• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	lock_buffer(bh);
193 	if (!wait) {
194 		ext4_read_bh_nowait(bh, op_flags, NULL);
195 		return 0;
196 	}
197 	return ext4_read_bh(bh, op_flags, NULL);
198 }
199 
200 /*
201  * This works like __bread_gfp() except it uses ERR_PTR for error
202  * returns.  Currently with sb_bread it's impossible to distinguish
203  * between ENOMEM and EIO situations (since both result in a NULL
204  * return.
205  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)206 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207 					       sector_t block, int op_flags,
208 					       gfp_t gfp)
209 {
210 	struct buffer_head *bh;
211 	int ret;
212 
213 	bh = sb_getblk_gfp(sb, block, gfp);
214 	if (bh == NULL)
215 		return ERR_PTR(-ENOMEM);
216 	if (ext4_buffer_uptodate(bh))
217 		return bh;
218 
219 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220 	if (ret) {
221 		put_bh(bh);
222 		return ERR_PTR(ret);
223 	}
224 	return bh;
225 }
226 
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)227 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228 				   int op_flags)
229 {
230 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231 }
232 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)233 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234 					    sector_t block)
235 {
236 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
237 }
238 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)239 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240 {
241 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242 
243 	if (likely(bh)) {
244 		if (trylock_buffer(bh))
245 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246 		brelse(bh);
247 	}
248 }
249 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)250 static int ext4_verify_csum_type(struct super_block *sb,
251 				 struct ext4_super_block *es)
252 {
253 	if (!ext4_has_feature_metadata_csum(sb))
254 		return 1;
255 
256 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257 }
258 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)259 static __le32 ext4_superblock_csum(struct super_block *sb,
260 				   struct ext4_super_block *es)
261 {
262 	struct ext4_sb_info *sbi = EXT4_SB(sb);
263 	int offset = offsetof(struct ext4_super_block, s_checksum);
264 	__u32 csum;
265 
266 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267 
268 	return cpu_to_le32(csum);
269 }
270 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)271 static int ext4_superblock_csum_verify(struct super_block *sb,
272 				       struct ext4_super_block *es)
273 {
274 	if (!ext4_has_metadata_csum(sb))
275 		return 1;
276 
277 	return es->s_checksum == ext4_superblock_csum(sb, es);
278 }
279 
ext4_superblock_csum_set(struct super_block * sb)280 void ext4_superblock_csum_set(struct super_block *sb)
281 {
282 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283 
284 	if (!ext4_has_metadata_csum(sb))
285 		return;
286 
287 	es->s_checksum = ext4_superblock_csum(sb, es);
288 }
289 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)290 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291 			       struct ext4_group_desc *bg)
292 {
293 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
294 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296 }
297 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)298 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299 			       struct ext4_group_desc *bg)
300 {
301 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304 }
305 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307 			      struct ext4_group_desc *bg)
308 {
309 	return le32_to_cpu(bg->bg_inode_table_lo) |
310 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312 }
313 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)314 __u32 ext4_free_group_clusters(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320 }
321 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)322 __u32 ext4_free_inodes_count(struct super_block *sb,
323 			      struct ext4_group_desc *bg)
324 {
325 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328 }
329 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_used_dirs_count(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336 }
337 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_itable_unused_count(struct super_block *sb,
339 			      struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_itable_unused_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344 }
345 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)346 void ext4_block_bitmap_set(struct super_block *sb,
347 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
348 {
349 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352 }
353 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)354 void ext4_inode_bitmap_set(struct super_block *sb,
355 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
356 {
357 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
358 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360 }
361 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_inode_table_set(struct super_block *sb,
363 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368 }
369 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)370 void ext4_free_group_clusters_set(struct super_block *sb,
371 				  struct ext4_group_desc *bg, __u32 count)
372 {
373 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376 }
377 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)378 void ext4_free_inodes_set(struct super_block *sb,
379 			  struct ext4_group_desc *bg, __u32 count)
380 {
381 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384 }
385 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_used_dirs_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, __u32 count)
388 {
389 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392 }
393 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_itable_unused_set(struct super_block *sb,
395 			  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400 }
401 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)402 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403 {
404 	now = clamp_val(now, 0, (1ull << 40) - 1);
405 
406 	*lo = cpu_to_le32(lower_32_bits(now));
407 	*hi = upper_32_bits(now);
408 }
409 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)410 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411 {
412 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413 }
414 #define ext4_update_tstamp(es, tstamp) \
415 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416 			     ktime_get_real_seconds())
417 #define ext4_get_tstamp(es, tstamp) \
418 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419 
420 /*
421  * The del_gendisk() function uninitializes the disk-specific data
422  * structures, including the bdi structure, without telling anyone
423  * else.  Once this happens, any attempt to call mark_buffer_dirty()
424  * (for example, by ext4_commit_super), will cause a kernel OOPS.
425  * This is a kludge to prevent these oops until we can put in a proper
426  * hook in del_gendisk() to inform the VFS and file system layers.
427  */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 	struct inode *bd_inode = sb->s_bdev->bd_inode;
431 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432 
433 	return bdi->dev == NULL;
434 }
435 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 	struct super_block		*sb = journal->j_private;
439 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
440 	int				error = is_journal_aborted(journal);
441 	struct ext4_journal_cb_entry	*jce;
442 
443 	BUG_ON(txn->t_state == T_FINISHED);
444 
445 	ext4_process_freed_data(sb, txn->t_tid);
446 
447 	spin_lock(&sbi->s_md_lock);
448 	while (!list_empty(&txn->t_private_list)) {
449 		jce = list_entry(txn->t_private_list.next,
450 				 struct ext4_journal_cb_entry, jce_list);
451 		list_del_init(&jce->jce_list);
452 		spin_unlock(&sbi->s_md_lock);
453 		jce->jce_func(sb, jce, error);
454 		spin_lock(&sbi->s_md_lock);
455 	}
456 	spin_unlock(&sbi->s_md_lock);
457 }
458 
459 /*
460  * This writepage callback for write_cache_pages()
461  * takes care of a few cases after page cleaning.
462  *
463  * write_cache_pages() already checks for dirty pages
464  * and calls clear_page_dirty_for_io(), which we want,
465  * to write protect the pages.
466  *
467  * However, we may have to redirty a page (see below.)
468  */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 					      struct writeback_control *wbc,
471 					      void *data)
472 {
473 	transaction_t *transaction = (transaction_t *) data;
474 	struct buffer_head *bh, *head;
475 	struct journal_head *jh;
476 
477 	bh = head = page_buffers(page);
478 	do {
479 		/*
480 		 * We have to redirty a page in these cases:
481 		 * 1) If buffer is dirty, it means the page was dirty because it
482 		 * contains a buffer that needs checkpointing. So the dirty bit
483 		 * needs to be preserved so that checkpointing writes the buffer
484 		 * properly.
485 		 * 2) If buffer is not part of the committing transaction
486 		 * (we may have just accidentally come across this buffer because
487 		 * inode range tracking is not exact) or if the currently running
488 		 * transaction already contains this buffer as well, dirty bit
489 		 * needs to be preserved so that the buffer gets writeprotected
490 		 * properly on running transaction's commit.
491 		 */
492 		jh = bh2jh(bh);
493 		if (buffer_dirty(bh) ||
494 		    (jh && (jh->b_transaction != transaction ||
495 			    jh->b_next_transaction))) {
496 			redirty_page_for_writepage(wbc, page);
497 			goto out;
498 		}
499 	} while ((bh = bh->b_this_page) != head);
500 
501 out:
502 	return AOP_WRITEPAGE_ACTIVATE;
503 }
504 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 	struct writeback_control wbc = {
509 		.sync_mode =  WB_SYNC_ALL,
510 		.nr_to_write = LONG_MAX,
511 		.range_start = jinode->i_dirty_start,
512 		.range_end = jinode->i_dirty_end,
513         };
514 
515 	return write_cache_pages(mapping, &wbc,
516 				 ext4_journalled_writepage_callback,
517 				 jinode->i_transaction);
518 }
519 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 	int ret;
523 
524 	if (ext4_should_journal_data(jinode->i_vfs_inode))
525 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 	else
527 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
528 
529 	return ret;
530 }
531 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 	int ret = 0;
535 
536 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
538 
539 	return ret;
540 }
541 
system_going_down(void)542 static bool system_going_down(void)
543 {
544 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 		|| system_state == SYSTEM_RESTART;
546 }
547 
548 struct ext4_err_translation {
549 	int code;
550 	int errno;
551 };
552 
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554 
555 static struct ext4_err_translation err_translation[] = {
556 	EXT4_ERR_TRANSLATE(EIO),
557 	EXT4_ERR_TRANSLATE(ENOMEM),
558 	EXT4_ERR_TRANSLATE(EFSBADCRC),
559 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 	EXT4_ERR_TRANSLATE(ENOSPC),
561 	EXT4_ERR_TRANSLATE(ENOKEY),
562 	EXT4_ERR_TRANSLATE(EROFS),
563 	EXT4_ERR_TRANSLATE(EFBIG),
564 	EXT4_ERR_TRANSLATE(EEXIST),
565 	EXT4_ERR_TRANSLATE(ERANGE),
566 	EXT4_ERR_TRANSLATE(EOVERFLOW),
567 	EXT4_ERR_TRANSLATE(EBUSY),
568 	EXT4_ERR_TRANSLATE(ENOTDIR),
569 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 	EXT4_ERR_TRANSLATE(EFAULT),
572 };
573 
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 	int i;
577 
578 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 		if (err_translation[i].errno == errno)
580 			return err_translation[i].code;
581 	return EXT4_ERR_UNKNOWN;
582 }
583 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void save_error_info(struct super_block *sb, int error,
585 			    __u32 ino, __u64 block,
586 			    const char *func, unsigned int line)
587 {
588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
589 
590 	/* We default to EFSCORRUPTED error... */
591 	if (error == 0)
592 		error = EFSCORRUPTED;
593 
594 	spin_lock(&sbi->s_error_lock);
595 	sbi->s_add_error_count++;
596 	sbi->s_last_error_code = error;
597 	sbi->s_last_error_line = line;
598 	sbi->s_last_error_ino = ino;
599 	sbi->s_last_error_block = block;
600 	sbi->s_last_error_func = func;
601 	sbi->s_last_error_time = ktime_get_real_seconds();
602 	if (!sbi->s_first_error_time) {
603 		sbi->s_first_error_code = error;
604 		sbi->s_first_error_line = line;
605 		sbi->s_first_error_ino = ino;
606 		sbi->s_first_error_block = block;
607 		sbi->s_first_error_func = func;
608 		sbi->s_first_error_time = sbi->s_last_error_time;
609 	}
610 	spin_unlock(&sbi->s_error_lock);
611 }
612 
613 /* Deal with the reporting of failure conditions on a filesystem such as
614  * inconsistencies detected or read IO failures.
615  *
616  * On ext2, we can store the error state of the filesystem in the
617  * superblock.  That is not possible on ext4, because we may have other
618  * write ordering constraints on the superblock which prevent us from
619  * writing it out straight away; and given that the journal is about to
620  * be aborted, we can't rely on the current, or future, transactions to
621  * write out the superblock safely.
622  *
623  * We'll just use the jbd2_journal_abort() error code to record an error in
624  * the journal instead.  On recovery, the journal will complain about
625  * that error until we've noted it down and cleared it.
626  *
627  * If force_ro is set, we unconditionally force the filesystem into an
628  * ABORT|READONLY state, unless the error response on the fs has been set to
629  * panic in which case we take the easy way out and panic immediately. This is
630  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631  * at a critical moment in log management.
632  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)633 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634 			      __u32 ino, __u64 block,
635 			      const char *func, unsigned int line)
636 {
637 	journal_t *journal = EXT4_SB(sb)->s_journal;
638 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639 
640 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641 	if (test_opt(sb, WARN_ON_ERROR))
642 		WARN_ON_ONCE(1);
643 
644 	if (!continue_fs && !sb_rdonly(sb)) {
645 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646 		if (journal)
647 			jbd2_journal_abort(journal, -EIO);
648 	}
649 
650 	if (!bdev_read_only(sb->s_bdev)) {
651 		save_error_info(sb, error, ino, block, func, line);
652 		/*
653 		 * In case the fs should keep running, we need to writeout
654 		 * superblock through the journal. Due to lock ordering
655 		 * constraints, it may not be safe to do it right here so we
656 		 * defer superblock flushing to a workqueue. We just need to be
657 		 * careful when the journal is already shutting down. If we get
658 		 * here in that case, just update the sb directly as the last
659 		 * transaction won't commit anyway.
660 		 */
661 		if (continue_fs && journal &&
662 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
663 			schedule_work(&EXT4_SB(sb)->s_error_work);
664 		else
665 			ext4_commit_super(sb);
666 	}
667 
668 	/*
669 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
670 	 * could panic during 'reboot -f' as the underlying device got already
671 	 * disabled.
672 	 */
673 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
674 		panic("EXT4-fs (device %s): panic forced after error\n",
675 			sb->s_id);
676 	}
677 
678 	if (sb_rdonly(sb) || continue_fs)
679 		return;
680 
681 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
682 	/*
683 	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
684 	 * modifications. We don't set SB_RDONLY because that requires
685 	 * sb->s_umount semaphore and setting it without proper remount
686 	 * procedure is confusing code such as freeze_super() leading to
687 	 * deadlocks and other problems.
688 	 */
689 }
690 
flush_stashed_error_work(struct work_struct * work)691 static void flush_stashed_error_work(struct work_struct *work)
692 {
693 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
694 						s_error_work);
695 	journal_t *journal = sbi->s_journal;
696 	handle_t *handle;
697 
698 	/*
699 	 * If the journal is still running, we have to write out superblock
700 	 * through the journal to avoid collisions of other journalled sb
701 	 * updates.
702 	 *
703 	 * We use directly jbd2 functions here to avoid recursing back into
704 	 * ext4 error handling code during handling of previous errors.
705 	 */
706 	if (!sb_rdonly(sbi->s_sb) && journal) {
707 		struct buffer_head *sbh = sbi->s_sbh;
708 		handle = jbd2_journal_start(journal, 1);
709 		if (IS_ERR(handle))
710 			goto write_directly;
711 		if (jbd2_journal_get_write_access(handle, sbh)) {
712 			jbd2_journal_stop(handle);
713 			goto write_directly;
714 		}
715 		ext4_update_super(sbi->s_sb);
716 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
717 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
718 				 "superblock detected");
719 			clear_buffer_write_io_error(sbh);
720 			set_buffer_uptodate(sbh);
721 		}
722 
723 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
724 			jbd2_journal_stop(handle);
725 			goto write_directly;
726 		}
727 		jbd2_journal_stop(handle);
728 		return;
729 	}
730 write_directly:
731 	/*
732 	 * Write through journal failed. Write sb directly to get error info
733 	 * out and hope for the best.
734 	 */
735 	ext4_commit_super(sbi->s_sb);
736 }
737 
738 #define ext4_error_ratelimit(sb)					\
739 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
740 			     "EXT4-fs error")
741 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)742 void __ext4_error(struct super_block *sb, const char *function,
743 		  unsigned int line, bool force_ro, int error, __u64 block,
744 		  const char *fmt, ...)
745 {
746 	struct va_format vaf;
747 	va_list args;
748 
749 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
750 		return;
751 
752 	trace_ext4_error(sb, function, line);
753 	if (ext4_error_ratelimit(sb)) {
754 		va_start(args, fmt);
755 		vaf.fmt = fmt;
756 		vaf.va = &args;
757 		printk(KERN_CRIT
758 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
759 		       sb->s_id, function, line, current->comm, &vaf);
760 		va_end(args);
761 	}
762 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
763 }
764 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)765 void __ext4_error_inode(struct inode *inode, const char *function,
766 			unsigned int line, ext4_fsblk_t block, int error,
767 			const char *fmt, ...)
768 {
769 	va_list args;
770 	struct va_format vaf;
771 
772 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
773 		return;
774 
775 	trace_ext4_error(inode->i_sb, function, line);
776 	if (ext4_error_ratelimit(inode->i_sb)) {
777 		va_start(args, fmt);
778 		vaf.fmt = fmt;
779 		vaf.va = &args;
780 		if (block)
781 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 			       "inode #%lu: block %llu: comm %s: %pV\n",
783 			       inode->i_sb->s_id, function, line, inode->i_ino,
784 			       block, current->comm, &vaf);
785 		else
786 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
787 			       "inode #%lu: comm %s: %pV\n",
788 			       inode->i_sb->s_id, function, line, inode->i_ino,
789 			       current->comm, &vaf);
790 		va_end(args);
791 	}
792 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
793 			  function, line);
794 }
795 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)796 void __ext4_error_file(struct file *file, const char *function,
797 		       unsigned int line, ext4_fsblk_t block,
798 		       const char *fmt, ...)
799 {
800 	va_list args;
801 	struct va_format vaf;
802 	struct inode *inode = file_inode(file);
803 	char pathname[80], *path;
804 
805 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
806 		return;
807 
808 	trace_ext4_error(inode->i_sb, function, line);
809 	if (ext4_error_ratelimit(inode->i_sb)) {
810 		path = file_path(file, pathname, sizeof(pathname));
811 		if (IS_ERR(path))
812 			path = "(unknown)";
813 		va_start(args, fmt);
814 		vaf.fmt = fmt;
815 		vaf.va = &args;
816 		if (block)
817 			printk(KERN_CRIT
818 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 			       "block %llu: comm %s: path %s: %pV\n",
820 			       inode->i_sb->s_id, function, line, inode->i_ino,
821 			       block, current->comm, path, &vaf);
822 		else
823 			printk(KERN_CRIT
824 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
825 			       "comm %s: path %s: %pV\n",
826 			       inode->i_sb->s_id, function, line, inode->i_ino,
827 			       current->comm, path, &vaf);
828 		va_end(args);
829 	}
830 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
831 			  function, line);
832 }
833 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])834 const char *ext4_decode_error(struct super_block *sb, int errno,
835 			      char nbuf[16])
836 {
837 	char *errstr = NULL;
838 
839 	switch (errno) {
840 	case -EFSCORRUPTED:
841 		errstr = "Corrupt filesystem";
842 		break;
843 	case -EFSBADCRC:
844 		errstr = "Filesystem failed CRC";
845 		break;
846 	case -EIO:
847 		errstr = "IO failure";
848 		break;
849 	case -ENOMEM:
850 		errstr = "Out of memory";
851 		break;
852 	case -EROFS:
853 		if (!sb || (EXT4_SB(sb)->s_journal &&
854 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
855 			errstr = "Journal has aborted";
856 		else
857 			errstr = "Readonly filesystem";
858 		break;
859 	default:
860 		/* If the caller passed in an extra buffer for unknown
861 		 * errors, textualise them now.  Else we just return
862 		 * NULL. */
863 		if (nbuf) {
864 			/* Check for truncated error codes... */
865 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
866 				errstr = nbuf;
867 		}
868 		break;
869 	}
870 
871 	return errstr;
872 }
873 
874 /* __ext4_std_error decodes expected errors from journaling functions
875  * automatically and invokes the appropriate error response.  */
876 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)877 void __ext4_std_error(struct super_block *sb, const char *function,
878 		      unsigned int line, int errno)
879 {
880 	char nbuf[16];
881 	const char *errstr;
882 
883 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
884 		return;
885 
886 	/* Special case: if the error is EROFS, and we're not already
887 	 * inside a transaction, then there's really no point in logging
888 	 * an error. */
889 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
890 		return;
891 
892 	if (ext4_error_ratelimit(sb)) {
893 		errstr = ext4_decode_error(sb, errno, nbuf);
894 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
895 		       sb->s_id, function, line, errstr);
896 	}
897 
898 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
899 }
900 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)901 void __ext4_msg(struct super_block *sb,
902 		const char *prefix, const char *fmt, ...)
903 {
904 	struct va_format vaf;
905 	va_list args;
906 
907 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
908 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
909 		return;
910 
911 	va_start(args, fmt);
912 	vaf.fmt = fmt;
913 	vaf.va = &args;
914 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
915 	va_end(args);
916 }
917 
ext4_warning_ratelimit(struct super_block * sb)918 static int ext4_warning_ratelimit(struct super_block *sb)
919 {
920 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
921 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
922 			    "EXT4-fs warning");
923 }
924 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)925 void __ext4_warning(struct super_block *sb, const char *function,
926 		    unsigned int line, const char *fmt, ...)
927 {
928 	struct va_format vaf;
929 	va_list args;
930 
931 	if (!ext4_warning_ratelimit(sb))
932 		return;
933 
934 	va_start(args, fmt);
935 	vaf.fmt = fmt;
936 	vaf.va = &args;
937 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
938 	       sb->s_id, function, line, &vaf);
939 	va_end(args);
940 }
941 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)942 void __ext4_warning_inode(const struct inode *inode, const char *function,
943 			  unsigned int line, const char *fmt, ...)
944 {
945 	struct va_format vaf;
946 	va_list args;
947 
948 	if (!ext4_warning_ratelimit(inode->i_sb))
949 		return;
950 
951 	va_start(args, fmt);
952 	vaf.fmt = fmt;
953 	vaf.va = &args;
954 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
955 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
956 	       function, line, inode->i_ino, current->comm, &vaf);
957 	va_end(args);
958 }
959 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)960 void __ext4_grp_locked_error(const char *function, unsigned int line,
961 			     struct super_block *sb, ext4_group_t grp,
962 			     unsigned long ino, ext4_fsblk_t block,
963 			     const char *fmt, ...)
964 __releases(bitlock)
965 __acquires(bitlock)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
971 		return;
972 
973 	trace_ext4_error(sb, function, line);
974 	if (ext4_error_ratelimit(sb)) {
975 		va_start(args, fmt);
976 		vaf.fmt = fmt;
977 		vaf.va = &args;
978 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
979 		       sb->s_id, function, line, grp);
980 		if (ino)
981 			printk(KERN_CONT "inode %lu: ", ino);
982 		if (block)
983 			printk(KERN_CONT "block %llu:",
984 			       (unsigned long long) block);
985 		printk(KERN_CONT "%pV\n", &vaf);
986 		va_end(args);
987 	}
988 
989 	if (test_opt(sb, ERRORS_CONT)) {
990 		if (test_opt(sb, WARN_ON_ERROR))
991 			WARN_ON_ONCE(1);
992 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
993 		if (!bdev_read_only(sb->s_bdev)) {
994 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
995 					line);
996 			schedule_work(&EXT4_SB(sb)->s_error_work);
997 		}
998 		return;
999 	}
1000 	ext4_unlock_group(sb, grp);
1001 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1002 	/*
1003 	 * We only get here in the ERRORS_RO case; relocking the group
1004 	 * may be dangerous, but nothing bad will happen since the
1005 	 * filesystem will have already been marked read/only and the
1006 	 * journal has been aborted.  We return 1 as a hint to callers
1007 	 * who might what to use the return value from
1008 	 * ext4_grp_locked_error() to distinguish between the
1009 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1010 	 * aggressively from the ext4 function in question, with a
1011 	 * more appropriate error code.
1012 	 */
1013 	ext4_lock_group(sb, grp);
1014 	return;
1015 }
1016 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1018 				     ext4_group_t group,
1019 				     unsigned int flags)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1022 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1023 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1024 	int ret;
1025 
1026 	if (!grp || !gdp)
1027 		return;
1028 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1029 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1030 					    &grp->bb_state);
1031 		if (!ret)
1032 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1033 					   grp->bb_free);
1034 	}
1035 
1036 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1037 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1038 					    &grp->bb_state);
1039 		if (!ret && gdp) {
1040 			int count;
1041 
1042 			count = ext4_free_inodes_count(sb, gdp);
1043 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1044 					   count);
1045 		}
1046 	}
1047 }
1048 
ext4_update_dynamic_rev(struct super_block * sb)1049 void ext4_update_dynamic_rev(struct super_block *sb)
1050 {
1051 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1052 
1053 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1054 		return;
1055 
1056 	ext4_warning(sb,
1057 		     "updating to rev %d because of new feature flag, "
1058 		     "running e2fsck is recommended",
1059 		     EXT4_DYNAMIC_REV);
1060 
1061 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1062 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1063 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1064 	/* leave es->s_feature_*compat flags alone */
1065 	/* es->s_uuid will be set by e2fsck if empty */
1066 
1067 	/*
1068 	 * The rest of the superblock fields should be zero, and if not it
1069 	 * means they are likely already in use, so leave them alone.  We
1070 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1071 	 */
1072 }
1073 
1074 /*
1075  * Open the external journal device
1076  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1077 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1078 {
1079 	struct block_device *bdev;
1080 
1081 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1082 	if (IS_ERR(bdev))
1083 		goto fail;
1084 	return bdev;
1085 
1086 fail:
1087 	ext4_msg(sb, KERN_ERR,
1088 		 "failed to open journal device unknown-block(%u,%u) %ld",
1089 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Release the journal device
1095  */
ext4_blkdev_put(struct block_device * bdev)1096 static void ext4_blkdev_put(struct block_device *bdev)
1097 {
1098 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1099 }
1100 
ext4_blkdev_remove(struct ext4_sb_info * sbi)1101 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1102 {
1103 	struct block_device *bdev;
1104 	bdev = sbi->s_journal_bdev;
1105 	if (bdev) {
1106 		/*
1107 		 * Invalidate the journal device's buffers.  We don't want them
1108 		 * floating about in memory - the physical journal device may
1109 		 * hotswapped, and it breaks the `ro-after' testing code.
1110 		 */
1111 		invalidate_bdev(bdev);
1112 		ext4_blkdev_put(bdev);
1113 		sbi->s_journal_bdev = NULL;
1114 	}
1115 }
1116 
orphan_list_entry(struct list_head * l)1117 static inline struct inode *orphan_list_entry(struct list_head *l)
1118 {
1119 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1120 }
1121 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1122 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1123 {
1124 	struct list_head *l;
1125 
1126 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1127 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1128 
1129 	printk(KERN_ERR "sb_info orphan list:\n");
1130 	list_for_each(l, &sbi->s_orphan) {
1131 		struct inode *inode = orphan_list_entry(l);
1132 		printk(KERN_ERR "  "
1133 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1134 		       inode->i_sb->s_id, inode->i_ino, inode,
1135 		       inode->i_mode, inode->i_nlink,
1136 		       NEXT_ORPHAN(inode));
1137 	}
1138 }
1139 
1140 #ifdef CONFIG_QUOTA
1141 static int ext4_quota_off(struct super_block *sb, int type);
1142 
ext4_quota_off_umount(struct super_block * sb)1143 static inline void ext4_quota_off_umount(struct super_block *sb)
1144 {
1145 	int type;
1146 
1147 	/* Use our quota_off function to clear inode flags etc. */
1148 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1149 		ext4_quota_off(sb, type);
1150 }
1151 
1152 /*
1153  * This is a helper function which is used in the mount/remount
1154  * codepaths (which holds s_umount) to fetch the quota file name.
