 		 * represents an allocated cluster that contained at least one
1338 		 * delonly block, so the delonly total must be reduced by one
1339 		 * for each pending reservation found and released
1340 		 */
1341 		if (count_pending) {
1342 			pr = __pr_tree_search(&tree->root, first_lclu);
1343 			while (pr && pr->lclu <= last_lclu) {
1344 				rc->ndelonly--;
1345 				node = rb_next(&pr->rb_node);
1346 				rb_erase(&pr->rb_node, &tree->root);
1347 				__free_pending(pr);
1348 				if (!node)
1349 					break;
1350 				pr = rb_entry(node, struct pending_reservation,
1351 					      rb_node);
1352 			}
1353 		}
1354 	}
1355 	return rc->ndelonly;
1356 }
1357 
1358 
1359 /*
1360  * __es_remove_extent - removes block range from extent status tree
1361  *
1362  * @inode - file containing range
1363  * @lblk - first block in range
1364  * @end - last block in range
1365  * @reserved - number of cluster reservations released
1366  * @prealloc - pre-allocated es to avoid memory allocation failures
1367  *
1368  * If @reserved is not NULL and delayed allocation is enabled, counts
1369  * block/cluster reservations freed by removing range and if bigalloc
1370  * enabled cancels pending reservations as needed. Returns 0 on success,
1371  * error code on failure.
1372  */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1373 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1374 			      ext4_lblk_t end, int *reserved,
1375 			      struct extent_status *prealloc)
1376 {
1377 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1378 	struct rb_node *node;
1379 	struct extent_status *es;
1380 	struct extent_status orig_es;
1381 	ext4_lblk_t len1, len2;
1382 	ext4_fsblk_t block;
1383 	int err = 0;
1384 	bool count_reserved = true;
1385 	struct rsvd_count rc;
1386 
1387 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1388 		count_reserved = false;
1389 
1390 	es = __es_tree_search(&tree->root, lblk);
1391 	if (!es)
1392 		goto out;
1393 	if (es->es_lblk > end)
1394 		goto out;
1395 
1396 	/* Simply invalidate cache_es. */
1397 	tree->cache_es = NULL;
1398 	if (count_reserved)
1399 		init_rsvd(inode, lblk, es, &rc);
1400 
1401 	orig_es.es_lblk = es->es_lblk;
1402 	orig_es.es_len = es->es_len;
1403 	orig_es.es_pblk = es->es_pblk;
1404 
1405 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1406 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1407 	if (len1 > 0)
1408 		es->es_len = len1;
1409 	if (len2 > 0) {
1410 		if (len1 > 0) {
1411 			struct extent_status newes;
1412 
1413 			newes.es_lblk = end + 1;
1414 			newes.es_len = len2;
1415 			block = 0x7FDEADBEEFULL;
1416 			if (ext4_es_is_written(&orig_es) ||
1417 			    ext4_es_is_unwritten(&orig_es))
1418 				block = ext4_es_pblock(&orig_es) +
1419 					orig_es.es_len - len2;
1420 			ext4_es_store_pblock_status(&newes, block,
1421 						    ext4_es_status(&orig_es));
1422 			err = __es_insert_extent(inode, &newes, prealloc);
1423 			if (err) {
1424 				if (!ext4_es_must_keep(&newes))
1425 					return 0;
1426 
1427 				es->es_lblk = orig_es.es_lblk;
1428 				es->es_len = orig_es.es_len;
1429 				goto out;
1430 			}
1431 		} else {
1432 			es->es_lblk = end + 1;
1433 			es->es_len = len2;
1434 			if (ext4_es_is_written(es) ||
1435 			    ext4_es_is_unwritten(es)) {
1436 				block = orig_es.es_pblk + orig_es.es_len - len2;
1437 				ext4_es_store_pblock(es, block);
1438 			}
1439 		}
1440 		if (count_reserved)
1441 			count_rsvd(inode, orig_es.es_lblk + len1,
1442 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1443 		goto out_get_reserved;
1444 	}
1445 
1446 	if (len1 > 0) {
1447 		if (count_reserved)
1448 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1449 				   &orig_es, &rc);
1450 		node = rb_next(&es->rb_node);
1451 		if (node)
1452 			es = rb_entry(node, struct extent_status, rb_node);
1453 		else
1454 			es = NULL;
1455 	}
1456 
1457 	while (es && ext4_es_end(es) <= end) {
1458 		if (count_reserved)
1459 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1460 		node = rb_next(&es->rb_node);
1461 		rb_erase(&es->rb_node, &tree->root);
1462 		ext4_es_free_extent(inode, es);
1463 		if (!node) {
1464 			es = NULL;
1465 			break;
1466 		}
1467 		es = rb_entry(node, struct extent_status, rb_node);
1468 	}
1469 
1470 	if (es && es->es_lblk < end + 1) {
1471 		ext4_lblk_t orig_len = es->es_len;
1472 
1473 		len1 = ext4_es_end(es) - end;
1474 		if (count_reserved)
1475 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1476 				   es, &rc);
1477 		es->es_lblk = end + 1;
1478 		es->es_len = len1;
1479 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1480 			block = es->es_pblk + orig_len - len1;
1481 			ext4_es_store_pblock(es, block);
1482 		}
1483 	}
1484 
1485 out_get_reserved:
1486 	if (count_reserved)
1487 		*reserved = get_rsvd(inode, end, es, &rc);
1488 out:
1489 	return err;
1490 }
1491 
1492 /*
1493  * ext4_es_remove_extent - removes block range from extent status tree
1494  *
1495  * @inode - file containing range
1496  * @lblk - first block in range
1497  * @len - number of blocks to remove
1498  *
1499  * Reduces block/cluster reservation count and for bigalloc cancels pending
1500  * reservations as needed. Returns 0 on success, error code on failure.
1501  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1502 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1503 			  ext4_lblk_t len)
1504 {
1505 	ext4_lblk_t end;
1506 	int err = 0;
1507 	int reserved = 0;
1508 	struct extent_status *es = NULL;
1509 
1510 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1511 		return 0;
1512 
1513 	trace_ext4_es_remove_extent(inode, lblk, len);
1514 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1515 		 lblk, len, inode->i_ino);
1516 
1517 	if (!len)
1518 		return err;
1519 
1520 	end = lblk + len - 1;
1521 	BUG_ON(end < lblk);
1522 
1523 retry:
1524 	if (err && !es)
1525 		es = __es_alloc_extent(true);
1526 	/*
1527 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1528 	 * so that we are sure __es_shrink() is done with the inode before it
1529 	 * is reclaimed.
1530 	 */
1531 	write_lock(&EXT4_I(inode)->i_es_lock);
1532 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1533 	/* Free preallocated extent if it didn't get used. */
1534 	if (es) {
1535 		if (!es->es_len)
1536 			__es_free_extent(es);
1537 		es = NULL;
1538 	}
1539 	write_unlock(&EXT4_I(inode)->i_es_lock);
1540 	if (err)
1541 		goto retry;
1542 
1543 	ext4_es_print_tree(inode);
1544 	ext4_da_release_space(inode, reserved);
1545 	return 0;
1546 }
1547 
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1548 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1549 		       struct ext4_inode_info *locked_ei)
1550 {
1551 	struct ext4_inode_info *ei;
1552 	struct ext4_es_stats *es_stats;
1553 	ktime_t start_time;
1554 	u64 scan_time;
1555 	int nr_to_walk;
1556 	int nr_shrunk = 0;
1557 	int retried = 0, nr_skipped = 0;
1558 
1559 	es_stats = &sbi->s_es_stats;
1560 	start_time = ktime_get();
1561 
1562 retry:
1563 	spin_lock(&sbi->s_es_lock);
1564 	nr_to_walk = sbi->s_es_nr_inode;
1565 	while (nr_to_walk-- > 0) {
1566 		if (list_empty(&sbi->s_es_list)) {
1567 			spin_unlock(&sbi->s_es_lock);
1568 			goto out;
1569 		}
1570 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1571 				      i_es_list);
1572 		/* Move the inode to the tail */
1573 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1574 
1575 		/*
1576 		 * Normally we try hard to avoid shrinking precached inodes,
1577 		 * but we will as a last resort.