1155  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1156 static inline char *get_qf_name(struct super_block *sb,
1157 				struct ext4_sb_info *sbi,
1158 				int type)
1159 {
1160 	return rcu_dereference_protected(sbi->s_qf_names[type],
1161 					 lockdep_is_held(&sb->s_umount));
1162 }
1163 #else
ext4_quota_off_umount(struct super_block * sb)1164 static inline void ext4_quota_off_umount(struct super_block *sb)
1165 {
1166 }
1167 #endif
1168 
ext4_put_super(struct super_block * sb)1169 static void ext4_put_super(struct super_block *sb)
1170 {
1171 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1172 	struct ext4_super_block *es = sbi->s_es;
1173 	struct buffer_head **group_desc;
1174 	struct flex_groups **flex_groups;
1175 	int aborted = 0;
1176 	int i, err;
1177 
1178 	/*
1179 	 * Unregister sysfs before destroying jbd2 journal.
1180 	 * Since we could still access attr_journal_task attribute via sysfs
1181 	 * path which could have sbi->s_journal->j_task as NULL
1182 	 * Unregister sysfs before flush sbi->s_error_work.
1183 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1184 	 * read metadata verify failed then will queue error work.
1185 	 * flush_stashed_error_work will call start_this_handle may trigger
1186 	 * BUG_ON.
1187 	 */
1188 	ext4_unregister_sysfs(sb);
1189 
1190 	ext4_unregister_li_request(sb);
1191 	ext4_quota_off_umount(sb);
1192 	destroy_workqueue(sbi->rsv_conversion_wq);
1193 
1194 	if (sbi->s_journal) {
1195 		aborted = is_journal_aborted(sbi->s_journal);
1196 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1197 		if ((err < 0) && !aborted) {
1198 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1199 		}
1200 	} else
1201 		flush_work(&sbi->s_error_work);
1202 
1203 
1204 	ext4_es_unregister_shrinker(sbi);
1205 	del_timer_sync(&sbi->s_err_report);
1206 	ext4_release_system_zone(sb);
1207 	ext4_mb_release(sb);
1208 	ext4_ext_release(sb);
1209 
1210 	if (!sb_rdonly(sb) && !aborted) {
1211 		ext4_clear_feature_journal_needs_recovery(sb);
1212 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1213 	}
1214 	if (!sb_rdonly(sb))
1215 		ext4_commit_super(sb);
1216 
1217 	rcu_read_lock();
1218 	group_desc = rcu_dereference(sbi->s_group_desc);
1219 	for (i = 0; i < sbi->s_gdb_count; i++)
1220 		brelse(group_desc[i]);
1221 	kvfree(group_desc);
1222 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1223 	if (flex_groups) {
1224 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1225 			kvfree(flex_groups[i]);
1226 		kvfree(flex_groups);
1227 	}
1228 	rcu_read_unlock();
1229 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1230 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1231 	percpu_counter_destroy(&sbi->s_dirs_counter);
1232 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1233 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1234 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1235 #ifdef CONFIG_QUOTA
1236 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1237 		kfree(get_qf_name(sb, sbi, i));
1238 #endif
1239 
1240 	/* Debugging code just in case the in-memory inode orphan list
1241 	 * isn't empty.  The on-disk one can be non-empty if we've
1242 	 * detected an error and taken the fs readonly, but the
1243 	 * in-memory list had better be clean by this point. */
1244 	if (!list_empty(&sbi->s_orphan))
1245 		dump_orphan_list(sb, sbi);
1246 	J_ASSERT(list_empty(&sbi->s_orphan));
1247 
1248 	sync_blockdev(sb->s_bdev);
1249 	invalidate_bdev(sb->s_bdev);
1250 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1251 		sync_blockdev(sbi->s_journal_bdev);
1252 		ext4_blkdev_remove(sbi);
1253 	}
1254 
1255 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1256 	sbi->s_ea_inode_cache = NULL;
1257 
1258 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1259 	sbi->s_ea_block_cache = NULL;
1260 
1261 	ext4_stop_mmpd(sbi);
1262 
1263 	brelse(sbi->s_sbh);
1264 	sb->s_fs_info = NULL;
1265 	/*
1266 	 * Now that we are completely done shutting down the
1267 	 * superblock, we need to actually destroy the kobject.
1268 	 */
1269 	kobject_put(&sbi->s_kobj);
1270 	wait_for_completion(&sbi->s_kobj_unregister);
1271 	if (sbi->s_chksum_driver)
1272 		crypto_free_shash(sbi->s_chksum_driver);
1273 	kfree(sbi->s_blockgroup_lock);
1274 	fs_put_dax(sbi->s_daxdev);
1275 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1276 #ifdef CONFIG_UNICODE
1277 	utf8_unload(sb->s_encoding);
1278 #endif
1279 	kfree(sbi);
1280 }
1281 
1282 static struct kmem_cache *ext4_inode_cachep;
1283 
1284 /*
1285  * Called inside transaction, so use GFP_NOFS
1286  */
ext4_alloc_inode(struct super_block * sb)1287 static struct inode *ext4_alloc_inode(struct super_block *sb)
1288 {
1289 	struct ext4_inode_info *ei;
1290 
1291 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1292 	if (!ei)
1293 		return NULL;
1294 
1295 	inode_set_iversion(&ei->vfs_inode, 1);
1296 	ei->i_flags = 0;
1297 	spin_lock_init(&ei->i_raw_lock);
1298 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1299 	atomic_set(&ei->i_prealloc_active, 0);
1300 	spin_lock_init(&ei->i_prealloc_lock);
1301 	ext4_es_init_tree(&ei->i_es_tree);
1302 	rwlock_init(&ei->i_es_lock);
1303 	INIT_LIST_HEAD(&ei->i_es_list);
1304 	ei->i_es_all_nr = 0;
1305 	ei->i_es_shk_nr = 0;
1306 	ei->i_es_shrink_lblk = 0;
1307 	ei->i_reserved_data_blocks = 0;
1308 	spin_lock_init(&(ei->i_block_reservation_lock));
1309 	ext4_init_pending_tree(&ei->i_pending_tree);
1310 #ifdef CONFIG_QUOTA
1311 	ei->i_reserved_quota = 0;
1312 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1313 #endif
1314 	ei->jinode = NULL;
1315 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1316 	spin_lock_init(&ei->i_completed_io_lock);
1317 	ei->i_sync_tid = 0;
1318 	ei->i_datasync_tid = 0;
1319 	atomic_set(&ei->i_unwritten, 0);
1320 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1321 	ext4_fc_init_inode(&ei->vfs_inode);
1322 	mutex_init(&ei->i_fc_lock);
1323 	return &ei->vfs_inode;
1324 }
1325 
ext4_drop_inode(struct inode * inode)1326 static int ext4_drop_inode(struct inode *inode)
1327 {
1328 	int drop = generic_drop_inode(inode);
1329 
1330 	if (!drop)
1331 		drop = fscrypt_drop_inode(inode);
1332 
1333 	trace_ext4_drop_inode(inode, drop);
1334 	return drop;
1335 }
1336 
ext4_free_in_core_inode(struct inode * inode)1337 static void ext4_free_in_core_inode(struct inode *inode)
1338 {
1339 	fscrypt_free_inode(inode);
1340 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1341 		pr_warn("%s: inode %ld still in fc list",
1342 			__func__, inode->i_ino);
1343 	}
1344 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1345 }
1346 
ext4_destroy_inode(struct inode * inode)1347 static void ext4_destroy_inode(struct inode *inode)
1348 {
1349 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1350 		ext4_msg(inode->i_sb, KERN_ERR,
1351 			 "Inode %lu (%p): orphan list check failed!",
1352 			 inode->i_ino, EXT4_I(inode));
1353 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1354 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1355 				true);
1356 		dump_stack();
1357 	}
1358 
1359 	if (EXT4_I(inode)->i_reserved_data_blocks)
1360 		ext4_msg(inode->i_sb, KERN_ERR,
1361 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1362 			 inode->i_ino, EXT4_I(inode),
1363 			 EXT4_I(inode)->i_reserved_data_blocks);
1364 }
1365 
init_once(void * foo)1366 static void init_once(void *foo)
1367 {
1368 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1369 
1370 	INIT_LIST_HEAD(&ei->i_orphan);
1371 	init_rwsem(&ei->xattr_sem);
1372 	init_rwsem(&ei->i_data_sem);
1373 	init_rwsem(&ei->i_mmap_sem);
1374 	inode_init_once(&ei->vfs_inode);
1375 	ext4_fc_init_inode(&ei->vfs_inode);
1376 }
1377 
init_inodecache(void)1378 static int __init init_inodecache(void)
1379 {
1380 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1381 				sizeof(struct ext4_inode_info), 0,
1382 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1383 					SLAB_ACCOUNT),
1384 				offsetof(struct ext4_inode_info, i_data),
1385 				sizeof_field(struct ext4_inode_info, i_data),
1386 				init_once);
1387 	if (ext4_inode_cachep == NULL)
1388 		return -ENOMEM;
1389 	return 0;
1390 }
1391 
destroy_inodecache(void)1392 static void destroy_inodecache(void)
1393 {
1394 	/*
1395 	 * Make sure all delayed rcu free inodes are flushed before we
1396 	 * destroy cache.
1397 	 */
1398 	rcu_barrier();
1399 	kmem_cache_destroy(ext4_inode_cachep);
1400 }
1401 
ext4_clear_inode(struct inode * inode)1402 void ext4_clear_inode(struct inode *inode)
1403 {
1404 	ext4_fc_del(inode);
1405 	invalidate_inode_buffers(inode);
1406 	clear_inode(inode);
1407 	ext4_discard_preallocations(inode, 0);
1408 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1409 	dquot_drop(inode);
1410 	if (EXT4_I(inode)->jinode) {
1411 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1412 					       EXT4_I(inode)->jinode);
1413 		jbd2_free_inode(EXT4_I(inode)->jinode);
1414 		EXT4_I(inode)->jinode = NULL;
1415 	}
1416 	fscrypt_put_encryption_info(inode);
1417 	fsverity_cleanup_inode(inode);
1418 }
1419 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1420 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1421 					u64 ino, u32 generation)
1422 {
1423 	struct inode *inode;
1424 
1425 	/*
1426 	 * Currently we don't know the generation for parent directory, so
1427 	 * a generation of 0 means "accept any"
1428 	 */
1429 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1430 	if (IS_ERR(inode))
1431 		return ERR_CAST(inode);
1432 	if (generation && inode->i_generation != generation) {
1433 		iput(inode);
1434 		return ERR_PTR(-ESTALE);
1435 	}
1436 
1437 	return inode;
1438 }
1439 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1440 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1441 					int fh_len, int fh_type)
1442 {
1443 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1444 				    ext4_nfs_get_inode);
1445 }
1446 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1447 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1448 					int fh_len, int fh_type)
1449 {
1450 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1451 				    ext4_nfs_get_inode);
1452 }
1453 
ext4_nfs_commit_metadata(struct inode * inode)1454 static int ext4_nfs_commit_metadata(struct inode *inode)
1455 {
1456 	struct writeback_control wbc = {
1457 		.sync_mode = WB_SYNC_ALL
1458 	};
1459 
1460 	trace_ext4_nfs_commit_metadata(inode);
1461 	return ext4_write_inode(inode, &wbc);
1462 }
1463 
1464 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1465 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1466 {
1467 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1468 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1469 }
1470 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1471 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1472 							void *fs_data)
1473 {
1474 	handle_t *handle = fs_data;
1475 	int res, res2, credits, retries = 0;
1476 
1477 	/*
1478 	 * Encrypting the root directory is not allowed because e2fsck expects
1479 	 * lost+found to exist and be unencrypted, and encrypting the root
1480 	 * directory would imply encrypting the lost+found directory as well as
1481 	 * the filename "lost+found" itself.
1482 	 */
1483 	if (inode->i_ino == EXT4_ROOT_INO)
1484 		return -EPERM;
1485 
1486 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1487 		return -EINVAL;
1488 
1489 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1490 		return -EOPNOTSUPP;
1491 
1492 	res = ext4_convert_inline_data(inode);
1493 	if (res)
1494 		return res;
1495 
1496 	/*
1497 	 * If a journal handle was specified, then the encryption context is
1498 	 * being set on a new inode via inheritance and is part of a larger
1499 	 * transaction to create the inode.  Otherwise the encryption context is
1500 	 * being set on an existing inode in its own transaction.  Only in the
1501 	 * latter case should the "retry on ENOSPC" logic be used.
1502 	 */
1503 
1504 	if (handle) {
1505 		res = ext4_xattr_set_handle(handle, inode,
1506 					    EXT4_XATTR_INDEX_ENCRYPTION,
1507 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1508 					    ctx, len, 0);
1509 		if (!res) {
1510 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1511 			ext4_clear_inode_state(inode,
1512 					EXT4_STATE_MAY_INLINE_DATA);
1513 			/*
1514 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1515 			 * S_DAX may be disabled
1516 			 */
1517 			ext4_set_inode_flags(inode, false);
1518 		}
1519 		return res;
1520 	}
1521 
1522 	res = dquot_initialize(inode);
1523 	if (res)
1524 		return res;
1525 retry:
1526 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1527 				     &credits);
1528 	if (res)
1529 		return res;
1530 
1531 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1532 	if (IS_ERR(handle))
1533 		return PTR_ERR(handle);
1534 
1535 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1536 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1537 				    ctx, len, 0);
1538 	if (!res) {
1539 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1540 		/*
1541 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1542 		 * S_DAX may be disabled
1543 		 */
1544 		ext4_set_inode_flags(inode, false);
1545 		res = ext4_mark_inode_dirty(handle, inode);
1546 		if (res)
1547 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1548 	}
1549 	res2 = ext4_journal_stop(handle);
1550 
1551 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1552 		goto retry;
1553 	if (!res)
1554 		res = res2;
1555 	return res;
1556 }
1557 
ext4_get_dummy_policy(struct super_block * sb)1558 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1559 {
1560 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1561 }
1562 
ext4_has_stable_inodes(struct super_block * sb)1563 static bool ext4_has_stable_inodes(struct super_block *sb)
1564 {
1565 	return ext4_has_feature_stable_inodes(sb);
1566 }
1567 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1568 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1569 				       int *ino_bits_ret, int *lblk_bits_ret)
1570 {
1571 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1572 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1573 }
1574 
1575 static const struct fscrypt_operations ext4_cryptops = {
1576 	.key_prefix		= "ext4:",
1577 	.get_context		= ext4_get_context,
1578 	.set_context		= ext4_set_context,
1579 	.get_dummy_policy	= ext4_get_dummy_policy,
1580 	.empty_dir		= ext4_empty_dir,
1581 	.max_namelen		= EXT4_NAME_LEN,
1582 	.has_stable_inodes	= ext4_has_stable_inodes,
1583 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1584 };
1585 #endif
1586 
1587 #ifdef CONFIG_QUOTA
1588 static const char * const quotatypes[] = INITQFNAMES;
1589 #define QTYPE2NAME(t) (quotatypes[t])
1590 
1591 static int ext4_write_dquot(struct dquot *dquot);
1592 static int ext4_acquire_dquot(struct dquot *dquot);
1593 static int ext4_release_dquot(struct dquot *dquot);
1594 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1595 static int ext4_write_info(struct super_block *sb, int type);
1596 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1597 			 const struct path *path);
1598 static int ext4_quota_on_mount(struct super_block *sb, int type);
1599 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1600 			       size_t len, loff_t off);
1601 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1602 				const char *data, size_t len, loff_t off);
1603 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1604 			     unsigned int flags);
1605 static int ext4_enable_quotas(struct super_block *sb);
1606 
ext4_get_dquots(struct inode * inode)1607 static struct dquot **ext4_get_dquots(struct inode *inode)
1608 {
1609 	return EXT4_I(inode)->i_dquot;
1610 }
1611 
1612 static const struct dquot_operations ext4_quota_operations = {
1613 	.get_reserved_space	= ext4_get_reserved_space,
1614 	.write_dquot		= ext4_write_dquot,
1615 	.acquire_dquot		= ext4_acquire_dquot,
1616 	.release_dquot		= ext4_release_dquot,
1617 	.mark_dirty		= ext4_mark_dquot_dirty,
1618 	.write_info		= ext4_write_info,
1619 	.alloc_dquot		= dquot_alloc,
1620 	.destroy_dquot		= dquot_destroy,
1621 	.get_projid		= ext4_get_projid,
1622 	.get_inode_usage	= ext4_get_inode_usage,
1623 	.get_next_id		= dquot_get_next_id,
1624 };
1625 
1626 static const struct quotactl_ops ext4_qctl_operations = {
1627 	.quota_on	= ext4_quota_on,
1628 	.quota_off	= ext4_quota_off,
1629 	.quota_sync	= dquot_quota_sync,
1630 	.get_state	= dquot_get_state,
1631 	.set_info	= dquot_set_dqinfo,
1632 	.get_dqblk	= dquot_get_dqblk,
1633 	.set_dqblk	= dquot_set_dqblk,
1634 	.get_nextdqblk	= dquot_get_next_dqblk,
1635 };
1636 #endif
1637 
1638 static const struct super_operations ext4_sops = {
1639 	.alloc_inode	= ext4_alloc_inode,
1640 	.free_inode	= ext4_free_in_core_inode,
1641 	.destroy_inode	= ext4_destroy_inode,
1642 	.write_inode	= ext4_write_inode,
1643 	.dirty_inode	= ext4_dirty_inode,
1644 	.drop_inode	= ext4_drop_inode,
1645 	.evict_inode	= ext4_evict_inode,
1646 	.put_super	= ext4_put_super,
1647 	.sync_fs	= ext4_sync_fs,
1648 	.freeze_fs	= ext4_freeze,
1649 	.unfreeze_fs	= ext4_unfreeze,
1650 	.statfs		= ext4_statfs,
1651 	.remount_fs	= ext4_remount,
1652 	.show_options	= ext4_show_options,
1653 #ifdef CONFIG_QUOTA
1654 	.quota_read	= ext4_quota_read,
1655 	.quota_write	= ext4_quota_write,
1656 	.get_dquots	= ext4_get_dquots,
1657 #endif
1658 };
1659 
1660 static const struct export_operations ext4_export_ops = {
1661 	.fh_to_dentry = ext4_fh_to_dentry,
1662 	.fh_to_parent = ext4_fh_to_parent,
1663 	.get_parent = ext4_get_parent,
1664 	.commit_metadata = ext4_nfs_commit_metadata,
1665 };
1666 
1667 enum {
1668 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1669 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1670 	Opt_nouid32, Opt_debug, Opt_removed,
1671 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1672 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1673 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1674 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1675 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1676 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1677 	Opt_inlinecrypt,
1678 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1679 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1680 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1681 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1682 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1683 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1684 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1685 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1686 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1687 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1688 	Opt_dioread_nolock, Opt_dioread_lock,
1689 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1690 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1691 	Opt_prefetch_block_bitmaps,
1692 #ifdef CONFIG_EXT4_DEBUG
1693 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1694 #endif
1695 };
1696 
1697 static const match_table_t tokens = {
1698 	{Opt_bsd_df, "bsddf"},
1699 	{Opt_minix_df, "minixdf"},
1700 	{Opt_grpid, "grpid"},
1701 	{Opt_grpid, "bsdgroups"},
1702 	{Opt_nogrpid, "nogrpid"},
1703 	{Opt_nogrpid, "sysvgroups"},
1704 	{Opt_resgid, "resgid=%u"},
1705 	{Opt_resuid, "resuid=%u"},
1706 	{Opt_sb, "sb=%u"},
1707 	{Opt_err_cont, "errors=continue"},
1708 	{Opt_err_panic, "errors=panic"},
1709 	{Opt_err_ro, "errors=remount-ro"},
1710 	{Opt_nouid32, "nouid32"},
1711 	{Opt_debug, "debug"},
1712 	{Opt_removed, "oldalloc"},
1713 	{Opt_removed, "orlov"},
1714 	{Opt_user_xattr, "user_xattr"},
1715 	{Opt_nouser_xattr, "nouser_xattr"},
1716 	{Opt_acl, "acl"},
1717 	{Opt_noacl, "noacl"},
1718 	{Opt_noload, "norecovery"},
1719 	{Opt_noload, "noload"},
1720 	{Opt_removed, "nobh"},
1721 	{Opt_removed, "bh"},
1722 	{Opt_commit, "commit=%u"},
1723 	{Opt_min_batch_time, "min_batch_time=%u"},
1724 	{Opt_max_batch_time, "max_batch_time=%u"},
1725 	{Opt_journal_dev, "journal_dev=%u"},
1726 	{Opt_journal_path, "journal_path=%s"},
1727 	{Opt_journal_checksum, "journal_checksum"},
1728 	{Opt_nojournal_checksum, "nojournal_checksum"},
1729 	{Opt_journal_async_commit, "journal_async_commit"},
1730 	{Opt_abort, "abort"},
1731 	{Opt_data_journal, "data=journal"},
1732 	{Opt_data_ordered, "data=ordered"},
1733 	{Opt_data_writeback, "data=writeback"},
1734 	{Opt_data_err_abort, "data_err=abort"},
1735 	{Opt_data_err_ignore, "data_err=ignore"},
1736 	{Opt_offusrjquota, "usrjquota="},
1737 	{Opt_usrjquota, "usrjquota=%s"},
1738 	{Opt_offgrpjquota, "grpjquota="},
1739 	{Opt_grpjquota, "grpjquota=%s"},
1740 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1741 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1742 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1743 	{Opt_grpquota, "grpquota"},
1744 	{Opt_noquota, "noquota"},
1745 	{Opt_quota, "quota"},
1746 	{Opt_usrquota, "usrquota"},
1747 	{Opt_prjquota, "prjquota"},
1748 	{Opt_barrier, "barrier=%u"},
1749 	{Opt_barrier, "barrier"},
1750 	{Opt_nobarrier, "nobarrier"},
1751 	{Opt_i_version, "i_version"},
1752 	{Opt_dax, "dax"},
1753 	{Opt_dax_always, "dax=always"},
1754 	{Opt_dax_inode, "dax=inode"},
1755 	{Opt_dax_never, "dax=never"},
1756 	{Opt_stripe, "stripe=%u"},
1757 	{Opt_delalloc, "delalloc"},
1758 	{Opt_warn_on_error, "warn_on_error"},
1759 	{Opt_nowarn_on_error, "nowarn_on_error"},
1760 	{Opt_lazytime, "lazytime"},
1761 	{Opt_nolazytime, "nolazytime"},
1762 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1763 	{Opt_nodelalloc, "nodelalloc"},
1764 	{Opt_removed, "mblk_io_submit"},
1765 	{Opt_removed, "nomblk_io_submit"},
1766 	{Opt_block_validity, "block_validity"},
1767 	{Opt_noblock_validity, "noblock_validity"},
1768 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1769 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1770 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1771 	{Opt_auto_da_alloc, "auto_da_alloc"},
1772 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1773 	{Opt_dioread_nolock, "dioread_nolock"},
1774 	{Opt_dioread_lock, "nodioread_nolock"},
1775 	{Opt_dioread_lock, "dioread_lock"},
1776 	{Opt_discard, "discard"},
1777 	{Opt_nodiscard, "nodiscard"},
1778 	{Opt_init_itable, "init_itable=%u"},
1779 	{Opt_init_itable, "init_itable"},
1780 	{Opt_noinit_itable, "noinit_itable"},
1781 #ifdef CONFIG_EXT4_DEBUG
1782 	{Opt_fc_debug_force, "fc_debug_force"},
1783 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1784 #endif
1785 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1786 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1787 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1788 	{Opt_inlinecrypt, "inlinecrypt"},
1789 	{Opt_nombcache, "nombcache"},
1790 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1791 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1792 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1793 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1794 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1795 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1796 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1797 	{Opt_err, NULL},
1798 };
1799 
get_sb_block(void ** data)1800 static ext4_fsblk_t get_sb_block(void **data)
1801 {
1802 	ext4_fsblk_t	sb_block;
1803 	char		*options = (char *) *data;
1804 
1805 	if (!options || strncmp(options, "sb=", 3) != 0)
1806 		return 1;	/* Default location */
1807 
1808 	options += 3;
1809 	/* TODO: use simple_strtoll with >32bit ext4 */
1810 	sb_block = simple_strtoul(options, &options, 0);
1811 	if (*options && *options != ',') {
1812 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1813 		       (char *) *data);
1814 		return 1;
1815 	}
1816 	if (*options == ',')
1817 		options++;
1818 	*data = (void *) options;
1819 
1820 	return sb_block;
1821 }
1822 
1823 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1824 static const char deprecated_msg[] =
1825 	"Mount option \"%s\" will be removed by %s\n"
1826 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1827 
1828 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1829 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1830 {
1831 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1832 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1833 	int ret = -1;
1834 
1835 	if (sb_any_quota_loaded(sb) && !old_qname) {
1836 		ext4_msg(sb, KERN_ERR,
1837 			"Cannot change journaled "
1838 			"quota options when quota turned on");
1839 		return -1;
1840 	}
1841 	if (ext4_has_feature_quota(sb)) {
1842 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1843 			 "ignored when QUOTA feature is enabled");
1844 		return 1;
1845 	}
1846 	qname = match_strdup(args);
1847 	if (!qname) {
1848 		ext4_msg(sb, KERN_ERR,
1849 			"Not enough memory for storing quotafile name");
1850 		return -1;
1851 	}
1852 	if (old_qname) {
1853 		if (strcmp(old_qname, qname) == 0)
1854 			ret = 1;
1855 		else
1856 			ext4_msg(sb, KERN_ERR,
1857 				 "%s quota file already specified",
1858 				 QTYPE2NAME(qtype));
1859 		goto errout;
1860 	}
1861 	if (strchr(qname, '/')) {
1862 		ext4_msg(sb, KERN_ERR,
1863 			"quotafile must be on filesystem root");
1864 		goto errout;
1865 	}
1866 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1867 	set_opt(sb, QUOTA);
1868 	return 1;
1869 errout:
1870 	kfree(qname);
1871 	return ret;
1872 }
1873 
clear_qf_name(struct super_block * sb,int qtype)1874 static int clear_qf_name(struct super_block *sb, int qtype)
1875 {
1876 
1877 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1878 	char *old_qname = get_qf_name(sb, sbi, qtype);
1879 
1880 	if (sb_any_quota_loaded(sb) && old_qname) {
1881 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1882 			" when quota turned on");
1883 		return -1;
1884 	}
1885 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1886 	synchronize_rcu();
1887 	kfree(old_qname);
1888 	return 1;
1889 }
1890 #endif
1891 
1892 #define MOPT_SET	0x0001
1893 #define MOPT_CLEAR	0x0002
1894 #define MOPT_NOSUPPORT	0x0004
1895 #define MOPT_EXPLICIT	0x0008
1896 #define MOPT_CLEAR_ERR	0x0010
1897 #define MOPT_GTE0	0x0020
1898 #ifdef CONFIG_QUOTA
1899 #define MOPT_Q		0
1900 #define MOPT_QFMT	0x0040
1901 #else
1902 #define MOPT_Q		MOPT_NOSUPPORT
1903 #define MOPT_QFMT	MOPT_NOSUPPORT
1904 #endif
1905 #define MOPT_DATAJ	0x0080
1906 #define MOPT_NO_EXT2	0x0100
1907 #define MOPT_NO_EXT3	0x0200
1908 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1909 #define MOPT_STRING	0x0400
1910 #define MOPT_SKIP	0x0800
1911 #define	MOPT_2		0x1000
1912 
1913 static const struct mount_opts {
1914 	int	token;
1915 	int	mount_opt;
1916 	int	flags;
1917 } ext4_mount_opts[] = {
1918 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1919 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1920 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1921 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1922 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1923 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1924 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925 	 MOPT_EXT4_ONLY | MOPT_SET},
1926 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1927 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1929 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1930 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1931 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1932 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1933 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1935 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1936 	{Opt_commit, 0, MOPT_NO_EXT2},
1937 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1938 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1939 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1940 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1941 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1942 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1943 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1944 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1945 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1946 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1947 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1948 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1949 	 MOPT_NO_EXT2},
1950 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1951 	 MOPT_NO_EXT2},
1952 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1953 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1954 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1955 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1956 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1957 	{Opt_commit, 0, MOPT_GTE0},
1958 	{Opt_max_batch_time, 0, MOPT_GTE0},
1959 	{Opt_min_batch_time, 0, MOPT_GTE0},
1960 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1961 	{Opt_init_itable, 0, MOPT_GTE0},
1962 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1963 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1964 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1966 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1967 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1968 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1969 	{Opt_stripe, 0, MOPT_GTE0},
1970 	{Opt_resuid, 0, MOPT_GTE0},
1971 	{Opt_resgid, 0, MOPT_GTE0},
1972 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1973 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1974 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1975 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1976 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1977 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1978 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1979 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1980 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1981 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1982 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1983 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1984 #else
1985 	{Opt_acl, 0, MOPT_NOSUPPORT},
1986 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1987 #endif
1988 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1989 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1990 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1991 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1992 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1993 							MOPT_SET | MOPT_Q},
1994 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1995 							MOPT_SET | MOPT_Q},
1996 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1997 							MOPT_SET | MOPT_Q},
1998 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1999 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2000 							MOPT_CLEAR | MOPT_Q},
2001 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2002 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2003 	{Opt_offusrjquota, 0, MOPT_Q},
2004 	{Opt_offgrpjquota, 0, MOPT_Q},
2005 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2006 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2007 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2008 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2009 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2010 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2011 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2012 	 MOPT_SET},
2013 #ifdef CONFIG_EXT4_DEBUG
2014 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2015 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2016 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2017 #endif
2018 	{Opt_err, 0, 0}
2019 };
2020 
2021 #ifdef CONFIG_UNICODE
2022 static const struct ext4_sb_encodings {
2023 	__u16 magic;
2024 	char *name;
2025 	char *version;
2026 } ext4_sb_encoding_map[] = {
2027 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2028 };
2029 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2030 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2031 				 const struct ext4_sb_encodings **encoding,
2032 				 __u16 *flags)
2033 {
2034 	__u16 magic = le16_to_cpu(es->s_encoding);
2035 	int i;
2036 
2037 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2038 		if (magic == ext4_sb_encoding_map[i].magic)
2039 			break;
2040 
2041 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2042 		return -EINVAL;
2043 
2044 	*encoding = &ext4_sb_encoding_map[i];
2045 	*flags = le16_to_cpu(es->s_encoding_flags);
2046 
2047 	return 0;
2048 }
2049 #endif
2050 
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2051 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2052 					  const char *opt,
2053 					  const substring_t *arg,
2054 					  bool is_remount)
2055 {
2056 #ifdef CONFIG_FS_ENCRYPTION
2057 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2058 	int err;
2059 
2060 	if (!ext4_has_feature_encrypt(sb)) {
2061 		ext4_msg(sb, KERN_WARNING,
2062 			 "test_dummy_encryption requires encrypt feature");
2063 		return -1;
2064 	}
2065 
2066 	/*
2067 	 * This mount option is just for testing, and it's not worthwhile to
2068 	 * implement the extra complexity (e.g. RCU protection) that would be
2069 	 * needed to allow it to be set or changed during remount.  We do allow
2070 	 * it to be specified during remount, but only if there is no change.