1578 		 */
1579 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1580 						EXT4_STATE_EXT_PRECACHED)) {
1581 			nr_skipped++;
1582 			continue;
1583 		}
1584 
1585 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1586 			nr_skipped++;
1587 			continue;
1588 		}
1589 		/*
1590 		 * Now we hold i_es_lock which protects us from inode reclaim
1591 		 * freeing inode under us
1592 		 */
1593 		spin_unlock(&sbi->s_es_lock);
1594 
1595 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1596 		write_unlock(&ei->i_es_lock);
1597 
1598 		if (nr_to_scan <= 0)
1599 			goto out;
1600 		spin_lock(&sbi->s_es_lock);
1601 	}
1602 	spin_unlock(&sbi->s_es_lock);
1603 
1604 	/*
1605 	 * If we skipped any inodes, and we weren't able to make any
1606 	 * forward progress, try again to scan precached inodes.
1607 	 */
1608 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1609 		retried++;
1610 		goto retry;
1611 	}
1612 
1613 	if (locked_ei && nr_shrunk == 0)
1614 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1615 
1616 out:
1617 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1618 	if (likely(es_stats->es_stats_scan_time))
1619 		es_stats->es_stats_scan_time = (scan_time +
1620 				es_stats->es_stats_scan_time*3) / 4;
1621 	else
1622 		es_stats->es_stats_scan_time = scan_time;
1623 	if (scan_time > es_stats->es_stats_max_scan_time)
1624 		es_stats->es_stats_max_scan_time = scan_time;
1625 	if (likely(es_stats->es_stats_shrunk))
1626 		es_stats->es_stats_shrunk = (nr_shrunk +
1627 				es_stats->es_stats_shrunk*3) / 4;
1628 	else
1629 		es_stats->es_stats_shrunk = nr_shrunk;
1630 
1631 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1632 			     nr_skipped, retried);
1633 	return nr_shrunk;
1634 }
1635 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1636 static unsigned long ext4_es_count(struct shrinker *shrink,
1637 				   struct shrink_control *sc)
1638 {
1639 	unsigned long nr;
1640 	struct ext4_sb_info *sbi;
1641 
1642 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1643 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1644 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1645 	return nr;
1646 }
1647 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1648 static unsigned long ext4_es_scan(struct shrinker *shrink,
1649 				  struct shrink_control *sc)
1650 {
1651 	struct ext4_sb_info *sbi = container_of(shrink,
1652 					struct ext4_sb_info, s_es_shrinker);
1653 	int nr_to_scan = sc->nr_to_scan;
1654 	int ret, nr_shrunk;
1655 
1656 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1657 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1658 
1659 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1660 
1661 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1662 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1663 	return nr_shrunk;
1664 }
1665 
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1666 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1667 {
1668 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1669 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1670 	struct ext4_inode_info *ei, *max = NULL;
1671 	unsigned int inode_cnt = 0;
1672 
1673 	if (v != SEQ_START_TOKEN)
1674 		return 0;
1675 
1676 	/* here we just find an inode that has the max nr. of objects */
1677 	spin_lock(&sbi->s_es_lock);
1678 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1679 		inode_cnt++;
1680 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1681 			max = ei;
1682 		else if (!max)
1683 			max = ei;
1684 	}
1685 	spin_unlock(&sbi->s_es_lock);
1686 
1687 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1688 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1689 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1690 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1691 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1692 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1693 	if (inode_cnt)
1694 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1695 
1696 	seq_printf(seq, "average:\n  %llu us scan time\n",
1697 	    div_u64(es_stats->es_stats_scan_time, 1000));
1698 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1699 	if (inode_cnt)
1700 		seq_printf(seq,
1701 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1702 		    "  %llu us max scan time\n",
1703 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1704 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1705 
1706 	return 0;
1707 }
1708 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1709 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1710 {
1711 	int err;
1712 
1713 	/* Make sure we have enough bits for physical block number */
1714 	BUILD_BUG_ON(ES_SHIFT < 48);
1715 	INIT_LIST_HEAD(&sbi->s_es_list);
1716 	sbi->s_es_nr_inode = 0;
1717 	spin_lock_init(&sbi->s_es_lock);
1718 	sbi->s_es_stats.es_stats_shrunk = 0;
1719 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1720 				  GFP_KERNEL);
1721 	if (err)
1722 		return err;
1723 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1724 				  GFP_KERNEL);
1725 	if (err)
1726 		goto err1;
1727 	sbi->s_es_stats.es_stats_scan_time = 0;
1728 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1729 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1730 	if (err)
1731 		goto err2;
1732 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1733 	if (err)
1734 		goto err3;
1735 
1736 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1737 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1738 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1739 	err = register_shrinker(&sbi->s_es_shrinker);
1740 	if (err)
1741 		goto err4;
1742 
1743 	return 0;
1744 err4:
1745 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1746 err3:
1747 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1748 err2:
1749 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1750 err1:
1751 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1752 	return err;
1753 }
1754 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1755 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1756 {
1757 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1758 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1759 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1760 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1761 	unregister_shrinker(&sbi->s_es_shrinker);
1762 }
1763 
1764 /*
1765  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1766  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1767  *
1768  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1769  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1770  * ei->i_es_shrink_lblk to where we should continue scanning.
1771  */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1772 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1773 				 int *nr_to_scan, int *nr_shrunk)
1774 {
1775 	struct inode *inode = &ei->vfs_inode;
1776 	struct ext4_es_tree *tree = &ei->i_es_tree;
1777 	struct extent_status *es;
1778 	struct rb_node *node;
1779 
1780 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1781 	if (!es)
1782 		goto out_wrap;
1783 
1784 	while (*nr_to_scan > 0) {
1785 		if (es->es_lblk > end) {
1786 			ei->i_es_shrink_lblk = end + 1;
1787 			return 0;
1788 		}
1789 
1790 		(*nr_to_scan)--;
1791 		node = rb_next(&es->rb_node);
1792 
1793 		if (ext4_es_must_keep(es))
1794 			goto next;
1795 		if (ext4_es_is_referenced(es)) {
1796 			ext4_es_clear_referenced(es);
1797 			goto next;
1798 		}
1799 
1800 		rb_erase(&es->rb_node, &tree->root);
1801 		ext4_es_free_extent(inode, es);
1802 		(*nr_shrunk)++;
1803 next:
1804 		if (!node)
1805 			goto out_wrap;
1806 		es = rb_entry(node, struct extent_status, rb_node);
1807 	}
1808 	ei->i_es_shrink_lblk = es->es_lblk;
1809 	return 1;
1810 out_wrap:
1811 	ei->i_es_shrink_lblk = 0;
1812 	return 0;
1813 }
1814 
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1815 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1816 {
1817 	struct inode *inode = &ei->vfs_inode;
1818 	int nr_shrunk = 0;
1819 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1820 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1821 				      DEFAULT_RATELIMIT_BURST);
1822 
1823 	if (ei->i_es_shk_nr == 0)
1824 		return 0;
1825 
1826 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1827 	    __ratelimit(&_rs))
1828 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1829 
1830 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1831 	    start != 0)
1832 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1833 
1834 	ei->i_es_tree.cache_es = NULL;
1835 	return nr_shrunk;
1836 }
1837 
1838 /*
1839  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1840  * discretionary entries from the extent status cache.  (Some entries
1841  * must be present for proper operations.)