2071 	 */
2072 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2073 		ext4_msg(sb, KERN_WARNING,
2074 			 "Can't set test_dummy_encryption on remount");
2075 		return -1;
2076 	}
2077 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2078 						&sbi->s_dummy_enc_policy);
2079 	if (err) {
2080 		if (err == -EEXIST)
2081 			ext4_msg(sb, KERN_WARNING,
2082 				 "Can't change test_dummy_encryption on remount");
2083 		else if (err == -EINVAL)
2084 			ext4_msg(sb, KERN_WARNING,
2085 				 "Value of option \"%s\" is unrecognized", opt);
2086 		else
2087 			ext4_msg(sb, KERN_WARNING,
2088 				 "Error processing option \"%s\" [%d]",
2089 				 opt, err);
2090 		return -1;
2091 	}
2092 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2093 	return 1;
2094 #else
2095 	ext4_msg(sb, KERN_WARNING,
2096 		 "test_dummy_encryption option not supported");
2097 	return -1;
2098 
2099 #endif
2100 }
2101 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2102 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2103 			    substring_t *args, unsigned long *journal_devnum,
2104 			    unsigned int *journal_ioprio, int is_remount)
2105 {
2106 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2107 	const struct mount_opts *m;
2108 	kuid_t uid;
2109 	kgid_t gid;
2110 	int arg = 0;
2111 
2112 #ifdef CONFIG_QUOTA
2113 	if (token == Opt_usrjquota)
2114 		return set_qf_name(sb, USRQUOTA, &args[0]);
2115 	else if (token == Opt_grpjquota)
2116 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2117 	else if (token == Opt_offusrjquota)
2118 		return clear_qf_name(sb, USRQUOTA);
2119 	else if (token == Opt_offgrpjquota)
2120 		return clear_qf_name(sb, GRPQUOTA);
2121 #endif
2122 	switch (token) {
2123 	case Opt_noacl:
2124 	case Opt_nouser_xattr:
2125 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2126 		break;
2127 	case Opt_sb:
2128 		return 1;	/* handled by get_sb_block() */
2129 	case Opt_removed:
2130 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2131 		return 1;
2132 	case Opt_abort:
2133 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2134 		return 1;
2135 	case Opt_i_version:
2136 		sb->s_flags |= SB_I_VERSION;
2137 		return 1;
2138 	case Opt_lazytime:
2139 		sb->s_flags |= SB_LAZYTIME;
2140 		return 1;
2141 	case Opt_nolazytime:
2142 		sb->s_flags &= ~SB_LAZYTIME;
2143 		return 1;
2144 	case Opt_inlinecrypt:
2145 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2146 		sb->s_flags |= SB_INLINECRYPT;
2147 #else
2148 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2149 #endif
2150 		return 1;
2151 	}
2152 
2153 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2154 		if (token == m->token)
2155 			break;
2156 
2157 	if (m->token == Opt_err) {
2158 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2159 			 "or missing value", opt);
2160 		return -1;
2161 	}
2162 
2163 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2164 		ext4_msg(sb, KERN_ERR,
2165 			 "Mount option \"%s\" incompatible with ext2", opt);
2166 		return -1;
2167 	}
2168 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2169 		ext4_msg(sb, KERN_ERR,
2170 			 "Mount option \"%s\" incompatible with ext3", opt);
2171 		return -1;
2172 	}
2173 
2174 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2175 		return -1;
2176 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2177 		return -1;
2178 	if (m->flags & MOPT_EXPLICIT) {
2179 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2180 			set_opt2(sb, EXPLICIT_DELALLOC);
2181 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2182 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2183 		} else
2184 			return -1;
2185 	}
2186 	if (m->flags & MOPT_CLEAR_ERR)
2187 		clear_opt(sb, ERRORS_MASK);
2188 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2189 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2190 			 "options when quota turned on");
2191 		return -1;
2192 	}
2193 
2194 	if (m->flags & MOPT_NOSUPPORT) {
2195 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2196 	} else if (token == Opt_commit) {
2197 		if (arg == 0)
2198 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2199 		else if (arg > INT_MAX / HZ) {
2200 			ext4_msg(sb, KERN_ERR,
2201 				 "Invalid commit interval %d, "
2202 				 "must be smaller than %d",
2203 				 arg, INT_MAX / HZ);
2204 			return -1;
2205 		}
2206 		sbi->s_commit_interval = HZ * arg;
2207 	} else if (token == Opt_debug_want_extra_isize) {
2208 		if ((arg & 1) ||
2209 		    (arg < 4) ||
2210 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2211 			ext4_msg(sb, KERN_ERR,
2212 				 "Invalid want_extra_isize %d", arg);
2213 			return -1;
2214 		}
2215 		sbi->s_want_extra_isize = arg;
2216 	} else if (token == Opt_max_batch_time) {
2217 		sbi->s_max_batch_time = arg;
2218 	} else if (token == Opt_min_batch_time) {
2219 		sbi->s_min_batch_time = arg;
2220 	} else if (token == Opt_inode_readahead_blks) {
2221 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2222 			ext4_msg(sb, KERN_ERR,
2223 				 "EXT4-fs: inode_readahead_blks must be "
2224 				 "0 or a power of 2 smaller than 2^31");
2225 			return -1;
2226 		}
2227 		sbi->s_inode_readahead_blks = arg;
2228 	} else if (token == Opt_init_itable) {
2229 		set_opt(sb, INIT_INODE_TABLE);
2230 		if (!args->from)
2231 			arg = EXT4_DEF_LI_WAIT_MULT;
2232 		sbi->s_li_wait_mult = arg;
2233 	} else if (token == Opt_max_dir_size_kb) {
2234 		sbi->s_max_dir_size_kb = arg;
2235 #ifdef CONFIG_EXT4_DEBUG
2236 	} else if (token == Opt_fc_debug_max_replay) {
2237 		sbi->s_fc_debug_max_replay = arg;
2238 #endif
2239 	} else if (token == Opt_stripe) {
2240 		sbi->s_stripe = arg;
2241 	} else if (token == Opt_resuid) {
2242 		uid = make_kuid(current_user_ns(), arg);
2243 		if (!uid_valid(uid)) {
2244 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2245 			return -1;
2246 		}
2247 		sbi->s_resuid = uid;
2248 	} else if (token == Opt_resgid) {
2249 		gid = make_kgid(current_user_ns(), arg);
2250 		if (!gid_valid(gid)) {
2251 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2252 			return -1;
2253 		}
2254 		sbi->s_resgid = gid;
2255 	} else if (token == Opt_journal_dev) {
2256 		if (is_remount) {
2257 			ext4_msg(sb, KERN_ERR,
2258 				 "Cannot specify journal on remount");
2259 			return -1;
2260 		}
2261 		*journal_devnum = arg;
2262 	} else if (token == Opt_journal_path) {
2263 		char *journal_path;
2264 		struct inode *journal_inode;
2265 		struct path path;
2266 		int error;
2267 
2268 		if (is_remount) {
2269 			ext4_msg(sb, KERN_ERR,
2270 				 "Cannot specify journal on remount");
2271 			return -1;
2272 		}
2273 		journal_path = match_strdup(&args[0]);
2274 		if (!journal_path) {
2275 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2276 				"journal device string");
2277 			return -1;
2278 		}
2279 
2280 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2281 		if (error) {
2282 			ext4_msg(sb, KERN_ERR, "error: could not find "
2283 				"journal device path: error %d", error);
2284 			kfree(journal_path);
2285 			return -1;
2286 		}
2287 
2288 		journal_inode = d_inode(path.dentry);
2289 		if (!S_ISBLK(journal_inode->i_mode)) {
2290 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2291 				"is not a block device", journal_path);
2292 			path_put(&path);
2293 			kfree(journal_path);
2294 			return -1;
2295 		}
2296 
2297 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2298 		path_put(&path);
2299 		kfree(journal_path);
2300 	} else if (token == Opt_journal_ioprio) {
2301 		if (arg > 7) {
2302 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2303 				 " (must be 0-7)");
2304 			return -1;
2305 		}
2306 		*journal_ioprio =
2307 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2308 	} else if (token == Opt_test_dummy_encryption) {
2309 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2310 						      is_remount);
2311 	} else if (m->flags & MOPT_DATAJ) {
2312 		if (is_remount) {
2313 			if (!sbi->s_journal)
2314 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2315 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2316 				ext4_msg(sb, KERN_ERR,
2317 					 "Cannot change data mode on remount");
2318 				return -1;
2319 			}
2320 		} else {
2321 			clear_opt(sb, DATA_FLAGS);
2322 			sbi->s_mount_opt |= m->mount_opt;
2323 		}
2324 #ifdef CONFIG_QUOTA
2325 	} else if (m->flags & MOPT_QFMT) {
2326 		if (sb_any_quota_loaded(sb) &&
2327 		    sbi->s_jquota_fmt != m->mount_opt) {
2328 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2329 				 "quota options when quota turned on");
2330 			return -1;
2331 		}
2332 		if (ext4_has_feature_quota(sb)) {
2333 			ext4_msg(sb, KERN_INFO,
2334 				 "Quota format mount options ignored "
2335 				 "when QUOTA feature is enabled");
2336 			return 1;
2337 		}
2338 		sbi->s_jquota_fmt = m->mount_opt;
2339 #endif
2340 	} else if (token == Opt_dax || token == Opt_dax_always ||
2341 		   token == Opt_dax_inode || token == Opt_dax_never) {
2342 #ifdef CONFIG_FS_DAX
2343 		switch (token) {
2344 		case Opt_dax:
2345 		case Opt_dax_always:
2346 			if (is_remount &&
2347 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2348 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2349 			fail_dax_change_remount:
2350 				ext4_msg(sb, KERN_ERR, "can't change "
2351 					 "dax mount option while remounting");
2352 				return -1;
2353 			}
2354 			if (is_remount &&
2355 			    (test_opt(sb, DATA_FLAGS) ==
2356 			     EXT4_MOUNT_JOURNAL_DATA)) {
2357 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2358 					     "both data=journal and dax");
2359 				    return -1;
2360 			}
2361 			ext4_msg(sb, KERN_WARNING,
2362 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2363 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2364 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2365 			break;
2366 		case Opt_dax_never:
2367 			if (is_remount &&
2368 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2369 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2370 				goto fail_dax_change_remount;
2371 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2372 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2373 			break;
2374 		case Opt_dax_inode:
2375 			if (is_remount &&
2376 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2377 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2378 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2379 				goto fail_dax_change_remount;
2380 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2382 			/* Strictly for printing options */
2383 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2384 			break;
2385 		}
2386 #else
2387 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2388 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2389 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2390 		return -1;
2391 #endif
2392 	} else if (token == Opt_data_err_abort) {
2393 		sbi->s_mount_opt |= m->mount_opt;
2394 	} else if (token == Opt_data_err_ignore) {
2395 		sbi->s_mount_opt &= ~m->mount_opt;
2396 	} else {
2397 		if (!args->from)
2398 			arg = 1;
2399 		if (m->flags & MOPT_CLEAR)
2400 			arg = !arg;
2401 		else if (unlikely(!(m->flags & MOPT_SET))) {
2402 			ext4_msg(sb, KERN_WARNING,
2403 				 "buggy handling of option %s", opt);
2404 			WARN_ON(1);
2405 			return -1;
2406 		}
2407 		if (m->flags & MOPT_2) {
2408 			if (arg != 0)
2409 				sbi->s_mount_opt2 |= m->mount_opt;
2410 			else
2411 				sbi->s_mount_opt2 &= ~m->mount_opt;
2412 		} else {
2413 			if (arg != 0)
2414 				sbi->s_mount_opt |= m->mount_opt;
2415 			else
2416 				sbi->s_mount_opt &= ~m->mount_opt;
2417 		}
2418 	}
2419 	return 1;
2420 }
2421 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2422 static int parse_options(char *options, struct super_block *sb,
2423 			 unsigned long *journal_devnum,
2424 			 unsigned int *journal_ioprio,
2425 			 int is_remount)
2426 {
2427 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2428 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2429 	substring_t args[MAX_OPT_ARGS];
2430 	int token;
2431 
2432 	if (!options)
2433 		return 1;
2434 
2435 	while ((p = strsep(&options, ",")) != NULL) {
2436 		if (!*p)
2437 			continue;
2438 		/*
2439 		 * Initialize args struct so we know whether arg was
2440 		 * found; some options take optional arguments.
2441 		 */
2442 		args[0].to = args[0].from = NULL;
2443 		token = match_token(p, tokens, args);
2444 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2445 				     journal_ioprio, is_remount) < 0)
2446 			return 0;
2447 	}
2448 #ifdef CONFIG_QUOTA
2449 	/*
2450 	 * We do the test below only for project quotas. 'usrquota' and
2451 	 * 'grpquota' mount options are allowed even without quota feature
2452 	 * to support legacy quotas in quota files.
2453 	 */
2454 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2455 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2456 			 "Cannot enable project quota enforcement.");
2457 		return 0;
2458 	}
2459 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2460 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2461 	if (usr_qf_name || grp_qf_name) {
2462 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2463 			clear_opt(sb, USRQUOTA);
2464 
2465 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2466 			clear_opt(sb, GRPQUOTA);
2467 
2468 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2469 			ext4_msg(sb, KERN_ERR, "old and new quota "
2470 					"format mixing");
2471 			return 0;
2472 		}
2473 
2474 		if (!sbi->s_jquota_fmt) {
2475 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2476 					"not specified");
2477 			return 0;
2478 		}
2479 	}
2480 #endif
2481 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2482 		int blocksize =
2483 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2484 		if (blocksize < PAGE_SIZE)
2485 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2486 				 "experimental mount option 'dioread_nolock' "
2487 				 "for blocksize < PAGE_SIZE");
2488 	}
2489 	return 1;
2490 }
2491 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2492 static inline void ext4_show_quota_options(struct seq_file *seq,
2493 					   struct super_block *sb)
2494 {
2495 #if defined(CONFIG_QUOTA)
2496 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2497 	char *usr_qf_name, *grp_qf_name;
2498 
2499 	if (sbi->s_jquota_fmt) {
2500 		char *fmtname = "";
2501 
2502 		switch (sbi->s_jquota_fmt) {
2503 		case QFMT_VFS_OLD:
2504 			fmtname = "vfsold";
2505 			break;
2506 		case QFMT_VFS_V0:
2507 			fmtname = "vfsv0";
2508 			break;
2509 		case QFMT_VFS_V1:
2510 			fmtname = "vfsv1";
2511 			break;
2512 		}
2513 		seq_printf(seq, ",jqfmt=%s", fmtname);
2514 	}
2515 
2516 	rcu_read_lock();
2517 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2518 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2519 	if (usr_qf_name)
2520 		seq_show_option(seq, "usrjquota", usr_qf_name);
2521 	if (grp_qf_name)
2522 		seq_show_option(seq, "grpjquota", grp_qf_name);
2523 	rcu_read_unlock();
2524 #endif
2525 }
2526 
token2str(int token)2527 static const char *token2str(int token)
2528 {
2529 	const struct match_token *t;
2530 
2531 	for (t = tokens; t->token != Opt_err; t++)
2532 		if (t->token == token && !strchr(t->pattern, '='))
2533 			break;
2534 	return t->pattern;
2535 }
2536 
2537 /*
2538  * Show an option if
2539  *  - it's set to a non-default value OR
2540  *  - if the per-sb default is different from the global default
2541  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2542 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2543 			      int nodefs)
2544 {
2545 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2546 	struct ext4_super_block *es = sbi->s_es;
2547 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2548 	const struct mount_opts *m;
2549 	char sep = nodefs ? '\n' : ',';
2550 
2551 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2552 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2553 
2554 	if (sbi->s_sb_block != 1)
2555 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2556 
2557 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2558 		int want_set = m->flags & MOPT_SET;
2559 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2560 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2561 			continue;
2562 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2563 			continue; /* skip if same as the default */
2564 		if ((want_set &&
2565 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2566 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2567 			continue; /* select Opt_noFoo vs Opt_Foo */
2568 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2569 	}
2570 
2571 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2572 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2573 		SEQ_OPTS_PRINT("resuid=%u",
2574 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2575 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2576 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2577 		SEQ_OPTS_PRINT("resgid=%u",
2578 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2579 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2580 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2581 		SEQ_OPTS_PUTS("errors=remount-ro");
2582 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2583 		SEQ_OPTS_PUTS("errors=continue");
2584 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2585 		SEQ_OPTS_PUTS("errors=panic");
2586 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2587 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2588 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2589 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2590 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2591 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2592 	if (sb->s_flags & SB_I_VERSION)
2593 		SEQ_OPTS_PUTS("i_version");
2594 	if (nodefs || sbi->s_stripe)
2595 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2596 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2597 			(sbi->s_mount_opt ^ def_mount_opt)) {
2598 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2599 			SEQ_OPTS_PUTS("data=journal");
2600 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2601 			SEQ_OPTS_PUTS("data=ordered");
2602 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2603 			SEQ_OPTS_PUTS("data=writeback");
2604 	}
2605 	if (nodefs ||
2606 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2607 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2608 			       sbi->s_inode_readahead_blks);
2609 
2610 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2611 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2612 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2613 	if (nodefs || sbi->s_max_dir_size_kb)
2614 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2615 	if (test_opt(sb, DATA_ERR_ABORT))
2616 		SEQ_OPTS_PUTS("data_err=abort");
2617 
2618 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2619 
2620 	if (sb->s_flags & SB_INLINECRYPT)
2621 		SEQ_OPTS_PUTS("inlinecrypt");
2622 
2623 	if (test_opt(sb, DAX_ALWAYS)) {
2624 		if (IS_EXT2_SB(sb))
2625 			SEQ_OPTS_PUTS("dax");
2626 		else
2627 			SEQ_OPTS_PUTS("dax=always");
2628 	} else if (test_opt2(sb, DAX_NEVER)) {
2629 		SEQ_OPTS_PUTS("dax=never");
2630 	} else if (test_opt2(sb, DAX_INODE)) {
2631 		SEQ_OPTS_PUTS("dax=inode");
2632 	}
2633 	ext4_show_quota_options(seq, sb);
2634 	return 0;
2635 }
2636 
ext4_show_options(struct seq_file * seq,struct dentry * root)2637 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2638 {
2639 	return _ext4_show_options(seq, root->d_sb, 0);
2640 }
2641 
ext4_seq_options_show(struct seq_file * seq,void * offset)2642 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2643 {
2644 	struct super_block *sb = seq->private;
2645 	int rc;
2646 
2647 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2648 	rc = _ext4_show_options(seq, sb, 1);
2649 	seq_puts(seq, "\n");
2650 	return rc;
2651 }
2652 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2653 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2654 			    int read_only)
2655 {
2656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2657 	int err = 0;
2658 
2659 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2660 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2661 			 "forcing read-only mode");
2662 		err = -EROFS;
2663 		goto done;
2664 	}
2665 	if (read_only)
2666 		goto done;
2667 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2668 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2669 			 "running e2fsck is recommended");
2670 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2671 		ext4_msg(sb, KERN_WARNING,
2672 			 "warning: mounting fs with errors, "
2673 			 "running e2fsck is recommended");
2674 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2675 		 le16_to_cpu(es->s_mnt_count) >=
2676 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2677 		ext4_msg(sb, KERN_WARNING,
2678 			 "warning: maximal mount count reached, "
2679 			 "running e2fsck is recommended");
2680 	else if (le32_to_cpu(es->s_checkinterval) &&
2681 		 (ext4_get_tstamp(es, s_lastcheck) +
2682 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2683 		ext4_msg(sb, KERN_WARNING,
2684 			 "warning: checktime reached, "
2685 			 "running e2fsck is recommended");
2686 	if (!sbi->s_journal)
2687 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2688 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2689 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2690 	le16_add_cpu(&es->s_mnt_count, 1);
2691 	ext4_update_tstamp(es, s_mtime);
2692 	if (sbi->s_journal)
2693 		ext4_set_feature_journal_needs_recovery(sb);
2694 
2695 	err = ext4_commit_super(sb);
2696 done:
2697 	if (test_opt(sb, DEBUG))
2698 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2699 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2700 			sb->s_blocksize,
2701 			sbi->s_groups_count,
2702 			EXT4_BLOCKS_PER_GROUP(sb),
2703 			EXT4_INODES_PER_GROUP(sb),
2704 			sbi->s_mount_opt, sbi->s_mount_opt2);
2705 
2706 	cleancache_init_fs(sb);
2707 	return err;
2708 }
2709 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2710 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2711 {
2712 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2713 	struct flex_groups **old_groups, **new_groups;
2714 	int size, i, j;
2715 
2716 	if (!sbi->s_log_groups_per_flex)
2717 		return 0;
2718 
2719 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2720 	if (size <= sbi->s_flex_groups_allocated)
2721 		return 0;
2722 
2723 	new_groups = kvzalloc(roundup_pow_of_two(size *
2724 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2725 	if (!new_groups) {
2726 		ext4_msg(sb, KERN_ERR,
2727 			 "not enough memory for %d flex group pointers", size);
2728 		return -ENOMEM;
2729 	}
2730 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2731 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2732 					 sizeof(struct flex_groups)),
2733 					 GFP_KERNEL);
2734 		if (!new_groups[i]) {
2735 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2736 				kvfree(new_groups[j]);
2737 			kvfree(new_groups);
2738 			ext4_msg(sb, KERN_ERR,
2739 				 "not enough memory for %d flex groups", size);
2740 			return -ENOMEM;
2741 		}
2742 	}
2743 	rcu_read_lock();
2744 	old_groups = rcu_dereference(sbi->s_flex_groups);
2745 	if (old_groups)
2746 		memcpy(new_groups, old_groups,
2747 		       (sbi->s_flex_groups_allocated *
2748 			sizeof(struct flex_groups *)));
2749 	rcu_read_unlock();
2750 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2751 	sbi->s_flex_groups_allocated = size;
2752 	if (old_groups)
2753 		ext4_kvfree_array_rcu(old_groups);
2754 	return 0;
2755 }
2756 
ext4_fill_flex_info(struct super_block * sb)2757 static int ext4_fill_flex_info(struct super_block *sb)
2758 {
2759 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2760 	struct ext4_group_desc *gdp = NULL;
2761 	struct flex_groups *fg;
2762 	ext4_group_t flex_group;
2763 	int i, err;
2764 
2765 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2766 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2767 		sbi->s_log_groups_per_flex = 0;
2768 		return 1;
2769 	}
2770 
2771 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2772 	if (err)
2773 		goto failed;
2774 
2775 	for (i = 0; i < sbi->s_groups_count; i++) {
2776 		gdp = ext4_get_group_desc(sb, i, NULL);
2777 
2778 		flex_group = ext4_flex_group(sbi, i);
2779 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2780 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2781 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2782 			     &fg->free_clusters);
2783 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2784 	}
2785 
2786 	return 1;
2787 failed:
2788 	return 0;
2789 }
2790 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2791 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2792 				   struct ext4_group_desc *gdp)
2793 {
2794 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2795 	__u16 crc = 0;
2796 	__le32 le_group = cpu_to_le32(block_group);
2797 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2798 
2799 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2800 		/* Use new metadata_csum algorithm */
2801 		__u32 csum32;
2802 		__u16 dummy_csum = 0;
2803 
2804 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2805 				     sizeof(le_group));
2806 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2807 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2808 				     sizeof(dummy_csum));
2809 		offset += sizeof(dummy_csum);
2810 		if (offset < sbi->s_desc_size)
2811 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2812 					     sbi->s_desc_size - offset);
2813 
2814 		crc = csum32 & 0xFFFF;
2815 		goto out;
2816 	}
2817 
2818 	/* old crc16 code */
2819 	if (!ext4_has_feature_gdt_csum(sb))
2820 		return 0;
2821 
2822 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2823 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2824 	crc = crc16(crc, (__u8 *)gdp, offset);
2825 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2826 	/* for checksum of struct ext4_group_desc do the rest...*/
2827 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2828 		crc = crc16(crc, (__u8 *)gdp + offset,
2829 			    sbi->s_desc_size - offset);
2830 
2831 out:
2832 	return cpu_to_le16(crc);
2833 }
2834 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2835 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2836 				struct ext4_group_desc *gdp)
2837 {
2838 	if (ext4_has_group_desc_csum(sb) &&
2839 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2840 		return 0;
2841 
2842 	return 1;
2843 }
2844 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2845 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2846 			      struct ext4_group_desc *gdp)
2847 {
2848 	if (!ext4_has_group_desc_csum(sb))
2849 		return;
2850 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2851 }
2852 
2853 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2854 static int ext4_check_descriptors(struct super_block *sb,
2855 				  ext4_fsblk_t sb_block,
2856 				  ext4_group_t *first_not_zeroed)
2857 {
2858 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2859 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2860 	ext4_fsblk_t last_block;
2861 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2862 	ext4_fsblk_t block_bitmap;
2863 	ext4_fsblk_t inode_bitmap;
2864 	ext4_fsblk_t inode_table;
2865 	int flexbg_flag = 0;
2866 	ext4_group_t i, grp = sbi->s_groups_count;
2867 
2868 	if (ext4_has_feature_flex_bg(sb))
2869 		flexbg_flag = 1;
2870 
2871 	ext4_debug("Checking group descriptors");
2872 
2873 	for (i = 0; i < sbi->s_groups_count; i++) {
2874 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2875 
2876 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2877 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2878 		else
2879 			last_block = first_block +
2880 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2881 
2882 		if ((grp == sbi->s_groups_count) &&
2883 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2884 			grp = i;
2885 
2886 		block_bitmap = ext4_block_bitmap(sb, gdp);
2887 		if (block_bitmap == sb_block) {
2888 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2889 				 "Block bitmap for group %u overlaps "
2890 				 "superblock", i);
2891 			if (!sb_rdonly(sb))
2892 				return 0;
2893 		}
2894 		if (block_bitmap >= sb_block + 1 &&
2895 		    block_bitmap <= last_bg_block) {
2896 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 				 "Block bitmap for group %u overlaps "
2898 				 "block group descriptors", i);
2899 			if (!sb_rdonly(sb))
2900 				return 0;
2901 		}
2902 		if (block_bitmap < first_block || block_bitmap > last_block) {
2903 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2904 			       "Block bitmap for group %u not in group "
2905 			       "(block %llu)!", i, block_bitmap);
2906 			return 0;
2907 		}
2908 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2909 		if (inode_bitmap == sb_block) {
2910 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 				 "Inode bitmap for group %u overlaps "
2912 				 "superblock", i);
2913 			if (!sb_rdonly(sb))
2914 				return 0;
2915 		}
2916 		if (inode_bitmap >= sb_block + 1 &&
2917 		    inode_bitmap <= last_bg_block) {
2918 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 				 "Inode bitmap for group %u overlaps "
2920 				 "block group descriptors", i);
2921 			if (!sb_rdonly(sb))
2922 				return 0;
2923 		}
2924 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2925 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2926 			       "Inode bitmap for group %u not in group "
2927 			       "(block %llu)!", i, inode_bitmap);
2928 			return 0;
2929 		}
2930 		inode_table = ext4_inode_table(sb, gdp);
2931 		if (inode_table == sb_block) {
2932 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 				 "Inode table for group %u overlaps "
2934 				 "superblock", i);
2935 			if (!sb_rdonly(sb))
2936 				return 0;
2937 		}
2938 		if (inode_table >= sb_block + 1 &&
2939 		    inode_table <= last_bg_block) {
2940 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 				 "Inode table for group %u overlaps "
2942 				 "block group descriptors", i);
2943 			if (!sb_rdonly(sb))
2944 				return 0;
2945 		}
2946 		if (inode_table < first_block ||
2947 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2948 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 			       "Inode table for group %u not in group "
2950 			       "(block %llu)!", i, inode_table);
2951 			return 0;
2952 		}
2953 		ext4_lock_group(sb, i);
2954 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2955 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2956 				 "Checksum for group %u failed (%u!=%u)",
2957 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2958 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2959 			if (!sb_rdonly(sb)) {
2960 				ext4_unlock_group(sb, i);
2961 				return 0;
2962 			}
2963 		}
2964 		ext4_unlock_group(sb, i);
2965 		if (!flexbg_flag)
2966 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2967 	}
2968 	if (NULL != first_not_zeroed)
2969 		*first_not_zeroed = grp;
2970 	return 1;
2971 }
2972 
2973 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2974  * the superblock) which were deleted from all directories, but held open by
2975  * a process at the time of a crash.  We walk the list and try to delete these
2976  * inodes at recovery time (only with a read-write filesystem).