1842  */
ext4_clear_inode_es(struct inode * inode)1843 void ext4_clear_inode_es(struct inode *inode)
1844 {
1845 	struct ext4_inode_info *ei = EXT4_I(inode);
1846 	struct extent_status *es;
1847 	struct ext4_es_tree *tree;
1848 	struct rb_node *node;
1849 
1850 	write_lock(&ei->i_es_lock);
1851 	tree = &EXT4_I(inode)->i_es_tree;
1852 	tree->cache_es = NULL;
1853 	node = rb_first(&tree->root);
1854 	while (node) {
1855 		es = rb_entry(node, struct extent_status, rb_node);
1856 		node = rb_next(node);
1857 		if (!ext4_es_must_keep(es)) {
1858 			rb_erase(&es->rb_node, &tree->root);
1859 			ext4_es_free_extent(inode, es);
1860 		}
1861 	}
1862 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1863 	write_unlock(&ei->i_es_lock);
1864 }
1865 
1866 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1867 static void ext4_print_pending_tree(struct inode *inode)
1868 {
1869 	struct ext4_pending_tree *tree;
1870 	struct rb_node *node;
1871 	struct pending_reservation *pr;
1872 
1873 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1874 	tree = &EXT4_I(inode)->i_pending_tree;
1875 	node = rb_first(&tree->root);
1876 	while (node) {
1877 		pr = rb_entry(node, struct pending_reservation, rb_node);
1878 		printk(KERN_DEBUG " %u", pr->lclu);
1879 		node = rb_next(node);
1880 	}
1881 	printk(KERN_DEBUG "\n");
1882 }
1883 #else
1884 #define ext4_print_pending_tree(inode)
1885 #endif
1886 
ext4_init_pending(void)1887 int __init ext4_init_pending(void)
1888 {
1889 	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1890 					   sizeof(struct pending_reservation),
1891 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1892 	if (ext4_pending_cachep == NULL)
1893 		return -ENOMEM;
1894 	return 0;
1895 }
1896 
ext4_exit_pending(void)1897 void ext4_exit_pending(void)
1898 {
1899 	kmem_cache_destroy(ext4_pending_cachep);
1900 }
1901 
ext4_init_pending_tree(struct ext4_pending_tree * tree)1902 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1903 {
1904 	tree->root = RB_ROOT;
1905 }
1906 
1907 /*
1908  * __get_pending - retrieve a pointer to a pending reservation
1909  *
1910  * @inode - file containing the pending cluster reservation
1911  * @lclu - logical cluster of interest
1912  *
1913  * Returns a pointer to a pending reservation if it's a member of
1914  * the set, and NULL if not.  Must be called holding i_es_lock.
1915  */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1916 static struct pending_reservation *__get_pending(struct inode *inode,
1917 						 ext4_lblk_t lclu)
1918 {
1919 	struct ext4_pending_tree *tree;
1920 	struct rb_node *node;
1921 	struct pending_reservation *pr = NULL;
1922 
1923 	tree = &EXT4_I(inode)->i_pending_tree;
1924 	node = (&tree->root)->rb_node;
1925 
1926 	while (node) {
1927 		pr = rb_entry(node, struct pending_reservation, rb_node);
1928 		if (lclu < pr->lclu)
1929 			node = node->rb_left;
1930 		else if (lclu > pr->lclu)
1931 			node = node->rb_right;
1932 		else if (lclu == pr->lclu)
1933 			return pr;
1934 	}
1935 	return NULL;
1936 }
1937 
1938 /*
1939  * __insert_pending - adds a pending cluster reservation to the set of
1940  *                    pending reservations
1941  *
1942  * @inode - file containing the cluster
1943  * @lblk - logical block in the cluster to be added
1944  * @prealloc - preallocated pending entry
1945  *
1946  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1947  * pending reservation is already in the set, returns successfully.
1948  */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1949 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1950 			    struct pending_reservation **prealloc)
1951 {
1952 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1953 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1954 	struct rb_node **p = &tree->root.rb_node;
1955 	struct rb_node *parent = NULL;
1956 	struct pending_reservation *pr;
1957 	ext4_lblk_t lclu;
1958 	int ret = 0;
1959 
1960 	lclu = EXT4_B2C(sbi, lblk);
1961 	/* search to find parent for insertion */
1962 	while (*p) {
1963 		parent = *p;
1964 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1965 
1966 		if (lclu < pr->lclu) {
1967 			p = &(*p)->rb_left;
1968 		} else if (lclu > pr->lclu) {
1969 			p = &(*p)->rb_right;
1970 		} else {
1971 			/* pending reservation already inserted */
1972 			goto out;
1973 		}
1974 	}
1975 
1976 	if (likely(*prealloc == NULL)) {
1977 		pr = __alloc_pending(false);
1978 		if (!pr) {
1979 			ret = -ENOMEM;
1980 			goto out;
1981 		}
1982 	} else {
1983 		pr = *prealloc;
1984 		*prealloc = NULL;
1985 	}
1986 	pr->lclu = lclu;
1987 
1988 	rb_link_node(&pr->rb_node, parent, p);
1989 	rb_insert_color(&pr->rb_node, &tree->root);
1990 
1991 out:
1992 	return ret;
1993 }
1994 
1995 /*
1996  * __remove_pending - removes a pending cluster reservation from the set
1997  *                    of pending reservations
1998  *
1999  * @inode - file containing the cluster
2000  * @lblk - logical block in the pending cluster reservation to be removed
2001  *
2002  * Returns successfully if pending reservation is not a member of the set.
2003  */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)2004 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2005 {
2006 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2007 	struct pending_reservation *pr;
2008 	struct ext4_pending_tree *tree;
2009 
2010 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2011 	if (pr != NULL) {
2012 		tree = &EXT4_I(inode)->i_pending_tree;
2013 		rb_erase(&pr->rb_node, &tree->root);
2014 		__free_pending(pr);
2015 	}
2016 }
2017 
2018 /*
2019  * ext4_remove_pending - removes a pending cluster reservation from the set
2020  *                       of pending reservations
2021  *
2022  * @inode - file containing the cluster
2023  * @lblk - logical block in the pending cluster reservation to be removed
2024  *
2025  * Locking for external use of __remove_pending.
2026  */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2027 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2028 {
2029 	struct ext4_inode_info *ei = EXT4_I(inode);
2030 
2031 	write_lock(&ei->i_es_lock);
2032 	__remove_pending(inode, lblk);
2033 	write_unlock(&ei->i_es_lock);
2034 }
2035 
2036 /*
2037  * ext4_is_pending - determine whether a cluster has a pending reservation
2038  *                   on it
2039  *
2040  * @inode - file containing the cluster
2041  * @lblk - logical block in the cluster
2042  *
2043  * Returns true if there's a pending reservation for the cluster in the
2044  * set of pending reservations, and false if not.
2045  */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2046 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2047 {
2048 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2049 	struct ext4_inode_info *ei = EXT4_I(inode);
2050 	bool ret;
2051 
2052 	read_lock(&ei->i_es_lock);
2053 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2054 	read_unlock(&ei->i_es_lock);
2055 
2056 	return ret;
2057 }
2058 
2059 /*
2060  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2061  *                                tree, adding a pending reservation where
2062  *                                needed
2063  *
2064  * @inode - file containing the newly added block
2065  * @lblk - logical block to be added
2066  * @allocated - indicates whether a physical cluster has been allocated for
2067  *              the logical cluster that contains the block
2068  *
2069  * Returns 0 on success, negative error code on failure.