2977  *
2978  * In order to keep the orphan inode chain consistent during traversal (in
2979  * case of crash during recovery), we link each inode into the superblock
2980  * orphan list_head and handle it the same way as an inode deletion during
2981  * normal operation (which journals the operations for us).
2982  *
2983  * We only do an iget() and an iput() on each inode, which is very safe if we
2984  * accidentally point at an in-use or already deleted inode.  The worst that
2985  * can happen in this case is that we get a "bit already cleared" message from
2986  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2987  * e2fsck was run on this filesystem, and it must have already done the orphan
2988  * inode cleanup for us, so we can safely abort without any further action.
2989  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2990 static void ext4_orphan_cleanup(struct super_block *sb,
2991 				struct ext4_super_block *es)
2992 {
2993 	unsigned int s_flags = sb->s_flags;
2994 	int ret, nr_orphans = 0, nr_truncates = 0;
2995 #ifdef CONFIG_QUOTA
2996 	int quota_update = 0;
2997 	int i;
2998 #endif
2999 	if (!es->s_last_orphan) {
3000 		jbd_debug(4, "no orphan inodes to clean up\n");
3001 		return;
3002 	}
3003 
3004 	if (bdev_read_only(sb->s_bdev)) {
3005 		ext4_msg(sb, KERN_ERR, "write access "
3006 			"unavailable, skipping orphan cleanup");
3007 		return;
3008 	}
3009 
3010 	/* Check if feature set would not allow a r/w mount */
3011 	if (!ext4_feature_set_ok(sb, 0)) {
3012 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3013 			 "unknown ROCOMPAT features");
3014 		return;
3015 	}
3016 
3017 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3018 		/* don't clear list on RO mount w/ errors */
3019 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3020 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3021 				  "clearing orphan list.\n");
3022 			es->s_last_orphan = 0;
3023 		}
3024 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3025 		return;
3026 	}
3027 
3028 	if (s_flags & SB_RDONLY) {
3029 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3030 		sb->s_flags &= ~SB_RDONLY;
3031 	}
3032 #ifdef CONFIG_QUOTA
3033 	/*
3034 	 * Turn on quotas which were not enabled for read-only mounts if
3035 	 * filesystem has quota feature, so that they are updated correctly.
3036 	 */
3037 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3038 		int ret = ext4_enable_quotas(sb);
3039 
3040 		if (!ret)
3041 			quota_update = 1;
3042 		else
3043 			ext4_msg(sb, KERN_ERR,
3044 				"Cannot turn on quotas: error %d", ret);
3045 	}
3046 
3047 	/* Turn on journaled quotas used for old sytle */
3048 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3049 		if (EXT4_SB(sb)->s_qf_names[i]) {
3050 			int ret = ext4_quota_on_mount(sb, i);
3051 
3052 			if (!ret)
3053 				quota_update = 1;
3054 			else
3055 				ext4_msg(sb, KERN_ERR,
3056 					"Cannot turn on journaled "
3057 					"quota: type %d: error %d", i, ret);
3058 		}
3059 	}
3060 #endif
3061 
3062 	while (es->s_last_orphan) {
3063 		struct inode *inode;
3064 
3065 		/*
3066 		 * We may have encountered an error during cleanup; if
3067 		 * so, skip the rest.
3068 		 */
3069 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3070 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3071 			es->s_last_orphan = 0;
3072 			break;
3073 		}
3074 
3075 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3076 		if (IS_ERR(inode)) {
3077 			es->s_last_orphan = 0;
3078 			break;
3079 		}
3080 
3081 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3082 		dquot_initialize(inode);
3083 		if (inode->i_nlink) {
3084 			if (test_opt(sb, DEBUG))
3085 				ext4_msg(sb, KERN_DEBUG,
3086 					"%s: truncating inode %lu to %lld bytes",
3087 					__func__, inode->i_ino, inode->i_size);
3088 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3089 				  inode->i_ino, inode->i_size);
3090 			inode_lock(inode);
3091 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3092 			ret = ext4_truncate(inode);
3093 			if (ret) {
3094 				/*
3095 				 * We need to clean up the in-core orphan list
3096 				 * manually if ext4_truncate() failed to get a
3097 				 * transaction handle.
3098 				 */
3099 				ext4_orphan_del(NULL, inode);
3100 				ext4_std_error(inode->i_sb, ret);
3101 			}
3102 			inode_unlock(inode);
3103 			nr_truncates++;
3104 		} else {
3105 			if (test_opt(sb, DEBUG))
3106 				ext4_msg(sb, KERN_DEBUG,
3107 					"%s: deleting unreferenced inode %lu",
3108 					__func__, inode->i_ino);
3109 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3110 				  inode->i_ino);
3111 			nr_orphans++;
3112 		}
3113 		iput(inode);  /* The delete magic happens here! */
3114 	}
3115 
3116 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3117 
3118 	if (nr_orphans)
3119 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3120 		       PLURAL(nr_orphans));
3121 	if (nr_truncates)
3122 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3123 		       PLURAL(nr_truncates));
3124 #ifdef CONFIG_QUOTA
3125 	/* Turn off quotas if they were enabled for orphan cleanup */
3126 	if (quota_update) {
3127 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3128 			if (sb_dqopt(sb)->files[i])
3129 				dquot_quota_off(sb, i);
3130 		}
3131 	}
3132 #endif
3133 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3134 }
3135 
3136 /*
3137  * Maximal extent format file size.
3138  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3139  * extent format containers, within a sector_t, and within i_blocks
3140  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3141  * so that won't be a limiting factor.
3142  *
3143  * However there is other limiting factor. We do store extents in the form
3144  * of starting block and length, hence the resulting length of the extent
3145  * covering maximum file size must fit into on-disk format containers as
3146  * well. Given that length is always by 1 unit bigger than max unit (because
3147  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3148  *
3149  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3150  */
ext4_max_size(int blkbits,int has_huge_files)3151 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3152 {
3153 	loff_t res;
3154 	loff_t upper_limit = MAX_LFS_FILESIZE;
3155 
3156 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3157 
3158 	if (!has_huge_files) {
3159 		upper_limit = (1LL << 32) - 1;
3160 
3161 		/* total blocks in file system block size */
3162 		upper_limit >>= (blkbits - 9);
3163 		upper_limit <<= blkbits;
3164 	}
3165 
3166 	/*
3167 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3168 	 * by one fs block, so ee_len can cover the extent of maximum file
3169 	 * size
3170 	 */
3171 	res = (1LL << 32) - 1;
3172 	res <<= blkbits;
3173 
3174 	/* Sanity check against vm- & vfs- imposed limits */
3175 	if (res > upper_limit)
3176 		res = upper_limit;
3177 
3178 	return res;
3179 }
3180 
3181 /*
3182  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3183  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3184  * We need to be 1 filesystem block less than the 2^48 sector limit.
3185  */
ext4_max_bitmap_size(int bits,int has_huge_files)3186 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3187 {
3188 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3189 	int meta_blocks;
3190 
3191 	/*
3192 	 * This is calculated to be the largest file size for a dense, block
3193 	 * mapped file such that the file's total number of 512-byte sectors,
3194 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3195 	 *
3196 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3197 	 * number of 512-byte sectors of the file.
3198 	 */
3199 	if (!has_huge_files) {
3200 		/*
3201 		 * !has_huge_files or implies that the inode i_block field
3202 		 * represents total file blocks in 2^32 512-byte sectors ==
3203 		 * size of vfs inode i_blocks * 8
3204 		 */
3205 		upper_limit = (1LL << 32) - 1;
3206 
3207 		/* total blocks in file system block size */
3208 		upper_limit >>= (bits - 9);
3209 
3210 	} else {
3211 		/*
3212 		 * We use 48 bit ext4_inode i_blocks
3213 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3214 		 * represent total number of blocks in
3215 		 * file system block size
3216 		 */
3217 		upper_limit = (1LL << 48) - 1;
3218 
3219 	}
3220 
3221 	/* indirect blocks */
3222 	meta_blocks = 1;
3223 	/* double indirect blocks */
3224 	meta_blocks += 1 + (1LL << (bits-2));
3225 	/* tripple indirect blocks */
3226 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3227 
3228 	upper_limit -= meta_blocks;
3229 	upper_limit <<= bits;
3230 
3231 	res += 1LL << (bits-2);
3232 	res += 1LL << (2*(bits-2));
3233 	res += 1LL << (3*(bits-2));
3234 	res <<= bits;
3235 	if (res > upper_limit)
3236 		res = upper_limit;
3237 
3238 	if (res > MAX_LFS_FILESIZE)
3239 		res = MAX_LFS_FILESIZE;
3240 
3241 	return (loff_t)res;
3242 }
3243 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3244 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3245 				   ext4_fsblk_t logical_sb_block, int nr)
3246 {
3247 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3248 	ext4_group_t bg, first_meta_bg;
3249 	int has_super = 0;
3250 
3251 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3252 
3253 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3254 		return logical_sb_block + nr + 1;
3255 	bg = sbi->s_desc_per_block * nr;
3256 	if (ext4_bg_has_super(sb, bg))
3257 		has_super = 1;
3258 
3259 	/*
3260 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3261 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3262 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3263 	 * compensate.
3264 	 */
3265 	if (sb->s_blocksize == 1024 && nr == 0 &&
3266 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3267 		has_super++;
3268 
3269 	return (has_super + ext4_group_first_block_no(sb, bg));
3270 }
3271 
3272 /**
3273  * ext4_get_stripe_size: Get the stripe size.
3274  * @sbi: In memory super block info
3275  *
3276  * If we have specified it via mount option, then
3277  * use the mount option value. If the value specified at mount time is
3278  * greater than the blocks per group use the super block value.
3279  * If the super block value is greater than blocks per group return 0.
3280  * Allocator needs it be less than blocks per group.
3281  *
3282  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3283 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3284 {
3285 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3286 	unsigned long stripe_width =
3287 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3288 	int ret;
3289 
3290 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3291 		ret = sbi->s_stripe;
3292 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3293 		ret = stripe_width;
3294 	else if (stride && stride <= sbi->s_blocks_per_group)
3295 		ret = stride;
3296 	else
3297 		ret = 0;
3298 
3299 	/*
3300 	 * If the stripe width is 1, this makes no sense and
3301 	 * we set it to 0 to turn off stripe handling code.
3302 	 */
3303 	if (ret <= 1)
3304 		ret = 0;
3305 
3306 	return ret;
3307 }
3308 
3309 /*
3310  * Check whether this filesystem can be mounted based on
3311  * the features present and the RDONLY/RDWR mount requested.
3312  * Returns 1 if this filesystem can be mounted as requested,
3313  * 0 if it cannot be.
3314  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3315 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3316 {
3317 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3318 		ext4_msg(sb, KERN_ERR,
3319 			"Couldn't mount because of "
3320 			"unsupported optional features (%x)",
3321 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3322 			~EXT4_FEATURE_INCOMPAT_SUPP));
3323 		return 0;
3324 	}
3325 
3326 #ifndef CONFIG_UNICODE
3327 	if (ext4_has_feature_casefold(sb)) {
3328 		ext4_msg(sb, KERN_ERR,
3329 			 "Filesystem with casefold feature cannot be "
3330 			 "mounted without CONFIG_UNICODE");
3331 		return 0;
3332 	}
3333 #endif
3334 
3335 	if (readonly)
3336 		return 1;
3337 
3338 	if (ext4_has_feature_readonly(sb)) {
3339 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3340 		sb->s_flags |= SB_RDONLY;
3341 		return 1;
3342 	}
3343 
3344 	/* Check that feature set is OK for a read-write mount */
3345 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3346 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3347 			 "unsupported optional features (%x)",
3348 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3349 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3350 		return 0;
3351 	}
3352 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3353 		ext4_msg(sb, KERN_ERR,
3354 			 "Can't support bigalloc feature without "
3355 			 "extents feature\n");
3356 		return 0;
3357 	}
3358 
3359 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3360 	if (!readonly && (ext4_has_feature_quota(sb) ||
3361 			  ext4_has_feature_project(sb))) {
3362 		ext4_msg(sb, KERN_ERR,
3363 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3364 		return 0;
3365 	}
3366 #endif  /* CONFIG_QUOTA */
3367 	return 1;
3368 }
3369 
3370 /*
3371  * This function is called once a day if we have errors logged
3372  * on the file system
3373  */
print_daily_error_info(struct timer_list * t)3374 static void print_daily_error_info(struct timer_list *t)
3375 {
3376 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3377 	struct super_block *sb = sbi->s_sb;
3378 	struct ext4_super_block *es = sbi->s_es;
3379 
3380 	if (es->s_error_count)
3381 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3382 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3383 			 le32_to_cpu(es->s_error_count));
3384 	if (es->s_first_error_time) {
3385 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3386 		       sb->s_id,
3387 		       ext4_get_tstamp(es, s_first_error_time),
3388 		       (int) sizeof(es->s_first_error_func),
3389 		       es->s_first_error_func,
3390 		       le32_to_cpu(es->s_first_error_line));
3391 		if (es->s_first_error_ino)
3392 			printk(KERN_CONT ": inode %u",
3393 			       le32_to_cpu(es->s_first_error_ino));
3394 		if (es->s_first_error_block)
3395 			printk(KERN_CONT ": block %llu", (unsigned long long)
3396 			       le64_to_cpu(es->s_first_error_block));
3397 		printk(KERN_CONT "\n");
3398 	}
3399 	if (es->s_last_error_time) {
3400 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3401 		       sb->s_id,
3402 		       ext4_get_tstamp(es, s_last_error_time),
3403 		       (int) sizeof(es->s_last_error_func),
3404 		       es->s_last_error_func,
3405 		       le32_to_cpu(es->s_last_error_line));
3406 		if (es->s_last_error_ino)
3407 			printk(KERN_CONT ": inode %u",
3408 			       le32_to_cpu(es->s_last_error_ino));
3409 		if (es->s_last_error_block)
3410 			printk(KERN_CONT ": block %llu", (unsigned long long)
3411 			       le64_to_cpu(es->s_last_error_block));
3412 		printk(KERN_CONT "\n");
3413 	}
3414 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3415 }
3416 
3417 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3418 static int ext4_run_li_request(struct ext4_li_request *elr)
3419 {
3420 	struct ext4_group_desc *gdp = NULL;
3421 	struct super_block *sb = elr->lr_super;
3422 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3423 	ext4_group_t group = elr->lr_next_group;
3424 	unsigned int prefetch_ios = 0;
3425 	int ret = 0;
3426 	u64 start_time;
3427 
3428 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3429 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3430 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3431 		if (prefetch_ios)
3432 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3433 					      prefetch_ios);
3434 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3435 					    prefetch_ios);
3436 		if (group >= elr->lr_next_group) {
3437 			ret = 1;
3438 			if (elr->lr_first_not_zeroed != ngroups &&
3439 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3440 				elr->lr_next_group = elr->lr_first_not_zeroed;
3441 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3442 				ret = 0;
3443 			}
3444 		}
3445 		return ret;
3446 	}
3447 
3448 	for (; group < ngroups; group++) {
3449 		gdp = ext4_get_group_desc(sb, group, NULL);
3450 		if (!gdp) {
3451 			ret = 1;
3452 			break;
3453 		}
3454 
3455 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3456 			break;
3457 	}
3458 
3459 	if (group >= ngroups)
3460 		ret = 1;
3461 
3462 	if (!ret) {
3463 		start_time = ktime_get_real_ns();
3464 		ret = ext4_init_inode_table(sb, group,
3465 					    elr->lr_timeout ? 0 : 1);
3466 		trace_ext4_lazy_itable_init(sb, group);
3467 		if (elr->lr_timeout == 0) {
3468 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3469 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3470 		}
3471 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3472 		elr->lr_next_group = group + 1;
3473 	}
3474 	return ret;
3475 }
3476 
3477 /*
3478  * Remove lr_request from the list_request and free the
3479  * request structure. Should be called with li_list_mtx held
3480  */
ext4_remove_li_request(struct ext4_li_request * elr)3481 static void ext4_remove_li_request(struct ext4_li_request *elr)
3482 {
3483 	if (!elr)
3484 		return;
3485 
3486 	list_del(&elr->lr_request);
3487 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3488 	kfree(elr);
3489 }
3490 
ext4_unregister_li_request(struct super_block * sb)3491 static void ext4_unregister_li_request(struct super_block *sb)
3492 {
3493 	mutex_lock(&ext4_li_mtx);
3494 	if (!ext4_li_info) {
3495 		mutex_unlock(&ext4_li_mtx);
3496 		return;
3497 	}
3498 
3499 	mutex_lock(&ext4_li_info->li_list_mtx);
3500 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3501 	mutex_unlock(&ext4_li_info->li_list_mtx);
3502 	mutex_unlock(&ext4_li_mtx);
3503 }
3504 
3505 static struct task_struct *ext4_lazyinit_task;
3506 
3507 /*
3508  * This is the function where ext4lazyinit thread lives. It walks
3509  * through the request list searching for next scheduled filesystem.
3510  * When such a fs is found, run the lazy initialization request
3511  * (ext4_rn_li_request) and keep track of the time spend in this
3512  * function. Based on that time we compute next schedule time of
3513  * the request. When walking through the list is complete, compute
3514  * next waking time and put itself into sleep.
3515  */
ext4_lazyinit_thread(void * arg)3516 static int ext4_lazyinit_thread(void *arg)
3517 {
3518 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3519 	struct list_head *pos, *n;
3520 	struct ext4_li_request *elr;
3521 	unsigned long next_wakeup, cur;
3522 
3523 	BUG_ON(NULL == eli);
3524 	set_freezable();
3525 
3526 cont_thread:
3527 	while (true) {
3528 		next_wakeup = MAX_JIFFY_OFFSET;
3529 
3530 		mutex_lock(&eli->li_list_mtx);
3531 		if (list_empty(&eli->li_request_list)) {
3532 			mutex_unlock(&eli->li_list_mtx);
3533 			goto exit_thread;
3534 		}
3535 		list_for_each_safe(pos, n, &eli->li_request_list) {
3536 			int err = 0;
3537 			int progress = 0;
3538 			elr = list_entry(pos, struct ext4_li_request,
3539 					 lr_request);
3540 
3541 			if (time_before(jiffies, elr->lr_next_sched)) {
3542 				if (time_before(elr->lr_next_sched, next_wakeup))
3543 					next_wakeup = elr->lr_next_sched;
3544 				continue;
3545 			}
3546 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3547 				if (sb_start_write_trylock(elr->lr_super)) {
3548 					progress = 1;
3549 					/*
3550 					 * We hold sb->s_umount, sb can not
3551 					 * be removed from the list, it is
3552 					 * now safe to drop li_list_mtx
3553 					 */
3554 					mutex_unlock(&eli->li_list_mtx);
3555 					err = ext4_run_li_request(elr);
3556 					sb_end_write(elr->lr_super);
3557 					mutex_lock(&eli->li_list_mtx);
3558 					n = pos->next;
3559 				}
3560 				up_read((&elr->lr_super->s_umount));
3561 			}
3562 			/* error, remove the lazy_init job */
3563 			if (err) {
3564 				ext4_remove_li_request(elr);
3565 				continue;
3566 			}
3567 			if (!progress) {
3568 				elr->lr_next_sched = jiffies +
3569 					(prandom_u32()
3570 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3571 			}
3572 			if (time_before(elr->lr_next_sched, next_wakeup))
3573 				next_wakeup = elr->lr_next_sched;
3574 		}
3575 		mutex_unlock(&eli->li_list_mtx);
3576 
3577 		try_to_freeze();
3578 
3579 		cur = jiffies;
3580 		if ((time_after_eq(cur, next_wakeup)) ||
3581 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3582 			cond_resched();
3583 			continue;
3584 		}
3585 
3586 		schedule_timeout_interruptible(next_wakeup - cur);
3587 
3588 		if (kthread_should_stop()) {
3589 			ext4_clear_request_list();
3590 			goto exit_thread;
3591 		}
3592 	}
3593 
3594 exit_thread:
3595 	/*
3596 	 * It looks like the request list is empty, but we need
3597 	 * to check it under the li_list_mtx lock, to prevent any
3598 	 * additions into it, and of course we should lock ext4_li_mtx
3599 	 * to atomically free the list and ext4_li_info, because at
3600 	 * this point another ext4 filesystem could be registering
3601 	 * new one.