2070  */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2071 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2072 				 bool allocated)
2073 {
2074 	struct extent_status newes;
2075 	int err1 = 0, err2 = 0, err3 = 0;
2076 	struct extent_status *es1 = NULL;
2077 	struct extent_status *es2 = NULL;
2078 	struct pending_reservation *pr = NULL;
2079 
2080 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2081 		return 0;
2082 
2083 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2084 		 lblk, inode->i_ino);
2085 
2086 	newes.es_lblk = lblk;
2087 	newes.es_len = 1;
2088 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2089 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2090 
2091 	ext4_es_insert_extent_check(inode, &newes);
2092 
2093 retry:
2094 	if (err1 && !es1)
2095 		es1 = __es_alloc_extent(true);
2096 	if ((err1 || err2) && !es2)
2097 		es2 = __es_alloc_extent(true);
2098 	if ((err1 || err2 || err3) && allocated && !pr)
2099 		pr = __alloc_pending(true);
2100 	write_lock(&EXT4_I(inode)->i_es_lock);
2101 
2102 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2103 	if (err1 != 0)
2104 		goto error;
2105 	/* Free preallocated extent if it didn't get used. */
2106 	if (es1) {
2107 		if (!es1->es_len)
2108 			__es_free_extent(es1);
2109 		es1 = NULL;
2110 	}
2111 
2112 	err2 = __es_insert_extent(inode, &newes, es2);
2113 	if (err2 != 0)
2114 		goto error;
2115 	/* Free preallocated extent if it didn't get used. */
2116 	if (es2) {
2117 		if (!es2->es_len)
2118 			__es_free_extent(es2);
2119 		es2 = NULL;
2120 	}
2121 
2122 	if (allocated) {
2123 		err3 = __insert_pending(inode, lblk, &pr);
2124 		if (err3 != 0)
2125 			goto error;
2126 		if (pr) {
2127 			__free_pending(pr);
2128 			pr = NULL;
2129 		}
2130 	}
2131 error:
2132 	write_unlock(&EXT4_I(inode)->i_es_lock);
2133 	if (err1 || err2 || err3)
2134 		goto retry;
2135 
2136 	ext4_es_print_tree(inode);
2137 	ext4_print_pending_tree(inode);
2138 	return 0;
2139 }
2140 
2141 /*
2142  * __es_delayed_clu - count number of clusters containing blocks that
2143  *                    are delayed only
2144  *
2145  * @inode - file containing block range
2146  * @start - logical block defining start of range
2147  * @end - logical block defining end of range
2148  *
2149  * Returns the number of clusters containing only delayed (not delayed
2150  * and unwritten) blocks in the range specified by @start and @end.  Any
2151  * cluster or part of a cluster within the range and containing a delayed
2152  * and not unwritten block within the range is counted as a whole cluster.
2153  */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2154 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2155 				     ext4_lblk_t end)
2156 {
2157 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2158 	struct extent_status *es;
2159 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2160 	struct rb_node *node;
2161 	ext4_lblk_t first_lclu, last_lclu;
2162 	unsigned long long last_counted_lclu;
2163 	unsigned int n = 0;
2164 
2165 	/* guaranteed to be unequal to any ext4_lblk_t value */
2166 	last_counted_lclu = ~0ULL;
2167 
2168 	es = __es_tree_search(&tree->root, start);
2169 
2170 	while (es && (es->es_lblk <= end)) {
2171 		if (ext4_es_is_delonly(es)) {
2172 			if (es->es_lblk <= start)
2173 				first_lclu = EXT4_B2C(sbi, start);
2174 			else
2175 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2176 
2177 			if (ext4_es_end(es) >= end)
2178 				last_lclu = EXT4_B2C(sbi, end);
2179 			else
2180 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2181 
2182 			if (first_lclu == last_counted_lclu)
2183 				n += last_lclu - first_lclu;
2184 			else
2185 				n += last_lclu - first_lclu + 1;
2186 			last_counted_lclu = last_lclu;
2187 		}
2188 		node = rb_next(&es->rb_node);
2189 		if (!node)
2190 			break;
2191 		es = rb_entry(node, struct extent_status, rb_node);
2192 	}
2193 
2194 	return n;
2195 }
2196 
2197 /*
2198  * ext4_es_delayed_clu - count number of clusters containing blocks that
2199  *                       are both delayed and unwritten
2200  *
2201  * @inode - file containing block range
2202  * @lblk - logical block defining start of range
2203  * @len - number of blocks in range
2204  *
2205  * Locking for external use of __es_delayed_clu().
2206  */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2207 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2208 				 ext4_lblk_t len)
2209 {
2210 	struct ext4_inode_info *ei = EXT4_I(inode);
2211 	ext4_lblk_t end;
2212 	unsigned int n;
2213 
2214 	if (len == 0)
2215 		return 0;
2216 
2217 	end = lblk + len - 1;
2218 	WARN_ON(end < lblk);
2219 
2220 	read_lock(&ei->i_es_lock);
2221 
2222 	n = __es_delayed_clu(inode, lblk, end);
2223 
2224 	read_unlock(&ei->i_es_lock);
2225 
2226 	return n;
2227 }
2228 
2229 /*
2230  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2231  *                    reservations for a specified block range depending
2232  *                    upon the presence or absence of delayed blocks
2233  *                    outside the range within clusters at the ends of the
2234  *                    range
2235  *
2236  * @inode - file containing the range
2237  * @lblk - logical block defining the start of range
2238  * @len  - length of range in blocks
2239  * @prealloc - preallocated pending entry
2240  *
2241  * Used after a newly allocated extent is added to the extents status tree.
2242  * Requires that the extents in the range have either written or unwritten
2243  * status.  Must be called while holding i_es_lock.
2244  */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2245 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2246 			    ext4_lblk_t len,
2247 			    struct pending_reservation **prealloc)
2248 {
2249 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2250 	ext4_lblk_t end = lblk + len - 1;
2251 	ext4_lblk_t first, last;
2252 	bool f_del = false, l_del = false;
2253 	int ret = 0;
2254 
2255 	if (len == 0)
2256 		return 0;
2257 
2258 	/*
2259 	 * Two cases - block range within single cluster and block range
2260 	 * spanning two or more clusters.  Note that a cluster belonging
2261 	 * to a range starting and/or ending on a cluster boundary is treated
2262 	 * as if it does not contain a delayed extent.  The new range may
2263 	 * have allocated space for previously delayed blocks out to the
2264 	 * cluster boundary, requiring that any pre-existing pending
2265 	 * reservation be canceled.  Because this code only looks at blocks
2266 	 * outside the range, it should revise pending reservations
2267 	 * correctly even if the extent represented by the range can't be
2268 	 * inserted in the extents status tree due to ENOSPC.
2269 	 */
2270 
2271 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2272 		first = EXT4_LBLK_CMASK(sbi, lblk);
2273 		if (first != lblk)
2274 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2275 						first, lblk - 1);
2276 		if (f_del) {
2277 			ret = __insert_pending(inode, first, prealloc);
2278 			if (ret < 0)
2279 				goto out;
2280 		} else {
2281 			last = EXT4_LBLK_CMASK(sbi, end) +
2282 			       sbi->s_cluster_ratio - 1;
2283 			if (last != end)
2284 				l_del = __es_scan_range(inode,
2285 							&ext4_es_is_delonly,
2286 							end + 1, last);
2287 			if (l_del) {
2288 				ret = __insert_pending(inode, last, prealloc);
2289 				if (ret < 0)
2290 					goto out;
2291 			} else
2292 				__remove_pending(inode, last);
2293 		}
2294 	} else {
2295 		first = EXT4_LBLK_CMASK(sbi, lblk);
2296 		if (first != lblk)
2297 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2298 						first, lblk - 1);
2299 		if (f_del) {
2300 			ret = __insert_pending(inode, first, prealloc);
2301 			if (ret < 0)
2302 				goto out;
2303 		} else
2304 			__remove_pending(inode, first);
2305 
2306 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2307 		if (last != end)
2308 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2309 						end + 1, last);
2310 		if (l_del) {
2311 			ret = __insert_pending(inode, last, prealloc);
2312 			if (ret < 0)
2313 				goto out;
2314 		} else
2315 			__remove_pending(inode, last);
2316 	}
2317 out:
2318 	return ret;
2319 }
2320