3602 	 */
3603 	mutex_lock(&ext4_li_mtx);
3604 	mutex_lock(&eli->li_list_mtx);
3605 	if (!list_empty(&eli->li_request_list)) {
3606 		mutex_unlock(&eli->li_list_mtx);
3607 		mutex_unlock(&ext4_li_mtx);
3608 		goto cont_thread;
3609 	}
3610 	mutex_unlock(&eli->li_list_mtx);
3611 	kfree(ext4_li_info);
3612 	ext4_li_info = NULL;
3613 	mutex_unlock(&ext4_li_mtx);
3614 
3615 	return 0;
3616 }
3617 
ext4_clear_request_list(void)3618 static void ext4_clear_request_list(void)
3619 {
3620 	struct list_head *pos, *n;
3621 	struct ext4_li_request *elr;
3622 
3623 	mutex_lock(&ext4_li_info->li_list_mtx);
3624 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3625 		elr = list_entry(pos, struct ext4_li_request,
3626 				 lr_request);
3627 		ext4_remove_li_request(elr);
3628 	}
3629 	mutex_unlock(&ext4_li_info->li_list_mtx);
3630 }
3631 
ext4_run_lazyinit_thread(void)3632 static int ext4_run_lazyinit_thread(void)
3633 {
3634 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3635 					 ext4_li_info, "ext4lazyinit");
3636 	if (IS_ERR(ext4_lazyinit_task)) {
3637 		int err = PTR_ERR(ext4_lazyinit_task);
3638 		ext4_clear_request_list();
3639 		kfree(ext4_li_info);
3640 		ext4_li_info = NULL;
3641 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3642 				 "initialization thread\n",
3643 				 err);
3644 		return err;
3645 	}
3646 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Check whether it make sense to run itable init. thread or not.
3652  * If there is at least one uninitialized inode table, return
3653  * corresponding group number, else the loop goes through all
3654  * groups and return total number of groups.
3655  */
ext4_has_uninit_itable(struct super_block * sb)3656 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3657 {
3658 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3659 	struct ext4_group_desc *gdp = NULL;
3660 
3661 	if (!ext4_has_group_desc_csum(sb))
3662 		return ngroups;
3663 
3664 	for (group = 0; group < ngroups; group++) {
3665 		gdp = ext4_get_group_desc(sb, group, NULL);
3666 		if (!gdp)
3667 			continue;
3668 
3669 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3670 			break;
3671 	}
3672 
3673 	return group;
3674 }
3675 
ext4_li_info_new(void)3676 static int ext4_li_info_new(void)
3677 {
3678 	struct ext4_lazy_init *eli = NULL;
3679 
3680 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3681 	if (!eli)
3682 		return -ENOMEM;
3683 
3684 	INIT_LIST_HEAD(&eli->li_request_list);
3685 	mutex_init(&eli->li_list_mtx);
3686 
3687 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3688 
3689 	ext4_li_info = eli;
3690 
3691 	return 0;
3692 }
3693 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3694 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3695 					    ext4_group_t start)
3696 {
3697 	struct ext4_li_request *elr;
3698 
3699 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3700 	if (!elr)
3701 		return NULL;
3702 
3703 	elr->lr_super = sb;
3704 	elr->lr_first_not_zeroed = start;
3705 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3706 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3707 	else {
3708 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3709 		elr->lr_next_group = start;
3710 	}
3711 
3712 	/*
3713 	 * Randomize first schedule time of the request to
3714 	 * spread the inode table initialization requests
3715 	 * better.
3716 	 */
3717 	elr->lr_next_sched = jiffies + (prandom_u32() %
3718 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3719 	return elr;
3720 }
3721 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3722 int ext4_register_li_request(struct super_block *sb,
3723 			     ext4_group_t first_not_zeroed)
3724 {
3725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3726 	struct ext4_li_request *elr = NULL;
3727 	ext4_group_t ngroups = sbi->s_groups_count;
3728 	int ret = 0;
3729 
3730 	mutex_lock(&ext4_li_mtx);
3731 	if (sbi->s_li_request != NULL) {
3732 		/*
3733 		 * Reset timeout so it can be computed again, because
3734 		 * s_li_wait_mult might have changed.
3735 		 */
3736 		sbi->s_li_request->lr_timeout = 0;
3737 		goto out;
3738 	}
3739 
3740 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3741 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3742 	     !test_opt(sb, INIT_INODE_TABLE)))
3743 		goto out;
3744 
3745 	elr = ext4_li_request_new(sb, first_not_zeroed);
3746 	if (!elr) {
3747 		ret = -ENOMEM;
3748 		goto out;
3749 	}
3750 
3751 	if (NULL == ext4_li_info) {
3752 		ret = ext4_li_info_new();
3753 		if (ret)
3754 			goto out;
3755 	}
3756 
3757 	mutex_lock(&ext4_li_info->li_list_mtx);
3758 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3759 	mutex_unlock(&ext4_li_info->li_list_mtx);
3760 
3761 	sbi->s_li_request = elr;
3762 	/*
3763 	 * set elr to NULL here since it has been inserted to
3764 	 * the request_list and the removal and free of it is
3765 	 * handled by ext4_clear_request_list from now on.
3766 	 */
3767 	elr = NULL;
3768 
3769 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3770 		ret = ext4_run_lazyinit_thread();
3771 		if (ret)
3772 			goto out;
3773 	}
3774 out:
3775 	mutex_unlock(&ext4_li_mtx);
3776 	if (ret)
3777 		kfree(elr);
3778 	return ret;
3779 }
3780 
3781 /*
3782  * We do not need to lock anything since this is called on
3783  * module unload.
3784  */
ext4_destroy_lazyinit_thread(void)3785 static void ext4_destroy_lazyinit_thread(void)
3786 {
3787 	/*
3788 	 * If thread exited earlier
3789 	 * there's nothing to be done.
3790 	 */
3791 	if (!ext4_li_info || !ext4_lazyinit_task)
3792 		return;
3793 
3794 	kthread_stop(ext4_lazyinit_task);
3795 }
3796 
set_journal_csum_feature_set(struct super_block * sb)3797 static int set_journal_csum_feature_set(struct super_block *sb)
3798 {
3799 	int ret = 1;
3800 	int compat, incompat;
3801 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3802 
3803 	if (ext4_has_metadata_csum(sb)) {
3804 		/* journal checksum v3 */
3805 		compat = 0;
3806 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3807 	} else {
3808 		/* journal checksum v1 */
3809 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3810 		incompat = 0;
3811 	}
3812 
3813 	jbd2_journal_clear_features(sbi->s_journal,
3814 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3815 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3816 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3817 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3818 		ret = jbd2_journal_set_features(sbi->s_journal,
3819 				compat, 0,
3820 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3821 				incompat);
3822 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3823 		ret = jbd2_journal_set_features(sbi->s_journal,
3824 				compat, 0,
3825 				incompat);
3826 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3827 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3828 	} else {
3829 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3830 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3831 	}
3832 
3833 	return ret;
3834 }
3835 
3836 /*
3837  * Note: calculating the overhead so we can be compatible with
3838  * historical BSD practice is quite difficult in the face of
3839  * clusters/bigalloc.  This is because multiple metadata blocks from
3840  * different block group can end up in the same allocation cluster.
3841  * Calculating the exact overhead in the face of clustered allocation
3842  * requires either O(all block bitmaps) in memory or O(number of block
3843  * groups**2) in time.  We will still calculate the superblock for
3844  * older file systems --- and if we come across with a bigalloc file
3845  * system with zero in s_overhead_clusters the estimate will be close to
3846  * correct especially for very large cluster sizes --- but for newer
3847  * file systems, it's better to calculate this figure once at mkfs
3848  * time, and store it in the superblock.  If the superblock value is
3849  * present (even for non-bigalloc file systems), we will use it.
3850  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3851 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3852 			  char *buf)
3853 {
3854 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3855 	struct ext4_group_desc	*gdp;
3856 	ext4_fsblk_t		first_block, last_block, b;
3857 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3858 	int			s, j, count = 0;
3859 	int			has_super = ext4_bg_has_super(sb, grp);
3860 
3861 	if (!ext4_has_feature_bigalloc(sb))
3862 		return (has_super + ext4_bg_num_gdb(sb, grp) +
3863 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3864 			sbi->s_itb_per_group + 2);
3865 
3866 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3867 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3868 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3869 	for (i = 0; i < ngroups; i++) {
3870 		gdp = ext4_get_group_desc(sb, i, NULL);
3871 		b = ext4_block_bitmap(sb, gdp);
3872 		if (b >= first_block && b <= last_block) {
3873 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3874 			count++;
3875 		}
3876 		b = ext4_inode_bitmap(sb, gdp);
3877 		if (b >= first_block && b <= last_block) {
3878 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3879 			count++;
3880 		}
3881 		b = ext4_inode_table(sb, gdp);
3882 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3883 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3884 				int c = EXT4_B2C(sbi, b - first_block);
3885 				ext4_set_bit(c, buf);
3886 				count++;
3887 			}
3888 		if (i != grp)
3889 			continue;
3890 		s = 0;
3891 		if (ext4_bg_has_super(sb, grp)) {
3892 			ext4_set_bit(s++, buf);
3893 			count++;
3894 		}
3895 		j = ext4_bg_num_gdb(sb, grp);
3896 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3897 			ext4_error(sb, "Invalid number of block group "
3898 				   "descriptor blocks: %d", j);
3899 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3900 		}
3901 		count += j;
3902 		for (; j > 0; j--)
3903 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3904 	}
3905 	if (!count)
3906 		return 0;
3907 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3908 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3909 }
3910 
3911 /*
3912  * Compute the overhead and stash it in sbi->s_overhead
3913  */
ext4_calculate_overhead(struct super_block * sb)3914 int ext4_calculate_overhead(struct super_block *sb)
3915 {
3916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3917 	struct ext4_super_block *es = sbi->s_es;
3918 	struct inode *j_inode;
3919 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3920 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3921 	ext4_fsblk_t overhead = 0;
3922 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3923 
3924 	if (!buf)
3925 		return -ENOMEM;
3926 
3927 	/*
3928 	 * Compute the overhead (FS structures).  This is constant
3929 	 * for a given filesystem unless the number of block groups
3930 	 * changes so we cache the previous value until it does.
3931 	 */
3932 
3933 	/*
3934 	 * All of the blocks before first_data_block are overhead
3935 	 */
3936 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3937 
3938 	/*
3939 	 * Add the overhead found in each block group
3940 	 */
3941 	for (i = 0; i < ngroups; i++) {
3942 		int blks;
3943 
3944 		blks = count_overhead(sb, i, buf);
3945 		overhead += blks;
3946 		if (blks)
3947 			memset(buf, 0, PAGE_SIZE);
3948 		cond_resched();
3949 	}
3950 
3951 	/*
3952 	 * Add the internal journal blocks whether the journal has been
3953 	 * loaded or not
3954 	 */
3955 	if (sbi->s_journal && !sbi->s_journal_bdev)
3956 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3957 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3958 		/* j_inum for internal journal is non-zero */
3959 		j_inode = ext4_get_journal_inode(sb, j_inum);
3960 		if (j_inode) {
3961 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3962 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3963 			iput(j_inode);
3964 		} else {
3965 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3966 		}
3967 	}
3968 	sbi->s_overhead = overhead;
3969 	smp_wmb();
3970 	free_page((unsigned long) buf);
3971 	return 0;
3972 }
3973 
ext4_set_resv_clusters(struct super_block * sb)3974 static void ext4_set_resv_clusters(struct super_block *sb)
3975 {
3976 	ext4_fsblk_t resv_clusters;
3977 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3978 
3979 	/*
3980 	 * There's no need to reserve anything when we aren't using extents.
3981 	 * The space estimates are exact, there are no unwritten extents,
3982 	 * hole punching doesn't need new metadata... This is needed especially
3983 	 * to keep ext2/3 backward compatibility.
3984 	 */
3985 	if (!ext4_has_feature_extents(sb))
3986 		return;
3987 	/*
3988 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3989 	 * This should cover the situations where we can not afford to run
3990 	 * out of space like for example punch hole, or converting
3991 	 * unwritten extents in delalloc path. In most cases such
3992 	 * allocation would require 1, or 2 blocks, higher numbers are
3993 	 * very rare.
3994 	 */
3995 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3996 			 sbi->s_cluster_bits);
3997 
3998 	do_div(resv_clusters, 50);
3999 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4000 
4001 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4002 }
4003 
ext4_fill_super(struct super_block * sb,void * data,int silent)4004 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4005 {
4006 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4007 	char *orig_data = kstrdup(data, GFP_KERNEL);
4008 	struct buffer_head *bh, **group_desc;
4009 	struct ext4_super_block *es = NULL;
4010 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4011 	struct flex_groups **flex_groups;
4012 	ext4_fsblk_t block;
4013 	ext4_fsblk_t sb_block = get_sb_block(&data);
4014 	ext4_fsblk_t logical_sb_block;
4015 	unsigned long offset = 0;
4016 	unsigned long journal_devnum = 0;
4017 	unsigned long def_mount_opts;
4018 	struct inode *root;
4019 	const char *descr;
4020 	int ret = -ENOMEM;
4021 	int blocksize, clustersize;
4022 	unsigned int db_count;
4023 	unsigned int i;
4024 	int needs_recovery, has_huge_files;
4025 	__u64 blocks_count;
4026 	int err = 0;
4027 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4028 	ext4_group_t first_not_zeroed;
4029 
4030 	if ((data && !orig_data) || !sbi)
4031 		goto out_free_base;
4032 
4033 	sbi->s_daxdev = dax_dev;
4034 	sbi->s_blockgroup_lock =
4035 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4036 	if (!sbi->s_blockgroup_lock)
4037 		goto out_free_base;
4038 
4039 	sb->s_fs_info = sbi;
4040 	sbi->s_sb = sb;
4041 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4042 	sbi->s_sb_block = sb_block;
4043 	if (sb->s_bdev->bd_part)
4044 		sbi->s_sectors_written_start =
4045 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4046 
4047 	/* Cleanup superblock name */
4048 	strreplace(sb->s_id, '/', '!');
4049 
4050 	/* -EINVAL is default */
4051 	ret = -EINVAL;
4052 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4053 	if (!blocksize) {
4054 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4055 		goto out_fail;
4056 	}
4057 
4058 	/*
4059 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4060 	 * block sizes.  We need to calculate the offset from buffer start.
4061 	 */
4062 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4063 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4064 		offset = do_div(logical_sb_block, blocksize);
4065 	} else {
4066 		logical_sb_block = sb_block;
4067 	}
4068 
4069 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4070 	if (IS_ERR(bh)) {
4071 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4072 		ret = PTR_ERR(bh);
4073 		bh = NULL;
4074 		goto out_fail;
4075 	}
4076 	/*
4077 	 * Note: s_es must be initialized as soon as possible because
4078 	 *       some ext4 macro-instructions depend on its value
4079 	 */
4080 	es = (struct ext4_super_block *) (bh->b_data + offset);
4081 	sbi->s_es = es;
4082 	sb->s_magic = le16_to_cpu(es->s_magic);
4083 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4084 		goto cantfind_ext4;
4085 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4086 
4087 	/* Warn if metadata_csum and gdt_csum are both set. */
4088 	if (ext4_has_feature_metadata_csum(sb) &&
4089 	    ext4_has_feature_gdt_csum(sb))
4090 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4091 			     "redundant flags; please run fsck.");
4092 
4093 	/* Check for a known checksum algorithm */
4094 	if (!ext4_verify_csum_type(sb, es)) {
4095 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4096 			 "unknown checksum algorithm.");
4097 		silent = 1;
4098 		goto cantfind_ext4;
4099 	}
4100 
4101 	/* Load the checksum driver */
4102 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4103 	if (IS_ERR(sbi->s_chksum_driver)) {
4104 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4105 		ret = PTR_ERR(sbi->s_chksum_driver);
4106 		sbi->s_chksum_driver = NULL;
4107 		goto failed_mount;
4108 	}
4109 
4110 	/* Check superblock checksum */
4111 	if (!ext4_superblock_csum_verify(sb, es)) {
4112 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4113 			 "invalid superblock checksum.  Run e2fsck?");
4114 		silent = 1;
4115 		ret = -EFSBADCRC;
4116 		goto cantfind_ext4;
4117 	}
4118 
4119 	/* Precompute checksum seed for all metadata */
4120 	if (ext4_has_feature_csum_seed(sb))
4121 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4122 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4123 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4124 					       sizeof(es->s_uuid));
4125 
4126 	/* Set defaults before we parse the mount options */
4127 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4128 	set_opt(sb, INIT_INODE_TABLE);
4129 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4130 		set_opt(sb, DEBUG);
4131 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4132 		set_opt(sb, GRPID);
4133 	if (def_mount_opts & EXT4_DEFM_UID16)
4134 		set_opt(sb, NO_UID32);
4135 	/* xattr user namespace & acls are now defaulted on */
4136 	set_opt(sb, XATTR_USER);
4137 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4138 	set_opt(sb, POSIX_ACL);
4139 #endif
4140 	if (ext4_has_feature_fast_commit(sb))
4141 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4142 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4143 	if (ext4_has_metadata_csum(sb))
4144 		set_opt(sb, JOURNAL_CHECKSUM);
4145 
4146 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4147 		set_opt(sb, JOURNAL_DATA);
4148 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4149 		set_opt(sb, ORDERED_DATA);
4150 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4151 		set_opt(sb, WRITEBACK_DATA);
4152 
4153 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4154 		set_opt(sb, ERRORS_PANIC);
4155 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4156 		set_opt(sb, ERRORS_CONT);
4157 	else
4158 		set_opt(sb, ERRORS_RO);
4159 	/* block_validity enabled by default; disable with noblock_validity */
4160 	set_opt(sb, BLOCK_VALIDITY);
4161 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4162 		set_opt(sb, DISCARD);
4163 
4164 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4165 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4166 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4167 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4168 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4169 
4170 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4171 		set_opt(sb, BARRIER);
4172 
4173 	/*
4174 	 * enable delayed allocation by default
4175 	 * Use -o nodelalloc to turn it off
4176 	 */
4177 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4178 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4179 		set_opt(sb, DELALLOC);
4180 
4181 	/*
4182 	 * set default s_li_wait_mult for lazyinit, for the case there is
4183 	 * no mount option specified.
4184 	 */
4185 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4186 
4187 	if (le32_to_cpu(es->s_log_block_size) >
4188 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4189 		ext4_msg(sb, KERN_ERR,
4190 			 "Invalid log block size: %u",
4191 			 le32_to_cpu(es->s_log_block_size));
4192 		goto failed_mount;
4193 	}
4194 	if (le32_to_cpu(es->s_log_cluster_size) >
4195 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4196 		ext4_msg(sb, KERN_ERR,
4197 			 "Invalid log cluster size: %u",
4198 			 le32_to_cpu(es->s_log_cluster_size));
4199 		goto failed_mount;
4200 	}
4201 
4202 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4203 
4204 	if (blocksize == PAGE_SIZE)
4205 		set_opt(sb, DIOREAD_NOLOCK);
4206 
4207 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4208 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4209 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4210 	} else {
4211 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4212 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4213 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4214 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4215 				 sbi->s_first_ino);
4216 			goto failed_mount;
4217 		}
4218 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4219 		    (!is_power_of_2(sbi->s_inode_size)) ||
4220 		    (sbi->s_inode_size > blocksize)) {
4221 			ext4_msg(sb, KERN_ERR,
4222 			       "unsupported inode size: %d",
4223 			       sbi->s_inode_size);
4224 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4225 			goto failed_mount;
4226 		}
4227 		/*
4228 		 * i_atime_extra is the last extra field available for
4229 		 * [acm]times in struct ext4_inode. Checking for that
4230 		 * field should suffice to ensure we have extra space
4231 		 * for all three.
4232 		 */
4233 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4234 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4235 			sb->s_time_gran = 1;
4236 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4237 		} else {
4238 			sb->s_time_gran = NSEC_PER_SEC;
4239 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4240 		}
4241 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4242 	}
4243 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4244 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4245 			EXT4_GOOD_OLD_INODE_SIZE;
4246 		if (ext4_has_feature_extra_isize(sb)) {
4247 			unsigned v, max = (sbi->s_inode_size -
4248 					   EXT4_GOOD_OLD_INODE_SIZE);
4249 
4250 			v = le16_to_cpu(es->s_want_extra_isize);
4251 			if (v > max) {
4252 				ext4_msg(sb, KERN_ERR,
4253 					 "bad s_want_extra_isize: %d", v);
4254 				goto failed_mount;
4255 			}
4256 			if (sbi->s_want_extra_isize < v)
4257 				sbi->s_want_extra_isize = v;
4258 
4259 			v = le16_to_cpu(es->s_min_extra_isize);
4260 			if (v > max) {
4261 				ext4_msg(sb, KERN_ERR,
4262 					 "bad s_min_extra_isize: %d", v);
4263 				goto failed_mount;
4264 			}
4265 			if (sbi->s_want_extra_isize < v)
4266 				sbi->s_want_extra_isize = v;
4267 		}
4268 	}
4269 
4270 	if (sbi->s_es->s_mount_opts[0]) {
4271 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4272 					      sizeof(sbi->s_es->s_mount_opts),
4273 					      GFP_KERNEL);
4274 		if (!s_mount_opts)
4275 			goto failed_mount;
4276 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4277 				   &journal_ioprio, 0)) {
4278 			ext4_msg(sb, KERN_WARNING,
4279 				 "failed to parse options in superblock: %s",
4280 				 s_mount_opts);
4281 		}
4282 		kfree(s_mount_opts);
4283 	}
4284 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4285 	if (!parse_options((char *) data, sb, &journal_devnum,
4286 			   &journal_ioprio, 0))
4287 		goto failed_mount;
4288 
4289 #ifdef CONFIG_UNICODE
4290 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4291 		const struct ext4_sb_encodings *encoding_info;
4292 		struct unicode_map *encoding;
4293 		__u16 encoding_flags;
4294 
4295 		if (ext4_has_feature_encrypt(sb)) {
4296 			ext4_msg(sb, KERN_ERR,
4297 				 "Can't mount with encoding and encryption");
4298 			goto failed_mount;
4299 		}
4300 
4301 		if (ext4_sb_read_encoding(es, &encoding_info,
4302 					  &encoding_flags)) {
4303 			ext4_msg(sb, KERN_ERR,
4304 				 "Encoding requested by superblock is unknown");
4305 			goto failed_mount;
4306 		}
4307 
4308 		encoding = utf8_load(encoding_info->version);
4309 		if (IS_ERR(encoding)) {
4310 			ext4_msg(sb, KERN_ERR,
4311 				 "can't mount with superblock charset: %s-%s "
4312 				 "not supported by the kernel. flags: 0x%x.",
4313 				 encoding_info->name, encoding_info->version,
4314 				 encoding_flags);
4315 			goto failed_mount;
4316 		}
4317 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4318 			 "%s-%s with flags 0x%hx", encoding_info->name,
4319 			 encoding_info->version?:"\b", encoding_flags);
4320 
4321 		sb->s_encoding = encoding;
4322 		sb->s_encoding_flags = encoding_flags;
4323 	}
4324 #endif
4325 
4326 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4327 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4328 		/* can't mount with both data=journal and dioread_nolock. */
4329 		clear_opt(sb, DIOREAD_NOLOCK);
4330 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4331 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4332 			ext4_msg(sb, KERN_ERR, "can't mount with "
4333 				 "both data=journal and delalloc");
4334 			goto failed_mount;
4335 		}
4336 		if (test_opt(sb, DAX_ALWAYS)) {
4337 			ext4_msg(sb, KERN_ERR, "can't mount with "
4338 				 "both data=journal and dax");
4339 			goto failed_mount;
4340 		}
4341 		if (ext4_has_feature_encrypt(sb)) {
4342 			ext4_msg(sb, KERN_WARNING,
4343 				 "encrypted files will use data=ordered "
4344 				 "instead of data journaling mode");
4345 		}
4346 		if (test_opt(sb, DELALLOC))
4347 			clear_opt(sb, DELALLOC);
4348 	} else {
4349 		sb->s_iflags |= SB_I_CGROUPWB;
4350 	}
4351 
4352 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4353 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4354 
4355 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4356 	    (ext4_has_compat_features(sb) ||
4357 	     ext4_has_ro_compat_features(sb) ||
4358 	     ext4_has_incompat_features(sb)))
4359 		ext4_msg(sb, KERN_WARNING,
4360 		       "feature flags set on rev 0 fs, "
4361 		       "running e2fsck is recommended");
4362 
4363 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4364 		set_opt2(sb, HURD_COMPAT);
4365 		if (ext4_has_feature_64bit(sb)) {
4366 			ext4_msg(sb, KERN_ERR,
4367 				 "The Hurd can't support 64-bit file systems");
4368 			goto failed_mount;
4369 		}
4370 
4371 		/*
4372 		 * ea_inode feature uses l_i_version field which is not
4373 		 * available in HURD_COMPAT mode.
4374 		 */
4375 		if (ext4_has_feature_ea_inode(sb)) {
4376 			ext4_msg(sb, KERN_ERR,
4377 				 "ea_inode feature is not supported for Hurd");
4378 			goto failed_mount;
4379 		}
4380 	}
4381 
4382 	if (IS_EXT2_SB(sb)) {
4383 		if (ext2_feature_set_ok(sb))
4384 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4385 				 "using the ext4 subsystem");
4386 		else {
4387 			/*
4388 			 * If we're probing be silent, if this looks like
4389 			 * it's actually an ext[34] filesystem.
4390 			 */
4391 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4392 				goto failed_mount;
4393 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4394 				 "to feature incompatibilities");
4395 			goto failed_mount;
4396 		}
4397 	}
4398 
4399 	if (IS_EXT3_SB(sb)) {
4400 		if (ext3_feature_set_ok(sb))
4401 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4402 				 "using the ext4 subsystem");
4403 		else {
4404 			/*
4405 			 * If we're probing be silent, if this looks like
4406 			 * it's actually an ext4 filesystem.
4407 			 */
4408 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4409 				goto failed_mount;
4410 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4411 				 "to feature incompatibilities");
4412 			goto failed_mount;
4413 		}
4414 	}
4415 
4416 	/*
4417 	 * Check feature flags regardless of the revision level, since we
4418 	 * previously didn't change the revision level when setting the flags,
4419 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4420 	 */
4421 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4422 		goto failed_mount;
4423 
4424 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4425 		ext4_msg(sb, KERN_ERR,
4426 			 "Number of reserved GDT blocks insanely large: %d",
4427 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4428 		goto failed_mount;
4429 	}
4430 
4431 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4432 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4433 
4434 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4435 		if (ext4_has_feature_inline_data(sb)) {
4436 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4437 					" that may contain inline data");
4438 			goto failed_mount;
4439 		}
4440 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4441 			ext4_msg(sb, KERN_ERR,
4442 				"DAX unsupported by block device.");
4443 			goto failed_mount;
4444 		}
4445 	}
4446 
4447 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4448 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4449 			 es->s_encryption_level);
4450 		goto failed_mount;
4451 	}
4452 
4453 	if (sb->s_blocksize != blocksize) {
4454 		/*
4455 		 * bh must be released before kill_bdev(), otherwise
4456 		 * it won't be freed and its page also. kill_bdev()
4457 		 * is called by sb_set_blocksize().
4458 		 */
4459 		brelse(bh);
4460 		/* Validate the filesystem blocksize */
4461 		if (!sb_set_blocksize(sb, blocksize)) {
4462 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4463 					blocksize);
4464 			bh = NULL;
4465 			goto failed_mount;
4466 		}
4467 
4468 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4469 		offset = do_div(logical_sb_block, blocksize);
4470 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4471 		if (IS_ERR(bh)) {
4472 			ext4_msg(sb, KERN_ERR,
4473 			       "Can't read superblock on 2nd try");
4474 			ret = PTR_ERR(bh);
4475 			bh = NULL;
4476 			goto failed_mount;
4477 		}
4478 		es = (struct ext4_super_block *)(bh->b_data + offset);
4479 		sbi->s_es = es;
4480 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4481 			ext4_msg(sb, KERN_ERR,
4482 			       "Magic mismatch, very weird!");
4483 			goto failed_mount;
4484 		}
4485 	}
4486 
4487 	has_huge_files = ext4_has_feature_huge_file(sb);
4488 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4489 						      has_huge_files);
4490 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4491 
4492 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4493 	if (ext4_has_feature_64bit(sb)) {
4494 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4495 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4496 		    !is_power_of_2(sbi->s_desc_size)) {
4497 			ext4_msg(sb, KERN_ERR,
4498 			       "unsupported descriptor size %lu",
4499 			       sbi->s_desc_size);
4500 			goto failed_mount;
4501 		}
4502 	} else
4503 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4504 
4505 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4506 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4507 
4508 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4509 	if (sbi->s_inodes_per_block == 0)
4510 		goto cantfind_ext4;
4511 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4512 	    sbi->s_inodes_per_group > blocksize * 8) {
4513 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4514 			 sbi->s_inodes_per_group);
4515 		goto failed_mount;
4516 	}
4517 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4518 					sbi->s_inodes_per_block;
4519 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4520 	sbi->s_sbh = bh;
4521 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4522 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4523 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4524 
4525 	for (i = 0; i < 4; i++)
4526 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4527 	sbi->s_def_hash_version = es->s_def_hash_version;
4528 	if (ext4_has_feature_dir_index(sb)) {
4529 		i = le32_to_cpu(es->s_flags);
4530 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4531 			sbi->s_hash_unsigned = 3;
4532 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4533 #ifdef __CHAR_UNSIGNED__
4534 			if (!sb_rdonly(sb))
4535 				es->s_flags |=
4536 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4537 			sbi->s_hash_unsigned = 3;
4538 #else
4539 			if (!sb_rdonly(sb))
4540 				es->s_flags |=
4541 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4542 #endif
4543 		}
4544 	}
4545 
4546 	/* Handle clustersize */
4547 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4548 	if (ext4_has_feature_bigalloc(sb)) {
4549 		if (clustersize < blocksize) {
4550 			ext4_msg(sb, KERN_ERR,
4551 				 "cluster size (%d) smaller than "
4552 				 "block size (%d)", clustersize, blocksize);
4553 			goto failed_mount;
4554 		}
4555 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4556 			le32_to_cpu(es->s_log_block_size);
4557 		sbi->s_clusters_per_group =
4558 			le32_to_cpu(es->s_clusters_per_group);
4559 		if (sbi->s_clusters_per_group > blocksize * 8) {
4560 			ext4_msg(sb, KERN_ERR,
4561 				 "#clusters per group too big: %lu",
4562 				 sbi->s_clusters_per_group);
4563 			goto failed_mount;
4564 		}
4565 		if (sbi->s_blocks_per_group !=
4566 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4567 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4568 				 "clusters per group (%lu) inconsistent",
4569 				 sbi->s_blocks_per_group,
4570 				 sbi->s_clusters_per_group);
4571 			goto failed_mount;
4572 		}
4573 	} else {
4574 		if (clustersize != blocksize) {
4575 			ext4_msg(sb, KERN_ERR,
4576 				 "fragment/cluster size (%d) != "
4577 				 "block size (%d)", clustersize, blocksize);
4578 			goto failed_mount;
4579 		}
4580 		if (sbi->s_blocks_per_group > blocksize * 8) {
4581 			ext4_msg(sb, KERN_ERR,
4582 				 "#blocks per group too big: %lu",
4583 				 sbi->s_blocks_per_group);
4584 			goto failed_mount;
4585 		}
4586 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4587 		sbi->s_cluster_bits = 0;
4588 	}
4589 	sbi->s_cluster_ratio = clustersize / blocksize;
4590 
4591 	/* Do we have standard group size of clustersize * 8 blocks ? */
4592 	if (sbi->s_blocks_per_group == clustersize << 3)
4593 		set_opt2(sb, STD_GROUP_SIZE);
4594 
4595 	/*
4596 	 * Test whether we have more sectors than will fit in sector_t,
4597 	 * and whether the max offset is addressable by the page cache.
4598 	 */
4599 	err = generic_check_addressable(sb->s_blocksize_bits,
4600 					ext4_blocks_count(es));
4601 	if (err) {
4602 		ext4_msg(sb, KERN_ERR, "filesystem"
4603 			 " too large to mount safely on this system");
4604 		goto failed_mount;
4605 	}
4606 
4607 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4608 		goto cantfind_ext4;
4609 
4610 	/* check blocks count against device size */
4611 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4612 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4613 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4614 		       "exceeds size of device (%llu blocks)",
4615 		       ext4_blocks_count(es), blocks_count);
4616 		goto failed_mount;
4617 	}
4618 
4619 	/*
4620 	 * It makes no sense for the first data block to be beyond the end
4621 	 * of the filesystem.
4622 	 */
4623 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4624 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4625 			 "block %u is beyond end of filesystem (%llu)",
4626 			 le32_to_cpu(es->s_first_data_block),
4627 			 ext4_blocks_count(es));
4628 		goto failed_mount;
4629 	}
4630 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4631 	    (sbi->s_cluster_ratio == 1)) {
4632 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4633 			 "block is 0 with a 1k block and cluster size");
4634 		goto failed_mount;
4635 	}
4636 
4637 	blocks_count = (ext4_blocks_count(es) -
4638 			le32_to_cpu(es->s_first_data_block) +
4639 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4640 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4641 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4642 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4643 		       "(block count %llu, first data block %u, "
4644 		       "blocks per group %lu)", blocks_count,
4645 		       ext4_blocks_count(es),
4646 		       le32_to_cpu(es->s_first_data_block),
4647 		       EXT4_BLOCKS_PER_GROUP(sb));
4648 		goto failed_mount;
4649 	}
4650 	sbi->s_groups_count = blocks_count;
4651 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4652 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4653 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4654 	    le32_to_cpu(es->s_inodes_count)) {
4655 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4656 			 le32_to_cpu(es->s_inodes_count),
4657 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4658 		ret = -EINVAL;
4659 		goto failed_mount;
4660 	}
4661 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4662 		   EXT4_DESC_PER_BLOCK(sb);
4663 	if (ext4_has_feature_meta_bg(sb)) {
4664 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4665 			ext4_msg(sb, KERN_WARNING,
4666 				 "first meta block group too large: %u "
4667 				 "(group descriptor block count %u)",
4668 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4669 			goto failed_mount;
4670 		}
4671 	}
4672 	rcu_assign_pointer(sbi->s_group_desc,
4673 			   kvmalloc_array(db_count,
4674 					  sizeof(struct buffer_head *),
4675 					  GFP_KERNEL));
4676 	if (sbi->s_group_desc == NULL) {
4677 		ext4_msg(sb, KERN_ERR, "not enough memory");
4678 		ret = -ENOMEM;
4679 		goto failed_mount;
4680 	}
4681 
4682 	bgl_lock_init(sbi->s_blockgroup_lock);
4683 
4684 	/* Pre-read the descriptors into the buffer cache */
4685 	for (i = 0; i < db_count; i++) {
4686 		block = descriptor_loc(sb, logical_sb_block, i);
4687 		ext4_sb_breadahead_unmovable(sb, block);
4688 	}
4689 
4690 	for (i = 0; i < db_count; i++) {
4691 		struct buffer_head *bh;
4692 
4693 		block = descriptor_loc(sb, logical_sb_block, i);
4694 		bh = ext4_sb_bread_unmovable(sb, block);
4695 		if (IS_ERR(bh)) {
4696 			ext4_msg(sb, KERN_ERR,
4697 			       "can't read group descriptor %d", i);
4698 			db_count = i;
4699 			ret = PTR_ERR(bh);
4700 			bh = NULL;
4701 			goto failed_mount2;
4702 		}
4703 		rcu_read_lock();
4704 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4705 		rcu_read_unlock();
4706 	}
4707 	sbi->s_gdb_count = db_count;
4708 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4709 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4710 		ret = -EFSCORRUPTED;
4711 		goto failed_mount2;
4712 	}
4713 
4714 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4715 	spin_lock_init(&sbi->s_error_lock);
4716 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4717 
4718 	/* Register extent status tree shrinker */
4719 	if (ext4_es_register_shrinker(sbi))
4720 		goto failed_mount3;
4721 
4722 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4723 	sbi->s_extent_max_zeroout_kb = 32;
4724 
4725 	/*
4726 	 * set up enough so that it can read an inode
4727 	 */
4728 	sb->s_op = &ext4_sops;
4729 	sb->s_export_op = &ext4_export_ops;
4730 	sb->s_xattr = ext4_xattr_handlers;
4731 #ifdef CONFIG_FS_ENCRYPTION
4732 	sb->s_cop = &ext4_cryptops;
4733 #endif
4734 #ifdef CONFIG_FS_VERITY
4735 	sb->s_vop = &ext4_verityops;
4736 #endif
4737 #ifdef CONFIG_QUOTA
4738 	sb->dq_op = &ext4_quota_operations;
4739 	if (ext4_has_feature_quota(sb))
4740 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4741 	else
4742 		sb->s_qcop = &ext4_qctl_operations;
4743 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4744 #endif
4745 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4746 
4747 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4748 	mutex_init(&sbi->s_orphan_lock);
4749 
4750 	spin_lock_init(&sbi->s_bdev_wb_lock);
4751 
4752 	/* Initialize fast commit stuff */
4753 	atomic_set(&sbi->s_fc_subtid, 0);
4754 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4755 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4756 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4757 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4758 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4759 	sbi->s_fc_bytes = 0;
4760 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4761 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4762 	spin_lock_init(&sbi->s_fc_lock);
4763 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4764 	sbi->s_fc_replay_state.fc_regions = NULL;
4765 	sbi->s_fc_replay_state.fc_regions_size = 0;
4766 	sbi->s_fc_replay_state.fc_regions_used = 0;
4767 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4768 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4769 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4770 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4771 
4772 	sb->s_root = NULL;
4773 
4774 	needs_recovery = (es->s_last_orphan != 0 ||
4775 			  ext4_has_feature_journal_needs_recovery(sb));
4776 
4777 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4778 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4779 		if (err)
4780 			goto failed_mount3a;
4781 	}
4782 
4783 	/*
4784 	 * The first inode we look at is the journal inode.  Don't try
4785 	 * root first: it may be modified in the journal!
4786 	 */
4787 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4788 		err = ext4_load_journal(sb, es, journal_devnum);
4789 		if (err)
4790 			goto failed_mount3a;
4791 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4792 		   ext4_has_feature_journal_needs_recovery(sb)) {
4793 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4794 		       "suppressed and not mounted read-only");
4795 		goto failed_mount3a;
4796 	} else {
4797 		/* Nojournal mode, all journal mount options are illegal */
4798 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4799 			ext4_msg(sb, KERN_ERR, "can't mount with "
4800 				 "journal_async_commit, fs mounted w/o journal");
4801 			goto failed_mount3a;
4802 		}
4803 
4804 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4805 			ext4_msg(sb, KERN_ERR, "can't mount with "
4806 				 "journal_checksum, fs mounted w/o journal");
4807 			goto failed_mount3a;
4808 		}
4809 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4810 			ext4_msg(sb, KERN_ERR, "can't mount with "
4811 				 "commit=%lu, fs mounted w/o journal",
4812 				 sbi->s_commit_interval / HZ);
4813 			goto failed_mount3a;
4814 		}
4815 		if (EXT4_MOUNT_DATA_FLAGS &
4816 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4817 			ext4_msg(sb, KERN_ERR, "can't mount with "
4818 				 "data=, fs mounted w/o journal");
4819 			goto failed_mount3a;
4820 		}
4821 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4822 		clear_opt(sb, JOURNAL_CHECKSUM);
4823 		clear_opt(sb, DATA_FLAGS);
4824 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4825 		sbi->s_journal = NULL;
4826 		needs_recovery = 0;
4827 		goto no_journal;
4828 	}
4829 
4830 	if (ext4_has_feature_64bit(sb) &&
4831 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4832 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4833 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4834 		goto failed_mount_wq;
4835 	}
4836 
4837 	if (!set_journal_csum_feature_set(sb)) {
4838 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4839 			 "feature set");
4840 		goto failed_mount_wq;
4841 	}
4842 
4843 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4844 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4845 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4846 		ext4_msg(sb, KERN_ERR,
4847 			"Failed to set fast commit journal feature");
4848 		goto failed_mount_wq;
4849 	}
4850 
4851 	/* We have now updated the journal if required, so we can
4852 	 * validate the data journaling mode. */
4853 	switch (test_opt(sb, DATA_FLAGS)) {
4854 	case 0:
4855 		/* No mode set, assume a default based on the journal
4856 		 * capabilities: ORDERED_DATA if the journal can
4857 		 * cope, else JOURNAL_DATA
4858 		 */
4859 		if (jbd2_journal_check_available_features
4860 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4861 			set_opt(sb, ORDERED_DATA);
4862 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4863 		} else {
4864 			set_opt(sb, JOURNAL_DATA);
4865 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4866 		}
4867 		break;
4868 
4869 	case EXT4_MOUNT_ORDERED_DATA:
4870 	case EXT4_MOUNT_WRITEBACK_DATA:
4871 		if (!jbd2_journal_check_available_features
4872 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4873 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4874 			       "requested data journaling mode");
4875 			goto failed_mount_wq;
4876 		}
4877 	default:
4878 		break;
4879 	}
4880 
4881 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4882 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4883 		ext4_msg(sb, KERN_ERR, "can't mount with "
4884 			"journal_async_commit in data=ordered mode");
4885 		goto failed_mount_wq;
4886 	}
4887 
4888 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4889 
4890 	sbi->s_journal->j_submit_inode_data_buffers =
4891 		ext4_journal_submit_inode_data_buffers;
4892 	sbi->s_journal->j_finish_inode_data_buffers =
4893 		ext4_journal_finish_inode_data_buffers;
4894 
4895 no_journal:
4896 	if (!test_opt(sb, NO_MBCACHE)) {
4897 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4898 		if (!sbi->s_ea_block_cache) {
4899 			ext4_msg(sb, KERN_ERR,
4900 				 "Failed to create ea_block_cache");
4901 			goto failed_mount_wq;
4902 		}
4903 
4904 		if (ext4_has_feature_ea_inode(sb)) {
4905 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4906 			if (!sbi->s_ea_inode_cache) {
4907 				ext4_msg(sb, KERN_ERR,
4908 					 "Failed to create ea_inode_cache");
4909 				goto failed_mount_wq;
4910 			}
4911 		}
4912 	}
4913 
4914 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4915 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4916 		goto failed_mount_wq;
4917 	}
4918 
4919 	/*
4920 	 * Get the # of file system overhead blocks from the
4921 	 * superblock if present.
4922 	 */
4923 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4924 	/* ignore the precalculated value if it is ridiculous */
4925 	if (sbi->s_overhead > ext4_blocks_count(es))
4926 		sbi->s_overhead = 0;
4927 	/*
4928 	 * If the bigalloc feature is not enabled recalculating the
4929 	 * overhead doesn't take long, so we might as well just redo
4930 	 * it to make sure we are using the correct value.
4931 	 */
4932 	if (!ext4_has_feature_bigalloc(sb))
4933 		sbi->s_overhead = 0;
4934 	if (sbi->s_overhead == 0) {
4935 		err = ext4_calculate_overhead(sb);
4936 		if (err)
4937 			goto failed_mount_wq;
4938 	}
4939 
4940 	/*
4941 	 * The maximum number of concurrent works can be high and
4942 	 * concurrency isn't really necessary.  Limit it to 1.
4943 	 */
4944 	EXT4_SB(sb)->rsv_conversion_wq =
4945 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4946 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4947 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4948 		ret = -ENOMEM;
4949 		goto failed_mount4;
4950 	}
4951 
4952 	/*
4953 	 * The jbd2_journal_load will have done any necessary log recovery,
4954 	 * so we can safely mount the rest of the filesystem now.
4955 	 */
4956 
4957 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4958 	if (IS_ERR(root)) {
4959 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4960 		ret = PTR_ERR(root);
4961 		root = NULL;
4962 		goto failed_mount4;
4963 	}
4964 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4965 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4966 		iput(root);
4967 		goto failed_mount4;
4968 	}
4969 
4970 #ifdef CONFIG_UNICODE
4971 	if (sb->s_encoding)
4972 		sb->s_d_op = &ext4_dentry_ops;
4973 #endif
4974 
4975 	sb->s_root = d_make_root(root);
4976 	if (!sb->s_root) {
4977 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4978 		ret = -ENOMEM;
4979 		goto failed_mount4;
4980 	}
4981 
4982 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4983 	if (ret == -EROFS) {
4984 		sb->s_flags |= SB_RDONLY;
4985 		ret = 0;
4986 	} else if (ret)
4987 		goto failed_mount4a;
4988 
4989 	ext4_set_resv_clusters(sb);
4990 
4991 	if (test_opt(sb, BLOCK_VALIDITY)) {
4992 		err = ext4_setup_system_zone(sb);
4993 		if (err) {
4994 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4995 				 "zone (%d)", err);
4996 			goto failed_mount4a;
4997 		}
4998 	}
4999 	ext4_fc_replay_cleanup(sb);
5000 
5001 	ext4_ext_init(sb);
5002 	err = ext4_mb_init(sb);
5003 	if (err) {
5004 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5005 			 err);
5006 		goto failed_mount5;
5007 	}
5008 
5009 	/*
5010 	 * We can only set up the journal commit callback once
5011 	 * mballoc is initialized
5012 	 */
5013 	if (sbi->s_journal)
5014 		sbi->s_journal->j_commit_callback =
5015 			ext4_journal_commit_callback;
5016 
5017 	block = ext4_count_free_clusters(sb);
5018 	ext4_free_blocks_count_set(sbi->s_es,
5019 				   EXT4_C2B(sbi, block));
5020 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5021 				  GFP_KERNEL);
5022 	if (!err) {
5023 		unsigned long freei = ext4_count_free_inodes(sb);
5024 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5025 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5026 					  GFP_KERNEL);
5027 	}
5028 	/*
5029 	 * Update the checksum after updating free space/inode
5030 	 * counters.  Otherwise the superblock can have an incorrect
5031 	 * checksum in the buffer cache until it is written out and
5032 	 * e2fsprogs programs trying to open a file system immediately
5033 	 * after it is mounted can fail.
5034 	 */
5035 	ext4_superblock_csum_set(sb);
5036 	if (!err)
5037 		err = percpu_counter_init(&sbi->s_dirs_counter,
5038 					  ext4_count_dirs(sb), GFP_KERNEL);
5039 	if (!err)
5040 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5041 					  GFP_KERNEL);
5042 	if (!err)
5043 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5044 					  GFP_KERNEL);
5045 	if (!err)
5046 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5047 
5048 	if (err) {
5049 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5050 		goto failed_mount6;
5051 	}
5052 
5053 	if (ext4_has_feature_flex_bg(sb))
5054 		if (!ext4_fill_flex_info(sb)) {
5055 			ext4_msg(sb, KERN_ERR,
5056 			       "unable to initialize "
5057 			       "flex_bg meta info!");
5058 			ret = -ENOMEM;
5059 			goto failed_mount6;
5060 		}
5061 
5062 	err = ext4_register_li_request(sb, first_not_zeroed);
5063 	if (err)
5064 		goto failed_mount6;
5065 
5066 	err = ext4_register_sysfs(sb);
5067 	if (err)
5068 		goto failed_mount7;
5069 
5070 #ifdef CONFIG_QUOTA
5071 	/* Enable quota usage during mount. */
5072 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5073 		err = ext4_enable_quotas(sb);
5074 		if (err)
5075 			goto failed_mount8;
5076 	}
5077 #endif  /* CONFIG_QUOTA */
5078 
5079 	/*
5080 	 * Save the original bdev mapping's wb_err value which could be
5081 	 * used to detect the metadata async write error.
5082 	 */
5083 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5084 				 &sbi->s_bdev_wb_err);
5085 	sb->s_bdev->bd_super = sb;
5086 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5087 	ext4_orphan_cleanup(sb, es);
5088 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5089 	if (needs_recovery) {
5090 		ext4_msg(sb, KERN_INFO, "recovery complete");
5091 		err = ext4_mark_recovery_complete(sb, es);
5092 		if (err)
5093 			goto failed_mount8;
5094 	}
5095 	if (EXT4_SB(sb)->s_journal) {
5096 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5097 			descr = " journalled data mode";
5098 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5099 			descr = " ordered data mode";
5100 		else
5101 			descr = " writeback data mode";
5102 	} else
5103 		descr = "out journal";
5104 
5105 	if (test_opt(sb, DISCARD)) {
5106 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5107 		if (!blk_queue_discard(q))
5108 			ext4_msg(sb, KERN_WARNING,
5109 				 "mounting with \"discard\" option, but "
5110 				 "the device does not support discard");
5111 	}
5112 
5113 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5114 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5115 			 "Opts: %.*s%s%s", descr,
5116 			 (int) sizeof(sbi->s_es->s_mount_opts),
5117 			 sbi->s_es->s_mount_opts,
5118 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5119 
5120 	if (es->s_error_count)
5121 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5122 
5123 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5124 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5125 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5126 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5127 	atomic_set(&sbi->s_warning_count, 0);
5128 	atomic_set(&sbi->s_msg_count, 0);
5129 
5130 	kfree(orig_data);
5131 	return 0;
5132 
5133 cantfind_ext4:
5134 	if (!silent)
5135 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5136 	goto failed_mount;
5137 
5138 failed_mount8:
5139 	ext4_unregister_sysfs(sb);
5140 	kobject_put(&sbi->s_kobj);
5141 failed_mount7:
5142 	ext4_unregister_li_request(sb);
5143 failed_mount6:
5144 	ext4_mb_release(sb);
5145 	rcu_read_lock();
5146 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5147 	if (flex_groups) {
5148 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5149 			kvfree(flex_groups[i]);
5150 		kvfree(flex_groups);
5151 	}
5152 	rcu_read_unlock();
5153 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5154 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5155 	percpu_counter_destroy(&sbi->s_dirs_counter);
5156 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5157 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5158 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5159 failed_mount5:
5160 	ext4_ext_release(sb);
5161 	ext4_release_system_zone(sb);
5162 failed_mount4a:
5163 	dput(sb->s_root);
5164 	sb->s_root = NULL;
5165 failed_mount4:
5166 	ext4_msg(sb, KERN_ERR, "mount failed");
5167 	if (EXT4_SB(sb)->rsv_conversion_wq)
5168 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5169 failed_mount_wq:
5170 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5171 	sbi->s_ea_inode_cache = NULL;
5172 
5173 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5174 	sbi->s_ea_block_cache = NULL;
5175 
5176 	if (sbi->s_journal) {
5177 		/* flush s_error_work before journal destroy. */
5178 		ext4_journal_destroy(sbi, sbi->s_journal);
5179 	}
5180 failed_mount3a:
5181 	ext4_es_unregister_shrinker(sbi);
5182 failed_mount3:
5183 	/* flush s_error_work before sbi destroy */
5184 	flush_work(&sbi->s_error_work);
5185 	ext4_stop_mmpd(sbi);
5186 	del_timer_sync(&sbi->s_err_report);
5187 failed_mount2:
5188 	rcu_read_lock();
5189 	group_desc = rcu_dereference(sbi->s_group_desc);
5190 	for (i = 0; i < db_count; i++)
5191 		brelse(group_desc[i]);
5192 	kvfree(group_desc);
5193 	rcu_read_unlock();
5194 failed_mount:
5195 	if (sbi->s_chksum_driver)
5196 		crypto_free_shash(sbi->s_chksum_driver);
5197 
5198 #ifdef CONFIG_UNICODE
5199 	utf8_unload(sb->s_encoding);
5200 #endif
5201 
5202 #ifdef CONFIG_QUOTA
5203 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5204 		kfree(get_qf_name(sb, sbi, i));
5205 #endif
5206 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5207 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5208 	brelse(bh);
5209 	ext4_blkdev_remove(sbi);
5210 out_fail:
5211 	invalidate_bdev(sb->s_bdev);
5212 	sb->s_fs_info = NULL;
5213 	kfree(sbi->s_blockgroup_lock);
5214 out_free_base:
5215 	kfree(sbi);
5216 	kfree(orig_data);
5217 	fs_put_dax(dax_dev);
5218 	return err ? err : ret;
5219 }
5220 
5221 /*
5222  * Setup any per-fs journal parameters now.  We'll do this both on
5223  * initial mount, once the journal has been initialised but before we've
5224  * done any recovery; and again on any subsequent remount.
5225  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5226 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5227 {
5228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5229 
5230 	journal->j_commit_interval = sbi->s_commit_interval;
5231 	journal->j_min_batch_time = sbi->s_min_batch_time;
5232 	journal->j_max_batch_time = sbi->s_max_batch_time;
5233 	ext4_fc_init(sb, journal);
5234 
5235 	write_lock(&journal->j_state_lock);
5236 	if (test_opt(sb, BARRIER))
5237 		journal->j_flags |= JBD2_BARRIER;
5238 	else
5239 		journal->j_flags &= ~JBD2_BARRIER;
5240 	if (test_opt(sb, DATA_ERR_ABORT))
5241 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5242 	else
5243 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5244 	write_unlock(&journal->j_state_lock);
5245 }
5246 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5247 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5248 					     unsigned int journal_inum)
5249 {
5250 	struct inode *journal_inode;
5251 
5252 	/*
5253 	 * Test for the existence of a valid inode on disk.  Bad things
5254 	 * happen if we iget() an unused inode, as the subsequent iput()
5255 	 * will try to delete it.
5256 	 */
5257 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5258 	if (IS_ERR(journal_inode)) {
5259 		ext4_msg(sb, KERN_ERR, "no journal found");
5260 		return NULL;
5261 	}
5262 	if (!journal_inode->i_nlink) {
5263 		make_bad_inode(journal_inode);
5264 		iput(journal_inode);
5265 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5266 		return NULL;
5267 	}
5268 
5269 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5270 		  journal_inode, journal_inode->i_size);
5271 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5272 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5273 		iput(journal_inode);
5274 		return NULL;
5275 	}
5276 	return journal_inode;
5277 }
5278 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5279 static journal_t *ext4_get_journal(struct super_block *sb,
5280 				   unsigned int journal_inum)
5281 {
5282 	struct inode *journal_inode;
5283 	journal_t *journal;
5284 
5285 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5286 		return NULL;
5287 
5288 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5289 	if (!journal_inode)
5290 		return NULL;
5291 
5292 	journal = jbd2_journal_init_inode(journal_inode);
5293 	if (!journal) {
5294 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5295 		iput(journal_inode);
5296 		return NULL;
5297 	}
5298 	journal->j_private = sb;
5299 	ext4_init_journal_params(sb, journal);
5300 	return journal;
5301 }
5302 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5303 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5304 				       dev_t j_dev)
5305 {
5306 	struct buffer_head *bh;
5307 	journal_t *journal;
5308 	ext4_fsblk_t start;
5309 	ext4_fsblk_t len;
5310 	int hblock, blocksize;
5311 	ext4_fsblk_t sb_block;
5312 	unsigned long offset;
5313 	struct ext4_super_block *es;
5314 	struct block_device *bdev;
5315 
5316 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5317 		return NULL;
5318 
5319 	bdev = ext4_blkdev_get(j_dev, sb);
5320 	if (bdev == NULL)
5321 		return NULL;
5322 
5323 	blocksize = sb->s_blocksize;
5324 	hblock = bdev_logical_block_size(bdev);
5325 	if (blocksize < hblock) {
5326 		ext4_msg(sb, KERN_ERR,
5327 			"blocksize too small for journal device");
5328 		goto out_bdev;
5329 	}
5330 
5331 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5332 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5333 	set_blocksize(bdev, blocksize);
5334 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5335 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5336 		       "external journal");
5337 		goto out_bdev;
5338 	}
5339 
5340 	es = (struct ext4_super_block *) (bh->b_data + offset);
5341 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5342 	    !(le32_to_cpu(es->s_feature_incompat) &
5343 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5344 		ext4_msg(sb, KERN_ERR, "external journal has "
5345 					"bad superblock");
5346 		brelse(bh);
5347 		goto out_bdev;
5348 	}
5349 
5350 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5351 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5352 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5353 		ext4_msg(sb, KERN_ERR, "external journal has "
5354 				       "corrupt superblock");
5355 		brelse(bh);
5356 		goto out_bdev;
5357 	}
5358 
5359 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5360 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5361 		brelse(bh);
5362 		goto out_bdev;
5363 	}
5364 
5365 	len = ext4_blocks_count(es);
5366 	start = sb_block + 1;
5367 	brelse(bh);	/* we're done with the superblock */
5368 
5369 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5370 					start, len, blocksize);
5371 	if (!journal) {
5372 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5373 		goto out_bdev;
5374 	}
5375 	journal->j_private = sb;
5376 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5377 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5378 		goto out_journal;
5379 	}
5380 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5381 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5382 					"user (unsupported) - %d",
5383 			be32_to_cpu(journal->j_superblock->s_nr_users));
5384 		goto out_journal;
5385 	}
5386 	EXT4_SB(sb)->s_journal_bdev = bdev;
5387 	ext4_init_journal_params(sb, journal);
5388 	return journal;
5389 
5390 out_journal:
5391 	ext4_journal_destroy(EXT4_SB(sb), journal);
5392 out_bdev:
5393 	ext4_blkdev_put(bdev);
5394 	return NULL;
5395 }
5396 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5397 static int ext4_load_journal(struct super_block *sb,
5398 			     struct ext4_super_block *es,
5399 			     unsigned long journal_devnum)
5400 {
5401 	journal_t *journal;
5402 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5403 	dev_t journal_dev;
5404 	int err = 0;
5405 	int really_read_only;
5406 	int journal_dev_ro;
5407 
5408 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5409 		return -EFSCORRUPTED;
5410 
5411 	if (journal_devnum &&
5412 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5413 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5414 			"numbers have changed");
5415 		journal_dev = new_decode_dev(journal_devnum);
5416 	} else
5417 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5418 
5419 	if (journal_inum && journal_dev) {
5420 		ext4_msg(sb, KERN_ERR,
5421 			 "filesystem has both journal inode and journal device!");
5422 		return -EINVAL;
5423 	}
5424 
5425 	if (journal_inum) {
5426 		journal = ext4_get_journal(sb, journal_inum);
5427 		if (!journal)
5428 			return -EINVAL;
5429 	} else {
5430 		journal = ext4_get_dev_journal(sb, journal_dev);
5431 		if (!journal)
5432 			return -EINVAL;
5433 	}
5434 
5435 	journal_dev_ro = bdev_read_only(journal->j_dev);
5436 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5437 
5438 	if (journal_dev_ro && !sb_rdonly(sb)) {
5439 		ext4_msg(sb, KERN_ERR,
5440 			 "journal device read-only, try mounting with '-o ro'");
5441 		err = -EROFS;
5442 		goto err_out;
5443 	}
5444 
5445 	/*
5446 	 * Are we loading a blank journal or performing recovery after a
5447 	 * crash?  For recovery, we need to check in advance whether we
5448 	 * can get read-write access to the device.
5449 	 */
5450 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5451 		if (sb_rdonly(sb)) {
5452 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5453 					"required on readonly filesystem");
5454 			if (really_read_only) {
5455 				ext4_msg(sb, KERN_ERR, "write access "
5456 					"unavailable, cannot proceed "
5457 					"(try mounting with noload)");
5458 				err = -EROFS;
5459 				goto err_out;
5460 			}
5461 			ext4_msg(sb, KERN_INFO, "write access will "
5462 			       "be enabled during recovery");
5463 		}
5464 	}
5465 
5466 	if (!(journal->j_flags & JBD2_BARRIER))
5467 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5468 
5469 	if (!ext4_has_feature_journal_needs_recovery(sb))
5470 		err = jbd2_journal_wipe(journal, !really_read_only);
5471 	if (!err) {
5472 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5473 		if (save)
5474 			memcpy(save, ((char *) es) +
5475 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5476 		err = jbd2_journal_load(journal);
5477 		if (save)
5478 			memcpy(((char *) es) + EXT4_S_ERR_START,
5479 			       save, EXT4_S_ERR_LEN);
5480 		kfree(save);
5481 	}
5482 
5483 	if (err) {
5484 		ext4_msg(sb, KERN_ERR, "error loading journal");
5485 		goto err_out;
5486 	}
5487 
5488 	EXT4_SB(sb)->s_journal = journal;
5489 	err = ext4_clear_journal_err(sb, es);
5490 	if (err) {
5491 		ext4_journal_destroy(EXT4_SB(sb), journal);
5492 		return err;
5493 	}
5494 
5495 	if (!really_read_only && journal_devnum &&
5496 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5497 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5498 		ext4_commit_super(sb);
5499 	}
5500 	if (!really_read_only && journal_inum &&
5501 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
5502 		es->s_journal_inum = cpu_to_le32(journal_inum);
5503 		ext4_commit_super(sb);
5504 	}
5505 
5506 	return 0;
5507 
5508 err_out:
5509 	ext4_journal_destroy(EXT4_SB(sb), journal);
5510 	return err;
5511 }
5512 
5513 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5514 static void ext4_update_super(struct super_block *sb)
5515 {
5516 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5517 	struct ext4_super_block *es = sbi->s_es;
5518 	struct buffer_head *sbh = sbi->s_sbh;
5519 
5520 	lock_buffer(sbh);
5521 	/*
5522 	 * If the file system is mounted read-only, don't update the
5523 	 * superblock write time.  This avoids updating the superblock
5524 	 * write time when we are mounting the root file system
5525 	 * read/only but we need to replay the journal; at that point,
5526 	 * for people who are east of GMT and who make their clock
5527 	 * tick in localtime for Windows bug-for-bug compatibility,
5528 	 * the clock is set in the future, and this will cause e2fsck
5529 	 * to complain and force a full file system check.
5530 	 */
5531 	if (!(sb->s_flags & SB_RDONLY))
5532 		ext4_update_tstamp(es, s_wtime);
5533 	if (sb->s_bdev->bd_part)
5534 		es->s_kbytes_written =
5535 			cpu_to_le64(sbi->s_kbytes_written +
5536 			    ((part_stat_read(sb->s_bdev->bd_part,
5537 					     sectors[STAT_WRITE]) -
5538 			      sbi->s_sectors_written_start) >> 1));
5539 	else
5540 		es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5541 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5542 		ext4_free_blocks_count_set(es,
5543 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5544 				&sbi->s_freeclusters_counter)));
5545 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5546 		es->s_free_inodes_count =
5547 			cpu_to_le32(percpu_counter_sum_positive(
5548 				&sbi->s_freeinodes_counter));
5549 	/* Copy error information to the on-disk superblock */
5550 	spin_lock(&sbi->s_error_lock);
5551 	if (sbi->s_add_error_count > 0) {
5552 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5553 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5554 			__ext4_update_tstamp(&es->s_first_error_time,
5555 					     &es->s_first_error_time_hi,
5556 					     sbi->s_first_error_time);
5557 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5558 				sizeof(es->s_first_error_func));
5559 			es->s_first_error_line =
5560 				cpu_to_le32(sbi->s_first_error_line);
5561 			es->s_first_error_ino =
5562 				cpu_to_le32(sbi->s_first_error_ino);
5563 			es->s_first_error_block =
5564 				cpu_to_le64(sbi->s_first_error_block);
5565 			es->s_first_error_errcode =
5566 				ext4_errno_to_code(sbi->s_first_error_code);
5567 		}
5568 		__ext4_update_tstamp(&es->s_last_error_time,
5569 				     &es->s_last_error_time_hi,
5570 				     sbi->s_last_error_time);
5571 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5572 			sizeof(es->s_last_error_func));
5573 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5574 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5575 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5576 		es->s_last_error_errcode =
5577 				ext4_errno_to_code(sbi->s_last_error_code);
5578 		/*
5579 		 * Start the daily error reporting function if it hasn't been
5580 		 * started already
5581 		 */
5582 		if (!es->s_error_count)
5583 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5584 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5585 		sbi->s_add_error_count = 0;
5586 	}
5587 	spin_unlock(&sbi->s_error_lock);
5588 
5589 	ext4_superblock_csum_set(sb);
5590 	unlock_buffer(sbh);
5591 }
5592 
ext4_commit_super(struct super_block * sb)5593 static int ext4_commit_super(struct super_block *sb)
5594 {
5595 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5596 	int error = 0;
5597 
5598 	if (!sbh)
5599 		return -EINVAL;
5600 	if (block_device_ejected(sb))
5601 		return -ENODEV;
5602 
5603 	ext4_update_super(sb);
5604 
5605 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5606 		/*
5607 		 * Oh, dear.  A previous attempt to write the
5608 		 * superblock failed.  This could happen because the
5609 		 * USB device was yanked out.  Or it could happen to
5610 		 * be a transient write error and maybe the block will
5611 		 * be remapped.  Nothing we can do but to retry the
5612 		 * write and hope for the best.
5613 		 */
5614 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5615 		       "superblock detected");
5616 		clear_buffer_write_io_error(sbh);
5617 		set_buffer_uptodate(sbh);
5618 	}
5619 	BUFFER_TRACE(sbh, "marking dirty");
5620 	mark_buffer_dirty(sbh);
5621 	error = __sync_dirty_buffer(sbh,
5622 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5623 	if (buffer_write_io_error(sbh)) {
5624 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5625 		       "superblock");
5626 		clear_buffer_write_io_error(sbh);
5627 		set_buffer_uptodate(sbh);
5628 	}
5629 	return error;
5630 }
5631 
5632 /*
5633  * Have we just finished recovery?  If so, and if we are mounting (or
5634  * remounting) the filesystem readonly, then we will end up with a
5635  * consistent fs on disk.  Record that fact.
5636  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5637 static int ext4_mark_recovery_complete(struct super_block *sb,
5638 				       struct ext4_super_block *es)
5639 {
5640 	int err;
5641 	journal_t *journal = EXT4_SB(sb)->s_journal;
5642 
5643 	if (!ext4_has_feature_journal(sb)) {
5644 		if (journal != NULL) {
5645 			ext4_error(sb, "Journal got removed while the fs was "
5646 				   "mounted!");
5647 			return -EFSCORRUPTED;
5648 		}
5649 		return 0;
5650 	}
5651 	jbd2_journal_lock_updates(journal);
5652 	err = jbd2_journal_flush(journal);
5653 	if (err < 0)
5654 		goto out;
5655 
5656 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5657 		ext4_clear_feature_journal_needs_recovery(sb);
5658 		ext4_commit_super(sb);
5659 	}
5660 out:
5661 	jbd2_journal_unlock_updates(journal);
5662 	return err;
5663 }
5664 
5665 /*
5666  * If we are mounting (or read-write remounting) a filesystem whose journal
5667  * has recorded an error from a previous lifetime, move that error to the
5668  * main filesystem now.
5669  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5670 static int ext4_clear_journal_err(struct super_block *sb,
5671 				   struct ext4_super_block *es)
5672 {
5673 	journal_t *journal;
5674 	int j_errno;
5675 	const char *errstr;
5676 
5677 	if (!ext4_has_feature_journal(sb)) {
5678 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5679 		return -EFSCORRUPTED;
5680 	}
5681 
5682 	journal = EXT4_SB(sb)->s_journal;
5683 
5684 	/*
5685 	 * Now check for any error status which may have been recorded in the
5686 	 * journal by a prior ext4_error() or ext4_abort()
5687 	 */
5688 
5689 	j_errno = jbd2_journal_errno(journal);
5690 	if (j_errno) {
5691 		char nbuf[16];
5692 
5693 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5694 		ext4_warning(sb, "Filesystem error recorded "
5695 			     "from previous mount: %s", errstr);
5696 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5697 
5698 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5699 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5700 		ext4_commit_super(sb);
5701 
5702 		jbd2_journal_clear_err(journal);
5703 		jbd2_journal_update_sb_errno(journal);
5704 	}
5705 	return 0;
5706 }
5707 
5708 /*
5709  * Force the running and committing transactions to commit,
5710  * and wait on the commit.
5711  */
ext4_force_commit(struct super_block * sb)5712 int ext4_force_commit(struct super_block *sb)
5713 {
5714 	journal_t *journal;
5715 
5716 	if (sb_rdonly(sb))
5717 		return 0;
5718 
5719 	journal = EXT4_SB(sb)->s_journal;
5720 	return ext4_journal_force_commit(journal);
5721 }
5722 
ext4_sync_fs(struct super_block * sb,int wait)5723 static int ext4_sync_fs(struct super_block *sb, int wait)
5724 {
5725 	int ret = 0;
5726 	tid_t target;
5727 	bool needs_barrier = false;
5728 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5729 
5730 	if (unlikely(ext4_forced_shutdown(sbi)))
5731 		return 0;
5732 
5733 	trace_ext4_sync_fs(sb, wait);
5734 	flush_workqueue(sbi->rsv_conversion_wq);
5735 	/*
5736 	 * Writeback quota in non-journalled quota case - journalled quota has
5737 	 * no dirty dquots
5738 	 */
5739 	dquot_writeback_dquots(sb, -1);
5740 	/*
5741 	 * Data writeback is possible w/o journal transaction, so barrier must
5742 	 * being sent at the end of the function. But we can skip it if
5743 	 * transaction_commit will do it for us.
5744 	 */
5745 	if (sbi->s_journal) {
5746 		target = jbd2_get_latest_transaction(sbi->s_journal);
5747 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5748 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5749 			needs_barrier = true;
5750 
5751 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5752 			if (wait)
5753 				ret = jbd2_log_wait_commit(sbi->s_journal,
5754 							   target);
5755 		}
5756 	} else if (wait && test_opt(sb, BARRIER))
5757 		needs_barrier = true;
5758 	if (needs_barrier) {
5759 		int err;
5760 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5761 		if (!ret)
5762 			ret = err;
5763 	}
5764 
5765 	return ret;
5766 }
5767 
5768 /*
5769  * LVM calls this function before a (read-only) snapshot is created.  This
5770  * gives us a chance to flush the journal completely and mark the fs clean.
5771  *
5772  * Note that only this function cannot bring a filesystem to be in a clean
5773  * state independently. It relies on upper layer to stop all data & metadata
5774  * modifications.
5775  */
ext4_freeze(struct super_block * sb)5776 static int ext4_freeze(struct super_block *sb)
5777 {
5778 	int error = 0;
5779 	journal_t *journal;
5780 
5781 	if (sb_rdonly(sb))
5782 		return 0;
5783 
5784 	journal = EXT4_SB(sb)->s_journal;
5785 
5786 	if (journal) {
5787 		/* Now we set up the journal barrier. */
5788 		jbd2_journal_lock_updates(journal);
5789 
5790 		/*
5791 		 * Don't clear the needs_recovery flag if we failed to
5792 		 * flush the journal.
5793 		 */
5794 		error = jbd2_journal_flush(journal);
5795 		if (error < 0)
5796 			goto out;
5797 
5798 		/* Journal blocked and flushed, clear needs_recovery flag. */
5799 		ext4_clear_feature_journal_needs_recovery(sb);
5800 	}
5801 
5802 	error = ext4_commit_super(sb);
5803 out:
5804 	if (journal)
5805 		/* we rely on upper layer to stop further updates */
5806 		jbd2_journal_unlock_updates(journal);
5807 	return error;
5808 }
5809 
5810 /*
5811  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5812  * flag here, even though the filesystem is not technically dirty yet.
5813  */
ext4_unfreeze(struct super_block * sb)5814 static int ext4_unfreeze(struct super_block *sb)
5815 {
5816 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5817 		return 0;
5818 
5819 	if (EXT4_SB(sb)->s_journal) {
5820 		/* Reset the needs_recovery flag before the fs is unlocked. */
5821 		ext4_set_feature_journal_needs_recovery(sb);
5822 	}
5823 
5824 	ext4_commit_super(sb);
5825 	return 0;
5826 }
5827 
5828 /*
5829  * Structure to save mount options for ext4_remount's benefit
5830  */
5831 struct ext4_mount_options {
5832 	unsigned long s_mount_opt;
5833 	unsigned long s_mount_opt2;
5834 	kuid_t s_resuid;
5835 	kgid_t s_resgid;
5836 	unsigned long s_commit_interval;
5837 	u32 s_min_batch_time, s_max_batch_time;
5838 #ifdef CONFIG_QUOTA
5839 	int s_jquota_fmt;
5840 	char *s_qf_names[EXT4_MAXQUOTAS];
5841 #endif
5842 };
5843 
ext4_remount(struct super_block * sb,int * flags,char * data)5844 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5845 {
5846 	struct ext4_super_block *es;
5847 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5848 	unsigned long old_sb_flags, vfs_flags;
5849 	struct ext4_mount_options old_opts;
5850 	ext4_group_t g;
5851 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5852 	int err = 0;
5853 #ifdef CONFIG_QUOTA
5854 	int enable_quota = 0;
5855 	int i, j;
5856 	char *to_free[EXT4_MAXQUOTAS];
5857 #endif
5858 	char *orig_data = kstrdup(data, GFP_KERNEL);
5859 
5860 	if (data && !orig_data)
5861 		return -ENOMEM;
5862 
5863 	/* Store the original options */
5864 	old_sb_flags = sb->s_flags;
5865 	old_opts.s_mount_opt = sbi->s_mount_opt;
5866 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5867 	old_opts.s_resuid = sbi->s_resuid;
5868 	old_opts.s_resgid = sbi->s_resgid;
5869 	old_opts.s_commit_interval = sbi->s_commit_interval;
5870 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5871 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5872 #ifdef CONFIG_QUOTA
5873 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5874 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5875 		if (sbi->s_qf_names[i]) {
5876 			char *qf_name = get_qf_name(sb, sbi, i);
5877 
5878 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5879 			if (!old_opts.s_qf_names[i]) {
5880 				for (j = 0; j < i; j++)
5881 					kfree(old_opts.s_qf_names[j]);
5882 				kfree(orig_data);
5883 				return -ENOMEM;
5884 			}
5885 		} else
5886 			old_opts.s_qf_names[i] = NULL;
5887 #endif
5888 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5889 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5890 
5891 	/*
5892 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5893 	 * either way we need to make sure it matches in both *flags and
5894 	 * s_flags. Copy those selected flags from *flags to s_flags
5895 	 */
5896 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5897 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5898 
5899 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5900 		err = -EINVAL;
5901 		goto restore_opts;
5902 	}
5903 
5904 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5905 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5906 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5907 			 "during remount not supported; ignoring");
5908 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5909 	}
5910 
5911 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5912 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5913 			ext4_msg(sb, KERN_ERR, "can't mount with "
5914 				 "both data=journal and delalloc");
5915 			err = -EINVAL;
5916 			goto restore_opts;
5917 		}
5918 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5919 			ext4_msg(sb, KERN_ERR, "can't mount with "
5920 				 "both data=journal and dioread_nolock");
5921 			err = -EINVAL;
5922 			goto restore_opts;
5923 		}
5924 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5925 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5926 			ext4_msg(sb, KERN_ERR, "can't mount with "
5927 				"journal_async_commit in data=ordered mode");
5928 			err = -EINVAL;
5929 			goto restore_opts;
5930 		}
5931 	}
5932 
5933 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5934 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5935 		err = -EINVAL;
5936 		goto restore_opts;
5937 	}
5938 
5939 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5940 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5941 
5942 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5943 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5944 
5945 	es = sbi->s_es;
5946 
5947 	if (sbi->s_journal) {
5948 		ext4_init_journal_params(sb, sbi->s_journal);
5949 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5950 	}
5951 
5952 	/* Flush outstanding errors before changing fs state */
5953 	flush_work(&sbi->s_error_work);
5954 
5955 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5956 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5957 			err = -EROFS;
5958 			goto restore_opts;
5959 		}
5960 
5961 		if (*flags & SB_RDONLY) {
5962 			err = sync_filesystem(sb);
5963 			if (err < 0)
5964 				goto restore_opts;
5965 			err = dquot_suspend(sb, -1);
5966 			if (err < 0)
5967 				goto restore_opts;
5968 
5969 			/*
5970 			 * First of all, the unconditional stuff we have to do
5971 			 * to disable replay of the journal when we next remount
5972 			 */
5973 			sb->s_flags |= SB_RDONLY;
5974 
5975 			/*
5976 			 * OK, test if we are remounting a valid rw partition
5977 			 * readonly, and if so set the rdonly flag and then
5978 			 * mark the partition as valid again.
5979 			 */
5980 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5981 			    (sbi->s_mount_state & EXT4_VALID_FS))
5982 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5983 
5984 			if (sbi->s_journal) {
5985 				/*
5986 				 * We let remount-ro finish even if marking fs
5987 				 * as clean failed...
5988 				 */
5989 				ext4_mark_recovery_complete(sb, es);
5990 			}
5991 		} else {
5992 			/* Make sure we can mount this feature set readwrite */
5993 			if (ext4_has_feature_readonly(sb) ||
5994 			    !ext4_feature_set_ok(sb, 0)) {
5995 				err = -EROFS;
5996 				goto restore_opts;
5997 			}
5998 			/*
5999 			 * Make sure the group descriptor checksums
6000 			 * are sane.  If they aren't, refuse to remount r/w.
6001 			 */
6002 			for (g = 0; g < sbi->s_groups_count; g++) {
6003 				struct ext4_group_desc *gdp =
6004 					ext4_get_group_desc(sb, g, NULL);
6005 
6006 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6007 					ext4_msg(sb, KERN_ERR,
6008 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6009 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6010 					       le16_to_cpu(gdp->bg_checksum));
6011 					err = -EFSBADCRC;
6012 					goto restore_opts;
6013 				}
6014 			}
6015 
6016 			/*
6017 			 * If we have an unprocessed orphan list hanging
6018 			 * around from a previously readonly bdev mount,
6019 			 * require a full umount/remount for now.
6020 			 */
6021 			if (es->s_last_orphan) {
6022 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6023 				       "remount RDWR because of unprocessed "
6024 				       "orphan inode list.  Please "
6025 				       "umount/remount instead");
6026 				err = -EINVAL;
6027 				goto restore_opts;
6028 			}
6029 
6030 			/*
6031 			 * Mounting a RDONLY partition read-write, so reread
6032 			 * and store the current valid flag.  (It may have
6033 			 * been changed by e2fsck since we originally mounted
6034 			 * the partition.)
6035 			 */
6036 			if (sbi->s_journal) {
6037 				err = ext4_clear_journal_err(sb, es);
6038 				if (err)
6039 					goto restore_opts;
6040 			}
6041 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6042 					      ~EXT4_FC_REPLAY);
6043 
6044 			err = ext4_setup_super(sb, es, 0);
6045 			if (err)
6046 				goto restore_opts;
6047 
6048 			sb->s_flags &= ~SB_RDONLY;
6049 			if (ext4_has_feature_mmp(sb)) {
6050 				err = ext4_multi_mount_protect(sb,
6051 						le64_to_cpu(es->s_mmp_block));
6052 				if (err)
6053 					goto restore_opts;
6054 			}
6055 #ifdef CONFIG_QUOTA
6056 			enable_quota = 1;
6057 #endif
6058 		}
6059 	}
6060 
6061 	/*
6062 	 * Handle creation of system zone data early because it can fail.
6063 	 * Releasing of existing data is done when we are sure remount will
6064 	 * succeed.
6065 	 */
6066 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6067 		err = ext4_setup_system_zone(sb);
6068 		if (err)
6069 			goto restore_opts;
6070 	}
6071 
6072 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6073 		err = ext4_commit_super(sb);
6074 		if (err)
6075 			goto restore_opts;
6076 	}
6077 
6078 #ifdef CONFIG_QUOTA
6079 	if (enable_quota) {
6080 		if (sb_any_quota_suspended(sb))
6081 			dquot_resume(sb, -1);
6082 		else if (ext4_has_feature_quota(sb)) {
6083 			err = ext4_enable_quotas(sb);
6084 			if (err)
6085 				goto restore_opts;
6086 		}
6087 	}
6088 	/* Release old quota file names */
6089 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6090 		kfree(old_opts.s_qf_names[i]);
6091 #endif
6092 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6093 		ext4_release_system_zone(sb);
6094 
6095 	/*
6096 	 * Reinitialize lazy itable initialization thread based on
6097 	 * current settings
6098 	 */
6099 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6100 		ext4_unregister_li_request(sb);
6101 	else {
6102 		ext4_group_t first_not_zeroed;
6103 		first_not_zeroed = ext4_has_uninit_itable(sb);
6104 		ext4_register_li_request(sb, first_not_zeroed);
6105 	}
6106 
6107 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6108 		ext4_stop_mmpd(sbi);
6109 
6110 	/*
6111 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6112 	 * either way we need to make sure it matches in both *flags and
6113 	 * s_flags. Copy those selected flags from s_flags to *flags
6114 	 */
6115 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6116 
6117 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6118 	kfree(orig_data);
6119 	return 0;
6120 
6121 restore_opts:
6122 	/*
6123 	 * If there was a failing r/w to ro transition, we may need to
6124 	 * re-enable quota
6125 	 */
6126 	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6127 	    sb_any_quota_suspended(sb))
6128 		dquot_resume(sb, -1);
6129 	sb->s_flags = old_sb_flags;
6130 	sbi->s_mount_opt = old_opts.s_mount_opt;
6131 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6132 	sbi->s_resuid = old_opts.s_resuid;
6133 	sbi->s_resgid = old_opts.s_resgid;
6134 	sbi->s_commit_interval = old_opts.s_commit_interval;
6135 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6136 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6137 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6138 		ext4_release_system_zone(sb);
6139 #ifdef CONFIG_QUOTA
6140 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6141 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6142 		to_free[i] = get_qf_name(sb, sbi, i);
6143 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6144 	}
6145 	synchronize_rcu();
6146 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6147 		kfree(to_free[i]);
6148 #endif
6149 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6150 		ext4_stop_mmpd(sbi);
6151 	kfree(orig_data);
6152 	return err;
6153 }
6154 
6155 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6156 static int ext4_statfs_project(struct super_block *sb,
6157 			       kprojid_t projid, struct kstatfs *buf)
6158 {
6159 	struct kqid qid;
6160 	struct dquot *dquot;
6161 	u64 limit;
6162 	u64 curblock;
6163 
6164 	qid = make_kqid_projid(projid);
6165 	dquot = dqget(sb, qid);
6166 	if (IS_ERR(dquot))
6167 		return PTR_ERR(dquot);
6168 	spin_lock(&dquot->dq_dqb_lock);
6169 
6170 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6171 			     dquot->dq_dqb.dqb_bhardlimit);
6172 	limit >>= sb->s_blocksize_bits;
6173 
6174 	if (limit && buf->f_blocks > limit) {
6175 		curblock = (dquot->dq_dqb.dqb_curspace +
6176 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6177 		buf->f_blocks = limit;
6178 		buf->f_bfree = buf->f_bavail =
6179 			(buf->f_blocks > curblock) ?
6180 			 (buf->f_blocks - curblock) : 0;
6181 	}
6182 
6183 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6184 			     dquot->dq_dqb.dqb_ihardlimit);
6185 	if (limit && buf->f_files > limit) {
6186 		buf->f_files = limit;
6187 		buf->f_ffree =
6188 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6189 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6190 	}
6191 
6192 	spin_unlock(&dquot->dq_dqb_lock);
6193 	dqput(dquot);
6194 	return 0;
6195 }
6196 #endif
6197 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6198 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6199 {
6200 	struct super_block *sb = dentry->d_sb;
6201 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6202 	struct ext4_super_block *es = sbi->s_es;
6203 	ext4_fsblk_t overhead = 0, resv_blocks;
6204 	u64 fsid;
6205 	s64 bfree;
6206 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6207 
6208 	if (!test_opt(sb, MINIX_DF))
6209 		overhead = sbi->s_overhead;
6210 
6211 	buf->f_type = EXT4_SUPER_MAGIC;
6212 	buf->f_bsize = sb->s_blocksize;
6213 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6214 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6215 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6216 	/* prevent underflow in case that few free space is available */
6217 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6218 	buf->f_bavail = buf->f_bfree -
6219 			(ext4_r_blocks_count(es) + resv_blocks);
6220 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6221 		buf->f_bavail = 0;
6222 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6223 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6224 	buf->f_namelen = EXT4_NAME_LEN;
6225 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6226 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6227 	buf->f_fsid = u64_to_fsid(fsid);
6228 
6229 #ifdef CONFIG_QUOTA
6230 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6231 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6232 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6233 #endif
6234 	return 0;
6235 }
6236 
6237 
6238 #ifdef CONFIG_QUOTA
6239 
6240 /*
6241  * Helper functions so that transaction is started before we acquire dqio_sem
6242  * to keep correct lock ordering of transaction > dqio_sem
6243  */
dquot_to_inode(struct dquot * dquot)6244 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6245 {
6246 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6247 }
6248 
ext4_write_dquot(struct dquot * dquot)6249 static int ext4_write_dquot(struct dquot *dquot)
6250 {
6251 	int ret, err;
6252 	handle_t *handle;
6253 	struct inode *inode;
6254 
6255 	inode = dquot_to_inode(dquot);
6256 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6257 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6258 	if (IS_ERR(handle))
6259 		return PTR_ERR(handle);
6260 	ret = dquot_commit(dquot);
6261 	err = ext4_journal_stop(handle);
6262 	if (!ret)
6263 		ret = err;
6264 	return ret;
6265 }
6266 
ext4_acquire_dquot(struct dquot * dquot)6267 static int ext4_acquire_dquot(struct dquot *dquot)
6268 {
6269 	int ret, err;
6270 	handle_t *handle;
6271 
6272 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6273 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6274 	if (IS_ERR(handle))
6275 		return PTR_ERR(handle);
6276 	ret = dquot_acquire(dquot);
6277 	err = ext4_journal_stop(handle);
6278 	if (!ret)
6279 		ret = err;
6280 	return ret;
6281 }
6282 
ext4_release_dquot(struct dquot * dquot)6283 static int ext4_release_dquot(struct dquot *dquot)
6284 {
6285 	int ret, err;
6286 	handle_t *handle;
6287 
6288 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6289 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6290 	if (IS_ERR(handle)) {
6291 		/* Release dquot anyway to avoid endless cycle in dqput() */
6292 		dquot_release(dquot);
6293 		return PTR_ERR(handle);
6294 	}
6295 	ret = dquot_release(dquot);
6296 	err = ext4_journal_stop(handle);
6297 	if (!ret)
6298 		ret = err;
6299 	return ret;
6300 }
6301 
ext4_mark_dquot_dirty(struct dquot * dquot)6302 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6303 {
6304 	struct super_block *sb = dquot->dq_sb;
6305 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6306 
6307 	/* Are we journaling quotas? */
6308 	if (ext4_has_feature_quota(sb) ||
6309 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6310 		dquot_mark_dquot_dirty(dquot);
6311 		return ext4_write_dquot(dquot);
6312 	} else {
6313 		return dquot_mark_dquot_dirty(dquot);
6314 	}
6315 }
6316 
ext4_write_info(struct super_block * sb,int type)6317 static int ext4_write_info(struct super_block *sb, int type)
6318 {
6319 	int ret, err;
6320 	handle_t *handle;
6321 
6322 	/* Data block + inode block */
6323 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6324 	if (IS_ERR(handle))
6325 		return PTR_ERR(handle);
6326 	ret = dquot_commit_info(sb, type);
6327 	err = ext4_journal_stop(handle);
6328 	if (!ret)
6329 		ret = err;
6330 	return ret;
6331 }
6332 
6333 /*
6334  * Turn on quotas during mount time - we need to find
6335  * the quota file and such...
6336  */
ext4_quota_on_mount(struct super_block * sb,int type)6337 static int ext4_quota_on_mount(struct super_block *sb, int type)
6338 {
6339 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6340 					EXT4_SB(sb)->s_jquota_fmt, type);
6341 }
6342 
lockdep_set_quota_inode(struct inode * inode,int subclass)6343 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6344 {
6345 	struct ext4_inode_info *ei = EXT4_I(inode);
6346 
6347 	/* The first argument of lockdep_set_subclass has to be
6348 	 * *exactly* the same as the argument to init_rwsem() --- in
6349 	 * this case, in init_once() --- or lockdep gets unhappy
6350 	 * because the name of the lock is set using the
6351 	 * stringification of the argument to init_rwsem().
6352 	 */
6353 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6354 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6355 }
6356 
6357 /*
6358  * Standard function to be called on quota_on
6359  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6360 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6361 			 const struct path *path)
6362 {
6363 	int err;
6364 
6365 	if (!test_opt(sb, QUOTA))
6366 		return -EINVAL;
6367 
6368 	/* Quotafile not on the same filesystem? */
6369 	if (path->dentry->d_sb != sb)
6370 		return -EXDEV;
6371 
6372 	/* Quota already enabled for this file? */
6373 	if (IS_NOQUOTA(d_inode(path->dentry)))
6374 		return -EBUSY;
6375 
6376 	/* Journaling quota? */
6377 	if (EXT4_SB(sb)->s_qf_names[type]) {
6378 		/* Quotafile not in fs root? */
6379 		if (path->dentry->d_parent != sb->s_root)
6380 			ext4_msg(sb, KERN_WARNING,
6381 				"Quota file not on filesystem root. "
6382 				"Journaled quota will not work");
6383 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6384 	} else {
6385 		/*
6386 		 * Clear the flag just in case mount options changed since
6387 		 * last time.
6388 		 */
6389 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6390 	}
6391 
6392 	/*
6393 	 * When we journal data on quota file, we have to flush journal to see
6394 	 * all updates to the file when we bypass pagecache...
6395 	 */
6396 	if (EXT4_SB(sb)->s_journal &&
6397 	    ext4_should_journal_data(d_inode(path->dentry))) {
6398 		/*
6399 		 * We don't need to lock updates but journal_flush() could
6400 		 * otherwise be livelocked...
6401 		 */
6402 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6403 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6404 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6405 		if (err)
6406 			return err;
6407 	}
6408 
6409 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6410 	err = dquot_quota_on(sb, type, format_id, path);
6411 	if (!err) {
6412 		struct inode *inode = d_inode(path->dentry);
6413 		handle_t *handle;
6414 
6415 		/*
6416 		 * Set inode flags to prevent userspace from messing with quota
6417 		 * files. If this fails, we return success anyway since quotas
6418 		 * are already enabled and this is not a hard failure.
6419 		 */
6420 		inode_lock(inode);
6421 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6422 		if (IS_ERR(handle))
6423 			goto unlock_inode;
6424 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6425 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6426 				S_NOATIME | S_IMMUTABLE);
6427 		err = ext4_mark_inode_dirty(handle, inode);
6428 		ext4_journal_stop(handle);
6429 	unlock_inode:
6430 		inode_unlock(inode);
6431 		if (err)
6432 			dquot_quota_off(sb, type);
6433 	}
6434 	if (err)
6435 		lockdep_set_quota_inode(path->dentry->d_inode,
6436 					     I_DATA_SEM_NORMAL);
6437 	return err;
6438 }
6439 
ext4_check_quota_inum(int type,unsigned long qf_inum)6440 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6441 {
6442 	switch (type) {
6443 	case USRQUOTA:
6444 		return qf_inum == EXT4_USR_QUOTA_INO;
6445 	case GRPQUOTA:
6446 		return qf_inum == EXT4_GRP_QUOTA_INO;
6447 	case PRJQUOTA:
6448 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6449 	default:
6450 		BUG();
6451 	}
6452 }
6453 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6454 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6455 			     unsigned int flags)
6456 {
6457 	int err;
6458 	struct inode *qf_inode;
6459 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6460 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6461 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6462 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6463 	};
6464 
6465 	BUG_ON(!ext4_has_feature_quota(sb));
6466 
6467 	if (!qf_inums[type])
6468 		return -EPERM;
6469 
6470 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6471 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6472 				qf_inums[type], type);
6473 		return -EUCLEAN;
6474 	}
6475 
6476 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6477 	if (IS_ERR(qf_inode)) {
6478 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6479 				qf_inums[type], type);
6480 		return PTR_ERR(qf_inode);
6481 	}
6482 
6483 	/* Don't account quota for quota files to avoid recursion */
6484 	qf_inode->i_flags |= S_NOQUOTA;
6485 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6486 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6487 	if (err)
6488 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6489 	iput(qf_inode);
6490 
6491 	return err;
6492 }
6493 
6494 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6495 static int ext4_enable_quotas(struct super_block *sb)
6496 {
6497 	int type, err = 0;
6498 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6499 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6500 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6501 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6502 	};
6503 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6504 		test_opt(sb, USRQUOTA),
6505 		test_opt(sb, GRPQUOTA),
6506 		test_opt(sb, PRJQUOTA),
6507 	};
6508 
6509 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6510 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6511 		if (qf_inums[type]) {
6512 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6513 				DQUOT_USAGE_ENABLED |
6514 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6515 			if (err) {
6516 				ext4_warning(sb,
6517 					"Failed to enable quota tracking "
6518 					"(type=%d, err=%d, ino=%lu). "
6519 					"Please run e2fsck to fix.", type,
6520 					err, qf_inums[type]);
6521 				for (type--; type >= 0; type--) {
6522 					struct inode *inode;
6523 
6524 					inode = sb_dqopt(sb)->files[type];
6525 					if (inode)
6526 						inode = igrab(inode);
6527 					dquot_quota_off(sb, type);
6528 					if (inode) {
6529 						lockdep_set_quota_inode(inode,
6530 							I_DATA_SEM_NORMAL);
6531 						iput(inode);
6532 					}
6533 				}
6534 
6535 				return err;
6536 			}
6537 		}
6538 	}
6539 	return 0;
6540 }
6541 
ext4_quota_off(struct super_block * sb,int type)6542 static int ext4_quota_off(struct super_block *sb, int type)
6543 {
6544 	struct inode *inode = sb_dqopt(sb)->files[type];
6545 	handle_t *handle;
6546 	int err;
6547 
6548 	/* Force all delayed allocation blocks to be allocated.
6549 	 * Caller already holds s_umount sem */
6550 	if (test_opt(sb, DELALLOC))
6551 		sync_filesystem(sb);
6552 
6553 	if (!inode || !igrab(inode))
6554 		goto out;
6555 
6556 	err = dquot_quota_off(sb, type);
6557 	if (err || ext4_has_feature_quota(sb))
6558 		goto out_put;
6559 
6560 	inode_lock(inode);
6561 	/*
6562 	 * Update modification times of quota files when userspace can
6563 	 * start looking at them. If we fail, we return success anyway since
6564 	 * this is not a hard failure and quotas are already disabled.
6565 	 */
6566 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6567 	if (IS_ERR(handle)) {
6568 		err = PTR_ERR(handle);
6569 		goto out_unlock;
6570 	}
6571 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6572 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6573 	inode->i_mtime = inode->i_ctime = current_time(inode);
6574 	err = ext4_mark_inode_dirty(handle, inode);
6575 	ext4_journal_stop(handle);
6576 out_unlock:
6577 	inode_unlock(inode);
6578 out_put:
6579 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6580 	iput(inode);
6581 	return err;
6582 out:
6583 	return dquot_quota_off(sb, type);
6584 }
6585 
6586 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6587  * acquiring the locks... As quota files are never truncated and quota code
6588  * itself serializes the operations (and no one else should touch the files)
6589  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6590 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6591 			       size_t len, loff_t off)
6592 {
6593 	struct inode *inode = sb_dqopt(sb)->files[type];
6594 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6595 	int offset = off & (sb->s_blocksize - 1);
6596 	int tocopy;
6597 	size_t toread;
6598 	struct buffer_head *bh;
6599 	loff_t i_size = i_size_read(inode);
6600 
6601 	if (off > i_size)
6602 		return 0;
6603 	if (off+len > i_size)
6604 		len = i_size-off;
6605 	toread = len;
6606 	while (toread > 0) {
6607 		tocopy = sb->s_blocksize - offset < toread ?
6608 				sb->s_blocksize - offset : toread;
6609 		bh = ext4_bread(NULL, inode, blk, 0);
6610 		if (IS_ERR(bh))
6611 			return PTR_ERR(bh);
6612 		if (!bh)	/* A hole? */
6613 			memset(data, 0, tocopy);
6614 		else
6615 			memcpy(data, bh->b_data+offset, tocopy);
6616 		brelse(bh);
6617 		offset = 0;
6618 		toread -= tocopy;
6619 		data += tocopy;
6620 		blk++;
6621 	}
6622 	return len;
6623 }
6624 
6625 /* Write to quotafile (we know the transaction is already started and has
6626  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6627 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6628 				const char *data, size_t len, loff_t off)
6629 {
6630 	struct inode *inode = sb_dqopt(sb)->files[type];
6631 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6632 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6633 	int retries = 0;
6634 	struct buffer_head *bh;
6635 	handle_t *handle = journal_current_handle();
6636 
6637 	if (!handle) {
6638 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6639 			" cancelled because transaction is not started",
6640 			(unsigned long long)off, (unsigned long long)len);
6641 		return -EIO;
6642 	}
6643 	/*
6644 	 * Since we account only one data block in transaction credits,
6645 	 * then it is impossible to cross a block boundary.
6646 	 */
6647 	if (sb->s_blocksize - offset < len) {
6648 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6649 			" cancelled because not block aligned",
6650 			(unsigned long long)off, (unsigned long long)len);
6651 		return -EIO;
6652 	}
6653 
6654 	do {
6655 		bh = ext4_bread(handle, inode, blk,
6656 				EXT4_GET_BLOCKS_CREATE |
6657 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6658 	} while (PTR_ERR(bh) == -ENOSPC &&
6659 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6660 	if (IS_ERR(bh))
6661 		return PTR_ERR(bh);
6662 	if (!bh)
6663 		goto out;
6664 	BUFFER_TRACE(bh, "get write access");
6665 	err = ext4_journal_get_write_access(handle, bh);
6666 	if (err) {
6667 		brelse(bh);
6668 		return err;
6669 	}
6670 	lock_buffer(bh);
6671 	memcpy(bh->b_data+offset, data, len);
6672 	flush_dcache_page(bh->b_page);
6673 	unlock_buffer(bh);
6674 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6675 	brelse(bh);
6676 out:
6677 	if (inode->i_size < off + len) {
6678 		i_size_write(inode, off + len);
6679 		EXT4_I(inode)->i_disksize = inode->i_size;
6680 		err2 = ext4_mark_inode_dirty(handle, inode);
6681 		if (unlikely(err2 && !err))
6682 			err = err2;
6683 	}
6684 	return err ? err : len;
6685 }
6686 #endif
6687 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6688 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6689 		       const char *dev_name, void *data)
6690 {
6691 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6692 }
6693 
6694 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6695 static inline void register_as_ext2(void)
6696 {
6697 	int err = register_filesystem(&ext2_fs_type);
6698 	if (err)
6699 		printk(KERN_WARNING
6700 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6701 }
6702 
unregister_as_ext2(void)6703 static inline void unregister_as_ext2(void)
6704 {
6705 	unregister_filesystem(&ext2_fs_type);
6706 }
6707 
ext2_feature_set_ok(struct super_block * sb)6708 static inline int ext2_feature_set_ok(struct super_block *sb)
6709 {
6710 	if (ext4_has_unknown_ext2_incompat_features(sb))
6711 		return 0;
6712 	if (sb_rdonly(sb))
6713 		return 1;
6714 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6715 		return 0;
6716 	return 1;
6717 }
6718 #else
register_as_ext2(void)6719 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6720 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6721 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6722 #endif
6723 
register_as_ext3(void)6724 static inline void register_as_ext3(void)
6725 {
6726 	int err = register_filesystem(&ext3_fs_type);
6727 	if (err)
6728 		printk(KERN_WARNING
6729 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6730 }
6731 
unregister_as_ext3(void)6732 static inline void unregister_as_ext3(void)
6733 {
6734 	unregister_filesystem(&ext3_fs_type);
6735 }
6736 
ext3_feature_set_ok(struct super_block * sb)6737 static inline int ext3_feature_set_ok(struct super_block *sb)
6738 {
6739 	if (ext4_has_unknown_ext3_incompat_features(sb))
6740 		return 0;
6741 	if (!ext4_has_feature_journal(sb))
6742 		return 0;
6743 	if (sb_rdonly(sb))
6744 		return 1;
6745 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6746 		return 0;
6747 	return 1;
6748 }
6749 
6750 static struct file_system_type ext4_fs_type = {
6751 	.owner		= THIS_MODULE,
6752 	.name		= "ext4",
6753 	.mount		= ext4_mount,
6754 	.kill_sb	= kill_block_super,
6755 	.fs_flags	= FS_REQUIRES_DEV,
6756 };
6757 MODULE_ALIAS_FS("ext4");
6758 
6759 /* Shared across all ext4 file systems */
6760 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6761 
ext4_init_fs(void)6762 static int __init ext4_init_fs(void)
6763 {
6764 	int i, err;
6765 
6766 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6767 	ext4_li_info = NULL;
6768 	mutex_init(&ext4_li_mtx);
6769 
6770 	/* Build-time check for flags consistency */
6771 	ext4_check_flag_values();
6772 
6773 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6774 		init_waitqueue_head(&ext4__ioend_wq[i]);
6775 
6776 	err = ext4_init_es();
6777 	if (err)
6778 		return err;
6779 
6780 	err = ext4_init_pending();
6781 	if (err)
6782 		goto out7;
6783 
6784 	err = ext4_init_post_read_processing();
6785 	if (err)
6786 		goto out6;
6787 
6788 	err = ext4_init_pageio();
6789 	if (err)
6790 		goto out5;
6791 
6792 	err = ext4_init_system_zone();
6793 	if (err)
6794 		goto out4;
6795 
6796 	err = ext4_init_sysfs();
6797 	if (err)
6798 		goto out3;
6799 
6800 	err = ext4_init_mballoc();
6801 	if (err)
6802 		goto out2;
6803 	err = init_inodecache();
6804 	if (err)
6805 		goto out1;
6806 
6807 	err = ext4_fc_init_dentry_cache();
6808 	if (err)
6809 		goto out05;
6810 
6811 	register_as_ext3();
6812 	register_as_ext2();
6813 	err = register_filesystem(&ext4_fs_type);
6814 	if (err)
6815 		goto out;
6816 
6817 	return 0;
6818 out:
6819 	unregister_as_ext2();
6820 	unregister_as_ext3();
6821 	ext4_fc_destroy_dentry_cache();
6822 out05:
6823 	destroy_inodecache();
6824 out1:
6825 	ext4_exit_mballoc();
6826 out2:
6827 	ext4_exit_sysfs();
6828 out3:
6829 	ext4_exit_system_zone();
6830 out4:
6831 	ext4_exit_pageio();
6832 out5:
6833 	ext4_exit_post_read_processing();
6834 out6:
6835 	ext4_exit_pending();
6836 out7:
6837 	ext4_exit_es();
6838 
6839 	return err;
6840 }
6841 
ext4_exit_fs(void)6842 static void __exit ext4_exit_fs(void)
6843 {
6844 	ext4_destroy_lazyinit_thread();
6845 	unregister_as_ext2();
6846 	unregister_as_ext3();
6847 	unregister_filesystem(&ext4_fs_type);
6848 	ext4_fc_destroy_dentry_cache();
6849 	destroy_inodecache();
6850 	ext4_exit_mballoc();
6851 	ext4_exit_sysfs();
6852 	ext4_exit_system_zone();
6853 	ext4_exit_pageio();
6854 	ext4_exit_post_read_processing();
6855 	ext4_exit_es();
6856 	ext4_exit_pending();
6857 }
6858 
6859 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6860 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6861 MODULE_LICENSE("GPL");
6862 MODULE_SOFTDEP("pre: crc32c");
6863 module_init(ext4_init_fs)
6864 module_exit(ext4_exit_fs)
6865